US20030143079A1 - Gas turbine engine - Google Patents
Gas turbine engine Download PDFInfo
- Publication number
- US20030143079A1 US20030143079A1 US10/240,107 US24010703A US2003143079A1 US 20030143079 A1 US20030143079 A1 US 20030143079A1 US 24010703 A US24010703 A US 24010703A US 2003143079 A1 US2003143079 A1 US 2003143079A1
- Authority
- US
- United States
- Prior art keywords
- turbine engine
- gas turbine
- concave part
- blade
- peripheral wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/145—Means for influencing boundary layers or secondary circulations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/302—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor characteristics related to shock waves, transonic or supersonic flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/71—Shape curved
- F05D2250/711—Shape curved convex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/71—Shape curved
- F05D2250/712—Shape curved concave
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to a gas turbine engine in which turbine airfoils are disposed in a radial direction in an annular gas passage defined by an inner peripheral wall and an outer peripheral wall.
- Japanese Patent Application Laid-open No. 11-241601 discloses an axial-flow gas turbine engine comprising stator vanes and rotor blades, wherein a cross section in the axial direction of an inner peripheral wall of a casing to which the stator vanes and the rotor blades are connected has a concave part that recedes radially inward relative to a straight line joining the front edge of the root of the stator vane on the front side and the rear edge of the root of the rotor blade on the rear side.
- U.S. Pat. No. 5,466,123 discloses an arrangement in which a cross section orthogonal to the axial direction of an inner peripheral wall of a casing supporting stator vanes of a gas turbine engine has sinusoidally alternating concave parts and convex parts.
- the present invention has been carried out in view of the above-mentioned circumstances, and it is an object of the present invention to suppress the occurrence of a shock wave when the stagger angle is increased as a result of decreasing the thickness of a turbine airfoil of a gas turbine engine, thereby preventing any increase in the pressure loss.
- a gas turbine engine comprising turbine airfoils disposed in a radial direction in an annular gas passage defined by an inner peripheral wall and an outer peripheral wall, characterized in that a cross section in the axial direction along a connecting section of the inner peripheral wall or the outer peripheral wall where the wall is connected to the turbine airfoil has a concave part on a front edge side having a negative curvature relative to the direction of flow of gas and a convex part on a rear edge side having a positive curvature relative to the direction of flow of gas.
- the cross section in the axial direction along the connecting section of the inner peripheral wall or the outer peripheral wall of the gas turbine engine where the wall is connected to the turbine airfoil has a concave part on the front edge side and a convex part on the rear edge side via a point of inflection, the concave part having a negative curvature relative to a direction of flow of gas, and the convex part having a positive curvature, the flow rate on the upper face of the blade main body can be reduced in the concave part on the front edge side, thus suppressing generation of a shock wave, and the flow rate can be increased in the convex part on the rear edge side following the concave part, thus smoothly changing the flow rate on the upper face of the blade main body and thereby minimizing the pressure loss.
- the thickness of the blade main body can be reduced while maintaining the performance of the gas turbine engine, thereby contributing to a reduction in weight.
- This effect can be exhibited even more strongly by making the height of the convex part at most 10% of the length, in the radial direction, of the gas passage, positioning the point of inflection between the concave part and the convex part so as to be forward of the central position of the chord, making the absolute value of the negative curvature of the concave part smaller than the absolute value of the positive curvature of the convex part, arranging for the minimum negative pressure point that is the closest to the front edge of the conventional turbine airfoil to be present within the range of the concave part, and positioning the front end of the concave part so as to be to the rear of the front edge.
- FIG. 1 is a diagram showing the shape of a turbine blade of a gas turbine engine.
- FIG. 2 is a diagram showing the shape of an inner wall face along the chord of the turbine blade, the curvature of the inner wall face, and speed distribution on the blade face.
- FIG. 1 and FIG. 2 show one embodiment of the present invention.
- FIG. 1 shows a turbine blade 11 of an axial-flow gas turbine engine, and the turbine blade 11 is formed from a blade main body 12 positioned outward in the radial direction, a blade end wall 13 positioned inward in the radial direction relative to the blade main body 12 , and a blade mounting part 14 positioned inward in the radial direction relative to the blade end wall 13 .
- the blade shape of the root part (a part adjoining the blade end wall 13 ) of the blade main body 12 shown as the cross section X-X in FIG.
- FIG. 1 comprises a front edge 12 a , a rear edge 12 b , an upper face 12 d , and a lower face 12 e , and a straight line joining the front edge 12 a and the rear edge 12 b has a comparatively large stagger angle ⁇ relative to the direction of the axis A of the gas turbine engine.
- the stagger angle ⁇ of the blade main body 12 of this embodiment is set so as to be large compared with a conventional stagger angle ⁇ of 0° to 20°. Setting the stagger angle ⁇ so as to be large compared with the conventional stagger angle in this way makes it possible for the blade thickness of the blade main body 12 to be thin, and as a result the weight of the turbine blade 11 can be reduced by 20% relative to the conventional turbine blade without changing the material.
- a tip 12 c on the radially outer end of the blade main body 12 faces an annular outer peripheral wall 15 a of an outer casing 15 with a slight tip clearance 16 .
- An annular hub 17 a is formed on the outer circumference of a blade disc 17 supported rotatably around the axis A of the gas turbine engine, and a large number of the blade mounting parts 14 of the turbine blades 11 are mounted radially on the hub 17 a .
- the blade mounting part 14 has a plurality of alternating ridges 14 a and grooves 14 b extending in the direction of the axis A of the gas turbine engine, and these ridges 14 a and grooves 14 b interlock with the hub 17 a via concavo-convex engagement.
- the blade end walls 13 of the turbine blades 11 extend integrally in the circumferential direction, thus forming an annular inner peripheral wall 13 a .
- An annular gas passage 18 is formed between the outer peripheral wall 15 a and the inner peripheral wall 13 a , and the turbine blades 11 are disposed within the gas passage 18 through which combustion gas flows in the direction of the arrow F.
- Stator vanes which are not illustrated, are disposed on the front side and the rear side of the turbine blades 11 in the axial direction.
- a part of a cross section in the axial direction of the annular inner peripheral wall 13 a which is formed from the blade end wall 13 of the turbine blade 11 , is formed from a curve. That is, the cross section in the axial direction of the inner peripheral wall 13 a includes, from the front edge 12 a side to the rear edge 12 b side, a first straight line part 19 , a first concave part 20 , a convex part 21 , a second concave part 22 , and a second straight line part 23 .
- the first concave part 20 and the second concave part 22 have negative curvatures and are concave toward the axis A, and the convex part 21 has a positive curvature and is convex away from the axis A.
- a first point of inflection a is present in a part where the curvature changes from negative to positive
- a second point of inflection b is present in a part where the curvature changes from positive to negative.
- the curvature on the upper face 12 d of the blade main body 12 is positive in the whole region from the front edge 12 a to the rear edge 12 b.
- Characteristic features in the cross section in the axial direction of the inner peripheral wall 13 a in the present embodiment are that the first concave part 20 and the convex part 21 are positioned continuously to the rear of the first straight line part 19 following the front edge 12 a , and that a minimum negative pressure point that is the closest to the front side of the conventional blade main body, which has a flat inner peripheral wall 13 a on which the first concave part 20 , the convex part 21 , and the second concave part 22 are not formed, would be present within the range of the first concave part 20 (the range from a point d at the front end to the point a at the rear end).
- the deepest point c of the first concave part 20 (at which the distance from a straight line joining the front end d and the rear end a of the first concave part 20 becomes a maximum) is desirably positioned in the vicinity of the above-mentioned minimum negative pressure point.
- the first inflection point a is positioned forward of the 50% position of the chord (the intermediate position between the front edge 12 a and the rear edge 12 b ), and the absolute value of the negative curvature of the first concave part 20 is set so as to be smaller than the absolute value of the positive curvature of the convex part 21 . It is appropriate for the height of the convex part 21 to be at most 10% of the radial length of the gas passage 18 , that is, the distance between the inner peripheral wall 13 a and the outer peripheral wall 15 a.
- the flow of the combustion gas can be diffused in the radial direction in the first concave part 20 , thus suppressing a rapid increase in the flow rate and thereby preventing the generation of a shock wave. Furthermore, the flow rate of the combustion gas is increased in the convex part 21 following the first concave part 20 , as shown by a solid line in the graph of the speed distribution on the blade upper face 12 d in FIG. 2, and the speed distribution of the combustion gas on the upper face 12 d of the blade main body 12 can be increased smoothly, thereby decreasing the pressure loss.
- the turbine blade 11 is illustrated as a turbine airfoil in the embodiment, but the present invention can be applied to a stator vane of a gas turbine engine in the same manner.
- the present invention can be applied to either or both of an inner peripheral wall connected to the radially inner end of the stator vane and an outer peripheral wall connected to the radially outer end of the stator vane.
- the present invention can be applied to an axial-flow gas turbine engine for an airplane, for stationary use, and for any other purpose.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
A gas turbine engine has, in a cross section in the axial direction of an annular inner peripheral wall connected to a blade main body of a turbine blade, a concave part and a convex part on the front edge side and the rear edge side. The concave part has a negative curvature and is concave toward the axis, and the convex part has a positive curvature and is convex away from the axis. The flow rate on the upper face of the blade main body can be reduced in the concave part on the front edge side, thus suppressing generation of a shock wave, and the flow rate can be increased in the convex part on the rear edge side following the concave part, thus smoothly changing the flow rate on the upper face of the blade main body and thereby minimizing the pressure loss. In this way, the thickness of the blade main body can be reduced while ensuring the performance of the gas turbine engine, thereby contributing to a reduction in weight.
Description
- The present invention relates to a gas turbine engine in which turbine airfoils are disposed in a radial direction in an annular gas passage defined by an inner peripheral wall and an outer peripheral wall.
- Japanese Patent Application Laid-open No. 11-241601 discloses an axial-flow gas turbine engine comprising stator vanes and rotor blades, wherein a cross section in the axial direction of an inner peripheral wall of a casing to which the stator vanes and the rotor blades are connected has a concave part that recedes radially inward relative to a straight line joining the front edge of the root of the stator vane on the front side and the rear edge of the root of the rotor blade on the rear side.
- Furthermore, U.S. Pat. No. 5,466,123 discloses an arrangement in which a cross section orthogonal to the axial direction of an inner peripheral wall of a casing supporting stator vanes of a gas turbine engine has sinusoidally alternating concave parts and convex parts.
- It should be noted here that when the thickness of a turbine airfoil of a gas turbine engine is decreased in order to reduce the weight of the airfoil without changing the material thereof, it is necessary to increase its stagger angle γ (see FIG. 1), but since the curvature of the front half on the upper face of the airfoil increases with an increase in the stagger angle γ, the flow rate on the upper face of the airfoil accelerates and decelerates rapidly and, in particular, in the case of a high load blade having a high rotor inlet relative Mach number, a shock wave is generated beyond a critical Mach number, and as a result there is the problem that the pressure loss increases.
- The present invention has been carried out in view of the above-mentioned circumstances, and it is an object of the present invention to suppress the occurrence of a shock wave when the stagger angle is increased as a result of decreasing the thickness of a turbine airfoil of a gas turbine engine, thereby preventing any increase in the pressure loss.
- In order to accomplish the above-mentioned object, in accordance with the present invention, there is proposed a gas turbine engine comprising turbine airfoils disposed in a radial direction in an annular gas passage defined by an inner peripheral wall and an outer peripheral wall, characterized in that a cross section in the axial direction along a connecting section of the inner peripheral wall or the outer peripheral wall where the wall is connected to the turbine airfoil has a concave part on a front edge side having a negative curvature relative to the direction of flow of gas and a convex part on a rear edge side having a positive curvature relative to the direction of flow of gas.
- Furthermore, in addition to the above-mentioned arrangement, there is proposed a gas turbine engine wherein the height of the convex part is at most 10% of the length, in the radial direction, of the gas passage.
- Moreover, in addition to the above-mentioned arrangement, there is proposed a gas turbine engine wherein the cross section in the axial direction along the connecting section has at least one point of inflection between the front edge and the rear edge.
- Furthermore, in addition to the above-mentioned arrangement, there is proposed a gas turbine engine wherein, among the at least one point of inflection, the point of inflection that is the closest to the front edge side is positioned forward relative to the central position of the chord of the turbine airfoil.
- Moreover, in addition to the above-mentioned arrangement, there is proposed a gas turbine engine wherein the absolute value of the negative curvature of the concave part is smaller than the absolute value of the positive curvature of the convex part.
- Furthermore, in addition to the above-mentioned arrangement, there is proposed a gas turbine engine wherein the axial position of the concave part is set so that the axial position of a minimum negative pressure point that is the closest to the front edge of the turbine airfoil connected to a flat connecting section is present within the range of the concave part.
- Moreover, in addition to the above-mentioned arrangement, there is proposed a gas turbine engine wherein the front end of the concave part is positioned to the rear of the front edge.
- When the thickness of the turbine airfoil of the gas turbine engine is decreased in order to reduce the weight, the stagger angle required increases, the flow rate of combustion gas on the upper face of the front half of a blade main body accelerates and decelerates rapidly and, in particular, in the case of a high load blade having a high rotor inlet relative Mach number, the flow rate reaches a critical Mach number, thus generating a shock wave and thereby causing a large pressure loss and degrading the performance of the gas turbine engine. However, in accordance with the present invention, since the cross section in the axial direction along the connecting section of the inner peripheral wall or the outer peripheral wall of the gas turbine engine where the wall is connected to the turbine airfoil has a concave part on the front edge side and a convex part on the rear edge side via a point of inflection, the concave part having a negative curvature relative to a direction of flow of gas, and the convex part having a positive curvature, the flow rate on the upper face of the blade main body can be reduced in the concave part on the front edge side, thus suppressing generation of a shock wave, and the flow rate can be increased in the convex part on the rear edge side following the concave part, thus smoothly changing the flow rate on the upper face of the blade main body and thereby minimizing the pressure loss. In this way, the thickness of the blade main body can be reduced while maintaining the performance of the gas turbine engine, thereby contributing to a reduction in weight.
- This effect can be exhibited even more strongly by making the height of the convex part at most 10% of the length, in the radial direction, of the gas passage, positioning the point of inflection between the concave part and the convex part so as to be forward of the central position of the chord, making the absolute value of the negative curvature of the concave part smaller than the absolute value of the positive curvature of the convex part, arranging for the minimum negative pressure point that is the closest to the front edge of the conventional turbine airfoil to be present within the range of the concave part, and positioning the front end of the concave part so as to be to the rear of the front edge.
- FIG. 1 and FIG. 2 show one embodiment of the present invention. FIG. 1 is a diagram showing the shape of a turbine blade of a gas turbine engine. FIG. 2 is a diagram showing the shape of an inner wall face along the chord of the turbine blade, the curvature of the inner wall face, and speed distribution on the blade face.
- A mode for carrying out the present invention is explained below by reference to an embodiment of the present invention illustrated in attached drawings.
- FIG. 1 and FIG. 2 show one embodiment of the present invention.
- FIG. 1 shows a
turbine blade 11 of an axial-flow gas turbine engine, and theturbine blade 11 is formed from a blademain body 12 positioned outward in the radial direction, ablade end wall 13 positioned inward in the radial direction relative to the blademain body 12, and ablade mounting part 14 positioned inward in the radial direction relative to theblade end wall 13. The blade shape of the root part (a part adjoining the blade end wall 13) of the blademain body 12 shown as the cross section X-X in FIG. 1 comprises afront edge 12 a, arear edge 12 b, anupper face 12 d, and alower face 12 e, and a straight line joining thefront edge 12 a and therear edge 12 b has a comparatively large stagger angle γ relative to the direction of the axis A of the gas turbine engine. - The stagger angle γ of the blade
main body 12 of this embodiment is set so as to be large compared with a conventional stagger angle γ of 0° to 20°. Setting the stagger angle γ so as to be large compared with the conventional stagger angle in this way makes it possible for the blade thickness of the blademain body 12 to be thin, and as a result the weight of theturbine blade 11 can be reduced by 20% relative to the conventional turbine blade without changing the material. - A
tip 12 c on the radially outer end of the blademain body 12 faces an annular outerperipheral wall 15 a of anouter casing 15 with aslight tip clearance 16. Anannular hub 17 a is formed on the outer circumference of ablade disc 17 supported rotatably around the axis A of the gas turbine engine, and a large number of theblade mounting parts 14 of theturbine blades 11 are mounted radially on thehub 17 a. In order to withstand a large centrifugal force acting on theturbine blade 11, theblade mounting part 14 has a plurality ofalternating ridges 14 a andgrooves 14 b extending in the direction of the axis A of the gas turbine engine, and theseridges 14 a andgrooves 14 b interlock with thehub 17 a via concavo-convex engagement. - When a large number of the
turbine blades 11 are mounted on thehub 17 a of theblade disc 17, theblade end walls 13 of theturbine blades 11 extend integrally in the circumferential direction, thus forming an annular innerperipheral wall 13 a. Anannular gas passage 18 is formed between the outerperipheral wall 15 a and the innerperipheral wall 13 a, and theturbine blades 11 are disposed within thegas passage 18 through which combustion gas flows in the direction of the arrow F. Stator vanes, which are not illustrated, are disposed on the front side and the rear side of theturbine blades 11 in the axial direction. - As is clear from FIG. 2, a part of a cross section in the axial direction of the annular inner
peripheral wall 13 a, which is formed from theblade end wall 13 of theturbine blade 11, is formed from a curve. That is, the cross section in the axial direction of the innerperipheral wall 13 a includes, from thefront edge 12 a side to therear edge 12 b side, a firststraight line part 19, a firstconcave part 20, aconvex part 21, a secondconcave part 22, and a secondstraight line part 23. The firstconcave part 20 and the secondconcave part 22 have negative curvatures and are concave toward the axis A, and theconvex part 21 has a positive curvature and is convex away from the axis A. A first point of inflection a is present in a part where the curvature changes from negative to positive, and a second point of inflection b is present in a part where the curvature changes from positive to negative. The curvature on theupper face 12 d of the blademain body 12 is positive in the whole region from thefront edge 12 a to therear edge 12 b. - Characteristic features in the cross section in the axial direction of the inner
peripheral wall 13 a in the present embodiment are that the firstconcave part 20 and theconvex part 21 are positioned continuously to the rear of the firststraight line part 19 following thefront edge 12 a, and that a minimum negative pressure point that is the closest to the front side of the conventional blade main body, which has a flat innerperipheral wall 13 a on which the firstconcave part 20, theconvex part 21, and the secondconcave part 22 are not formed, would be present within the range of the first concave part 20 (the range from a point d at the front end to the point a at the rear end). The deepest point c of the first concave part 20 (at which the distance from a straight line joining the front end d and the rear end a of the firstconcave part 20 becomes a maximum) is desirably positioned in the vicinity of the above-mentioned minimum negative pressure point. Moreover, the first inflection point a is positioned forward of the 50% position of the chord (the intermediate position between thefront edge 12 a and therear edge 12 b), and the absolute value of the negative curvature of the firstconcave part 20 is set so as to be smaller than the absolute value of the positive curvature of theconvex part 21. It is appropriate for the height of theconvex part 21 to be at most 10% of the radial length of thegas passage 18, that is, the distance between the innerperipheral wall 13 a and the outerperipheral wall 15 a. - It should be noted here that when the stagger angle γ is increased by reducing the thickness of the blade
main body 12 in order to decrease the weight of theturbine blade 11, as shown by the broken line in the graph of the speed distribution on the bladeupper face 12 d in FIG. 2, the speed distribution of combustion gas on theupper face 12 d of the blademain body 12 rapidly increases and then rapidly decreases, thereby generating a large pressure loss. - However, in the present embodiment, since in the cross section in the axial direction of the inner
peripheral wall 13 a of theblade end wall 13, the firstconcave part 20 and theconvex part 21 are continuous, the flow of the combustion gas can be diffused in the radial direction in the firstconcave part 20, thus suppressing a rapid increase in the flow rate and thereby preventing the generation of a shock wave. Furthermore, the flow rate of the combustion gas is increased in theconvex part 21 following the firstconcave part 20, as shown by a solid line in the graph of the speed distribution on the bladeupper face 12 d in FIG. 2, and the speed distribution of the combustion gas on theupper face 12 d of the blademain body 12 can be increased smoothly, thereby decreasing the pressure loss. - In this way, by changing only the shape of the cross section in the axial direction of the inner
peripheral wall 13 a of theblade end wall 13 of theturbine blade 11, rapid changes in the speed distribution on theupper face 12 d of the blademain body 12 can be suppressed even when increasing the stagger angle γ, thereby contributing to a reduction in weight by decreasing the thickness of the blademain body 12 while ensuring the performance of the gas turbine engine by minimizing the pressure loss. - An embodiment of the present invention has been explained above, but the present invention can be modified in a variety of ways without departing from the spirit and scope thereof.
- For example, the
turbine blade 11 is illustrated as a turbine airfoil in the embodiment, but the present invention can be applied to a stator vane of a gas turbine engine in the same manner. In this case, the present invention can be applied to either or both of an inner peripheral wall connected to the radially inner end of the stator vane and an outer peripheral wall connected to the radially outer end of the stator vane. - Furthermore, as shown by the solid line in the graph showing the speed distribution on the blade
upper face 12 d in FIG. 2, a rapid change is observed in the flow rate of combustion gas in the vicinity of the 70% position of the chord, but it is also possible to further reduce the pressure loss by increasing the absolute value of the negative curvature of the secondconcave part 22 and enlarging the range of thesecond convex part 22 toward the rear edge, thus smoothing the change in the flow rate in the vicinity of the 70% position of the chord. - Industrial Applicability
- The present invention can be applied to an axial-flow gas turbine engine for an airplane, for stationary use, and for any other purpose.
Claims (7)
1. A gas turbine engine comprising turbine airfoils (11) disposed in a radial direction in an annular gas passage (18) defined by an inner peripheral wall (13 a) and an outer peripheral wall (15 a),
characterized in that a cross section in the axial direction along a connecting section of the inner peripheral wall (13 a) or the outer peripheral wall (15 a) where the wall is connected to the turbine airfoil (11) has a concave part (20) on a front edge (12 a) side having a negative curvature relative to the direction of flow of gas and a convex part (21) on a rear edge (12 b) side having a positive curvature relative to the direction of flow of gas.
2. The gas turbine engine according to claim 1 , wherein the height of the convex part (21) is at most 10% of the length, in the radial direction, of the gas passage (18).
3. The gas turbine engine according to claim 1 , wherein the cross section in the axial direction along the connecting section has at least one point of inflection (a, b) between the front edge (12 a) and the rear edge (12 b).
4. The gas turbine engine according to claim 3 , wherein, among said at least one point of inflection (a, b), the point of inflection (a) that is the closest to the front edge (12 a) side is positioned forward relative to the central position of the chord of the turbine airfoil (11).
5. The gas turbine engine according to claim 1 , wherein the absolute value of the negative curvature of the concave part (20) is smaller than the absolute value of the positive curvature of the convex part (21).
6. The gas turbine engine according to claim 1 , wherein the axial position of the concave part (20) is set so that the axial position of a minimum negative pressure point that is the closest to the front edge (12 a) of the turbine airfoil (11) is connected to a flat connecting section is present within the range of the concave part (20).
7. The gas turbine engine according to claim 1 , wherein the front end (d) of the concave part (20) is positioned to the rear of the front edge (12 a).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000090730A JP2001271602A (en) | 2000-03-27 | 2000-03-27 | Gas turbine engine |
JP2000-90730 | 2000-03-27 | ||
PCT/JP2000/009150 WO2001075276A1 (en) | 2000-03-27 | 2000-12-22 | Gas turbine engine |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030143079A1 true US20030143079A1 (en) | 2003-07-31 |
US6837679B2 US6837679B2 (en) | 2005-01-04 |
Family
ID=18606301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/240,107 Expired - Lifetime US6837679B2 (en) | 2000-03-27 | 2000-12-22 | Gas turbine engine |
Country Status (5)
Country | Link |
---|---|
US (1) | US6837679B2 (en) |
EP (1) | EP1270872B1 (en) |
JP (1) | JP2001271602A (en) |
CA (1) | CA2405810C (en) |
WO (1) | WO2001075276A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090160194A1 (en) * | 2007-12-24 | 2009-06-25 | Clark Philip G | Wind turbine blade and assembly |
US20090257884A1 (en) * | 2007-12-24 | 2009-10-15 | Clark Philip G | Wind turbine blade and assembly |
US20090287763A1 (en) * | 2008-05-15 | 2009-11-19 | Kota Enterprise, Llc | Question server to facilitate communication between participants |
US20120128480A1 (en) * | 2009-08-06 | 2012-05-24 | Mtu Aero Engines Gmbh | Blade |
US8316096B2 (en) | 2008-04-29 | 2012-11-20 | Kota Enterprises, Llc | Facemail |
US20140356156A1 (en) * | 2013-05-28 | 2014-12-04 | Honda Motor Co., Ltd. | Airfoil geometry of blade for axial compressor |
US20150204196A1 (en) * | 2012-09-12 | 2015-07-23 | Mitsubishi Hitachi Power Systems, Ltd. | Gas Turbine |
US9458720B2 (en) | 2011-02-10 | 2016-10-04 | Snecma | Airfoil and platform assembly for supersonic flow |
US20160356161A1 (en) * | 2015-02-13 | 2016-12-08 | United Technologies Corporation | Article having cooling passage with undulating profile |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6969232B2 (en) | 2002-10-23 | 2005-11-29 | United Technologies Corporation | Flow directing device |
GB2407136B (en) * | 2003-10-15 | 2007-10-03 | Alstom | Turbine rotor blade for gas turbine engine |
WO2006033407A1 (en) * | 2004-09-24 | 2006-03-30 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Wall shape of axial flow machine and gas turbine engine |
US7217096B2 (en) * | 2004-12-13 | 2007-05-15 | General Electric Company | Fillet energized turbine stage |
US7134842B2 (en) * | 2004-12-24 | 2006-11-14 | General Electric Company | Scalloped surface turbine stage |
JP4533219B2 (en) * | 2005-04-08 | 2010-09-01 | キヤノン株式会社 | Image forming apparatus, image forming apparatus control method and program |
US7220100B2 (en) * | 2005-04-14 | 2007-05-22 | General Electric Company | Crescentic ramp turbine stage |
US7874794B2 (en) * | 2006-03-21 | 2011-01-25 | General Electric Company | Blade row for a rotary machine and method of fabricating same |
EP1857635A1 (en) * | 2006-05-18 | 2007-11-21 | Siemens Aktiengesellschaft | Turbine blade for a gas turbine |
DE102007020025A1 (en) * | 2007-04-27 | 2008-10-30 | Honda Motor Co., Ltd. | Shape of a gas channel in an axial flow gas turbine engine |
FR2928173B1 (en) | 2008-02-28 | 2015-06-26 | Snecma | DAWN WITH 3D PLATFORM COMPRISING A BULB INTERAUBES. |
US8647067B2 (en) * | 2008-12-09 | 2014-02-11 | General Electric Company | Banked platform turbine blade |
US8459956B2 (en) * | 2008-12-24 | 2013-06-11 | General Electric Company | Curved platform turbine blade |
US8439643B2 (en) * | 2009-08-20 | 2013-05-14 | General Electric Company | Biformal platform turbine blade |
US8393872B2 (en) * | 2009-10-23 | 2013-03-12 | General Electric Company | Turbine airfoil |
US8356975B2 (en) * | 2010-03-23 | 2013-01-22 | United Technologies Corporation | Gas turbine engine with non-axisymmetric surface contoured vane platform |
US9976433B2 (en) | 2010-04-02 | 2018-05-22 | United Technologies Corporation | Gas turbine engine with non-axisymmetric surface contoured rotor blade platform |
FR2971539B1 (en) * | 2011-02-10 | 2013-03-08 | Snecma | PLATFORM BLADE ASSEMBLY FOR SUBSONIC FLOW |
US9103213B2 (en) | 2012-02-29 | 2015-08-11 | General Electric Company | Scalloped surface turbine stage with purge trough |
US9140128B2 (en) * | 2012-09-28 | 2015-09-22 | United Technologes Corporation | Endwall contouring |
US20140154068A1 (en) * | 2012-09-28 | 2014-06-05 | United Technologies Corporation | Endwall Controuring |
US9188017B2 (en) | 2012-12-18 | 2015-11-17 | United Technologies Corporation | Airfoil assembly with paired endwall contouring |
US9879540B2 (en) | 2013-03-12 | 2018-01-30 | Pratt & Whitney Canada Corp. | Compressor stator with contoured endwall |
WO2014197062A2 (en) | 2013-03-15 | 2014-12-11 | United Technologies Corporation | Fan exit guide vane platform contouring |
US10895161B2 (en) | 2016-10-28 | 2021-01-19 | Honeywell International Inc. | Gas turbine engine airfoils having multimodal thickness distributions |
US10907648B2 (en) | 2016-10-28 | 2021-02-02 | Honeywell International Inc. | Airfoil with maximum thickness distribution for robustness |
BE1026579B1 (en) * | 2018-08-31 | 2020-03-30 | Safran Aero Boosters Sa | PROTUBERANCE VANE FOR TURBOMACHINE COMPRESSOR |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465433A (en) * | 1982-01-29 | 1984-08-14 | Mtu Motoren- Und Turbinen-Union Muenchen Gmbh | Flow duct structure for reducing secondary flow losses in a bladed flow duct |
US5466123A (en) * | 1993-08-20 | 1995-11-14 | Rolls-Royce Plc | Gas turbine engine turbine |
US5653580A (en) * | 1995-03-06 | 1997-08-05 | Solar Turbines Incorporated | Nozzle and shroud assembly mounting structure |
US6077035A (en) * | 1998-03-27 | 2000-06-20 | Pratt & Whitney Canada Corp. | Deflector for controlling entry of cooling air leakage into the gaspath of a gas turbine engine |
US6283713B1 (en) * | 1998-10-30 | 2001-09-04 | Rolls-Royce Plc | Bladed ducting for turbomachinery |
US6561761B1 (en) * | 2000-02-18 | 2003-05-13 | General Electric Company | Fluted compressor flowpath |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2788172A (en) * | 1951-12-06 | 1957-04-09 | Stalker Dev Company | Bladed structures for axial flow compressors |
US2918254A (en) * | 1954-05-10 | 1959-12-22 | Hausammann Werner | Turborunner |
JPS5735102A (en) * | 1980-08-07 | 1982-02-25 | Toshiba Corp | Turbine |
JPS6363503U (en) * | 1986-10-15 | 1988-04-26 | ||
US5397215A (en) * | 1993-06-14 | 1995-03-14 | United Technologies Corporation | Flow directing assembly for the compression section of a rotary machine |
JPH11241601A (en) * | 1998-02-25 | 1999-09-07 | Ishikawajima Harima Heavy Ind Co Ltd | Axial flow turbine |
-
2000
- 2000-03-27 JP JP2000090730A patent/JP2001271602A/en active Pending
- 2000-12-22 WO PCT/JP2000/009150 patent/WO2001075276A1/en active IP Right Grant
- 2000-12-22 EP EP00985839A patent/EP1270872B1/en not_active Expired - Lifetime
- 2000-12-22 CA CA002405810A patent/CA2405810C/en not_active Expired - Fee Related
- 2000-12-22 US US10/240,107 patent/US6837679B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465433A (en) * | 1982-01-29 | 1984-08-14 | Mtu Motoren- Und Turbinen-Union Muenchen Gmbh | Flow duct structure for reducing secondary flow losses in a bladed flow duct |
US5466123A (en) * | 1993-08-20 | 1995-11-14 | Rolls-Royce Plc | Gas turbine engine turbine |
US5653580A (en) * | 1995-03-06 | 1997-08-05 | Solar Turbines Incorporated | Nozzle and shroud assembly mounting structure |
US6077035A (en) * | 1998-03-27 | 2000-06-20 | Pratt & Whitney Canada Corp. | Deflector for controlling entry of cooling air leakage into the gaspath of a gas turbine engine |
US6283713B1 (en) * | 1998-10-30 | 2001-09-04 | Rolls-Royce Plc | Bladed ducting for turbomachinery |
US6561761B1 (en) * | 2000-02-18 | 2003-05-13 | General Electric Company | Fluted compressor flowpath |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090257884A1 (en) * | 2007-12-24 | 2009-10-15 | Clark Philip G | Wind turbine blade and assembly |
US7614852B2 (en) | 2007-12-24 | 2009-11-10 | Clark Philip G | Wind turbine blade and assembly |
US20090160194A1 (en) * | 2007-12-24 | 2009-06-25 | Clark Philip G | Wind turbine blade and assembly |
US8316096B2 (en) | 2008-04-29 | 2012-11-20 | Kota Enterprises, Llc | Facemail |
US20090287763A1 (en) * | 2008-05-15 | 2009-11-19 | Kota Enterprise, Llc | Question server to facilitate communication between participants |
US9011081B2 (en) * | 2009-08-06 | 2015-04-21 | Mtu Aero Engines Gmbh | Blade |
US20120128480A1 (en) * | 2009-08-06 | 2012-05-24 | Mtu Aero Engines Gmbh | Blade |
US9458720B2 (en) | 2011-02-10 | 2016-10-04 | Snecma | Airfoil and platform assembly for supersonic flow |
US20150204196A1 (en) * | 2012-09-12 | 2015-07-23 | Mitsubishi Hitachi Power Systems, Ltd. | Gas Turbine |
US10012087B2 (en) * | 2012-09-12 | 2018-07-03 | Mitsubishi Hitachi Power Systems, Ltd. | Gas turbine including a contoured end wall section of a rotor blade |
US20140356156A1 (en) * | 2013-05-28 | 2014-12-04 | Honda Motor Co., Ltd. | Airfoil geometry of blade for axial compressor |
US9752589B2 (en) * | 2013-05-28 | 2017-09-05 | Honda Motor Co., Ltd. | Airfoil geometry of blade for axial compressor |
US20160356161A1 (en) * | 2015-02-13 | 2016-12-08 | United Technologies Corporation | Article having cooling passage with undulating profile |
US10030523B2 (en) * | 2015-02-13 | 2018-07-24 | United Technologies Corporation | Article having cooling passage with undulating profile |
Also Published As
Publication number | Publication date |
---|---|
CA2405810A1 (en) | 2002-09-26 |
WO2001075276A1 (en) | 2001-10-11 |
EP1270872A1 (en) | 2003-01-02 |
EP1270872A4 (en) | 2003-08-27 |
EP1270872B1 (en) | 2008-09-17 |
JP2001271602A (en) | 2001-10-05 |
CA2405810C (en) | 2007-09-04 |
US6837679B2 (en) | 2005-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6837679B2 (en) | Gas turbine engine | |
US6905310B2 (en) | Impeller for centrifugal compressors | |
CA2496543C (en) | Recirculation structure for a turbocompressor | |
EP3183428B1 (en) | Compressor aerofoil | |
US6017186A (en) | Rotary turbomachine having a transonic compressor stage | |
JP6421091B2 (en) | Axial flow compressor, gas turbine including the same, and stationary blade of axial flow compressor | |
US7597544B2 (en) | Blade of axial flow-type rotary fluid machine | |
US8382438B2 (en) | Blade of a turbomachine with enlarged peripheral profile depth | |
JP4307706B2 (en) | Curved barrel airfoil | |
US6099248A (en) | Output stage for an axial-flow turbine | |
EP2985415B1 (en) | Turbine rotor | |
US9011081B2 (en) | Blade | |
US6358003B2 (en) | Rotor blade an axial-flow engine | |
US20070258810A1 (en) | Wall Configuration of Axial-Flow Machine, and Gas Turbine Engine | |
JP2007064221A (en) | Optimization for stator vane profile | |
JP2001132696A (en) | Stationary blade having narrow waist part | |
JPH04262002A (en) | Stationary blade structure for steam turbine | |
JP2002221004A (en) | Gas turbine | |
US9745859B2 (en) | Radial-inflow type axial flow turbine and turbocharger | |
US8613592B2 (en) | Guide blade of a turbomachine | |
US10590773B2 (en) | Contouring a blade/vane cascade stage | |
US20220268285A1 (en) | Housing for a centrifugal compressor | |
JP2004263602A (en) | Nozzle blade, moving blade, and turbine stage of axial-flow turbine | |
CN210371324U (en) | High-efficiency low-noise fan blade | |
US11441428B2 (en) | Turbine blade and steam turbine including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONDA GIKEN KOGYO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWARADA, SATOSHI;SONODA, TOYOTAKA;REEL/FRAME:013693/0274 Effective date: 20021226 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |