US20030130215A1 - Isolated genomic polynucleotide fragments from chromosome 7 - Google Patents
Isolated genomic polynucleotide fragments from chromosome 7 Download PDFInfo
- Publication number
- US20030130215A1 US20030130215A1 US09/957,956 US95795601A US2003130215A1 US 20030130215 A1 US20030130215 A1 US 20030130215A1 US 95795601 A US95795601 A US 95795601A US 2003130215 A1 US2003130215 A1 US 2003130215A1
- Authority
- US
- United States
- Prior art keywords
- polynucleotide
- seq
- polypeptide
- sequence
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091033319 polynucleotide Proteins 0.000 title claims abstract description 111
- 102000040430 polynucleotide Human genes 0.000 title claims abstract description 111
- 239000002157 polynucleotide Substances 0.000 title claims abstract description 111
- 239000012634 fragment Substances 0.000 title abstract description 39
- 210000000349 chromosome Anatomy 0.000 title description 8
- 238000000034 method Methods 0.000 claims abstract description 57
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 53
- 108010021582 Glucokinase Proteins 0.000 claims abstract description 34
- 101000828633 Homo sapiens Synaptobrevin homolog YKT6 Proteins 0.000 claims abstract description 33
- 210000004185 liver Anatomy 0.000 claims abstract description 31
- 102000030595 Glucokinase Human genes 0.000 claims abstract description 28
- 230000001105 regulatory effect Effects 0.000 claims abstract description 28
- 239000003623 enhancer Substances 0.000 claims abstract description 25
- 239000000074 antisense oligonucleotide Substances 0.000 claims abstract description 15
- 238000012230 antisense oligonucleotides Methods 0.000 claims abstract description 15
- 210000001789 adipocyte Anatomy 0.000 claims abstract description 14
- 101000909189 Homo sapiens DNA polymerase delta subunit 2 Proteins 0.000 claims abstract description 13
- 108091008324 binding proteins Proteins 0.000 claims abstract description 13
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 12
- 230000001575 pathological effect Effects 0.000 claims abstract description 9
- 102100024823 DNA polymerase delta subunit 2 Human genes 0.000 claims abstract 7
- 102000023732 binding proteins Human genes 0.000 claims abstract 6
- 210000004027 cell Anatomy 0.000 claims description 110
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 107
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 105
- 229920001184 polypeptide Polymers 0.000 claims description 103
- 150000007523 nucleic acids Chemical class 0.000 claims description 54
- 108020004414 DNA Proteins 0.000 claims description 50
- 230000014509 gene expression Effects 0.000 claims description 38
- 239000002773 nucleotide Substances 0.000 claims description 35
- 125000003729 nucleotide group Chemical group 0.000 claims description 35
- 102000039446 nucleic acids Human genes 0.000 claims description 30
- 108020004707 nucleic acids Proteins 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 29
- 108700024394 Exon Proteins 0.000 claims description 18
- 230000035772 mutation Effects 0.000 claims description 13
- 239000013604 expression vector Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 102000014914 Carrier Proteins Human genes 0.000 claims description 9
- 241001465754 Metazoa Species 0.000 claims description 8
- 108091034117 Oligonucleotide Proteins 0.000 claims description 7
- 108091092724 Noncoding DNA Proteins 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 6
- 108091023040 Transcription factor Proteins 0.000 claims description 5
- 102000040945 Transcription factor Human genes 0.000 claims description 5
- 210000003917 human chromosome Anatomy 0.000 claims description 5
- 230000002103 transcriptional effect Effects 0.000 claims description 5
- 239000002671 adjuvant Substances 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 3
- 108010078791 Carrier Proteins Proteins 0.000 claims description 2
- 230000001268 conjugating effect Effects 0.000 claims description 2
- 230000003053 immunization Effects 0.000 claims description 2
- 239000013598 vector Substances 0.000 abstract description 57
- 108020000948 Antisense Oligonucleotides Proteins 0.000 abstract description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 29
- 108091026890 Coding region Proteins 0.000 description 22
- 101710105604 Adipocyte enhancer-binding protein 1 Proteins 0.000 description 21
- 102100024394 Adipocyte enhancer-binding protein 1 Human genes 0.000 description 21
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 21
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 21
- 125000003275 alpha amino acid group Chemical group 0.000 description 19
- 235000001014 amino acid Nutrition 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 17
- 229940024606 amino acid Drugs 0.000 description 16
- 150000001413 amino acids Chemical class 0.000 description 15
- 238000013518 transcription Methods 0.000 description 14
- 230000035897 transcription Effects 0.000 description 14
- 230000010076 replication Effects 0.000 description 13
- 238000009472 formulation Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 108010076504 Protein Sorting Signals Proteins 0.000 description 10
- 238000012217 deletion Methods 0.000 description 10
- 230000037430 deletion Effects 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 108700026244 Open Reading Frames Proteins 0.000 description 9
- -1 aromatic amino acids Chemical class 0.000 description 9
- 238000009396 hybridization Methods 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 8
- 230000002538 fungal effect Effects 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 241000233866 Fungi Species 0.000 description 7
- 108010041948 SNARE Proteins Proteins 0.000 description 7
- 102000000583 SNARE Proteins Human genes 0.000 description 7
- 125000002091 cationic group Chemical group 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 101000840558 Homo sapiens Hexokinase-4 Proteins 0.000 description 6
- 101150043219 POLD2 gene Proteins 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 210000004408 hybridoma Anatomy 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 101150036497 AEBP1 gene Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 5
- 101150016810 YKT6 gene Proteins 0.000 description 5
- 230000011759 adipose tissue development Effects 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 241000701161 unidentified adenovirus Species 0.000 description 5
- 241000228245 Aspergillus niger Species 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 102000004139 alpha-Amylases Human genes 0.000 description 4
- 108090000637 alpha-Amylases Proteins 0.000 description 4
- 229940024171 alpha-amylase Drugs 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 210000000612 antigen-presenting cell Anatomy 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 238000002873 global sequence alignment Methods 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 238000002864 sequence alignment Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 240000006439 Aspergillus oryzae Species 0.000 description 3
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 108010006303 Carboxypeptidases Proteins 0.000 description 3
- 102000005367 Carboxypeptidases Human genes 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 101710087488 DNA polymerase delta small subunit Proteins 0.000 description 3
- 230000004543 DNA replication Effects 0.000 description 3
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 3
- 101000833122 Homo sapiens Adipocyte enhancer-binding protein 1 Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 208000008589 Obesity Diseases 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 108020001096 dihydrofolate reductase Proteins 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000007899 nucleic acid hybridization Methods 0.000 description 3
- 235000020824 obesity Nutrition 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 2
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 2
- 101100163849 Arabidopsis thaliana ARS1 gene Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 2
- 101000757144 Aspergillus niger Glucoamylase Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 230000033616 DNA repair Effects 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 102100030431 Fatty acid-binding protein, adipocyte Human genes 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 101001062864 Homo sapiens Fatty acid-binding protein, adipocyte Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 125000003440 L-leucyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 2
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 2
- 241000233654 Oomycetes Species 0.000 description 2
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 2
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- 241000276498 Pollachius virens Species 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 241000235403 Rhizomucor miehei Species 0.000 description 2
- 101100097319 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ala1 gene Proteins 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 102000057927 human AEBP1 Human genes 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 238000001155 isoelectric focusing Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000009105 vegetative growth Effects 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- CCLJGZGVIQBNDH-HNNXBMFYSA-N (2s)-2-[(2-benzamidoacetyl)amino]-3-phenylpropanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)CNC(=O)C=1C=CC=CC=1)C1=CC=CC=C1 CCLJGZGVIQBNDH-HNNXBMFYSA-N 0.000 description 1
- GFLCPYUSPYXNBV-NSHDSACASA-N (2s)-2-[(2-benzamidoacetyl)amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)CNC(=O)C1=CC=CC=C1 GFLCPYUSPYXNBV-NSHDSACASA-N 0.000 description 1
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- LRCZLURYHGISRZ-LBPRGKRZSA-N (2s)-6-azaniumyl-2-[(2-benzamidoacetyl)amino]hexanoate Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CNC(=O)C1=CC=CC=C1 LRCZLURYHGISRZ-LBPRGKRZSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102100033647 Activity-regulated cytoskeleton-associated protein Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 101000961203 Aspergillus awamori Glucoamylase Proteins 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 101900127796 Aspergillus oryzae Glucoamylase Proteins 0.000 description 1
- 101900318521 Aspergillus oryzae Triosephosphate isomerase Proteins 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 102100030981 Beta-alanine-activating enzyme Human genes 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 102100037633 Centrin-3 Human genes 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 241000233652 Chytridiomycota Species 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010071146 DNA Polymerase III Proteins 0.000 description 1
- 102000007528 DNA Polymerase III Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 101150108358 GLAA gene Proteins 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 101100080316 Geobacillus stearothermophilus nprT gene Proteins 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 101000773364 Homo sapiens Beta-alanine-activating enzyme Proteins 0.000 description 1
- 101000880522 Homo sapiens Centrin-3 Proteins 0.000 description 1
- 101001053946 Homo sapiens Dystrophin Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 208000025500 Hutchinson-Gilford progeria syndrome Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 125000001176 L-lysyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C([H])([H])C(N([H])[H])([H])[H] 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 125000003798 L-tyrosyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 101150068888 MET3 gene Proteins 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 101100022915 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cys-11 gene Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241000237988 Patellidae Species 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000425347 Phyla <beetle> Species 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 208000007932 Progeria Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 1
- 101000968489 Rhizomucor miehei Lipase Proteins 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 101900354623 Saccharomyces cerevisiae Galactokinase Proteins 0.000 description 1
- 241000235343 Saccharomycetales Species 0.000 description 1
- 101100022918 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sua1 gene Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000187398 Streptomyces lividans Species 0.000 description 1
- 241001468239 Streptomyces murinus Species 0.000 description 1
- 102100023512 Synaptobrevin homolog YKT6 Human genes 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241001313536 Thermothelomyces thermophila Species 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 101150050575 URA3 gene Proteins 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 201000006083 Xeroderma Pigmentosum Diseases 0.000 description 1
- 241000758405 Zoopagomycotina Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 108010048241 acetamidase Proteins 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 101150009206 aprE gene Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 208000025434 cerebellar degeneration Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012817 gel-diffusion technique Methods 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 230000003345 hyperglycaemic effect Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000003017 in situ immunoassay Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000009115 maintenance therapy Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- ZLDPNFYTUDQDMJ-UHFFFAOYSA-N n-octadecyloctadecan-1-amine;hydrobromide Chemical compound Br.CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC ZLDPNFYTUDQDMJ-UHFFFAOYSA-N 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 208000004235 neutropenia Diseases 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 108090000021 oryzin Proteins 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000008255 pharmaceutical foam Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000013197 protein A assay Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000010563 solid-state fermentation Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 208000002320 spinal muscular atrophy Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 108091006107 transcriptional repressors Proteins 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
Definitions
- the invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments.
- the invention is further directed to methods of using these fragments to obtain SNARE YKT6, human liver glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
- Chromosome 7 contains genes encoding, for example, epidermal growth factor receptor, collagen-1-Alpha-1-chain, SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA polymerase delta small subunit (POLD2).
- SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA polymerase delta small subunit (POLD2) are discussed in further detail below.
- SNARE YKT6 a substrate for prenylation, is essential for vesicle-associated endoplasmic reticulum-Golgi transport (McNew, J. A. et al. J. Biol. Chem. 272, 17776-17783, 1997). It has been found that depletion of this function stops cell growth and manifests a transport block at the endoplasmic reticulum level.
- adipocyte-enhancer binding protein is a transcriptional repressor having carboxypeptidase B-like activity which binds to a regulatory sequence (adipocyte enhancer 1, AE-1) located in the proximal promoter region of the adipose P2 (aP2) gene, which encodes the adipocyte fatty acid binding protein (Muise et al., 1999, Biochem. J. 343:341-345).
- B-like carboxypeptidases remove C-terminal arginine and lysine residues and participate in the release of active peptides, such as insulin, alter receptor specificity for polypeptides and terminate polypeptide activity (Skidgel, 1988, Trends Pharmacol.
- AEBP1 Full length cDNA clones encoding AEBP1 have been isolated from human osteoblast and adipose tissue (Ohno et al., 1996, Biochem. Biophys Res. Commun. 228:411-414). Two forms have been found to exist due to alternative splicing. This gene appears to play a significant role in regulating adipogenesis. In addition to playing a role in obesity, adipogenesis may play a role in ostopenic disorders. It has been postulated that adipogenesis inhibitors may be used to treat osteopenic disorders (Nuttal et al., 2000, Bone 27:177-184).
- DNA polymerase delta core is a heterodimeric enzyme with a catalytic subunit of 125 kD and a second subunit of 50 kD and is an essential enzyme for DNA replication and DNA repair (Zhang et al., 1995, Genomics 29:179-186).
- cDNAs encoding the small subunit have been cloned and sequenced.
- the gene for the small subunit has been localized to human chromosome 7 via PCR analysis of a panel of human-hamster hybrid cell lines. However, the genomic DNA has not been isolated and the exact location on chromosome 7 has not been determined.
- cDNAs encoding the above-disclosed proteins have been isolated, their location on chromosome 7 has not been determined. Furthermore, genomic DNA encoding these polypeptides have not been isolated. Noncoding sequences can play a significant role in regulating the expression of polypeptides as well as the processing of RNA encoding these polypeptides.
- the invention is directed to an isolated genomic polynucleotide, said polynucleotide obtainable from human chromosome 7 having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- the polynucleotides of the present invention may be used for the manufacture of a gene therapy for the prevention, treatment or amelioration of a medical condition by adding an amount of a composition comprising said polynucleotide effective to prevent, treat or ameliorate said medical condition.
- the invention is further directed to obtaining these polypeptides by
- polypeptides obtained may be used to produce antibodies by
- step (b) immunizing a host animal with said polypeptide or peptide-carrier protein conjugate of step (b) with an adjuvant and
- the invention is further directed to polynucleotides that hybridize to noncoding regions of said polynucleotide sequences as well as antisense oligonucleotides to these polynucleotides as well as antisense mimetics.
- the antisense oligonucleotides or mimetics may be used for the manufacture of a medicament for prevention, treatment or amelioration of a medical condition.
- the invention is further directed to kits comprising these polynucleotides and kits comprising these antisense oligonucleotides or mimetics.
- the noncoding regions are transcription regulatory regions.
- the transcription regulatory regions may be used to produce a heterologous peptide by expressing in a host cell, said transcription regulatory region operably linked to a polynucleotide encoding the heterologous polypeptide and recovering the expressed heterologous polypeptide.
- polynucleotides of the present invention may be used to diagnose a pathological condition in a subject comprising
- the invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA directed 50 kD regulatory subunit (POLD2), which in a specific embodiment are the SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA directed 50 kD regulatory subunit (POLD2) genes, as well as vectors and hosts containing these fragments and polynucleotide fragments hybridizing to noncoding regions, as well as antisense oligonucleotides to these fragments.
- POLD2 DNA directed 50 kD regulatory subunit
- a “gene” is the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region, as well as intervening sequences (introns) between individual coding segments (exons).
- isolated refers to material removed from its original environment and is thus altered “by the hand of man” from its natural state.
- An isolated polynucleotide can be part of a vector, a composition of matter or could be contained within a cell as long as the cell is not the original environment of the polynucleotide.
- the polynucleotides of the present invention may be in the form of RNA or in the form of DNA, which DNA includes genomic DNA and synthetic DNA.
- the DNA may be double-stranded or single-stranded and if single stranded may be the coding strand or non-coding strand.
- the human snare YKT6 polypeptide has the amino acid sequence depicted in SEQ ID NO:1: KLYSLSVLYKGEAKVVLLKAAYDVSSFSFFQRSSVQEFMTFTSQLIVERSSKGTRASVKFQDYLCH VYVRNDSLAGVVIADNEYPSRVAFTLLEKVLDEFSKQVDRIDWPVGSPATIHYPALDGHLSRYQN PREADPMTKVQAELDETKIILHNTMESLLERGEKLDDLVSKSEVLGTQSKAFYKTARKQNSCCAI M
- the genomic DNA or YKT6 SNARE gene is 39,000 base pairs in length and contains seven exons (see Table 1 below for location of exons). As will be discussed in further detail below, the YKT6 SNARE gene is situated in genomic clone AC006454 at nucleotides 36,001-75,000.
- the human liver glucokinase is depicted in SEQ ID NO:2: MPRPRSQLPQPNSQVEQILAEFQLQEEDLKKVMRRMQKEMDRGLRLETHEEASVKMLPTYVRSTP EGSEVGDFLSLDLGGTNFRVMLVKVGEGEEGQWSVKTKHQTYSIPEDAMTGTAEMLFDYISECIS DFLDKHQMKHKKLPLGFTFSFPVRHEDIDKGILLNWTKGFKASGAEGNNVVGLLRDAIKRRGDFE MDVVAMVNDTVATMISCYYEDHQCEVGMIVGTGCNACYMEEMQNVELVEGDEGRMCVNTEW GAFGDSGELDEFLLEYDRLVDESSANPGQQLYEKLIGGKYMGELVRLVLLRLVDENLLFHGEASE QLRTRGAFETREVSQVESDTGDRKQIYNILSTLGLRPSTTDCDIVRRACESVSTRAAHMCSAGLAG VINRMRESRSEDVMRITVGVDGSVYKL
- the human liver glucokinase genomic DNA is 46,000 base pairs in length and contains ten exons (see Table 2 below for location of exons).
- the human adipocyte enhancer binding protein has the amino acid sequence depicted in SEQ ID NO:3: MAAVRGAPLLSCLLALLALCPGGRPQTVLTDDEIEEFLEGFLSELEPEPREDDVEAPPPPEPTPRVR KAQAGGKPGKRPGTAAEVPPEKTKDKGKKGKKDKGPKVPKESLEGSPRPPKKGKEKPPKATKKP KEKPPKATKKPKEEPPKATKKPKEKPPKATKKPPSGKRPPILAPSETLEWPLPPPPSPGPEELPQEGG APLSNNWQNPGEETHVEAQEHQPEPEEETEQPTLDYNDQIEREDYEDFEYIRRQKQPRPPPSRRRR PERVWPEPPEEKAPAPEERIEPPVKPLLPPLPPDYGDGYVIPNYDDMDYYFGPPPQKPDAERQT DEEKEELKKPKKEDSSPKEETDKWAVEKGKDHKEPRKGEELEEEWTPTEKVKCPPIGMESHRIED
- the adipocyte enhancer binding protein 1 is 16,000 base pairs in length and contains 21 exons (see Table 3 below for location of exons).
- the human AEBP1 gene is situated in genomic clone AC006454 at nucleotides 137,041-end,
- POLD2 has an amino acid sequence depicted in SEQ ID NO:4: MFSEQAAQRAHTLLSPPSANNATFARVPVATYTNSSQPFRLGERSFSRQYAHIYATRLIQMRPFLE NRAQQHWGSGVGVKKLCELQPEEKCCVVGTLFKAMPLQPSILREVSEEHNLLPQPPRSKYIHPDD ELVLEDELQRIKLKGTIDVSKLVTGTVLAVFGSVRDDGKYLVEDYCFADLAPQKpAPPLDTDRFVL LVSGLGLGGGGGESLLGTQLLVDVVTGQLGDEGEQCSAAHVSRVILAGNLLSHSTQSRDSINKAK YLTKKTQAASVEAVKMLDEILLQLSASVPVDVMPGEFDPTNYTLPQQPLHPCMFPLATAYSTLQL VTNPYQATIDGVRFLGTSGQNVSDIFRYSSMEDHLEJLEWTLRVRHISPTAPDTHGCYPFYKTDPHF PECPHVY
- the POLD2 gene is 19,000 base pairs in length and contains ten exons (see Table 4 below for location of exons). As will be discussed in further detail below, the POLD2 gene is situated in genomic clone AC006454 at nucleotides 119,001-138,000.
- the polynucleotides of the invention have at least a 95% identity and may have a 96%, 97%, 98% or 99% identity to the polynucleotides depicted in SEQ ID NOS:5, 6, 7 or 8 as well as the polynucleotides in reverse sense orientation, or the polynucleotide sequences encoding the SNARE YKT6, AEBP1, human glucokinase or POLD2 polypeptides depicted in SEQ ID NOS:1, 2, 3, or 4 respectively.
- a polynucleotide having 95% “identity” to a reference nucleotide sequence of the present invention is identical to the reference sequence except that the polynucleotide sequence may include on average up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide.
- the query sequence may be an entire sequence, the ORF (open reading frame), or any fragment specified as described herein.
- nucleic acid molecule or polypeptide is at least 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs.
- a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245).
- the query and subject sequences are both DNA sequences.
- An RNA sequence can be compared by converting U's to T's.
- the result of said global sequence alignment is in percent identity.
- the percent identity is corrected by calculating the number of bases of the query sequence that are 5′ and 3′ of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment.
- This percentage is then subtracted from the percent identify, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
- This corrected score is what is used for the purposes of the present invention. Only bases outside the 5′ and 3′ bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence are calculated for the purposes of manually adjusting the percent identity score.
- a 95 base subject sequence is aligned to a 100 base query sequence to determine percent identity.
- the deletions occur at the 5′ end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5′ end.
- the 10 unpaired bases represent 5% of the sequence (number of bases at the 5′ and 3′ ends not matched/total numbers of bases in the query sequence) so 5% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 95 bases were perfectly matched the final percent identity would be 95%.
- a 95 base subject sequence is compared with a 100 base query sequence.
- deletions are internal deletions so that there are no bases on the 5′ or 3′ of the subject sequence which are not matched/aligned with the query.
- percent identity calculated by FASTDB is not manually corrected.
- bases 5′ and 3′ of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are made for purposes of the present invention.
- a polypeptide that has an amino acid sequence at least, for example, 95% “identical” to a query amino acid sequence is identical to the query sequence except that the subject polypeptide sequence may include on average, up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
- up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid.
- These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the referenced sequence or in one or more contiguous groups within the reference sequence.
- a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Com. App. Biosci. (1990) 6:237-245).
- the query and subject sequence are either both nucleotide sequences or both amino acid sequences.
- the result of said global sequence alignment is in percent identity.
- the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment.
- This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
- This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.
- the invention also encompasses polynucleotides that hybridize to the polynucleotides depicted in SEQ ID NOS: 5, 6, 7 or 8.
- a polynucleotide “hybridizes” to another polynucleotide, when a single-stranded form of the polynucleotide can anneal to the other polynucleotide under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al., supra). The conditions of temperature and ionic strength determine the “stringency” of the hybridization.
- low stringency hybridization conditions corresponding to a temperature of 42° C.
- Moderate stringency hybridization conditions correspond to a higher temperature of 55° C., e.g., 40% formamide, with 5 ⁇ or 6 ⁇ SCC.
- High stringency hybridization conditions correspond to the highest temperature of 65° C., e.g., 50% formamide, 5 ⁇ or 6 ⁇ SCC.
- Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible.
- RNA:RNA, DNA:RNA, DNA:DNA The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA.
- the invention is directed to both polynucleotide and polypeptide variants.
- a “variant” refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar and in many regions, identical to the polynucleotide or polypeptide of the present invention.
- the variants may contain alterations in the coding regions, non-coding regions, or both.
- polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide are preferred.
- variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred.
- the invention also encompasses allelic variants of said polynucleotides.
- An allelic variant denotes any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences.
- An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
- amino acid sequences of the variant polypeptides may differ from the amino acid sequences depicted in SEQ ID NOS:1, 2, 3 or 4 by an insertion or deletion of one or more amino acid residues and/or the substitution of one or more amino acid residues by different amino acid residues.
- amino acid changes are of a minor nature, that is conservative amino acid substitutions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of one to about 30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to about 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain.
- Examples of conservative substitutions are within the group of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine).
- Amino acid substitutions which do not generally alter the specific activity are known in the art and are described, for example, by H. Neurath and R. L. Hill, 1979, In, The Proteins, Academic Press, New York.
- the invention is further directed to polynucleotide fragments containing or hybridizing to noncoding regions of the SNARE YKT6, AEBP1, human glucokinase and POLD2 genes. These include but are not limited to an intron, a 5′ non-coding region, a 3′ non-coding region and splice junctions (see Tables 1-4), as well as transcription factor binding sites (see Table 5).
- the polynucleotide fragments may be a short polynucleotide fragment which is between about 8 nucleotides to about 40 nucleotides in length. Such shorter fragments may be useful for diagnostic purposes.
- Such short polynucleotide fragments are also preferred with respect to polynucleotides containing or hybridizing to polynucleotides containing splice junctions.
- larger fragments e.g., of about 50, 150, 500, 600 or about 2000 nucleotides in length may be used.
- noncoding sequences are expression control sequences. These include but are not limited to DNA regulatory sequences, such as promoters, enhancers, repressors, terminators, and the like, that provide for the regulation of expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are also control sequences.
- the expression control sequences may be operatively linked to a polynucleotide encoding a heterologous polypeptide.
- Such expression control sequences may be about 50-200 nucleotides in length and specifically about 50, 100, 200, 500, 600, 1000 or 2000 nucleotides in length.
- a transcriptional control sequence is “operatively linked” to a polynucleotide encoding a heterologous polypeptide sequence when the expression control sequence controls and regulates the transcription and translation of that polynucleotide sequence.
- operatively linked includes having an appropriate start signal (e.g., ATG) in front of the polynucleotide sequence to be expressed and maintaining the correct reading frame to permit expression of the DNA sequence under the control of the expression control sequence and production of the desired product encoded by the polynucleotide sequence. If a gene that one desires to insert into a recombinant DNA molecule does not contain an appropriate start signal, such a start signal can be inserted upstream (5′) of and in reading frame with the gene.
- an appropriate start signal e.g., ATG
- the human chromosome 7 genomic clone of accession number AC006454 has been discovered to contain the SNARE YKT6 gene, the human liver glucokinase gene, the AEBP1 gene, and the POLD2 gene by Genscan analysis (Burge et al., 1997, J. Mol. Biol. 268:78-94), BLAST2 and TBLASTN analysis (Altschul et al., 1997, Nucl. Acids Res. 25:3389-3402), in which the sequence of AC006454 was compared to the SNARE YKT6 cDNA sequence, accession number NM — 006555 (McNew et al., 1997, J. Biol. Chem.
- the cloning of the nucleic acid sequences of the present invention from such genomic DNA can be effected, e.g., by using the well known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features.
- PCR polymerase chain reaction
- Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligated activated transcription (LAT) and nucleic acid sequence-based amplification (NASBA) or long chain PCR may be used.
- 5′ or 3′ non-coding portions of each gene may be identified by methods including but are not limited to, filter probing, clone enrichment using specific probes and protocols similar or identical to 5′ and 3′ “RACE” protocols which are well known in the art. For instance, a method similar to 5′ RACE is available for generating the missing 5′ end of a desired full-length transcript. (Fromont-Racine et al., 1993, Nucl. Acids Res. 21:1683-1684).
- identification of the specific DNA fragment containing the desired SNARE YKT6 gene, the human liver glucokinase gene, the AEBP1 gene, or POLD2 gene may be accomplished in a number of ways. For example, if an amount of a portion of a SNARE YKT6 gene, the human liver glucokinase gene, the AEBP1 gene, or POLD2 gene or its specific RNA, or a fragment thereof, is available and can be purified and labeled, the generated DNA fragments may be screened by nucleic acid hybridization to the labeled probe (Benton and Davis, 1977, Science 196:180; Grunstein and Hogness, 1975, Proc. Natl. Acad.
- nucleic acid probes which can be conveniently prepared from the specific sequences disclosed herein, e.g., a hybridizable probe having a nucleotide sequence corresponding to at least a 10, and preferably a 15, nucleotide fragment of the sequences depicted in SEQ ID NOS:5, 6, 7 or 8.
- a fragment is selected that is highly unique to the encoded polypeptides. Those DNA fragments with substantial homology to the probe will hybridize. As noted above, the greater the degree of homology, the more stringent hybridization conditions can be used.
- low stringency hybridization conditions are used to identify a homologous SNARE YKT6, the human liver glucokinase, the AEBP1, or POLD2 polynucleotide.
- a nucleic acid encoding a polypeptide of the invention will hybridize to a nucleic acid derived from the polynucleotide sequence depicted in SEQ ID NOS:5, 6, 7 or 8 or a hybridizable fragment thereof, under moderately stringent conditions; more preferably, it will hybridize under high stringency conditions.
- the presence of the gene may be detected by assays based on the physical, chemical, or immunological properties of its expressed product.
- cDNA clones, or DNA clones which hybrid-select the proper mRNAs can be selected which produce a protein that, e.g., has similar or identical electrophoretic migration, isoelectric focusing behavior, proteolytic digestion maps, or antigenic properties as known for the SNARE YKT6, the human liver glucokinase, the AEBP1, or POLD2 polynucleotide.
- a gene encoding SNARE YKT6, the human liver glucokinase, the AEBP1, or POLD2 polypeptide can also be identified by mRNA selection, i.e., by nucleic acid hybridization followed by in vitro translation. In this procedure, fragments are used to isolate complementary mRNAs by hybridization. Immunoprecipitation analysis or functional assays of the in vitro translation products of the products of the isolated mRNAs identifies the mRNA and, therefore, the complementary DNA fragments, that contain the desired sequences.
- the present invention also relates to nucleic acid constructs comprising a polynucleotide sequence containing the exon/intron segments of the SNARE YKT6 gene (nucleotides 4320-15463 of SEQ ID NO:5), human liver glucokinase gene (nucleotides 20485-33460 of SEQ ID NO:6), AEBP1 gene (nucleotides 1301-13893 of SEQ ID NO:7) or POLD2 gene (nucleotides 11546-18811 of SEQ ID NO:8) operably linked to one or more control sequences which direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.
- Expression will be understood to include any step involved in the production of the polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
- the invention is further directed to a nucleic acid construct comprising expression control sequences derived from SEQ ID NOS: 5, 6, 7 or 8 and a heterologous polynucleotide sequence.
- Nucleic acid construct is defined herein as a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or which has been modified to contain segments of nucleic acid which are combined and juxtaposed in a manner which would not otherwise exist in nature.
- nucleic acid construct is synonymous with the term expression cassette when the nucleic acid construct contains all the control sequences required for expression of a coding sequence of the present invention.
- coding sequence is defined herein as a portion of a nucleic acid sequence which directly specifies the amino acid sequence of its protein product.
- the boundaries of the coding sequence are generally determined by a ribosome binding site (prokaryotes) or by the ATG start codon (eukaryotes) located just upstream of the open reading frame at the 5′ end of the mRNA and a transcription terminator sequence located just downstream of the open reading frame at the 3′ end of the mRNA.
- a coding sequence can include, but is not limited to, DNA, cDNA, and recombinant nucleic acid sequences.
- the isolated polynucleotide of the present invention may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the nucleic acid sequence prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying nucleic acid sequences utilizing recombinant DNA methods are well known in the art.
- the control sequence may be an appropriate promoter sequence, a nucleic acid sequence which is recognized by a host cell for expression of the nucleic acid sequence.
- the promoter sequence contains transcriptional control sequences which regulate the expression of the polynucleotide.
- the promoter may be any nucleic acid sequence which shows transcriptional activity in the host cell of choice including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
- Suitable promoters for directing the transcription of the nucleic acid constructs of the present invention are the promoters obtained from the E. coli lac operon, the prokaryotic beta-lactamase gene (Villa- Komaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731), as well as the tac promoter (DeBoer et al., 1983, Proc. Natl Acad. of Sciences USA 80: 21-25). Further promoters are described in “Useful proteins from recombinant bacteria” in Scientific American, 1980, 242: 74-94; and in Sambrook et aL, 1989, supra.
- promoters for directing the transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidulans acetamidase, Fusarium oxysporum trypsin-like protease (WO 96/00787), NA2-tpi (a hybrid of the promoters from the genes encoding
- useful promoters are obtained from the Saccharomyces cerevisiae enolase (ENO-1) gene, the Saccharomyces cerevisiae galactokinase gene (GAL1), the Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes (ADH2/GAP), and the Saccharomyces cerevisiae 3-phosphoglycerate kinase gene.
- ENO-1 Saccharomyces cerevisiae enolase
- GAL1 Saccharomyces cerevisiae galactokinase gene
- ADH2/GAP Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes
- Saccharomyces cerevisiae 3-phosphoglycerate kinase gene Other useful promoters for yeast host cells are described by Romanos et al.
- Eukaryotic promoters may be obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus, bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and SV40.
- viruses such as polyoma virus, fowlpox virus, adenovirus, bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and SV40.
- heterologous mammalian promoters such as the actin promoter or immunoglobulin promoter may be used.
- the constructs of the invention may also include enhancers.
- Enhancers are cis-acting elements of DNA, usually from about 10 to about 300 bp that act on a promoter to increase its transcription. Enhancers from globin, elastase, albumin, alpha-fetoprotein, and insulin enhancers may be used. However, an enhancer from a virus may be used; examples include SV40 on the late side of the replication origin, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin and adenovirus enhancers.
- the control sequence may also be a suitable transcription terminator sequence, a sequence recognized by a host cell to terminate transcription.
- the terminator sequence is operably linked to the 3′ terminus of the nucleic acid sequence encoding the polypeptide. Any terminator which is functional in the host cell of choice may be used in the present invention.
- the control sequence may also be a suitable leader sequence, a nontranslated region of an mRNA which is important for translation by the host cell.
- the leader sequence is operably linked to the 5′ terminus of the nucleic acid sequence encoding the polypeptide. Any leader sequence that is functional in the host cell of choice may be used in the present invention.
- control sequence may also be a polyadenylation sequence, a sequence which is operably linked to the 3′ terminus of the nucleic acid sequence and which, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA.
- Any polyadenylation sequence which is functional in the host cell of choice may be used in the present invention.
- the control sequence may also be a signal peptide coding region, which codes for an amino acid sequence linked to the amino terminus of the polypeptide which can direct the encoded polypeptide into the cell's secretory pathway.
- the 5′ end of the coding sequence of the nucleic acid sequence may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region which encodes the secreted polypeptide.
- the 5′ end of the coding sequence may contain a signal peptide coding region which is foreign to the coding sequence.
- the foreign signal peptide coding region may be required where the coding sequence does not normally contain a signal peptide coding region.
- the foreign signal peptide coding region may simply replace the natural signal peptide coding region in order to obtain enhanced secretion of the polypeptide.
- any signal peptide coding region which directs the expressed polypeptide into the secretory pathway of a host cell of choice may be used in the present invention.
- the control sequence may also be a propeptide coding region, which codes for an amino acid sequence positioned at the amino terminus of a polypeptide.
- the resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases).
- a propolypeptide is generally inactive and can be converted to a mature active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide.
- the propeptide coding region may be obtained from the Bacillus subtilis alkaline protease gene (aprE), the Bacillus subtilis neutral protease gene (nprT), the Saccharomyces cerevisiae alpha-factor gene, the Rhizomucor miehei aspartic proteinase gene, or the Myceliophthora thermophila laccase gene (WO 95/33836).
- aprE Bacillus subtilis alkaline protease gene
- nprT Bacillus subtilis neutral protease gene
- Saccharomyces cerevisiae alpha-factor gene the Rhizomucor miehei aspartic proteinase gene
- Myceliophthora thermophila laccase gene WO 95/33836
- the propeptide region is positioned next to the amino terminus of a polypeptide and the signal peptide region is positioned next to the amino terminus of the propeptide region.
- regulatory sequences which allow the regulation of the expression of the polypeptide relative to the growth of the host cell.
- regulatory systems are those which cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound.
- Regulatory systems in prokaryotic systems would include the lac, tac, and trp operator systems.
- yeast the ADH2 system or GAL1 system may be used.
- filamentous fungi the TAKA alpha-amylase promoter, Aspergillus niger glucoamylase promoter, and the Aspergillus oryzae glucoamylase promoter may be used as regulatory sequences.
- regulatory sequences are those which allow for gene amplification. In eukaryotic systems, these include the dihydrofolate reductase gene which is amplified in the presence of methotrexate, and the metallothionein genes which are amplified with heavy metals. In these cases, the nucleic acid sequence encoding the polypeptide would be operably linked with the regulatory sequence.
- the present invention also relates to recombinant expression vectors comprising a nucleic acid sequence of the present invention, a promoter, and transcriptional and translational stop signals.
- the various nucleic acid and control sequences described above may be joined together to produce a recombinant expression vector which may include one or more convenient restriction sites to allow for insertion or substitution of the nucleic acid sequence encoding the polypeptide at such sites.
- the polynucleotide of the present invention may be expressed by inserting the nucleic acid sequence or a nucleic acid construct comprising the sequence into an appropriate vector for expression.
- the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
- the recombinant expression vector may be any vector (e.g., a plasmid or virus) which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the nucleic acid sequence.
- the choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced.
- the vectors may be linear or closed circular plasmids.
- the vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome.
- the vector may contain any means for assuring self-replication.
- the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated.
- a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.
- the vectors of the present invention preferably contain one or more selectable markers which permit easy selection of transformed cells.
- a selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
- Examples of bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, or markers which confer antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracycline resistance.
- Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3.
- Suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take of the nucleic acids of the present invention, such as DHFR or thymidine kinase.
- An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980).
- the vectors of the present invention preferably contain an element(s) that permits stable integration of the vector into the host cell genome or autonomous replication of the vector in the cell independent of the genome of the cell.
- the vector may rely on the polynucleotide sequence encoding the polypeptide or any other element of the vector for stable integration of the vector into the genome by homologous or nonhomologous recombination.
- the vector may contain additional nucleic acid sequences for directing integration by homologous recombination into the genome of the host cell.
- the additional polynucleotide sequences enable the vector to be integrated into the host cell genome at a precise location(s) in the chromosome(s).
- the integrational elements should preferably contain a sufficient number of nucleic acids, such as 100 to 1,500 base pairs, preferably 400 to 1,500 base pairs, and most preferably 800 to 1,500 base pairs, which are highly homologous with the corresponding target sequence to enhance the probability of homologous recombination.
- the integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell.
- the integrational elements may be non-encoding or encoding nucleic acid sequences.
- the vector may be integrated into the genome of the host cell by non-homologous recombination.
- the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question.
- origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB110, pE194, pTA1060, and pAM ⁇ 1 permitting replication in Bacillus.
- origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.
- the origin of replication may be one having a mutation which makes its functioning temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, Proceedings of the National Academy of Sciences USA 75: 1433).
- More than one copy of a polynucleotide sequence of the present invention may be inserted into the host cell to increase production of the gene product.
- An increase in the copy number of the polynucleotide sequence can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the nucleic acid sequence where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the nucleic acid sequence, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
- the present invention also relates to recombinant host cells, comprising a nucleic acid sequence of the invention, which are advantageously used in the recombinant production of the polypeptides.
- a vector comprising a nucleic acid sequence of the present invention is introduced into a host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier.
- the term “host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source.
- the host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-unicellular microorganism, e.g., a eukaryote.
- Useful unicellular cells are bacterial cells such as gram positive bacteria including, but not limited to, a Bacillus cell, or a Streptomyces cell, e.g., Streptomyces lividans or Streptomyces murinus, or gram negative bacteria such as E. coli and Pseudomonas sp.
- the introduction of a vector into a bacterial host cell may, for instance, be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Molecular General Genetics 168: 111-115), using competent cells (see, e.g., Young and Spizizin, 1961, Journal of Bacteriology 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, Journal of Molecular Biology 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, Journal of Bacteriology 169: 5771-5278).
- protoplast transformation see, e.g., Chang and Cohen, 1979, Molecular General Genetics 168: 111-115
- competent cells see, e.g., Young and Spizizin, 1961, Journal of Bacteriology 81: 823-829, or Dub
- the host cell may be a eukaryote, such as a mammalian cell (e.g., human cell), an insect cell, a plant cell or a fungal cell.
- Mammalian host cells that could be used include but are not limited to human Hela, embryonic kidney cells (293), lung cells, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese Hamster ovary (CHO) cells. These cells may be transfected with a vector containing a transcriptional regulatory sequence, a protein coding sequence and transcriptional termination sequences.
- the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome.
- a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.
- the host cell may be a fungal cell.
- “Fungi” as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK) as well as the Oomycota (as cited in Hawksworth et al., 1995, supra, page 171) and all mitosporic fungi (Hawksworth et al., 1995, supra).
- the fungal host cell may also be a yeast cell.
- yeast as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, F. A., Passmore, S. M., and Davenport, R. R., eds, Soc. App. Bacteriol. Symposium Series No. 9, 1980). The fungal host cell may also be a filamentous fungal cell. “Filamentous fungi” include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra).
- the filamentous fungi are characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.
- Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus host cells are described in EP 238 023 and Yelton et al., 1984, Proceedings of the National Academy of Sciences USA 81: 1470-1474. Suitable methods for transforming Fusarium species are described by Malardier et al., 1989, Gene 78: 147-156 and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J. N. and Simon, M.
- the present invention also relates to methods for producing a polypeptide of the present invention comprising (a) cultivating a host cell under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.
- the cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art.
- the cell may be cultivated by shake flask cultivation, small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated.
- the cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.
- the polypeptides may be detected using methods known in the art that are specific for the polypeptides. These detection methods may include use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate.
- an enzyme assay may be used to determine the activity of the polypeptide.
- AEBP1 activity can be determined by measuring carboxypeptidase activity as described by Muise and Ro, 1999, Biochem. J. 343:341-345.
- the conversion of hippuryl-L-arginine, hippuryl-L-lysine or hippuryl-L-phenylalanine to hippuric acid may be monitored spectrophotometrically.
- POLD2 activity may be detected by assaying for DNA polymerase_activity (see, for example, Ng et al., 1991, J. Biol. Chem. 266:11699-11704).
- the resulting polypeptide may be recovered by methods known in the art.
- the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.
- polypeptides of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing, differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, J. -C. Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).
- chromatography e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion
- electrophoretic procedures e.g., preparative isoelectric focusing, differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, J. -C. Janson and Lars Ryden, editors, VCH
- the SNARE YKT6, human glucokinase, AEBP1 or POLD2 polypeptides produced according to the method of the present invention may be used as an immunogen to generate any of these polypeptides.
- Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library.
- polypeptides for the production of antibodies.
- various host animals can be immunized by injection with the polypeptide thereof, including but not limited to rabbits, mice, rats, sheep, goats, etc.
- the polypeptide or fragment thereof can optionally be conjugated to an immunogenic carrier, e.g., bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH).
- BSA bovine serum albumin
- KLH keyhole limpet hemocyanin
- adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.
- BCG Bacille Calmette-Guerin
- Corynebacterium parvum bacille Calmette-Guerin
- any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. These include but are not limited to the hybridoma technique originally developed by Kohler and Milstein (1975, Nature 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp.
- monoclonal antibodies can be produced in germ-free animals utilizing recent technology (PCT/US90/02545).
- human antibodies may be used and can be obtained by using human hybridomas (Cote et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:2026-2030) or by transforming human B cells with EBV virus in vitro (Cole et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, pp. 77-96).
- techniques developed for the production of “chimeric antibodies” (Morrison et al., 1984, J. Bacteriol.
- Antibody fragments which contain the idiotype of the antibody molecule can be generated by known techniques.
- such fragments include but are not limited to: the F(ab′)2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab′ fragments which can be generated by reducing the disulfide bridges of the F(ab′)2, fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.
- screening for the desired antibody can be accomplished by techniques known in the art, e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbent assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.
- radioimmunoassay e.g., ELISA (enzyme-linked immunosorbent assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoa
- antibody binding is detected by detecting a label on the primary antibody.
- the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody.
- the secondary antibody is labeled.
- Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention. For example, to select antibodies which recognize a specific epitope of a particular polypeptide, one may assay generated hybridomas for a product which binds to a particular polypeptide fragment containing such epitope. For selection of an antibody specific to a particular polypeptide from a particular species of animal, one can select on the basis of positive binding with the polypeptide expressed by or isolated from cells of that species of animal.
- Immortal, antibody-producing cell lines can also be created by techniques other than fusion, such as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. See, e.g., M. Schreier et al., “Hybridoma Techniques” (1980); Hammerling et al., “Monoclonal Antibodies And T-cell Hybridomas” (1981); Kennett et al., “Monoclonal Antibodies” (1980); see also U.S. Pat. Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,451,570; 4,466,917; 4,472,500; 4,491,632; 4,493,890.
- Polynucleotides containing noncoding regions of SEQ ID NOS:5, 6, 7 or 8 may be used as probes for detecting mutations from samples from a patient. Genomic DNA may be isolated from the patient. A mutation(s) may be detected by Southern blot analysis, specifically by hybridizing restriction digested genomic DNA to various probes and subjecting to agarose electrophoresis.
- Polynucleotides containing noncoding regions may be used as PCR primers and may be used to amplify the genomic DNA isolated from the patients. Additionally, primers may be obtained by routine or long range PCR, that can yield products containing more than one exon and intervening intron. The sequence of the amplified genomic DNA from the patient may be determined using methods known in the art. Such probes may be between 10-100 nucleotides in length and may preferably be between 20-50 nucleotides in length.
- kits comprising these polynucleotide probes.
- these probes are labeled with a detectable substance.
- the invention is further directed to antisense oligonucleotides and mimetics to these polynucleotide sequences.
- Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA.
- a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription or RNA processing (triple helix (see Lee et al., Nucl. Acids Res., 3:173 (1979); Cooney et al, Science, 241:456 (1988); and Dervan et al., Science, 251: 1360 (1991)), thereby preventing transcription and the production of said polypeptides.
- the antisense oligonucleotides or mimetics of the present invention may be used to decrease levels of a polypeptide.
- SNARE YKT6 has been found to be essential for vesicle-associated endoplasmic reticulum-Golgi transport and cell growth. Therefore, the SNARE YKT6 antisense oligonucleotides of the present invention could be used to inhibit cell growth and in particular, to treat or prevent tumor growth.
- POLD2 is necessary for DNA replication. POLD2 antisense sequences could also be used to inhibit cell growth.
- Glucokinase and AEBP1 antisense sequences may be used to treat hyperglycemia.
- the antisense oligonucleotides of the present invention may be formulated into pharmaceutical compositions. These compositions may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
- compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
- Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.
- compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
- compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.
- compositions of the present invention may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas.
- the compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media.
- Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran.
- the suspension may also contain stabilizers.
- the pharmaceutical compositions may be formulated and used as foams.
- Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product.
- the preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.
- compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50 as found to be effective in in vitro and in vivo animal models.
- dosage is from 0.01 ug to 10 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 10 g per kg of body weight, once or more daily, to once every 20 years.
- SNARE YKT6 is necessary for cell growth
- POLD2 is involved in DNA replication and repair
- AEBP1 is involved in repressing adipogenesis
- glucokinase is involved in glucose sensing in pancreatic islet beta cells and liver.
- the SNARE YKT6 gene may be used to modulate or prevent cell apoptosis and treat such disorders as virus-induced lymphocyte depletion (AIDS); cell death in neurodegenerative disorders characterized by the gradual loss of specific sets of neurons (e.g., Alzheimer's Disease, Parkinson's disease, ALS, retinitis pigmentosa, spinal muscular atrophy and various forms of cerebellar degeneration), cell death in blood cell disorders resulting from deprivation of growth factors (anemia associated with chronic disease, aplastic anemia, chronic neutropenia and myelodysplastic syndromes) and disorders arising out of an acute loss of blood flow (e.g., myocardial infarctions and stroke).
- AIDS virus-induced lymphocyte depletion
- the glucokinase gene may be used to treat diabetes mellitus.
- the AEBP1 gene may be used to modulate or inhibit adipogenesis and treat obesity, diabetes mellitus and/or osteopenic disorders.
- POLD2 may be used to treat defects in DNA repair such as xeroderma pigmentosum, progeria and ataxia telangiectasia.
- the polynucleotide of the present invention may be introduced into a patient's cells for therapeutic uses.
- cells can be transfected using any appropriate means, including viral vectors, as shown by the example, chemical transfectants, or physico-mechanical methods such as electroporation and direct diffusion of DNA. See, for example, Wolff, Jon A, et al., “Direct gene transfer into mouse muscle in vivo,” Science, 247, 1465-1468, 1990; and Wolff, Jon A, “Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs,” Nature, 352, 815-818, 1991.
- vectors are agents that transport the gene into the cell without degradation and include a promoter yielding expression of the gene in the cells into which it is delivered.
- promoters can be general promoters, yielding expression in a variety of mammalian cells, or cell specific, or even nuclear versus cytoplasmic specific. These are known to those skilled in the art and can be constructed using standard molecular biology protocols. Vectors have been divided into two classes:
- Viral vectors have higher transaction (ability to introduce genes) abilities than do most chemical or physical methods to introduce genes into cells.
- Vectors that may be used in the present invention include viruses, such as adenoviruses, adeno associated virus (AAV), vaccinia, herpesviruses, baculoviruses and retroviruses, bacteriophages, cosmids, plasmids, fungal vectors and other recombination vehicles typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression. Polynucleotides are inserted into vector genomes using methods well known in the art.
- Retroviral vectors are the vectors most commonly used in clinical trials, since they carry a larger genetic payload than other viral vectors. However, they are not useful in non-proliferating cells. Adenovirus vectors are relatively stable and easy to work with, have high titers, and can be delivered in aerosol formulation. Pox viral vectors are large and have several sites for inserting genes, they are thermostable and can be stored at room temperature.
- promoters are SP6, T4, T7, SV40 early promoter, cytomegalovirus (CMV) promoter, mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, phosphoglycerate kinase (PGK) promoter, and the like.
- the promoter may be an endogenous adenovirus promoter, for example the E1 a promoter or the Ad2 major late promoter (MLP).
- MLP major late promoter
- those of ordinary skill in the art can construct adenoviral vectors utilizing endogenous or heterologous poly A addition signals.
- Plasmids are not integrated into the genome and the vast majority of them are present only from a few weeks to several months, so they are typically very safe. However, they have lower expression levels than retroviruses and since cells have the ability to identify and eventually shut down foreign gene expression, the continuous release of DNA from the polymer to the target cells substantially increases the duration of functional expression while maintaining the benefit of the safety associated with non-viral transfections.
- Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTIN® and LIPOFECTACE®, which are formed of cationic lipids such as N-[1-(2,3 dioleyloxy)-propy1]-n,n,n-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Numerous methods are also published for making liposomes, known to those skilled in the art.
- LIPOFECTIN® and LIPOFECTACE® are formed of cationic lipids such as N-[1-(2,3 dioleyloxy)-propy1]-n,n,n-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB).
- DOTMA N-[1-(2,3 dioleyloxy)-propy1]-n,n,n-trimethylammonium chloride
- DDAB dimethyl
- Nucleic acid-Lipid Complexes can be associated with naked nucleic acids (e.g., plasmid DNA) to facilitate passage through cellular membranes.
- Cationic, anionic, or neutral lipids can be used for this purpose.
- cationic lipids are preferred because they have been shown to associate better with DNA which, generally, has a negative charge.
- Cationic lipids have also been shown to mediate intracellular delivery of plasmid DNA (Felgner and Ringold, Nature 337:387 (1989)).
- Intravenous injection of cationic lipid-plasmid complexes into mice has been shown to result in expression of the DNA in lung (Brigham et al., Am. J. Med.
- Cationic lipids are known to those of ordinary skill in the art.
- Representative cationic lipids include those disclosed, for example, in U.S. Pat. No. 5,283,185; and e.g., U.S. Pat. No. 5,767,099.
- the cationic lipid is N4-spermine cholesteryl carbamate (GL-67) disclosed in U.S. Pat. No. 5,767,099.
- Additional preferred lipids include N4-spermidine cholestryl carbamate (GL-53) and 1-(N4-spermind)-2,3-dilaurylglycerol carbamate (GL-89).
- the vectors of the invention may be targeted to specific cells by linking a targeting molecule to the vector.
- a targeting molecule is any agent that is specific for a cell or tissue type of interest, including for example, a ligand, antibody, sugar, receptor, or other binding molecule.
- invention vectors may be delivered to the target cells in a suitable composition, either alone, or complexed, as provided above, comprising the vector and a suitably acceptable carrier.
- the vector may be delivered to target cells by methods known in the art, for example, intravenous, intramuscular, intranasal, subcutaneous, intubation, lavage, and the like.
- the vectors may be delivered via in vivo or ex vivo applications. In vivo applications involve the direct administration of an adenoviral vector of the invention formulated into a composition to the cells of an individual. Ex vivo applications involve the transfer of the adenoviral vector directly to harvested autologous cells which are maintained in vitro, followed by readministration of the transduced cells to a recipient.
- the vector is transfected into antigen-presenting cells.
- Suitable sources of antigen-presenting cells include, but are not limited to, whole cells such as dendritic cells or macrophages; purified MHC class I molecule complexed to ⁇ 2-microglobulin and foster antigen-presenting cells.
- the vectors of the present invention may be introduced into T cells or B cells using methods known in the art (see, for example, Tsokos and Nepom, 2000, J. Clin. Invest. 106:181-183).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human liver glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Description
- This application claims priority under 35 U.S.C. §119(e) to provisional application serial No. 60/234,422, filed Sep. 21, 2000, the contents of which are incorporated herein by reference.
- The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human liver glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
- Chromosome 7 contains genes encoding, for example, epidermal growth factor receptor, collagen-1-Alpha-1-chain, SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA polymerase delta small subunit (POLD2). SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA polymerase delta small subunit (POLD2) are discussed in further detail below.
- SNARE YKT6
- SNARE YKT6, a substrate for prenylation, is essential for vesicle-associated endoplasmic reticulum-Golgi transport (McNew, J. A. et al. J. Biol. Chem. 272, 17776-17783, 1997). It has been found that depletion of this function stops cell growth and manifests a transport block at the endoplasmic reticulum level.
- Human Liver Glucokinase
- Human liver glucokinase (ATP:D-hexose 6-phosphotransferase) is thought to play a major role in glucose sensing in pancreatic islet beta cells (Tanizawa et al., 1992, Mol. Endocrinol. 6:1070-1081) and in the liver. Glucokinase defects have been observed in patients with noninsulin-dependent diabetes mellitus (NIDDM) patients. Mutations in the human liver glucokinase gene are thought to play a role in the early onset of NIDDM. The gene has been shown by Southern Blotting to exist as a single copy on chromosome 7. It was further found to contain 10 exons including one exon expressed in islet beta cells and the other expressed in liver.
- Human Adipocyte Enhancer Binding Protein
- The adipocyte-enhancer binding protein (AEBP1) is a transcriptional repressor having carboxypeptidase B-like activity which binds to a regulatory sequence (adipocyte enhancer 1, AE-1) located in the proximal promoter region of the adipose P2 (aP2) gene, which encodes the adipocyte fatty acid binding protein (Muise et al., 1999, Biochem. J. 343:341-345). B-like carboxypeptidases remove C-terminal arginine and lysine residues and participate in the release of active peptides, such as insulin, alter receptor specificity for polypeptides and terminate polypeptide activity (Skidgel, 1988, Trends Pharmacol. Sci. 9:299-304). For example, they are thought to be involved in the onset of obesity (Naggert et al., 1995, Nat. Genet. 10:1335-1342). It has been reported that obese and hyperglycemic mice homozygous for the fat mutation contain a mutation in the CP-E gene.
- Full length cDNA clones encoding AEBP1 have been isolated from human osteoblast and adipose tissue (Ohno et al., 1996, Biochem. Biophys Res. Commun. 228:411-414). Two forms have been found to exist due to alternative splicing. This gene appears to play a significant role in regulating adipogenesis. In addition to playing a role in obesity, adipogenesis may play a role in ostopenic disorders. It has been postulated that adipogenesis inhibitors may be used to treat osteopenic disorders (Nuttal et al., 2000, Bone 27:177-184).
- DNA Polymerase Delta Small Subunit (POLD2)
- DNA polymerase delta core is a heterodimeric enzyme with a catalytic subunit of 125 kD and a second subunit of 50 kD and is an essential enzyme for DNA replication and DNA repair (Zhang et al., 1995, Genomics 29:179-186). cDNAs encoding the small subunit have been cloned and sequenced. The gene for the small subunit has been localized to human chromosome 7 via PCR analysis of a panel of human-hamster hybrid cell lines. However, the genomic DNA has not been isolated and the exact location on chromosome 7 has not been determined.
- Although cDNAs encoding the above-disclosed proteins have been isolated, their location on chromosome 7 has not been determined. Furthermore, genomic DNA encoding these polypeptides have not been isolated. Noncoding sequences can play a significant role in regulating the expression of polypeptides as well as the processing of RNA encoding these polypeptides.
- There is clearly a need for obtaining genomic polynucleotide sequences encoding these polypeptides. Therefore, it is an object of the invention to isolate such genomic polynucleotide sequences.
- The invention is directed to an isolated genomic polynucleotide, said polynucleotide obtainable from human chromosome 7 having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide encoding a polypeptide selected from the group consisting of human SNARE YKT6 depicted in SEQ ID NO:1, human liver glucokinase depicted in SEQ ID NO:2, human adipocyte enhancer binding protein 1 (AEBP1) depicted in SEQ ID NO:3 and DNA directed 50 kD regulatory subunit (POLD2) depicted in SEQ ID NO:4;
- (b) a polynucleotide selected from the group consisting of SEQ ID NO:5 which encodes human SNARE YKT6 depicted in SEQ ID NO:1, SEQ ID NO:6 which encodes human liver glucokinase depicted in SEQ ID NO:2, SEQ ID NO:7 which encodes human adipocyte enhancer binding protein 1 depicted in SEQ ID NO:3 and SEQ ID NO:8 which encodes DNA directed 50 kD regulatory subunit (POLD2) depicted in SEQ ID NO:4;
- (c) a polynucleotide which is a variant of SEQ ID NOS:5, 6, 7, or 8;
- (d) a polynucleotide which is an allelic variant of SEQ ID NOS:5, 6, 7, or 8;
- (e) a polynucleotide which encodes a variant of SEQ ID NOS:1, 2, 3, or 4;
- (f) a polynucleotide which hybridizes to any one of the polynucleotides specified in (a)-(e);
- (g) a polynucleotide that is a reverse complement to the polynucleotides specified in (a)-(f) and
- (h) containing at least 10 transcription factor binding sites selected from the group consisting of AP1FJ-Q2, AP1-C, AP1-Q2, AP1-Q4, AP4-Q5, AP4-Q6, ARNT-01, CEBP-01, CETS1P54-01, CREL-01, DELTAEF1-01, FREAC7-01, GATA1-02, GATA1-03, GATA1-04, GATA1-06, GATA2-02, GATA3-02, GATA-C, GC-01, GFII-01, HFH2-01, HFH3-01, HFH8-01, IK2-01, LMO2COM-01, LMO2COM-02, LYF1-01, MAX-01, NKX25-01, NMYC-01, S8-01, SOX5-01, SP1-Q6, SAEBP1-01, SRV-02, STAT-01, TATA-01, TCF11-01, USF-01, USF-C and USF-Q6 as well as nucleic acid constructs, expression vectors and host cells containing these polynucleotide sequences.
- The polynucleotides of the present invention may be used for the manufacture of a gene therapy for the prevention, treatment or amelioration of a medical condition by adding an amount of a composition comprising said polynucleotide effective to prevent, treat or ameliorate said medical condition.
- The invention is further directed to obtaining these polypeptides by
- (a) culturing host cells comprising these sequences under conditions that provide for the expression of said polypeptide and
- (b) recovering said expressed polypeptide.
- The polypeptides obtained may be used to produce antibodies by
- (a) optionally conjugating said polypeptide to a carrier protein;
- (b) immunizing a host animal with said polypeptide or peptide-carrier protein conjugate of step (b) with an adjuvant and
- (c) obtaining antibody from said immunized host animal.
- The invention is further directed to polynucleotides that hybridize to noncoding regions of said polynucleotide sequences as well as antisense oligonucleotides to these polynucleotides as well as antisense mimetics. The antisense oligonucleotides or mimetics may be used for the manufacture of a medicament for prevention, treatment or amelioration of a medical condition. The invention is further directed to kits comprising these polynucleotides and kits comprising these antisense oligonucleotides or mimetics.
- In a specific embodiment, the noncoding regions are transcription regulatory regions. The transcription regulatory regions may be used to produce a heterologous peptide by expressing in a host cell, said transcription regulatory region operably linked to a polynucleotide encoding the heterologous polypeptide and recovering the expressed heterologous polypeptide.
- The polynucleotides of the present invention may be used to diagnose a pathological condition in a subject comprising
- (a) determining the presence or absence of a mutation in the polynucleotides of the present invention and
- (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.
- The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA directed 50 kD regulatory subunit (POLD2), which in a specific embodiment are the SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA directed 50 kD regulatory subunit (POLD2) genes, as well as vectors and hosts containing these fragments and polynucleotide fragments hybridizing to noncoding regions, as well as antisense oligonucleotides to these fragments.
- As defined herein, a “gene” is the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region, as well as intervening sequences (introns) between individual coding segments (exons).
- As defined herein “isolated” refers to material removed from its original environment and is thus altered “by the hand of man” from its natural state. An isolated polynucleotide can be part of a vector, a composition of matter or could be contained within a cell as long as the cell is not the original environment of the polynucleotide.
- The polynucleotides of the present invention may be in the form of RNA or in the form of DNA, which DNA includes genomic DNA and synthetic DNA. The DNA may be double-stranded or single-stranded and if single stranded may be the coding strand or non-coding strand. The human snare YKT6 polypeptide has the amino acid sequence depicted in SEQ ID NO:1:
KLYSLSVLYKGEAKVVLLKAAYDVSSFSFFQRSSVQEFMTFTSQLIVERSSKGTRASVKFQDYLCH VYVRNDSLAGVVIADNEYPSRVAFTLLEKVLDEFSKQVDRIDWPVGSPATIHYPALDGHLSRYQN PREADPMTKVQAELDETKIILHNTMESLLERGEKLDDLVSKSEVLGTQSKAFYKTARKQNSCCAI M - and is encoded by the genomic DNA sequence shown in SEQ ID NO:5:
CCAGACATAGGCAAGGCGCAAGGTGATACAGTAGGCAGCCACCATGGGGGCCAGGAGGCTCC AGCAGAGGCCACACAACCAGCCCAGAATCCAGGACAGAGAGCTGGAATGGAGACAGGGAAG CCAGATACCAGGCCAGACTGGCCAGGTGCTACAGGCCTGTGGGCCAGGCCAGGCTTGGGGAC TTCGTCCTGGGTGTGAAGGAGACAGGCACCCCTGAGGCCTTCCCTCTGCATCTCCAGCCCAAG CTAAGCGCAAACTCTTAGGTTGGAGTAAGGAGTAACCCCCTGCCAAGTTTCTCCTGTCCTCAG GCTCCACCGACCACCTATGCTGCCTGGCCCCATGGGGCACACGCTCAGGCCCAGCCTGGGAAA GCAACTGCACCTGCCTGTGCTATGCTGGCCCTTCTCAGCCTCAATGCCCTCCTCCCTCCCCGAC GCACCCTCGTGGCCCCCGCTGGGCCCCCTGATGCACCCTCATGTCTCCATGGCAACCTGCTCA GAGTGTGGCCCTGCCCTTGGCTCCCCTCCACACCTGTGTCCCAGGCAGTGCCACGGCACTTTCC TAAACAGAAGGATGGGCTTCAAAACAGTCCCAGACACTAAACACACCTGCATTTTGGGTCCA AGTAACTTCTGACAAGACGAGTGCCCCTACACACTCTCAGTCCTATCCACTATGGGCAAGGAG CCTGAAGGATCCCCCAGAACTGGCTAAAGCCCTCAGTCTCCTCCTCCACCCTGAGCACCTTCA CGCGGCAGAGTGGCCCTGGATGTCAGCTTCTTGCTCCCCATGGTCTGCACCTGGACAGGTGCT CTCAGGTGTGTGGGTGGGCAGGTGGCAGGTCCCAAGAGCCAGGTGCAAAGAATCTAGGCCAG TGCCCACGAGTGCTGCAGTGTCTGTCCCCAGCATGGTATCTAGGGCTCCACTTGCCTATCAGCT GTAATCGGAGGAGGCTTTCCAGGCCAGGCCTCCCCCAGGAAGGCTGCAGGCACTGCGGATCG TGCGCCCTCACATGCATTATTCCTGAGGCCCTTCTGCAGATGCCATCAGGGCAGCAACTCTGA TGAGGTATTAGGGCACAGCACACAGGGCTAAGCCACCCTGTACTGGGCCAAGCGCTACAGGC GCCACATGACCCTAAGGGTTACCCCATCCCACCCCAACCCAGGTCTGGCAGGTCCTCAGAACA GGAAAAGCTGAGCACTGCCCAAGGCTGCTTGCTGGGCCAGTCAGAGAGGTCTCTGCCTTCCAG GATCAGAAGTACAGGCTGAAAGCAGCCTTGGGCCCGCCTCCCTGGGAGGCTACAGAGGCTTC AGAGGGTTCCCTGAACTCAAAACCAGATGTGAGACTTGAATTTGACTTACCCCTGGTTCACCT CCCAAGCAAAGCAGGGGTCAGCTTTGGCTCCTCCAGGAACCAGGAAGCTTCCAGGTACCCTGT GGAGCCCCCTCTGCTCCTGAAAAGTTGCCACCTGTGCTTGGTGGGATGCCAGGTGGTCTCAGA TTGACCCTGGGGTCAGCGGTGAGGGACAGGAAGCCTACAGCGGGATCAGGATGGGGATGGGG CCTCCTGTCCCATGGCTCTGCAGCTATGAGGCAGCTTTCCTAGGGTGGGTCTCCTGGCTGCAGC TAAGACCAGGCAACAGGATTCAGCAATGACAGGGCTTCTTCTACTCCAGGGCTCCCTCACCTG GTTAACAGCAAAAAAGAAAATACAGTTCCTGCTAGCAAGGTCTATAGAAAGGAGGTGAAGGA GTCAGGCCTGCAGCTACCTCTCCTGGACAGGAGCTGGTCAGGATAACTTGGACCCTTGCATGC GGCAGGCCCACAGGCACACAGCATGAGGCCACTCTCTCCCCCGGGGGAAGGGCTTGGTGAAG AAAGGATTCCCCTGAAGCACAAAGAAAGCACAGGACCACTGTGAAATTTCAAGACAACTTTTTA TCCAGACAGGCGCCTCTCAAATAGAACACAGGGAAGTTAGGCAGCAGTTACTAAAATACAGT CTGGCCAAATGATTTACAACAGAACACAACAGGAGCAGGGGATCTGTGGGTGGGGCTGGGCT GGGCCCTCTATCTCACAGGGCCTGAGTCAAGCCAGCCCGCCCTGCAAGGCAGGGGCTGACCT GCAAGCGGAGATCTCACTTCCTCTTACCCCAAATTCATACCTCCATTTTCCCCGCCCCCATCTC TCCCCAGGGTCCTCAAGTGGGAAAGGGAGAGGTAGCATCCCTCGGATCCAGGCCCACTCCAC TCCGTCTCCGGCACCAGTGGGCAGGCTGAGTCTGGGCCTCAAGGGGCCCTGGGCTTAGGGTAT CTATGGCAGTAGGAAAATGACATGGACAGGCTCTTCAGGGGTAGGCTAAAGTCCTCTGGCCA GCAGTACCCAGAGAAAATGGGCAGCAGCAGGTAAACCAGCCAGGAGGTGGAGTCCTCTGAAC CCACAGCAGACCCCACCCTCCTGCCCAGCCCCTGCCCACATTGGGGGTCAGGACCACTGAGAC TCTGGTCAGGACAGTGGGTGCTCTCAGCAGTGTGGCAAGCTCAGAGCAGAGCTCCCAAGGAC CATACCACACTGGTTCAAAACCCATAGGTGACACCATCCCAGCAGAAGCTTCCATGGGTGCTG GATCCCAGGGCTGCATCCTGAGCACAGGTGGGCAGACTGGAACATAACACTAGGACCCAAGG GATCCAGAACATTTAGGCCCATCTCCTGGGCTGCTCCAGCCTGTTGCCATGACTTGGGCAGT GAGTGGGCCTCCTGCCAGGTGGCAGGGCACAGCTTAGACCAAACCCTTGGCCTCCCCCCTCTG CAGCTACCTCTGACCAAGAAGGAACTAGCAAGCCTATGCTGGCAAGACCATAGGTGGGGTGC TGGGAATCCTCGGGGCCGGCTGGCACCCACTCCTGGTGCTCAAAGGGAGAGACCCACTTGTTCA GATGCATAGGCCTCAGGCGGTTCAAGGCAGTCTTAGAGCCACAGAGTCAAATAAAAATCAAT TTTGAGAGACCACAGCACCTGCTGCTTTGATCGTGATGTTCTAAGGCAAGTTGCAAGTCAAGGC AAGTGTCCCAGAGGCCCTGGGCAGCTGAGTGCACCTGTGTTTGATCTTCCCCTGATGATGGAC ACTCCCAGCTGACCATCCAAACACCAGGAAAACATCCCCCTTTCCTGGGCTCAGTTCCTAGTC TACTTGCTGGTACGAACCCAACCCACACACTCCCCGCCCACAATGCAGCTCCTCCAAATCCT CCCACAAGCCACCTTTGTGGGACTTGGAAGCTGCAGGATGGGCCCTGCCCTCTGCGGGAAG CCAATCCTAGCAGAAAGGTAAGCTAAACAACAGTCTCAGAATCTGAGACCCAGTGACT GTTCCCCCCGCCCCAGGCCTTGGGCCTGAAGTGGGGGCCTGCCTGTGGCCTCTGTGGTGGGCT CACTCCCACCCCCAACAGTGGCCCCAGGAGAGGCTTTCCCAAGAGTCTTCAAACTCCACCCAC CCCAGCCCTAGCATCAGGGACTCCCCACCCCCCACTGGAGTGTTAATATCATTAATGTACAAA TAAGATCCAAAGATATACCAAAGATCGAGAAACAGCTGGCTCCGACCTCCCTCCCACAGAGC CTTCCCAGGGTTAGCTGAAAAAGAGCCCTTTGGCATCTACAGAAGCCAGTCGGAGTTTATGGT TTCATTTGCCCAAAAATACACCTTTGGGGACCTCAAACTTTCCAAGAATCACTACCACACAT ATGAATTTGAACATTCGCCACCCTTCCACCATCCATTTCTCGCAGGAACTTCAAAATAAAAAT GGCCAGTCTGCCGCCACTCTGGCTCCTCGTCTATGGCTGTCTCTTCTTTTCCAGGGGCTGCAGT TCTGATGTGAATGATGGTGCCATTCCAGCATTGGGCCTCTGGCAGGCTGCATCACATGATGGC ACAGCATGAGTTTTGTTTCCGGGCCTTGGAAAAAAACAAAGAGGAGCTGAGAAGGAGGACTG ACGAAGTAAGGGAAGCCCCAATCCTGGCAGGCGTGGCAGAGGGAGCTCCACAGGACACAGC CAGGCAGAGAAACTAGCACTAGAACAGGGTGGGGGTGGAGGCCTTGAGGGAAGCTGTCCAC AAGCAATTCCCATCACCAAGCACAAGGCGGGCCCCGGCTTCCAAAACTAGTCTGGGATCCTTT TTCCTTTCTTTCTCACACCCCATTAATGCTATCAAAAAGTGAGTAAAATTCCTACAGTTAGGC CAGGTACAAACAAAGGACCAATAATACAAATGGGATTGGCAGAATATCTTAACTTTGGCCCA CTCCTGTCTTCACACAATGCTATCTGACCACCACGGTGGTGTTTCTCCTAGAAGATGGTCCTG AGGACAACAGATGTGGTTCCCACTTGGGATGTGGTTTGTGGGGACCACTGTTGCCACCTTCTC TCTTGCTTTCTGGTCACAGACTATCTTCCTAATCCCACCTAGCCATCTCCCTCCAATGTGCACA TGAAAGCAAATGTGTGTGGACAGACCAAGTAAATTTGTCCCTATGACTATCCAACCATGGGCC AACAGTGCCATCTCCAGATAGGAAGACATGAGCACTGACCTGAGAGAAAGCGGCAGTCAGCA GCACCCATCCTTGTCAATTAAATATTTTCTGTCAAAGGGAAATTAAAAGCTTAAGAACCTCTT CAGGAAGGCTGAATTGCTTGCATCTTAAAGACTTATGTCTACTCAGCAGAAAGAGGAATAAG ATTCAACAGTAAATCTCTGGTGATCAGAACTGAACCAGCCTTCCTGGACTGGGAGTAGGAGT TCAGAAATCAGCCAGAGCAGCAGAGGGCAGAGCAGAGGCAGGAGTGGAACAAGGCCTCGGC CCGCATCGACTCCAACGGCGCCCAAGTGAACTGCCTCCAACCACCTGGGCCTGAGGCGCTCAC CTTAGGCTCTTGCCGCACAAGGAATCATCCACCATGATCAACAGTCTAAGAAAGACCCGTTC ATAGTGGAGAGTGCCAGAAGCAGCAAGCTGCGACTGCTCTCTAGAGAGAACACCCAGGAGGC AGCAGGTGCTGGGTACTCACAGTTTATAGAAGGCTTTAGACTGTGTTCCCAGCACCTCGGAT TTGGACACCAAGTCATCTAGCTTCTCACCTCGCTCTAACAGAGACTCCATGGTGTTGTGCTGG ACAAAAAAGAAAAGAGAATCCAGCTCTGTTCAGTACGTGCCCTGACATGAGCCCCTCATATTT CAGTCATGGGGGAAAGTGCCTTACCTGGGTTCCTCTCCAACACACACAAACTTCACCTCTAGG TGTCGAGACTCGGTCCAAGAATAGTTACTGTCCAAGTGGATGGAACAGAACCTGGTGACATTC CCGTGAAATCTAGAAGATCTAACTGGGATGTAGCAGACTTCCCAAAAAGCTGTCCCCAGCAC AGGCTTAGATAACCAGCACTCCAGGAAAACTCATATATATATATACACACACATTTATATATA CATTTGTGTGTGTGTGTGTGTGTGCACGCACATGTGCGTGTGCATGGAGCTTGGAAAAAAGA GTTCCCCCCGCCCCAGGCCTTGGGCCTGAAGTGGGGGCCTGCCTGTGGCCTCTGTGGTGGGCT CACTCCCACCCCCAACAGTGGCCCCAGGAGAGGCTTTCCCAAGAGTCTTCAAACTCCACCCAC CCCAGCCCTAGCATCAGGGACTCCCCACCCCCCACTGGAGTGTTAATATCATTAATGTACAAA TAAGATCCAAAGATATACCAAAGATCGAGAAACAGCTGGCTCCGACCTCCCTCCCACAGAGC CTTCCCAGGGTfAGCTGAAAAAGAGCCCTTTGGCATCTACAGAAGCCAGTCGGAGTTTATGGT TTCATTTGCCCAAAAATACACCTTTGGGGACCTCAAACTTTCCAAGAATCACTACCACACAT ATGAATTTGAACATTCGCCACCCTTCCACCATCCATTTCTCGCAGGAACTTCAAAATAAAAAT GGCCAGTCTGCCGCCACTCTGGCTCCTCGTCTATGGCTGTCTCTTCTTTTCCAGGGGCTGCAGT TCTGATGTGAATGATGGTGCCATTCCAGCATTGGGCCTCTGGCAGGCTGCATCACATGATGGC ACAGCATGAGTTTTGTTTCCGGGCCTTGGAAAAAAACAAAGAGGAGCTGAGAAGGAGGACTG ACGAAGTAAGGGAAGCCCCAATCCTGGCAGGCGTGGCAGAGGGAGCTCCACAGGACACAGC CAGGCAGAGAAACTAGCACTAGAACAGGGTGGGGGTGGAGGCCTTGAGGGAAGCTGTCCAC AAGCAATTCCCATCACCAAGCACAAGGCGGGCCCCGGCTTCCAAAACTAGTCTGGGATCCTTT TTCCTTTCTTTCTCACACCCCATTAATGCTATCAAAAAGTGAGTAAAATTCCTACAGTTAGGC CAGGTACAAACAAAGGACCAATAATACAAATGGGATTGGCAGAATATCTTAACTTTGGCCCA CTCCTGTCTTCACACAATGCTATCTGACCACCACGGTGGTGTTTCTCCTAGAAGATGGTCCTG AGGACAACAGATGTGGTTCCCACTTGGGATGTGGTTTGTGGGGACCACTGTTGCCACCTTCTC TCTTGCTTTCTGGTCACAGACTATCTTCCTAATCCCACCTAGCCATCTCCCTCCAATGTGCACA TGAAAGCAAATGTGTGTGGACAGACCAAGTAAATTTGTCCCTATGACTATCCAACCATGGGCC AACAGTGCCATCTCCAGATAGGAAGACATGAGCACTGACCTGAGAGAAAGCGGCAGTCAGCA GCACCCATCCTTGTCAATTAAATATTTTCTGTCAAAGGGAAATTAAAAGCTTAAGAACCTCTT CAGGAAGGCTGAATTGCTTGCATCTTAAAGACTTATGTCTACTCAGCAGAAAGAGGAATAAG ATTCAACAGTAAATCTCTGGTGATCAGAACTGAACCAGCCTTCCTGGACTGGGAGTAGGAGT TCAGAAATCAGCCAGAGCAGCAGAGGGCAGAGCAGAGGCAGGAGTGGAACAAGGCCTCGGC CCGCATCGACTCCAACGGCGCCCAAGTGAACTGCCTCCAACCACCTGGGCCTGAGGCGCTCAC CTTAGGCTCTTGCCGCACAAGGAATCATCCACCATGATCAACAGTCTAAGAAAGACCCGTTC ATAGTGGAGAGTGCCAGAAGCAGCAAGCTGCGACTGCTCTCTAGAGAGAACACCCAGGAGGC AGCAGGTGCTGGGTACTCACAGTTTATAGAAGGCTTTAGACTGTGTTCCCAGCACCTCGGAT TTGGACACCAAGTCATCTAGCTTCTCACCTCGCTCTAACAGAGACTCCATGGTGTTGTGCTGG ACAAAAAAGAAAAGAGAATCCAGCTCTGTTCAGTACGTGCCCTGACATGAGCCCCTCATATTT CAGTCATGGGGGAAAGTGCCTTACCTGGGTTCCTCTCCAACACACACAAACTTCACCTCTAGG TGTCGAGACTCGGTCCAAGAATAGTTACTGTCCAAGTGGATGGAACAGAACCTGGTGACATTC CCGTGAAATCTAGAAGATCTAACTGGGATGTAGCAGACTTCCCAAAAAGCTGTCCCCAGCAC AGGCTTAGATAACCAGCACTCCAGGAAAACTCATATATATATATACACACACATTTATATATA CATTTGTGTGTGTGTGTGTGTGTGCACGCACATGTGCGTGTGCATGGAGCTTGGAAAAAAGA GTAGCTGGGCACTATATGATTGTACTGGGTTGGAGAGTGACCCACACCGCACCCCCCAACCCC AACCGCATCCCAGAAATTAACATCCCCAGAATCTCTGAATGTGACCATATTTAGAAATAGGGT CTTGGCAGATGTAACTAGTTAGGAAGAGGTAATACTGGATTAGGGTGGCATCTAATTCCATGA CTGATGCCTGGTAAGAAACGGAAACACACACACAGAAGGTCACGTGACGGCAGAGGCAGA GCCTGAAGTGATGCACCTCTAATCCAAGGAATGCCAAGGATGGCCAGCAGCCACCAGAGGCT GGAGAGAGGCCTGGGACAGACACTTCAGAGCCCCAAAAGACACCAGCCAGGCCCACAGAGCT ATCGTTAAAAGCAAATATTTGAGGGTTTCTGTTGACAGCAGCCACAGGAAACAAAAGGCGG TGGGAAATGGCTATTGAGCACTTGATGTGAGGCAAGTCCAAACTGAGCAGCGCTCTGAGTAC AGACACACCAGATTTCAGATGCAAACTCACACATGCTTCATTAGTAAGTTTTATACTGAAAAA AAAACAAGTTTTATACCGATTACATGTTGGAAAAATTGTATTTGGATATACTGCGTTAAGTAA AATATATAATTAAATTAAATTCTACCTATTTCCTTTTATCATTTTAAAATATGGCTCCTAGAA AATTCTAAGTTACACACATGCCCCAAATATATACCAGACAGCACTATGACAGAACATGTCCTG CCTTCTAAATGGGCTATGTCCTAAATGTCATCACTACAAACTCTGACTTAGGAAATGTGAAAACA CTGCCCCATGGGAAGGGGTCTAGAGATGGAGACCTCACAAGAGCCAGCAGCTCTGCTGCCA GGGCCCTCAGGAAGCAGCAGCTCGCTTCTCTCCTCAGATGGCCACTGCTGCAGCAGCTAGATG CACACATGAAGCGCCATCGAACAAGGAGCCAGCAAGAATGTCCTTCATCCCTACACACAGCT GAGCGACTCTAAATTTTTAACACAGAAAGTTAACTGATTCAGATATGCACACCAATCATCTAGA TTTTACAACTGCAGCTAGATGAGGCTGGGTGAATAGGACTCATCCACTCCCCACCGTGGGGAG AGGAGAAACAGCGGGTGTCCCAGGTGTCATGGTACTCAGACTAGGACTTGAGCAACAGAAAG AGATGGCTTGAGGAGAAAACGGAGAAATGCACCTAGGTGGTAAGAAAGCTCACAAGGTTTC AAAAGACACAGATACCATGAGACTTTCACATCTATCGTTCATTCCAAAGCCACGTTATTTGGA GTGCAGTCAGCACACCTGTGTTTGAAGCCCCTGGGATGCTTTTTATAAAATGCAGGTTCCCAG GCTCCATCGCAGGCCAACAACTCCAACCCCAGGAGACGCTGATGTACACACTAAAGCTATGC CTGTGTAAATGGTAAAGCTTTGTATGTGGGTTTCAATCCACTCCAGGTATCTATCAACTGCTGA GCATGGTATAAACTAGGCACTGTATCATGAGCAGGATGGAAAGATGTCCCAGTGCTCATACG CTGGTCAGGGAGACATGTAAACAAGCAGTGACAAAACTGTGACATCTGGTCAGAAAGGCCCA ACCTTCAGGCGCCTGTGTGTGAGCTGGGCAAGAAAGGGTATAAGAGAGAACAGGGCCCAGTC AGGAGACTGTGAGTTAGTTTGCACTTTATCCTGGGGCGGATCTGAGAGCTGCGAAGGGTTCT AAGTTGTGCAGATCAATGACTACTCTCTGGTGGACAGACTGGAGGTGAGCAGGAGGCAAGGG GACCACTTAGAGGCAAAGGCTGTAAGAGAAAAACCTGAGAAAAACAGATAGCTGCTTACATT CCACTTGTAGCAAAAATTTAAAAAAAAAGAGTTGAAGCAACAGTTACAAATCAGGAGATTT CAGCTCAAAATGCAGGGTTCTGGCTCTTTTCAAAGGGGCCTATGTGACAACCCTGGGCCCATA TTCCAGCCGCTGCCCTGTGGTCAGTGCACGGTGCTTCAATCTGTTCACCTTCAATGCAAACGCT GCAAGGGGAGGCACCTGTGGGGTGTGGAGGCACCCGAAACCCTAACAAAGGCACCAGGGTG GGAATCCAGGTCTTCAGAAGCCAAACCCTAGGAACCCAGTAAATGGTCAGACAGGCAGTAGC CATGAGGAAGGGAGACTTGAGGGTTCCACTGGTTCCCAGCTTGGTCCCCTAGAAACAATGGGT GCCATTAACCAAGAGAAGGGTATAGGAAAGACAGTCGATGCCCGGGGTGGGGGAAGGGGT GGGCAATCCCACTTGCTGGAGAGTGCCGTGGTTACTATTATATTAAAACGAGGATGGATCTGT GCATGCCTGGCCAGTGGAAATCGCACCCCCGCCTCAGTTCTTGGGCTTGCTCTCCATCTTCCTG CTTACCAGAATGATTTTGGTCTCATCTAGTTCGGCCTGCACTTTAGTCATGGGATCAGCTTCTC GTGGGTTCTAGGAAAGAGTGAAAAATAATAAAGTCAGGACTGGAGTGGCTACCTGCAAACAA AACCTAAAACTGAGGAAGCTGGACAAACTTTCACAGGTTAAAAACCACAGCCTGGGCCGGGC ACAGTGGCTCACGCCTGTAATGGGAGCATTTTGGGAGGATGAGGCGGGTGGATCACCAGAGA TCAAGAGTTCGAGACCAGCCTGACCAACATGGTGAAACCGTCTCTACTAAAAATACAAAAAT TAGCCAGGCGTGGTGGCACATGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAAT CGCTTGAACCCAGGAGGTGCAGGTTGAGTGAGCCGAGATTGCGCCACTGCACTCCAGCCTGG GAAACAGAGTGAGACTCCAACTCAAAAAACAAAAAACAAAAAAAAAAACCCACAGCCTGTT TAACATGTAACAGAAACCCAAAGCCTGCCTAGAGCTTGGGTTCCCCGGTCTGAACGTAGATTC TCTGTTTTCCAAACAGTAAGGCTTGAGAGAGGACACCAGCATCAGAAGCTGTCAGAAGTAATT AGACCAGAACTATCAGGGCAGTTGGCTTTTTCAGTTTCACATGGATTCTGGGCCACATGGTGT CTGCTGAAGCTTCCTTTAACCCTACCTGGTATCTACTGAGGTGACCATCCAGGGCTGGGTAAT GGATTGTAGCAGGGGATCCTACTGGCCAGTCTATCCTGTCGACTTGCTTGGAGAATTCATCTA GTACCTGCAAGACAAAGGAGACTCAACAAGCCTCCCACTGTGCACTCACCAGTGGTCTCAATG ACAGGGCTTCACCCCTGAGCACCTCACCCTGAATGAGGCTCCTTGGCCTTCACAGCCCAGGAA GGAGGAATGAGGGGGACATATAATGGCAACAGAGAAAATCTAGGCTAAAGTTCTTTCCAAAT TTTTATCATTAAAACATATCCTAAATATTCTGAGAATCAAAAGTATGCCCAGCCCGAGATGAA CCTCACTTGGGGAGTAATAAAGGTATTTGAATTTTAAACTACAGATTTCCAGAAAAAAGGGGC ACTGGTCCTCTAATTTTCCAAAGCAATTTTTTAAAAAAGAGAATTAGGTCCCCTAGATTTAAG AAACCACCAGATTCCATGTGTTTGGAGGTATTTTGGTGCTCTGGGGTATAGGATGAAGCCTCT GACTTCAAAGAGTTAATATTAGTAATTAGCACCGTACGCAAAAAAATTTAAAGAATGCTTAGG TGCTAAGCTCTGTGGTGCAACTGACTGACATCAAGGTAGAGGGATGCAGCAACTGCAGGAGG CAATGGGGAGAGTGAAGGCATTCAAGAGGGAGACTCCTTGAGCAGAAGCACAGGGGGCGAG AACACAAGGCACAGCTGTCTCCGAGGGTCCCATCCCAGAGAATAGATGCTATGACTCAGTGG CCTAGACCCAGCTCACATGAGGGACAGCACCGGGGAGGAAACCCATACAGGGATGCCAAATT GTCTCTTGGGTTGCAGGGAAGGGGGCTGAAAAATGTGTTGACTTTGGACACATCATTTCATCC CTTATGTCTCAGGGACTGCCATCAACCCCTGTCCCAGTCCATAAATGTGCCCATTCATCATCCA AGTCCAGGAGAGGCAAATAAAAAACTCACCTTCTCCAGCAAGGTAAAGGCCACCCGGGATGG GTATTCATTGTCAGCAATGACCACACCTGCAAGACTATCATTCCGGACGTAGACGTGGCACAG ATAGTCTAAGGAGACAAGAGATCAGACACATGGATGCTGACATGAGGGCTTCAGACTTCTTTT AATCCCCCCAAATCAAAGCATCCAATGTTAGGCCAAATGAAGCCACTCGGAAGCTCAATAGC TCTGGGCAAGTCTTGTGGAGAGGCTTAGCAGCACAGCCCAATGGGCCACACACAGGAGCTTG GCCCAACGCCTGCTTTAGGACCAGTAAATACCCAGAGGCCCAGTATGCAAAGCCAGGGCTTA AAGAAACAGCCAGTGGTGCAGAAAACACACCCTTGACAACATGGCCCCAGGAGCATTTCCAA GTGTATTCCTTAAGCTCGGGTCAGGCCAAGCTATATCTTAGGGATCTGGAGCCCTTGGGGCTC TGTGCTGCTCCCAAACTTAGGGAACCCTGGACAAGCCAAGAGGCCTCTGCTTTTCTTAAAAAAT CTTTTCAGAGCAGCCAAAAGACAGGAAATTACCCCCCAGGGCCTCAGTCTTCCATATATAGC AACCTGCTGGGTTTGCTCCACTCTGGTGGGTGACTGGGAGTAGGGGGGTAAAGTCTAGAAAAAG ATTAGCTACTGCCAGCTAAGGCCTCCAGAGCACTGTGCTAAAATCCTCATATGATTGAAAGGT ACAGTTGTACAGGTCTTCCGCAAAATATTCACAATCCACAGGATTGTTCATTCCATCACTTTG AAAGGATTCAGAGTTGATACAGCTAACCATATCCCCAAGGAAAGAGAAATGTAAGGATTACA GCTTACAAATAAGAACCTTCTTGTCCTAAAAGGATCTGACCCAGAAGATTCCAATGCTAAACAA CAGAAAAACAAATAAAAGAGGAGGGAATGATGGTGAGCCCCTGAAATCAGAAAAGAGCAGA GATAAATGAGAACAAGAATGAGGAGGAGGAAGAGGACAGGGGGTTGTCACCAATGCTCTCC AGATTTTGTATACCATCCCCAATTAAGATTCAAACATGGGGTCAAAGTGCATACCCTCCAAAG AAACTGAGAACCTGGTCAGTGGAGGAATTGTCTTAAGTAATAAACGTGGGAAGGGCAGGCA CAGTTTGAAGAACAGAGCAAGAACACTGAAATATTTGTGATGCGATTTCACTTCTATGATGTT AATAGCACAGAGATCCCACATAAAGTGTATATAGTCAATCCTGCCTGTATCATAACTGACATT TATATCATCAATTCAGTAACTCTATGTCACGTGACTTGAGGTTAGCATAAGTGTGAGATGATC TTTGTCCCTACCTGATGAAACTCATGTAACTCTTTCCTGATCTGTCTGTATAACATACACATCT AAATAAATGCCTAAACCTGAATTATCAGAAAGAAAAAATAGTTTTTTCAGATTCCTGATCAAA AAATCTACGATGCACAGAATACATATAGTACCTCAACAGTGCTAGCTGGAAATCCTTTTTGA GGGGTCTGCAACTCTGAAGAGGATAGGGAAGAATACGATATGAAGGCTGCTTACTGCTCCAA AAGAGTCAGACCCTAATCTTAAATGAGTCTAAGTTTGAGGGCAATTTTATCTGGGAAGCTCAG ACTTCAACAGTGGGCACAGAATTCTGCATAAATAGGAAAAGGAAGAGGTGGGAAAGAGAGA ACAAGCTAGAGGAGGAGTAGGGTCCCAGTAGAAAGGAGAAAGCTGGGTGCTATGTGAGGTG AGGCATGGCAGCCAGGCCAGCACACGCACAGAAGTTGGAGGGTCTTCTTACCTTGTTCTTTGA CAGAAGCTCTAGTGCCTTTCGATGAGCGCTCCACAATCAGTGACTCGTGAAGGTCATGAATT CCTGAACGCTAAGAAACACAAAATGTATTTATTGCCTACTTCTTATCACCTTGTCCCCAACACA GTGGAAAGTGACCTCTGGGCTTATACATTAAGTAGACATTGCTTCTTGGTTTCATTCCTTTCCC TCCCATCCCTAGTAACAAACACTCTATAAATGAGCACAAATACTGATAATTATGAATTATCAT CACCATGAAAGCTCCATCTGTTTGCTACCTGGCTCACCAAAACAGGTGAATTTTCTGGGGGGT TTTTCCACAGGATACAGTCAATTTTACATTTTGGTGAATGCATAATTTGGAATGCAATGGAAA AACAAGAGGCAGGTCCTGCTCTCAAGGTCCCAATAACTTCCAAGAAGCAGGACATTTATAAG AACTGCACTAGAAGAATAGTGTGCAAAAACTGTCAGGCAGAAATGCACAACCATTTATGGCT GTGTCCACATGACAGACCCTCGCAATGCCACATACACCCATAGTGAGTGCTGGCTCAGGTCTG CTGGGGCTCGTCCACAGAACGAGCGCAAGACACTCTGGATGGAACAAAAGGAAAACTGCTCA TCCAAGACAAAGAAGTGGGAAATGGCTCATACAAAGGGTGAAAGGGAGAAGGTCCATCATG GGCTCAACAGAGAGATCTATCCAGAACAGAACAGTCACAGGAGATGGTACAGCCAGAGGAA GAGGTGCTGACAAGGAGCCTCCAACTGAGGATGTGATATAAAGGGCAACCAGGGCCATCAAA GCAGGGTGCTCAAATGGGAGTCTGCAGCAGGCTCCAGCAGAGCCATATAGGTAACTGAAGGC CTGACTCTGGGCCTGTGTGCTGTGCCTCCACATTAAAAAAATCAAGATTTGTGCAACAGTTAA ACGAGGTAATACGTGTAAAGCACTTGGAACAATGCCTGCACACACAGTATTACTTGTTAATAT CTTGAGGGACTGAAGTGATCAAAATAACCCCTCAGAAAAGAAGACCTCAAACAAGGAAGGCT TTGCAGTAAACCTAGAGACAGCATTTGAGACACGGCTATAAAGAGACAAAGGAAGAACTGCA TTGTGACAGCATGTATACAAAGACCAAAAAAGCTGGGAAACTACTTTTTCAACTTTGGAATCG GGTAATATAGGGCACAAAGGACGTAAGTAAAGCGGTCTTATAAGAAAACAAGCTCAGGCCG GACGTGGTGGCTCAAGCCTGTAATCCTAGCACTTTGGGAGGCCAAGGCAGGCGGATCACTTG AGCTCAGGAGPTCGAGACCAGCCTGGCTAACATGGTAAAACCCCATCTCTACTAAAAATACA AAAATTAGCCGGGTGTGGTGGTGCGCGCCTGTAATCCCAGCTACTGGGAGGCTGAGGCAGG AGAATCACTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCTGACACTGTGCCACTGCACTCCA GCCTGGGTGACAGAGCAAGACTCCATCTAAAATAAAATAAATAAATAAATAAATCAGCTGGG ACATGTGTTGTTTTAAGACATATTAGTAGAGATGTCCCTTTAGTGTTGCAGCTGTTAGTCATTG GAAACTAGTGTGGGCATCCCAAGCAGGTGAGGTATAAGTCCTACAAGTGAAATCTCTGAGAA TCTTAAGTACTAATGGGAAGGAAAAAGGAAAAAGAATCAGAGCCAAGTAAGGCACCAAAAGTT CCATCTGAGAAAAGCAACAACACAGAGCAGTGAATGTAGGCCATGGTAAAGACTGCAAAGAC CAAGAACCCCAAGAAGGAGCTAAAAGATAATGCAGCAATTCCGCTTCTGGGTAAATACCAAA AAAATGCGAGCAGGGTCTTGAAGAGATATTTGTACATCCATGTTCATAGCAGTATCATTCACA ATGGCTGAAATGTGGAAGCAACCCAGGTGTCCACTGACAGATGAACAGATAAGCAAAATGTG GTGAATAATACAATGGATTATTCAGCCTTAAAAAGGAAAGAAATTCTGATATATGCAACAAG ATGCATGAGCCTTGAGGACATTATGCTACATGAAATAAGCCAGACACACAAAAACTATATGA TTCCATTTATCTAAGGTCGCCAGAAAAGTCAAAATCACAGAGACAAATTAGAATGGCAGTTGC CATGGGCTGGGGGAGAAGGGAATGTGTTTAATAGACACGAATTTGATAAAAAGGAGTTCTGG AGACGATTGACAGTGATGGCTGCACAACACTATCAATCTATTTCATATCAATGCACTCACTAC ACGCTTAAAGATAGTGAAGATAAATTTTGTGTACCATTTTACCACAATTAAAAATATTTTTTTA AAAGAACTCAAAGAAGCAGAAAGTTTCAACAAAATAACATTTTAATTTTAATTTACATCCAGCAA GTCCTTGGCAAAGAACTCTCATCAAGAACCAGCTGCACTGAAGCAGGGAAAACAGAATCCAA ACGGCAGATTCCATCAGATTTTGAGACAAGATGACCATAGATACCGACCATGTAGGGTCCTCC TTCTTTCGTGCCTGAGTCACCCCAATCCCTCCCACGAATGGTCTGGAAGTGTCTGTGTTACTTC TAACACGTTCCAGCAATTAAAGCGCCCCAGAAACAAGTAAAAGCCTGTAAGCCCTACAGATC CCATGCTTCATTTGCATCTTCCGTGTGGAATCCTTTTGTACCACTAGTGTCCAACTAAAAAGCG TTAAACCTGGCTTTTCAGTTCTAGCTGGTTGTGATATAACCTCTTGGTACCTCAGTGACTTCACC CATTAAAAACAAACAAAAAAAAGTATATCACTATCTCTCATACAGAATTGTTGGGAAGCCCC GCAAGAAAATCAAAATATGGCTCTCAAGATGCGGCACCCAAGCTCCCAGAGTCAGAATCACT GGGTGGGAAGTGTTGGTCTAAAATATAAATACCGAGGCCTCAATCTACTAATTCAGAACATCT TGGCATGAAGCTTGGAAATCTGCACTACTTCACAGTCTCCTTAAAATTTTTACACGACAGAAA TTTGAAAAACACTGAGTAGAGAACTATATTCTAGAATGGTATAAGCTCTTAAAGAGCTAATGT TGGTTCCTCAAAGGTAGAGTCCACGGCCAGATTCCATTATAGGAGACCAAGCCCGGACAGCA GACCCCGGGCCCTCCCCACCCCGCCCCGCCTCTGACTCGGACACCAGCCTTTCTCAGACCCCGG GCACTCGGCCACCCCGCCCTGCCCCTACCCTTGGCCTCCTCCACCCTCCCCTCATCCCTCCGCC GACCCCAGGCCCACTCCGACTCGGACCCCCACCCCAGTCCTCTCCGCCCGACCGCCACGGCCC ACCAGCCTGTGCCGCTCACCTGGATCTCTGGAAAAAGCTGAAGGAAGACACATCGTATGCGG CTTTGAGCAGCACCACCTTGGCCTCGCCTTTGTAGAGGACGCTGAGGCTGTACAGCTTCATGG TCCGGCCCTCAGGCCGCCCGCCTGCCCAGCTGCGGGACCCGTTCTCAGGGAGCAGCGCGGCCG CCGCCCCTCGGGACCGCCGCCGCCTACCGGCCTCTCAGCAGCCGGCTGCTGACGGGGCCACCG CCGGCTTCCTCCTCCTGGCTCGCAATCCACTTCCGGATCCGGTCAGCCTGGTTGAGGGTTCTCA TACTCCGGATGCAGAAATGTGAGCCCGGAAGTACAATGCAGCGAGGGGCGGGATGCCACGCC TCGCGTAAGCTTGGCCCCTCCCTGCTCGCCAGGTGGAGTCGGGCGCGCGGCGGGATACCGTAC TGTCTTGTGCTGGGTGGTGCTGGGCCTCCCACAGCGGCCTGAACCCTTCTTTTTTTTTTTTCT TTTCTTTCTTTTTTAAAGTAAGCATTTTTTTTATTATTATACTTAAGTTAGGGTACATGTG CACAACGTGCAGGTTTGTTACATATGTATACATGTGCCATGTTGGTGTGCTGCACCCATTAACT CGTCATTTAGCATTAAGTATATCTCCTAATGCTATCCCTCCCCCCTCCCCCCACCCCACAACAG TCCCCGGTGTGTGATGTTCGCCTTCCTGTGTCCATGTGTTCTTATTGTTCAATTCCCACCTATGA GTGAGAACATGCGGTGTTTGGTTTTTTGTCCTTGCAATAGTAATGCTGAGAATGATGGTTTTCCAG CTTCATCCATGTCCCTACAAAGGACATGAACTCATCATTTTTTATGGCTGCATAGTATTCCATG GTGTATATGTGCCACATTTTAGGAGGAGCTTGTACCATTCCTTCTGAAACTATTCCAATCAAAA GAAAAAGAGAGAATCCTCCCTAACTCATTTTTATGAGGCCAGCATCATCCTGATACCAAAGGGT GGCAGAGAGAGACACAACAAAAAAAGAATTTTAGACCAATATCCTTGATGAACATTGAAGCA AAAATCCTCAGTAAAATACTGGCAAACCGAATCCAGCAACACATCAAAAAGCTTATCCACCA TGATCAAGTGGGCTTCATCCCTGGGATGCAAGGCTGGTTCAACATACGAAAATCAGTAAACGT AATCCAGCATATAAACAGAACCAAAGACAAAAACCACATGATTATCTCAATAGATGCAGAAA AGGCCTTTGACAAAATTCAACAACCCTCATGCTAAAAACTCTCAATAAATTAGGTATTGATGG GACGTATCTCAAAATAATAAGAGCTATCTATGACAAACCCACAGCCAATATCATACTGAATGG ACAAAAACTGGAAGCATTCCCTTTGAAAACTGGCACAAGACTGGGATGCCCTCTCTCACCACT CCTAATTCAACATAGTGTTGGAAGTTCTGGCCAGGGCAATCAGGTAGGAGAAGGAAATAAAGG GTATTCAATTAAGAAAAGAGGAAGTCAAATTGTCCCTGTTGCAGATGACATGATTGTATATC TAGAAAACCCCATCGTCTCAGCCCAAAATCTCCTTAAGCTGATAAGCAACTTCAGCAAAGTCT CAGGATACAAAATCAATGTGCAAAAATCACAAGCAGTCTTATACACCAATAACAGACAGAGA GCCAAATCATGAGTGAACTCCCATTCACAATTGCTTCAAAGAGAATAAAATACCTAGGAATCC AACTTACAAGGGATGTGAAGGACCTCTTCAAGGAGAACTACAAACGACTGCTCAATGAAATA AAAGAGGATACAAACAAATGGAAGAACATTCCATGCTCATGGGTAGGAAGAATCAGTATCGT GAAAATGGCCATACTGCCCAAGGTAATTTATAGATCAATGCCATCCCTATCAAGCTACCAAT GACTTCTTCACAGAATTGGAAAAAACTAAAGTTCATATGGAACCAAAAAAGAGCCCGCATT GCCAAGTCAATCCTAAGCCAAAAGAACAAAGCTGGAGGCATCACACTACCTGACTTCTAACT ATACTACAAGGCTACAGTAACCAAAACAGCATGCTACTGGTACCAAAACAGAGATATAGAGC AATGGAACAGAACAGAGCCCTCAGAAATAATGCCGCATATCTACAAGCATCTGATCTTTGAC AAACCTGACAAAAACAAGCAATGGGGAAAGGATTCCCTATTTAATAAATGGTGCTGGGAAAA CTGGCTAGCCATATGTAGAAAGCTGAAACTGGATCCCTTCCTTACACCTTTATACAAAAATTAA TTCAAGATGGATTAAAGACTTACATGTTAGACCTAAAACCATAAAAACCCTAGAAGAAAACC TAGGCAATACCATTCAGGACATAGGCATGGGCAAGGACTTCATGTCTAAAACACCAAAAGCA ATGGCAACAAAAGCCAAAATTGACAAATGGGATCTAATTTAAACTAAAGAGCTTCTGCACAGC AAAAGAAACTACCATCAGAGTGAACAGGCAACCTACAGAATGGGAGAAAATTTTTGCAACCT ACTCATCTGACAAAGGGCTAATATCCAGAATCTACAATGAACTCAAACAAATTTACAAGAAA AAAACAAACAACCCCATCAACAAATGGGCGAAGGATATGAACAGACACTTCTCAAAAGAAG ACATTTATGTAGCCAAAAAACACATGAAAAAATGCTCATCATCACTGGCCATCAGAGAAATG CAAATCAAAACCACAATGAGATACCATCTCACACCAGTTAGAATGGTGATCATTAAAAAGTC AGGAAACAACAGGTGCTGGAGAGGATGTGGAGAAATAGGAACACTAATTACACTGTTCGTGGG ACTGTAAACTAGTTCAACCATTGTGGAAGTCAGTGTGGCGATCCTCAGGGATCTAGAACTGG AAATACCATTTGACCCAGCCATCCCATTACTAGGTATATACCCAAAGGATTATAAATCATGCT GCTATAAGGACACATGCACACGTATGTTTATTGTGGCACTGTTCAGAATAGCAAAGACTTGGA ACCAACCCAAATGAACCCTTCTTTTTGCTTGCGTTGTTGAAAGAAGGCAAGTCTATGGATAGG AATGAGTGAGGCACAGCTCCCTGAGGATGCCATATCTTGCCCGTTTCTTGTGTATTAAGTGAC ATCACGTGTTACCAAACTAAACCGGCTGCATTTGCCTGCGCACAACATAAAACCAAACACCCT AGCATTGGATTTTTGTAGCAAGAAAGATGTATTGCCAAGCAGCCTTGCAAGGGGACAGAAGA CGGGCTCAAATCTGTCTCCCAATACTTGCTTCGCAGCAGTAGATTTAAGGGAGAGATTTTGGA AGTGGAGTTTCGGGCTGGACGGTGATTGGCTGAAACGAAGAAGTGTTTAGAAAATCTCTTGGAA CATGAGCTGTTGCTTCTTCATGCTGCTTCAAGGGTCACATGCAGATTCAGGAGGTGGTATAAA ACAAGCTGTGGGAATLTGGGCTGTGACATCAAAGGGCCGCTCCTCGGGCTAGTAAGTCTATTT TGCACAGGCTCCAGTCAGCCATATTGGTTCCAACCTGTTCCAGCAAGTTGTATAAGCAGAGGC GATTATAGCAAACTGTTCCTTATCGGCTGCCCTGCAAGACAAGCTCAAGATTTCTGTTAGTTA CCAGTTTCTTTAACCCTGTCGGGCACAGTTTCACATGTAATCAGAAAGGAACTTGCAAGACAC ATACAACTGAAAGAAACTTGGTCTTTGGAAGTTGTCAGTAAGGTCACAAAGTTGTGATGCTAG AAGCAGCCGTATCTGAGATTATGGGAAAGAGATGATATATTGGAAAAACAACAGCATCACTT TAAACATTACTCTAAATCAAGGTTTCTCAACCTTGGCACTATTGACATTTTGGGTTAGATAGTT CTTTCTTGTTGGGAGACTGCCCTGTACATTGTGTAGGCAGCATCTCAGGCCTTTGTAGAAATGT CAGTACCAACCCACCCCCTCCCCACTGCACAATCAAAAACGTCAAAATGTCCTTTGGGAGCAG TAGTTTTGAGAAACATTGCUTGCAGATATATATGTTTGTTTGTTTGTTTTGCTTTGTGACAGG GTCTTACTCTGTTGCCCAGGCAGAAGTGCAATGGTGTGATCCCACTCACTGCAACCTCTGCCTC CCAGGTTCAAGCGATTCTCATGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGAATGCATCCA TACACGCGGCTAATTTTTGTATTTTTAATAGAGATGGGATTTCACCATGTTGGCCAGGCTGGTC TGAAACTCCTGGCCTCATGTGATCCACCCACCTCGACCTCCCAAATTGCTGGGATTTACAAGCT TAAGCCACTGCGCCCAGCTGAGAAACATTGCTTTAAATAATCTGTGGTGAAAGGAAGTTCCCA CCACCTGCCCACTCACTCAGTACCTCTGTCACCAACCCTCTTCCCTGGGTGTTTCCAAGTACAG AGGGTGGAAAGGGCTTTCCACATTTCCCCTGTTTTGGTAGTAAACATTAGGAACAGCCAG GCCGTGGCTAGGCTCAGCCACCCACAGATATGGACACAGTAGTCTGACAAGCTGGGTTGCTG GGTGCTATCAGTCCAGGCTCAACTGCTTGCACTGACACCATTTCCCTATAGGAGGCAGGTGAG AGCCATTTCTGAGGAAAGTCTCTGGAGCCCCTCTTCCTTCCACTGAAAGTTGTGCAAAAAGAT CAGGAAGACAGCGCTTGGATGGAATAAATTTCAGTGTATCCACTTGACACATTATAGTGGCTG TCCCAAAGTTTTTACCTTATGCCAAGTACThCCATGTGCCACATCATTTAATCCTCACAAAAACA GGGGAAAATATTAGCCACCCTACAGACATAGAGACTGAGATTCAATTTAAGGAGATGGTT GGTAAGGGACAGAGTTGGGGTTCAGATGTCAACAGTGAAATGCTTAACAAACTGTCATGCAG CCCACTCCTGGCAACTCTTCCTGCTCCTCTCTGGCCTCACTCAGCCTCTACTGTTCCAGGAAGG CTCATTCATAGTCATGTGGTTGCAGACTTCCCAAGCTCACTGTGTTACCAAAAAGCAAGACCT GCCTTCTGCTGCATCGCCCCAGCTGTCACCCAACTTGGATTCAGTCCCAGCACTGACACATCA CAAAATCACAAAAGTGAGCAAACCATTACCTCCCTGAGTCTCCTTTTGTTTTTATCTATAAAAC TAGAAAAATATTCTTTCCATAGGAATGTTGTTGGAAATAATAAAACATTATATAAACAAGCTCT AGTCATTGTTGATGTTTAACAGGTAACAGTGATAATTATTTGTCTTCTCATTAATGAAGAAAA GGATTATTAATCATAGAGGGTGGAAGGCATCTATGGGAAGTAGAGATTTGAAGATAGGCTAA AACCCAAGTAAGGCCTCTAGATTAGATAATAGTATTGTATCTATTTTAATTTCCTGCTTTCCAT CACTGTGCCATGGTTATATAAGAGAAGTCTTGTAATATAGGAAATATACACAAGAATTAGAA GTAAAGGGACATTGTGTCTGCAACAAACTCTTACAGGGTGTGTGTGTGTGTGTGTGTGTGTGTG TGTGAGAGAGAGAGAGAGACAGAGAGAGAGAGAGACAGAGAGAAAGAGAATGATAAAGCA AATACAGGAATCAGGATGAAGCGTATCTGTTTTGTTTGTTTTGCTTTGTGATAGGGTCTTGCTCT GTTGCCCAGGCAGGAGTGCAATGGTGTGATCCCGCTCACTGCAACCTCTGCCTCCCAGGTTCA AGCGATTCTCATGCTTGTATTGTTCTGCACCTGTTCTGCAAGTACAACATTGTGGGAATGGAA AATGCAGGAAATGGGCAGTAAGGCTATGAACGAAGCCCGCACAGGAGTGTGGGTAGCAGAG TTCTCTAGTCCAGGCTCCCACCTGAGGTGCTGGGACCTAGAAGAAAAGCCTCTCTGCAGACAG AACTGGAGTTAACGCTGTCCACGATAAATGGCCCAGGCCCTGTTAAGTTTGCCCCATTGAGCA AAACAAGTACCCACCCGCCTTTGCAGCCTTGCCTAGCTCACATAAGGTGCCAGCCCTTGCTGT ACAGCAGAACCTTTGGGGAGCTGGACAAAAGCCTATCAAGGAGCATACCCCCAGGAAGCCCA GTCCAGGTGGGGAGCCCAGCCACACAATGGCCCTTGCCCCCACACCTCCTCATTCAGTCAGCT AAGGCCATGGCAGCTGAGCTGCCTCCACAGCTCATATAGGAAAAGGGTGTGGAAAGGGGCCA CCAATGTGGTCAGGCCTCCATGGCCTGAGTAGGTCACCAAGCCTCAGGTGCACAGACTTGATG TCATCAATCAGGGTCTGTCAGCACACCTAGCCCTCAGGAACACTGCTCCCCACTGCAACCCCA CACCAAGGCATCCTGGGCTCCCTCTGGGTTCTCCAGGCCCCAGGGAAGACAGACAGAGTCTGC CACCAAAGGTTTGAGCTCTGCCACTGGCTACGAAGCAATAGGGGATGTCAGAGCAAGGGAGG AACAGGACAGGAGTATACGTGGGCAGGAAGGGATTACAGCCAAGGAAGACAGGAGGCAGGT GCCCTGATTTTGAGGCTGTGCCCCAGCAGGGGCTTCCCAGAAGCTGTATTTGTCCTAAGACAC CCCTCTGCAGCTGAGGGGCTAGAGATGGATATGTAGCTGTGTTAGGCCATTCTTGCATTTGCTA TAAAGAAATACCTGAGACCAGGTAATTTATAAAGAAAAGAGGTTTCATTTGGTTCACAGTTCTG CTGGCTTTGCAAGAGGCATGGTGCTGGCATCTGCTCAGCCTTTGAGGAGGCCTCAGGAAACTT ACAGTCATGGCGGAAGGCAAAGGGGAAGCAGGCACATCACACAGTGGAAGCAGGAGTGAGA GAGAGAGAGGCACTGGGAGGTGCCACACTTTTAAACAACCAGATCTCGTGTGAACTCAGAGC AAGAGCTGACTCATCACCAAGGGGATGGCCCAAGCCATTCATGAGGGATCCACCCCCATGAC TCAGACACCTCCCACCAGGCCCCACCTCCAATATTGGGGATTACAATTCAGATGAGATTTGGT GGGGACACATATCCAAACCATATCAGTTATCAGTAGCCATACTGGATGAATGCCAGGAACTTA GAATTAGGACACATGGTCATTTAGGCAAGTGGCTTGTCCTGTCAATGGTACCCTGATAGTCGT GGGGTTGCCCCGTACAAAAAGCGAGAGGAAGTCTACAGAGCTGTCAAAGAGGGGCAGGTGG AAAGGCCTGCAGAGGAGTCCCCTGCTCCACAACCAGGCGTGCACCTCCCACATCCTCGGGGCT GTAGGCCCCACATGAGAGCAGAAAGAAGGATGCAGAGGAAGGCC AAGAACACAAGGTGTGCCCTTGGAAAGGCTGGGCACACCAAACACAACCTAATAAACAACAG CAATGAGCACACAGGGAAAGTACTCACAGGGAAACCATCATGAACTAGAGGCTGATCCCACA CCCTGCCACATGGGGCCCCAGGCCCCAGCCTATCAACCAGTGGTCCTTTATTGCCACAGCGATT GGTCTTGGATAGGCACCTGATGCAAGCTTCAGCCAATCAACAGGCCAGTCAGCTGGCCATCA GTAGGCCATCCAATCAGAGCAAAGCCCAGGACTTTCTTCGACTCTTAAGAAAAGAGAAGCAA AGTAACTGGCACAGATTGGAGAGGATCAAGGAACCCCGAGCTGGATACATACAAACTTTGGG TTAACATGGATGATTAAATACATATGTTTATGTGAACCACCTCCCAAATATGCTCCACTATAAT GACACAAGACAAAGGGCAGGGGGAGACCAATTGCAAGGTGGCGCAAATGAGAGATGCTACC AAGGGTGGCGGGGGAGAGAGGGGAGCAGTGTCAAGTTAGGAGGCAACAGGCTGAGGGACA GGGACCAGCAGACGGGGAGGGAGGGGCTGAAGCAGAAGTGTCCAGTGTCTGGAGGGATGGG GCCAGAAAGGCAAGGGGCATCCTGAAGAAGCTATACCTGGGGAGGGCAGCTCTCTCCCCACC TGCTCCCCAATTCATCAGCCAGGAATGCCCCATCCACCCCACCCCAGGGAGGAGGACAGAGG ACTTTCGTTTGGGAGCATTGAATGGTTCAGAGATTCTGCAACTCTGCGGTCCCCAACTAAACT GCTCATTGTTTCAAGCAGTCCCTGTTGGGTAAATGTCCCCCATTGTAACCGGACTCGGATTTCCA CCGCTTGAAAGCCAAATACAAGAGGAGAGGTTTGGTGGGAGGAAAAGTGGTTTTAACTAGAG CCAGCAAACCAAGAAGATGGTGAATTGTTGTTTAAAGCATTCAATTATCTCAAATTTTAAAA TTTATCATAGGATTCTGAAAGGAAAACTTGGTATGGGACATACGTGGGAGCAGTGCAGGGTA CAGGGTCTATGTGTCTTGATCCAATGGCTGTCTTGAGTATCACCTATCGTGAGGTCTGGTTGGT GTTATCTTTCCTTCGGCCAGATGGTGGTGGGTGAATTGTTTTCGACTCCCCCTAAGTTGGAGGAT TCCGCAGGGGTTCCGTGTCTGGTTETTGTTTCAAGATTAGCCCCTGGAATTCCCAAATAAGCAT AGAGTTAGATAAGCGGGCATGGTGCAAAGGAGTGTCTAGTGGGAAAGGGAGAGAAGCAGAG TTTCAAAGTACATTTCAAGGTTACATTTTAAGACTAAAGAAAAAGCCTTAAAATGCATTTTTA AAGCTGATTTAATGCTTGGCTACACTAGGCTGTGGCCAGTGTGCAGTGTGGCTGCTCTTGGAT CAGGTGATGTTTCATCAGCTGTGTCCAGGGAGGGCAGGGCCATGTGGCAGAACCTGGGACCT CTGTGTGAGGGACTACCTTGGCCCCTGTCCTTAGCAGGAAGCTATGGTAAGGAACCCTTAGGG AGACATTAAATTGGGGAGACCGTCCCTGCCAATCCTTTAACCTCCCCAGCCTCAGCGACCTCA GTTGGAAAGTGGTGGTAATAATACTACCACTGACCAGGTGTGGTGGCCAGACATTCCACACTT TGGCTTCAGCCGCTCCCTCCCCACTCTACTGTAATCCCAGCACTTTGGGAGGAAGAGGTAGGC GGAACCTGAGGTCTGGAGTTGAGACCAGCCTGGTCAACATGGTGAAACCCCATATCTACTAA AAAGAAAGTACAAAAAATTAGCCAGGTGCAGTGGCACACGTGTGTGGTCCCAGCTACTCGTG GGTCTGAGGCATGAAAATTGTTGAGCCTGGGAGGCAGAGGTTCCATTGAGTGGAGATCGAG CCACTGCACTCCAGCCTGGGTGATAGAACGAGATTCTGTCTCAAAAAAATAAAAATAAAATA ATAATAATAATACCACTGCCTGCCACACTAAGAUGTCTGATTAGATGACAGAATGAATGCAA AAGTACTTTGTGAATCATAAAT&TTTTCATCAATATTAGTTATAATGACAATTGCTCCTTCTCC TAATAAATGTATTGCCTTTCTTTAGGAATAAATATAACAAGAAATGTGTAAGATATATATGAG AAAAATAATAAAATTCACCTGAAGGACATAAAAGAAGACCAAAATAAATGAAACAACACAT ACTTCTAGATGAGAAAACTCAATATTATAAAGAGGTTAGTTCTCTAAAATGAATCCCTAAACC CACAAAGTCAATGTATTTCCAATGAAATTGTCAACAGCATTATTTTCCGAAGTGGGATGAGTA GTGCTAAGATTTATAAGAAAGCCAACATTCCAGAGCAGTGGGGAAGGGATGCTTCACCACC AAATAGCCATATTAGAGATTCCCTTGCACCATACCCAAACCACCATCTCCCAGGACCCGGGAG AGCAGAAAAGAGGAATGAGAAGAAAGGCGAGGATGTGAGGTGTGCCCTCATAATGGCGGTG CACGCAGCACAAGCAATTGCAGAAAGACTAAAGTACTGAACAAATAGAAAACTAAGGAAAAAT ATTAGAAGGAAATGTGGGAGAACATTTTTGCAATTTGGGGATTTGGAAACGGTTTTCTTAACAA GATATAAAAACCCCAAAACAAGAAAACAAAGGTTGAAATTCATAAAAACTAGATACTTCTGT ATGATGAAAGACACGATTAATCAAGTTTGTTAAGTTAGCAATAGACTAGGGGAGATATCATA GTATATTTAACAGACAAAGGATTAATAGATACTACAGATGAAATATAAAATAGTTTCTCCAAG TCCATAGGCAGAAGATAATCCAATAGCAACATAGTTAAGTAATGTAAACAAATCATCCTTAG AAGAAGAAATGCAATCACCAAGAAACACATGAAAAGGTGTCCAGCATTTTGCAATTCAAGCA ACAATGAGGTGACAGATCGGCAAAAAACTCATAAAGATTTATCATCTGAAGGATTGGCCAAG ATAAAGCCAAACTTCTCGTGTTGGCAGAAGAAACTGGTGAAGCCATGTGAAGAGGCCACGTG GTCCTGCCTACCAAGATGTAAAATGTGTACAGCATTGAACTAGCAATTCAGCCTCCAGGAGC CATCCAGAAGAAACACTGACACACACTTAGACTCCGGTGAAATTCAAGGACTTCTGCCACAG CCTGCTTCGTAATAGTGAAAATCTGAAACTGCCTCAATGACCGTCAATAGGAAGTTGATTTA AAGTGTTACAGCACATCTGTCTGGAGAGATCGCACTGGCCACTCCTCCTCACCCCCTCTGCTG GACCTCTGAGCGTAGGTGGCCTGGAGCTGGGTCCTGAGCCCTCTTTGGTCTATACCGACACTA CCCAATATGGTAGCCACCAGTCACGCTGGACACTTGAAAAGTGGCCGATCCTGACTGAGAAG GGCCACGAGTGGGAAAAACACACCAGACCTCAGTGACTTAGGCAGAAGTATGTTTTGTTCCA GACTATTGACTGAGCCCGCAGCTGAGTTGGCTCCAGCACCCTGGCCCCCTGCTCCATCCACTC ACTGGGACTCCCCACTGCACAGGGCAACCTCTCCAGGGGCACTTGGGCTGCGAAGGGGAGAG TGGGTGGCATCCCAGGCTGAAGCTTCCTGAGCAGGGCCAGAGGAGGAGCCAGTCCCTGTGGG CCTCTGTTCTGACAGTGTCAACCTCAGCCAGGCTTGTGTGGGCCAGGTGTACTGTTCTGGTTCA GATTTCAAGGAGATAGTCAGGGCAGGCCGCGCCAAAGCCCTCCGATGGGCTCCCCTACTGCCT GGCAGACCTGTCCAGCTTTGGACTCTGGCCCTGCGACCTGGAAGTCAGGCTGCCAAGAGGTCC AGGCAGTGGCCTCCACTGTGGAGGGTCTCTGGAGAGTTTACAGCCCTAGATAGGGGGGTTAG GGATGTGAGATGGTCCCAGGGGCCTGCTCCTGAGCCACGCCAAGCTGCCTGCTCCCTTTCCTC TGCTTCCAGACTCACGGGATCCTCTGCTCATCAGAACAGGAGTGTGGGAGACCCTGAGACACT GCCCCAGGATCTGAACAGGTGGCAAAGGCAATTAACAGGCTAGCGGTCACTGTAGTGACAAGGC GATTGAGTGGTCACCATGGTGATGGGGATGGAGGCTCTTTGCCACCAGTCCCAGTTTTATGCA TGGCAGCTCTAATGACAGGATGGTCAGCCCTGCTGAGGCCACTCCTGGTCACCATGACAACCA CAGGCCCTCTCAGGAGCACAGTAAGCCCTGGCAGGAGAATCCCCCACTCCACACCTGGCTGG AGCAGGAAATGCCGAGCGGCGCCTGAGCCCCAGGGAAGCAGGCTAGGATGTGAGAGACACA GTCACCTGGAGCCTAATTACTCAAAAGCTGTCCCCAGGTCACAGAAGGGAGAGGACATTTCCC ACTGAATCTGTCTGAAGGACACTAAGCCCCACAGCTCAACACAACCAGGAGAGAAAGCGCTG AGGACGCCACCCAAGCGCCCAGCAATGGCCCTGCCTGGAGAACATCCAGGCTCAGTGAGGAA GGGTCCAGAAGGGAATGCTGCCGACTCGTTGGAGAACAATGAAAAGGAGGAAACTGTGACT GAACCTCAAACCCCAAACCAGCCCGAGGAGAACCACATTCTCCCAGGGACCCAGGGCGGGCC GTGACCCCTGCGGCGGAGAAGCCTTGGATATTTCCACTTCAGAAGCCTACTGGGGAAGGCTGA GGGGTCCCAGCTCCCCACGCTGGCTGCTGTGCAGATGCTGGACGACAGAGCCAGGATGGAGG CCGCCAAGAAGGAGAAGGTATCTCGCCCTCCATTGGGCATTCTGGGAGTGTTTGCTTGCCTGT CCCCAACATTCCATGGTTTGTTGAGCCTCAGAATCTGATTTTATGCACAGGCTCTTTGAGAAG GGTCTTGCCAGGGGTGCCTTCTGGGGCAGGAAGGCCCCTACTGCCTGGCAGACCCATCCAGCT TTGGACTCTGGTCCTGCGACCCGGAAGTCAGGCTGCCAAGAGGTCCAGGCAGTGGCCTCCACT GGGGAGGGGCTCTGGAGAGTTTAGAGCCCTAGATGTGGGGGTTAGGGACATGAGGTCTTGTG GACAAAGCCCACTACCTGATTTTGAGACAACACTCACTAGACATGGTGACAAGTCAAAGATG CCTTGCCTCCTACCAGGAATCACTTCGCAGGGAGCCCGAGGGCTGCTGTGGCCTGCTGAGGAG TGCAGGGCAGTTACTTTTCCAAAAACAAAGAGAAATCCAGGCATGCTCTGAGCCAGCCCTGA GCCCAGCAGTGAGCAAGGAGAGAGCTGGAGACAGGGGACTTTGCTGTGAAACACTGGGGGG AATGTGCCTGCATCACCCCAGCTGGGGGCCCAGGCAGAGTGGGGGAGAAGGGGTAAGTGGGC AGAGCCAGTCACTTTGGGCATGCAATCCCTCTCGCCTCTGTGTGAAATGACCAGGTCAGCATAA ACCCCGGGCTGGCTGTGCTTCTGGCAGAGCTAATGATGTTAGGAGGAAAACAACCAACCCAA GTGAGAGGGTGCGCAGCCAGACAGCTGGACCGGCCGAGGCCCCAACCAAGTCCCAGATCTGC CTGTCACTGGTGCTATGGCAGCAATTTGGATGAGAAATCCTGCCCAAAGGGCCCCTTCAGGCC ACCCGGGGAGAAGGAAGCGGCTGTCTTTGGCATGACCAGAAAGATGGCTCGGAGCTAGGGAG AGGTGGACATGTGGGCTGTGGAGATCTGGCACT1TCCCCAAACAAGGAGAGAAAGCATAGTG TGCCTATGTGTGAATGTGCTATGTGTGCATGTTTGTGCCTGTGCATACCTGCATGTGTACATGC ATGTGCACATATGTGTGCACAGGGAATCACTTTAATAAAGGCCACAGCAGAGCTGTCCCTGAG CCCCTTGCATTCACAGTGGCATGTGAGTGAACCACCTTCTTAGGCTGGGCATCCAGTCTCAGA CTCTGGGGCTGCCCATGCCCCATCCTTTATCTGCTCCACGTGTGAGGGGTTGCTGGTCCTGACC AGGGCCAGCTGTGAACCCCAGAATCCTGGGAAGTCACTGACATTCTTGTCAGGGCCAAGAGT GGAGCAAGGCAATGCCTCGGGCACAAACTTTAAGGGGTCACCAGAAACATCAATCATCAAGA TATATGCTATTTAAATAATCAAAATGAATGCAAAAAAAAAATATGATGGACAACATACCAAA TCTAAACAAAGGCAGGATGAGTATCACTGGCTTCTGCACTTTTCTCCACCCAGTCTACCCCTC TTCTAGTGCCTGGATCGCAGGGTGCCAAGGCCTGGATGAGGGAAGCGTGGAGCTGCAATGGC CACTCCTGTCTGCCTGTTCTGGCTGCACAGAGGACTCAGTCCTTGTCTTGGGGGAACCTATCTT GGTTTAGGGTCATCCTAAGGATCTGATGT1TAACCAAGTGAGCTGGCTGTCCAGGCCCACCCA GGTTCAGTCCAGTCCTGTGTCTCTGGGAAGTGCTGCCCCTACCCCAAGCCAGTGTTTGACCTTG GAGCAATGAGCAATGCCCTCCTTCCACTTTCAAAGTTGTCCCCAAGACGTCAGCTGTGGTGT CTCTGTGCAGACACCGAGGAGGAACTGTCTTCTTTCTCCTAATTGGTTGCTTTGGAGGAAAGTAA AGTGTTGCTGGTTTCCCTCTTTCTACTTCTTTGATTGAGAGCAGCCGTCTTGCCGGTACCAACC TTCCAGATCTTACCTGTGGTTTGCAGGAGCCTGTGGCCTCAGTCCTGTGCCCAGTGACTTCTCCA TGTGGATGTCAGCTCCTTAGGGGCAAGCCTGATCCACTGACACTACTCCCACCCCTCATAAG CCCCTTCTTACCAGCTGCAGTTGCCTGGTACCCCACCATCGCTGACTCATTCCTTGGCATCAA GGTTCATCCCTTACTGGGCCACCACTTCTGGGTGGCCTGAAATAGGGCCCTGGGCATCCCTCTT GGGGACCTTTTGGTCTATATTTTTCACTCTCACCTCACTAAGGACAGATGAGTAAATCTGGTTAA CTTTGCCTGATAGATTTGGTGACCAATTTTCAGGAAGGAGCCTGGAAAGATGAGATTCAGGTG TATTGGTCAGCTTAGACTGCCATAAGAGAATACCATCCACTGATGGCTTAGAAACAACAGAA ATCTATTTCTCACTATTCTAGAGGCTGGACGTCCAAGATCAGATGCCAGCATGGTCAGGTTGC AGGGAGGGCTCTCTTCCTGACTTGCAGACCGCCACCTTCTTGCTGTGTCCTCACATCGTGGAG AGAGAGTGAAAACAAGCTCTCTGGTGTCTCTTCTATAAGAATGCTAATCCTATGATGGGGGC TCCCCCTCCTTACCTCATCTAAACCTAATTATCTCCCAAAGGTCTCATCTCCAGATACCATCAC ACTGGGGTTAGGGCTTTGACATATGAATCTGGGGGGACACAATCAATCTGTAACACCAGGA GGGCATGCCGGGAGGAACTGACCTTCCTCCCTCCAGCTGCCCTGGACACCTTTGCCCCATTGA AGGAGCAGGCTGAGAAGTGGAATGAGGATGGAATAAGGTGCACTCCATCATGCTTACCCACA TCCCTGGCAGGAATTGTCCTGGGCCCCAGCAGGAGAGATGCCCCCCCATACTGCCATGGCACC TGCTCTGAGACAGGTGTGCAGAGTGCAAAGCTCCAGGTGGCCCCCAAGCAGGTGTGCTGGGA GGAGGGGCCCGTGTGGGAGGAGCAGGCAGCGCCAAGGCCTAGCGGAGCAGTGACAGGTCCC TGACTTCAGGGAATGGGCACGCTGTGGGCAGGCAGCTGGTGTGGGGGTGAGGGCTGGGGCTG CATCTGTGGGACCAGGGCTGGGCCATCCTCATATGCCGTGTCACAACCCCAGTGCCCCTGCTG TAGCCAGGACAGGAGGCTGGGCCAGGCTGGGAGGTGACAAGAGTGGGGGCTGTCCCCAGGA GAAGCACTCTGCTGCCTGTGCCCAGGCCTCTGGGGATGAGGACCCCTCAGAAGGAGTAGCTAT GTCTAGGAAGCCCCAGGGCAGGAGCAAGCCAAAGGGGACATCATTAGTGAGATCCAGGGGAT CAGTGGGCCACAGAAGCCCCAGCGTGAGCCCCTCTGACTGATGCAGCTAGGCCCACACCTGC ACCTGCCCACAGCAAGACCCCCAGGAGGAGAGGGGACAGATGGAGAGAGGCACAAAGTGCC CCTGGCCTCTGCCTTGAAGCCACCCCAAGGCAAGAGAGATGAGCCCCTGTTTAGTGACCTC CAGGGGAACATTCTGGCCCATCTGATGTGGGAAGCCCCTTGTGGAGTCTGTCATTCCTCAGCT GAGCCAGGCCTTTGGAGGCAGCCCAGGCATGTCCCCTGTGTGCTCCTATCCCTGTGTTGGGAC ACCTGGCCCAGCCCCTCCTTCTGCCTTTCTCTTCCCTTCCCTTCTCAGGAGTGGACACTTCCTCC TTTAGCCCCCTCACAGCTGTGTGAACTTCTCTGTATCTCTCTCTTTCTGTCTCTTTCTCCCCCTCT CTCTCTGTCTCATTGTCTCTCTGTGTGTCTGTCTGTAGTATTCTCTCTCTGTCTCTGTCACTCTGT CTCTCTCTCTCTCTGTGTCTACCTTTCTGTATTTCGCTTTGTTTCTTTTCTCTGTGTGTGTGTGT GTGTATCTGTTTTTCTCACTCTCTCTCTGTGTCTATCTTTCTGTATTTCGCTTTGTTTCTTTTTTCT GTGTGTGTGTGTGTGTATATCTGTTTTTCTCACTCTCTCAATCTCTCTCTCTCTTTCTGTCTCTCT TTTGCTGGCCTGAGCAAAGAGGGAGCCCCATCCTGATGCTACATAACCG TGAACCAGCACAGACAGAATTTTGTAGGAAAGTCCTGCAAGTAGAAGGATAGAAGGATGAGGG AAGAAACGCCATGTGAGTCATGACAGATCCCTTTCCAGGAGCCACTGACTCACCCTGCCTCCT GCCCTCCCACTGTGACACTATTACTCACAGACAGGCCCGGATTAAACCTATGTTCCAGGTGGC CTGTGGTTCCCACAGTGTGGCTCCCTGGGTCTGGCCTCAGGCTCCACAGGTGCCCAGCCCTGC CAAAGTCTCCAGAGCAGCTGTCCAGCTGGGGAGCTGCGGGGCCCCTTCACAGAGCGCATGGG AAGAAGTTCCATCCTACACATTACATCGAGAGGGACGTGCCTGAGAAGGGGAGCTGGAGCCC GTGCAGCCCCCTGCTTGCGTGCAGAACATAGTGTACCCTGAGCATGCCATGAAAAACACAAA CGCACAAAGTTGTAAAGAAAAAAGAAATGACAGGTGGCTGTAAAATCAGTTATAGCCCACGA GAGGCCCACTAATGAGTGGTGATTTCAGCTGATTACAAAGAAATGATGGTGTTTCTGTAATGA ACTAAACATGCACTCGTGCGTGCACACACGCGCACGTATAGTCACATAACTGACCAGCCCTAT GCATCACTTGTTAATTTACTTAGTAACTGTAACAATAATAGTTTCCAATAAGTGAGCCTTAGTCT CTGCGCAAGGGTCAGTTTATTGAGCACACGGGGGCCTTGCAGTGGGGGCAGGTGATCTGCTCC TGGGAGCCGCCAGCCTCTCCTCTCCTGCTCTTCATCTTCCTCCGTGGTGGGAAATTGTCTCACT GCTTCTACACCTGAGGCTGAACATCTCCCTTTATTTCAGTCTGAAACACATGTATAAAATATACT GGAATGAATTAAGGTTGCAATTATTGATATCAGGCAGTGAGTACATCAGGGTTTATTATACTA TCTCCTTTACTTACTTCGAAGTTCTCTAUACCAAAAAATTAAAAACTATAAAAGAAAGAAAA AGGAAATGAGGCTAGATTCAACACAGATTACTCTTACCAAACCCTTCGTAGTCCCAGGAGTCC CCTAACACAAGCACTTGTGACCTGGAGTGATATTCACAGCATTCCTTACCTGGCAATACCTGA GTATTAGCCCCCCCAGTGGGATCUTGTTGTAGACAACCAGCAACTATCAGCCCAGCCAATAA ACAAGTAGGAAAGGGGAGTGCTGGAGAGGCCAAGAAGTGGGATTTTCCATGCTCCTGGGCTG TGATCCAGAGGGCACGGCTGTGAGGCTGATCTCAATGAACACTCTGTCTTGGAAGTACAGGG ATCCTCTGCTACCTGAAAACGTTCTGAGTATTCACTTTCATGGATTGCAAAGTCATTTACCCAA AATTCACTCTCCAAATGAAAAGTGAGTATGATGAATCAGTATTCAAGTTCCACCTGGGTCCTG GGAGAGGGCATGGACATCATATCCCAGCTGTTCCGACAGGAGGACCCAATCTGAGTCTCACT GCCTGGCTGCATCGTTTGTCTGCTGCCAGCCTGCACAGTAGGAAGGGAAAACATGATTTGTAT CTGTTTTAGGTCAGGTTCCCAAGAAGTAGAGCCTGAGATTGGAATTCTTGGAAAATGGTGTTT GCGGGAGCGCTGTCAGCAGAAGCTATAAGGAAGTGGGGGGACAGAAAACGAGAGGTAAGA AGCCAGTCAAAAAGGCAGGTCCAGCTTAAGTCCGCCTCAGTCTGGTTCCACAAGGGCTCTGAT GCATGAAGAATATCACAGGGTTGTCCCTCCTGGGAGAGGGGCCAGCCTATTGTACCTGTATCA AAGCCACCAGCTGAGGGCCAGTGGGGAGGGAAGATCTTCCAGGCATTTCCAGGAAACTCTCA GGAGAAGGGTGTAGCTGTGAGCAGTCTGCAGCTGCTGCTCACTGCGGCTAAAGGCTGGGTGT GCAGGCCAGTCAGCCAGTGAGGTGCCAACAGCAGGCACTACAGTCCACCCCTTGACTGCTCA GACCTACTGCTTTCCACTTTAAGCTCTCTCCATCCAGGCACAGCTTCAGGGAAAACTTACAATT GGAGAAACAGAGGGATGAACTACAATGCCCACTTCTGCATGTGATTGTAAGACTGTCACTGAT ACTCACCATCATGCCCCATCCCCACCATCCATTCTAGTGTCCCCTTTCCCCTTGGCTAACACTGC TGGTCTAGGTGACTTCCCTAGAGCAGGAGCCAAACCCTTATCCCTGAGGCATCTGAATCCTGG ATTCCTTATCAGGCTATTGTTTGTTTGTAAGTTGTCCATTCCCAATTACAACTGGACATGAGACT ACCAAGAAACACCCTGGCAAATCATCTGAGTGCAAGCCATATTCTTCCTGCTCCATTATGTAG CGGTAGTCCTACCTCCTAATGACAAGGGTAAATTGCCACATTTTGCTCCTTGTGCCAGGATGG TAATACCTTTCTCTACCTGCTTTTGGCTACTGGCACAAGGAAGCACAGCATGACCAGGAGGCAAT TGTAGCTGTACATTTAGTGAATGTGTTAATGTATCACCTGGTGGAAGGACCCCCTCTGAGAAC CAGGACTTCTAGACCCACAAAACCTAAAGTTGTGAATGGCGGAAGCACAAATTTCCCAAGTG GATCATGGAGAGTGATGAAGAGTTCTTGGTTCCCAAACCCACATATAATACCTTTCAGGAACA TGGCCTCATCCCATAGCCATTAGAGTGCATATTGCATTCTGGAGGAGACTGGGCCCTCCTCAT GGGTGTCATCTTCAAGATGACAGCTCCACTGTGCCTCCAAGAGGATGCTCCACCACCCTATCT GTGATTCCTTGGTTAGCAGGACAGGCTGCTGCACTGAGGGTAGGAAAGGCAAGTCCATTGAT GGCTGGAATACATGTCAATCCAAGTCAAGAGAAAATGCCGCCCTTCCAGGTTGGAAGGGGC CCGATTTAGCCAACTTGTCACCCAGTAGTGGCTGGTTGGTCTCCTCCAGGAGCAGTGTTATAC CAGGAATTCAGCACCAGTCGCTATTGCTGGCAGTTCAATTACATTCAACAGCAGCAAAACTAGGT CAGCCTGATGAGAGGGAATGTATGCTTCTGGGCACAGGCATGGCTCCTTCTCTGACTCCAT GACTATCTATTTCTGAGTGCATGGTGGCCGACATTCAGCTGCCTGCCCATCCTATCCACTTGGT TATTATTGCCTCTTCCACAAGAAGTGGTTTCTGGCTGTCATTAATGTCTCATACTTTGTGCCCA CTCACACAGGTTAGCTCTACAACTTTTCCCCATGCCACCACTTTTCCACAATCTTCTAATGTT GCTCCTTCCAAGCTACTGAAGAACGAGCTAAGCTATTCACCAATGTCCATGAGTCTATATTTA CCTTAGGCCACATCTCTCTCCACACAAAGTGAATAAGCAGGTGCACCCTCCAAAACTCTACTA AGAGGATTTCTTCTCCCCAGTGTCTTCAGGGCCACCTTGAGTGGGGCTGAAGTACAGCAGAA GTCCATTTCCAGCTTGCATCAACATTCCAAACTAACCTATCCATGATCAATGCATAGATGGGTT TTTCCCTCCTCCAGCAGCTAGACAAAAGACACCCCCCACCAGGAGGCCATATTTGCATGTGGG TGAAAGAGAGGCACAGGGGCCAATATTCGTGCAACAGTGGTAGATGGCAGGTGGGTCTGGGC CACCTGTCCCTGCAGCTTATCTGTGCCATCTGGACCTGCTCAAGCCTGATTCCAGATATACCAT TTCCATCTTATGATGGATGGCTATGACCTAGTGGGTCTGACAGCACCAAACTCATAATGGGC AGTATGGCCACATGGTCACTTAATGTCCTATGGTCAGACACTCTGCTGAGTGGCATGCCAGG AAATGCTTTACAAGTGGTGTTTGGTTCTCTGCTGCAGATGGCATGACCTTGGTCCGGAGCCCT AGGGGTTTGGACAGTGACTCCTGTTGGGGCCTAATCTCACATTCCATGCAGAGTATCATCAGA TTTGCCAATCACATAGCCTAAGGGTCAGGACTGATCCAACCAGTTTTGCAGAGATCAAACTG GAGAATGAAAGGTTGATATGATGTGACCATCATATCACGTTTTCTCTCTTGAAAAGTATGCA GATGTCTGAAAGAGACAAGTGCCCCAGGAGAAAATGCATGCCTTCCTCAGGATCGGCCCCCA CCTCCCCTCCTGGCCACAAGGAGGGTCAAATCTCAGCATGGCCCAACTTGGACCTGTCAAGGA AGAAGAAAAAAATTGTATGCCAAAGGAACTCAGTCTTTTGGCTAACAAGTACTAGACATCCTTT AAGTCTTTGAGAATGGTAATAATTTCTGCCATCCCTCCAGATTTTGTGTTTTTCTGTTTTGGCTG GGTGGGAATGCAGCATTTTCACTTTGCCTTTGTTATTACAAATGTTGCTTATTCTATAAATCAA GGAACCATGTAAGGGCTCTTCTGATGGTTAAGTATATCCATTCCAATGATTTATTCGGGATCC AAGGAAATGATTTCTGGGTGAATACACAGAACTAGTGGATCCAATTTGAGACATACCTGGGC CAGAACTATATTTGTCGTCTTACCCCAATAAGCCTGCACTCTACTAGGACAGCCATGACAGCA CTTTGGGACCCTAGATATAAGTGTGAATTGCTGGCTGGGCATGGTGGCTCACGCCTGTAATCC CAGCATTTTGGGAGGCTGAGGCAGGTAGATCACCTGAGGTCAGGAGTTGAAGACCAGCCTGG CCAACACGGTGAAACCCCATCTCTACTAAAAAATACAAAAATTAGCTGGGCGTGGTGGTGGG TGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGGAGAATTGCTTGAACCCAGGAGGCG GAGGTTGCAGTGAGCCAAAATCACACCACTGCACTCCAGCCTGGGTGACAGAGCGAGATTCC ATCTCAAAAAAAGAAAAAAAAAAGTGTGAATTGCTATGAAATCACTATCAAAAGATCTGAGT GTTACCCTTACTCAGTGTGGTCGAATATAAATAGCCATAGGTTCCTGTTATACACACTTGCTGT GGTGCTACAGAGTCTTTCCTCATGGGAACCCAGTCCCTCTTTCAGTCAATGGGTTCTGGTTCGA GAACTGGCTGAGGTTTGGAAACTGTGCCTTCCATCATAACTTTCCACTGGGGTGACTGACCTT GGCCTTCTGTTCATCCTTTCTAGCCCCTAAGAATCCAACACTCTATTAGCCTAACTCCTTAGACC CCTATAAGCTAATCCCTTCTAGTTGTTAGTCTGACCTTGGTGCCCAATATGATAATTATAACCCA CTTTGCTAACTGATATGCTTCTAAGTGCTGCCCCTGGTCTCTGCCCTTAAGTGATCTATCATCCCC ACTGCCATTAGGGGGAGAAGCTCTGAAAAAGAGVTGTCTCCCATCAACTCTGGTCTACAAAGG ACAGCCCTACTGAGCCTCAGCCATGTGCCCGACACCAGCAGATTCTTTACAGCCTGGGAAGCA GAGTGTCTTCCCTGCCTTTCCAGGGAACATAGCCAGCTTACAGGCTTTTTGATCTTATAGAGTA GGTCAGTTATATTTTGCCCCATTTCTTTTATCCTTTTGATCACTTCCTCTTGGCCCACCATGTAA ACTCAAGCATCCCTGCTTCATTTAATCGAGCTGTTTGCTTTTTCTAAGCTACCAAGAGCAACCCC AGCAATATATCAGAGCCCTCTCTTGGGACCCTTGCTAGGGTGTTAAATCCTGCATCATAGGAG AATGCCCCCACATCAGCAAAGTCCCCTTATCCTCTTGATATCCCACCTGCCCCAGTCCAGCACC TTCAGGATCTGGTCTCAATCACAGGATCCAGCACCTTTGGGACTGTTGCAAGCATAAGATCCA GCACTTTTGGGATCTAGTCTCCCACTTCCTGCTAGTACTTGTTAGCCAAAGACTGAGTTCCTTT GGCATACAATTTTTTTCTTCTTCCTTGACAGGTCCAAGTTGGGCCATGCTGAGATTTGACCCTC CTTGTGGCCAGGAGGGGAGGTAGGGGCCGATCCTGAGGAAGGCACTCATTTCTCCTGGGGC ACTAAGTCTCTTTCAGACATCTGCATACTTTTCAAGAGAGAAAAGGCCTCCTTCTCACAGCAAG ACTACAAAACTGTAGATGCAGGTGGCTCGTGGGAATCTGGCAATTCAAAATTCTCAAGTGTACTC ACTAGCACATTAGAAAACCAGTAGTACACATCTCTTTCCAAATCCATTCAGTGACACTATG TCAGTAGCTGGAAATGGGCCATGGTGGGTGTATTTAAACCATGAAAATCAGAAAATGCTACA AACCAGGGCATCCCGCATCTCTAGACAGCAGATTGTTGGCCATTTCCCAGCATACCATTGTGT ATACTCCTTCCCATCAGGGCCGTGGCTAAGCCTTGGTGGAGGACTCAGCCCTTGCTGAAGTTCTG CTACTGCTCTTACAATTGAGTCCTATGCCTGGTCTCCAGCTCTGCCTGCCTCACTACAGGAGAC AAGCATCTCTTGAACACTGCCGAGAAGACCCTCTGGCTCTCAGGCTTGGCTTTAAATCGATA GACCTGAGCCTGCCATTTTCTCTAATTCCATGCATCACTCCACTGATCCACAGGTCTCAGTGGCA TAGTCCTTCGGGTTAGCATCTCCCCCACACCCTCGGTGCCAGAGACACTGAGTAAGAAAGTAC CTCCCTGTCTACCCCCATCCCCGCTCCCCACAGGCAGGGCCTTGGCGATCCACTGCTGCAATGT GCCAGAGACTGTCAGTACTCCTACCACCAGTGAGGTGGCAACCAGCTGGGAAGTGATCCAAC TCCAGAGTCCCGCCCTCATAGGCTGATTTCTAGGACCACCCCTGGTATACTGTGTTAGGTTCTT GAAGCAGAGCCTGAGATAAGGATTCTGGCACCTGTGATTGAGTGGGAGGGTGCTCTCAGGAT GAGATGGGGTAGAAATAGGCAAAGGTACAGATTCAGCAGCAGTAAGAGCCTCAGTCTGACCCA GCAGGGAGCTCTCAAATGTGAATGACATCACAGAGTTGTCCCTCTGAGGCAGGGGCCAGCCTT TGTGCTCCTACATGAGTCAGTCACTGGCTGGAGGCCCCTGGGGAAAGGCTAGGGCTGCCAGCT TTAGCAAATAAAAAATTAGGGCACTCAGTTAAATTGAATTCAGATAAACAACA - The genomic DNA or YKT6 SNARE gene is 39,000 base pairs in length and contains seven exons (see Table 1 below for location of exons). As will be discussed in further detail below, the YKT6 SNARE gene is situated in genomic clone AC006454 at nucleotides 36,001-75,000.
- The human liver glucokinase is depicted in SEQ ID NO:2:
MPRPRSQLPQPNSQVEQILAEFQLQEEDLKKVMRRMQKEMDRGLRLETHEEASVKMLPTYVRSTP EGSEVGDFLSLDLGGTNFRVMLVKVGEGEEGQWSVKTKHQTYSIPEDAMTGTAEMLFDYISECIS DFLDKHQMKHKKLPLGFTFSFPVRHEDIDKGILLNWTKGFKASGAEGNNVVGLLRDAIKRRGDFE MDVVAMVNDTVATMISCYYEDHQCEVGMIVGTGCNACYMEEMQNVELVEGDEGRMCVNTEW GAFGDSGELDEFLLEYDRLVDESSANPGQQLYEKLIGGKYMGELVRLVLLRLVDENLLFHGEASE QLRTRGAFETREVSQVESDTGDRKQIYNILSTLGLRPSTTDCDIVRRACESVSTRAAHMCSAGLAG VINRMRESRSEDVMRITVGVDGSVYKLHPSFKERFHASVRRLTPSCEITFIESEEGSGRGAALVSAV ACKKACMLGQ - and is encoded by the genomic DNA sequence shown in SEQ ID NO:6:
ACTAGCACATTAGAAAACCAGTAGTACACATCTCTTTCCAAATCTTCATTCAGTGACACTATG TCAGTAGCTGGAAATGGGCCATGGTGGGTGTATTTAAACCATGAAAATCAGAAAATGCTACA AACCAGGGCATCCCGCATCTCTAGA AGCAGATTGTTGGCCATTTCCCAGCATACCATTGTGTATACTCCTTCCCATCAGGGCCGTGGCT TGCCTTGGTGGAGGACTCAGCCCTTGCTGAAGTTCTGCTACTGCTCTTACAATTGAGTCCTATG CCTGGTCTCCAGCTCTGCCTGCCTCACTACAGGAGACAAGCATCTCTTTGAACACTGCCGAGA AGACCCTC TGGCTCTCAGGCTTGGCTTTAAATCGATAGACCTGAGCCTGCCATTTCT CTTTTCCATGCATCACTCCACTGATCCACAGGTCTCAGTGGCATAGTCCTTCGGGTTAGCATCT CCCCCACACCCTCGGTGCCAGAGACACTGAGTAAGAAAGTACCTCCCTGTCTACCCCCATCCC CGCTCCCCACAGGCAGGGCCTTGGCGATCCACTGCTGCAATGTGCCAGAGACTGTCAGTACTC CTACCACCAGTGAGGTGGCAACCAGCTGGGAAGTGATCCAACTCCAGAGTCCCGCCCTCATA GGCTGATTTCTAGGACCACCCCTGGTATACTGTGTTAGGTTCTTGAAGCAGAGCCTGAGATAA GGATTCTGGCACCTGTGATTGAGTGGGAGGGTGCTCTCAGGATGAGATGGGGTAGAAATAGG CAAAGGTACAGATTCAGCAGCAGTTGAGCCTCAGTCTGACCCAGCAGGGAGCTCTCAAATGT GAATGACATCACAGAGTTGTCCCTCTGAGGCAGGGGCCAGCCTTTGTGCTCCTACATGAGTCA GTCACTGGCTGGAGGCCCCTGGGGAAAGGCTAGGGCTGCCAGCTTTAGCAAATAAAAAATTA GGGCACTCAGTTAAATTGAATTTCAGATAAACAACAAATTATTTTTTAGTATATGTCCCAAATT GTGCATAACATAATGTGTTTTCTCCGCCAGCCCTGGGAAGGGCGTAACTTCCCAGGTATTTCT AGGTGAAGTAACTTTGTAGATCAGGAGTAAGTCCCAGGAAAGAAGTCCAGCTCTTCTCT TCAGCCCTGGGCAGCTGGGGGTAGGCACAGGGGCCCAGCAGGCACCCATA GCATCTCCTACAGCATCTGAAATGAACAGGGTCATCACGTACTACATACAAATGTACCCACTG CTGAGTTCTTCAGGGATTATATCATTAGGTACTTGGTATTTTAAATACATTACATTATGCAGAA GTCCTTTGTGGATTGCTATATTTGGAGAGTTTTGTGATATTGGGGGGATTAGATGGAGTTTTCA GATGGGCAT CATACGGTTTTTCATTTAAAACCCTAGAGTATTGTAATCCTAGGGAGTGA TCCTGCGATTAGTAAATTAGCTCTCCAATAGATTTTCAATGTGGTTGCAAAGGACATGCATGT GGTTCACCCTCCCAGGAAATCCAGAAGGGCAGCATTGGCCTGAGTGGCCTGAGTTTGGCTGGT TGGGCTGGTAATGCTGGACAAAGA CAATGGGTGGAATGGTTTGCTTCCCTCAGTCCTTTCAGACACAGCCCAGC CCACCACGTCAAGCCAGTGGGTGCATCTGCAACCAATCCCCATGAGAACT GCAGCCTCTCAGAGGTGGGCAAGTTGGCCCGGGTGGGTCAGGAGGATCAG ATGTTGAGGAAATCTTTGGATTGGAGGCAGGCAGAGCAGGGAAGCATCGG GTGATTCTATGACAGACCCAGGGCTCCAAGCTGCAGTTCAGGAGGGGCAC TGGCACGGCCTCTGCTCAACTCCCCCTTGAGTGACATCAGGTGAAGTGCC GACAACACAGAAGGCAGCAAATGCTGCCAGTCAGGTCTGCTTCCCAGGAC AGCCAGTTGCTAACCCTTCTCCAGCACAGCACTGGATTTTGGTCACCTGG CTGGGAGCTCCACCTCCCCAGCTGCTGCCTCACCTGCTTTTCCAAACCCC ACCCTGTAAACGGTAACTACATTTTGTGCCCACTACGCCTCGTTTCCATC TCTTTGGAGCACCTCTCACGTGGAGCTGAACAGAACGACCTGTTAAGCCC ACCGTGTCTGTTAGGGTTGTCTAGGCTGTATCAGATACCCAACTAAAACT GGATTGACCAACAGGTATTGTCAAAGCACATAAGAAAGAGTCCAGAGGCA GGCAGCTCTCAGCCTGGTGTCAGGCTCTGGGTCAGCTTTCCAGATTCTCT TAACCTTCCCCACATCTGCCAGATGCCGCCACAGGCACAGGAGGTACAAA CAAACCCAAAAATGTTCTGGAAACAAGAAGGGAAGGGGATCCCCACCATA TCTCCCCAGAGGCCTTCCTTCTCACATCTCACTGTACTGAAGCCAGCTCT AGCAGAAGACAGCAGGGTGAATTTGTCCAGGGTATTCAGCCCCCAGTGCT GGGTCCATTACTACTTGACCCCTGAATAAAACAGAGGTTCCATGAGCAAG AAGGAAGGGGAACTGGATGTTAGAGGGCAAGAATGTATCCATCCCACCCC TAGGAGCACGCATGGACAACTGCCCCATTTTTGCTCCTATTGCAGCCCAG GGGCTAGCCCAGAGACCTTGCCAGTGCTGAGTCACAAGATGCTGGGAAAG TGAGACCAGAGCCTGGTCTTGGGGAACAGCTCAAGGCCGCATTGGTCTGC AGGTCATAGAGCAGCTGCTGAGCAGTGAGAGCCCACGATGGGCCAGGCCC TGGGTCTTGGAGACCTGAATGAGATAGACTGGGTTCCTGTTCTCCTGGGC ATTGCCTCTTAGAGGGCAAAGACAATTAACAATAAACAAATAGAACATGA AGTGTTTTCCGATAGTGACTGATATACTTTGGATATTTGTCCTCTCCAAA TCTCATGTTGAAATGTAATTCCTTATGTTGGAGGTGGGGCCTGGAAGGAG GTGTCTGGGTCATGGGGGCAGATCCCTCATGAATGGTTTAGTGCCATCCC CTTGGTGATGAGTGAGTTCACGTGAGAGCTGGTTGTTTGAAAGAGCCTGG CCCCCTCTCATTCTCCTGCTCCCACTCTTGCATGAGACACCTGCTCCCCC TTCTCCTTCTGCCATGATTTTAAGATTCCAGGGACTTCACAAGAAGCAAA TGCTAACGCCATGCTTCTTGTTCTGTCTGCAAAACTGTAAGCCAATTAAA CCTCTTTTCTTTGTAATTTATCCAGTCTTGGGTATTTCTTTATAACAGCA CAAGAACAGCCTAATACAGTGATGCTCTCCAAGTGACCTTTGGGCTGAGA CCTGAAGAAGAAGGGGAAGCAGTTAGGTCTGATAGCTCATGCCTGTAATC CCAGCTCTTTAGGAGGCTGAAGTGGGAGGACTGCTTGAGCCTAGGAGTTG AAGACCAGCTTGGAAAACATAGCAAGACCCTGGCTCTACAAAAATATTTT TTAATTGGCCAGGTGTGGTGGTGCACACCTGTAGTCCCACCTACTTGGAA GGCTGAGGCAGGAGCATCTCTTGAGCCCAGGAGGTTGAGACTGCAGTGAG TCATGTTCACACCACTGCACTCCAGCTTGGGTGACAGAGCAAGACCTGTC TCGAAAAAGAAGAAAGAAGAAAGTAGGAAGAAGAAGAAGAAGAAGAAGAA GAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAGGAAGA GGAACAAGAACAAGAAGAAGAACAAGAAGAACAAGAAGAAGAACAAGGAG AACAAGAAGAAGAATAAGAAGAAGAAGGAGAAGAAGAAGAAGGAGAGGAA GAAGAAGAAGAGGAAGAGGAGGAAGAGGAGGAGGAGGAAGATGAGGAGGA GGAAGCAGAAGCAGAAGAAAAAGAAAGAAAAGAAAGAAAGAGAAAGAAAG AAAAGGGAAGGAGGGAAGGAAGGAAGGAAGGAAAAAGGGAAGGAAAGGGA AGGAGAGGGAGAGGGAGAAGGAAGAACAAAGAAGAAAGAAGGAGAAGCAG AGGCTTGTGCTGGATAGCCTTGCTTTTGCCAATGACCTTGCTGATTTTCA GGGGGTCCTGGTGTCTTAGTCCATTTGTGTTGCTGTAAAGGCATACCTGA GGCTGGATAATTTACAGAGAAAAGAGGTTTATTTGGCTGAGAGTTCTGCA GGCTCTACAAGAAGCATGGCACCAATGCCTACTTCTGATGAGGGCCTCAG TCTGGTTCCACTCATGGCAGAAGGTGAAGCAGAGCCTGCATGTGCAGATA TCACATGGTGAGAGAGGAAGCACGAGGGGGCAGGGAGGTGCCAGCCTCTT CCTAATAGTAAGCTGTCTTGAGAACTAATAGAGTAAGAAATAACTCACAC CCTGCCCCCAAGGAAGGGCATTAATCTATTCATGAAGTATCTGCCCCCAT GAGCCAAACATCTCCCATTAGGCCCCCCACCTCCAACATTGAGGATCAAA TTTCAACATGAGGTTCCGGTGGGCAAACATCCAGCTATAATACTGGGCAA TGCTGACCAGACTCTTCCCCTCTCAGGCCCAGAGCTCCTTGGCCCTGTAA CAACAGAAAATTGCGTTTGAGTGTCAAGATTTTTCCTTTAGTCCCCATGC AGCTCCTTAGAATGAGGTGGCATCTTCTCCCTTTTCATAGGTGAAGAAAC AGAAGCTCTGGAGGAACGAATCATTCATCCAAGGTCAGGTAGCTAGTAAG CGTCCCACCAGCTCCCCAGATCTCCTGTTTCCTGTCCCAAGTCCCACTGA GTGAGCTGGAACAATGGCTTCACTGGCACCTGCCGGGAATGGTGGCAGGT GCCTATAATCCCAGCTACTCGGGAGGCTGAGGCATGAGAATCACTTGAAC CCGGGAGGCAGAGGTTGCAGCGAGCCAAGATCACACCACTGCACTCCAGC CTGGATAACAAACGGAGATTCCATTTAAAAAAATTAACATATAATATACA TACAGTAACATTCACTTTTTAAGTGTACAGTTTGATGAGTTTTATCAAAT GTATATGGTTATATAACCACCATCACCATTAAGGCAGAATCTTCCCATCA CTCAAATAATTCCCTCAGCCCCACCTCTTGCTGTCAATCACTTCTCCCAC CCTAGCCACTGGAAATCATTCATCTGTTTTCTGTCCCCTTGGTTTTGCCT TTTCTAGAATGTTCTATACATGAGACCACTGAGAATATAGTCTTCTGTGT CTGGCTTCTTTCACTTAACATAATGCCTAGCTCAGCAGTGTGTCAATCCT CCCTCCCTTGCCATTGCTGAGCAGTGAGTATTCCACTGTATGGCTGTGCT ACGGTGTGTTCATCCATTTATTCATTCACCAGCTAATGGGCATTTGGATT GTTTCCAGGCTTTGGCTATGATGAGTGAAGCTGCTGTGAATGTTCAAGTA CAAGTCTTTGTGTAGACAGGGGTTTTCAATTGGCGGGATAAATACCTAGG AGTAGTATCGTGTGGTTAAGCGTACGTTTAAACTTAGAAAAACTGTCAAA CTGTTTTCCAATGTGGCCTGTACCATGTTGCATTTCCATCAGCAGTGTTT GAGAATTCCAATTGCTCCACATCCTCCTCCCGACACTTGGTTTCACCCAT CTTTTAAATATTAGCCACTCTGGTGACTGTGTAGTGATATGTCAGTGTGG TTGTAATTTGCATTTCTATGATTGACTAATAATAATGTTGCAGATATTTC TGTATGCTTAGTGGGCATTTTTGGTGAGTTTTTAAAAATTGGGTTGTTGT CACCGTCTTATTGAGTTGGAAGAATTCTTTATATGTTCTGGATGTTTATT CATGTGTGTGTCTGCTAAGAGGTGAGACTGGTTCTACCCTGGTCCTAACA AGCACCCTGGGCCTGCATCCCTTTTTGTGTCTGTGAGCTGGGTCTGCAGC CCTCTCCTCCCACTACCTACTGCCCAGCAGTACCCCTCACCCATCACTGT GGCTCCTGCAATGACATCTCAGCCTGTCTCTCCCTCCCTCCAGCTAGCCA GAGGCAGGATGGCTCAGTGACACAGGGTGGGCCCTGAAGACAGAGTGCCA GGGTTTGGACCTTGTATTAGCAAGAGTCACAAGGGAAACTTACTTTATCT CTCCATAGCTCTGTTGTGAGGATCCAATAAATTAATCCATAGAAGAGCTT AGGACAGCACCTGGCACAAAGTATACATGAGCTATTATGATGTTATTCTT CCAACCCATTGTTTCTGTGTTGTCATAAACATGAATGCAGGACTCAGTGT CCCAGCTCTGTGTCCCTCGCATACATTCCCTAACAGCCCACAGGTCTTGC CTGTCACCGCCTCATTCAATAAGTGATGACTCTGCCTCTTCCTTGGCTGG GGCCTTGCATTGGACATTTCTGTATCCATATTTGTTTTTTAAAAACTAGC TGTTGGCCGGGCGCGGTGGCTCACATCTCTAATCCCAGCACTTGGGAGGC AGAGACAGGTGGATCATGAGGTCAGGAGTTCAAGGCCAGCCTGGCCAACA TGGTGAAACCCCATCTGTACAAAAAATACGAAAATTAGCTGGGCGTGGTG GCATGCACCTGTAATCCCAGCTACTTGGGAGGCTGAAGCAGGAGAATCGC TTGAACCTGGGAGGCAGAGGTTGTAGTGAGCCAATATAGCGCCACTGCAC TCCAGCCTGGGCAACACAGCAAAACTCCATCTCAAAAAAAAAAAAAACAA AAAACAACCTAGCTGGACTTGACACTCTTGTTAGAGGAAGATTTTTCCAC ATCTGTTAACTTTTCTTCTATTGTTATCCATCTGTGCAGGTTTTTCTGTC CTCCTGAGTCATTTTGATAATTTATATTATATTTTGAAAATCATCCATTT CCTATAGTTGTTTATTAGTGTCTTCTCTGTTATATTTGATCAGATTACCA AATCTTGCTCATTGATTGCCCATTTATTTTATTGTGTTTATTTTTTTGAG ACAGGGTCTCACTCGACAGCCCAGGCTGAAGTGCAGTGGTGCAATCATGG CTCACTGCAGCCTTGACCTCCTGGGCTCAAGCAATTCTCCCACCTCAGCC TCCTGAGTAGCTGGGACCTCAGGCACACGCCACCACAGCTGGCTAATATT TTATTTATTTATTTATTTATTTATTTTTGTAGAGATGGGGTCTCACTATG TTGCCCAGGCTGGTTTCAAACTCCTTGGTTCAAGTGATCCTCCTGCCTCA GCTTCCCAAAGTACTGGGATTACAGGAGTGAGCCACCATGCCCAGCCCCT ATTTACTTTATAGTAAGTGCCTTCATGGGCATAAATGTTCCTCTGAGACA GCTTTGGCTATTAGCCATACTTTTAATATTTTGTACATTCATGGTTATTC ATTTATAAATGGTCTGTAATGCAATGCAGATTTCCCCTTTGGCCCAAATG CCATTTACAGCAGCACTTTTCTCTTTCTGAGCAGACAGAATATTTTGGTT TCCCCTCTGTTGTTTATTTCTCGTCTGCCTCGCCTCATTTGCTAGGTGTT CCCTTGGTGTGCCTTAAGTATGAGCCACTCAAATATTTGTGTTTCTCTAA ACACCCCTGACACTGTCCTGCTGGTTTCTCTATCTGGAATATCCTTCCCT TCTTGGCCAGTTCCCCCTAGTGCATCAAAGAAATCCTGCTCTTTTGCCTT CAGAAAACAAAACAAAACGAAACCTATCAGTCTCCTTATGTCCCCAAAGA CATAGCTTTGCTGGTATCTGGTTGTATTGAGCTGTTCATTTGTCTCTTCT GCTAGATGGTAAGCTCCTTGGAAACTAAAAACTAATCACTTTTCTAACTT CAGACTGAGCACAAATTAGGTTCTCAAGAAACATTGAATAATGAGTGATC CGGTATCCCCTTCCAACATATTTTTGGTCATTGATACCATCATTCTGAGT AGTTACTAGGGAACACTTCACTGCAGTAACCAATACAGCAAAACGTGAAA TACAGTTACATAGTAGAATTGTATTTCTTGCCCATATAATAGTCAAGTGC AGTTCTTCATCAGCTGGGAGGTTCTCCTCCACACAGTCATTTAGGAATCC AGGGAACATAGCAGAGGTTGCTAGCTCTAGACCCAAACCCATGTCCTCTT TGTCCACAGTGAGGACAATGCCAGCAACAGCTGGCCAGCTGTTCTGTAGT TCTCAGCCTCCCTCGCAGTGAGATGTCTCCATGCAATTTCAGTGGAGCAA CATATACCATTTCCATTTCCAGGTGTAGGCTCCTAAGAAGAGGGTGGCTT CTTCATGTTCTTTCTCACCTTTCCGTAGGCTAGCTGCAGATAATGATGAG GCTTTAGGGAGTGGGTGGAGCCATAAAGTAGAAGCCTGGATTCCTAAATG ACGGTGTGAAGTGTTCCCTAATTTCACGTAATTGTTTCTTAATTTCCTGT TTGGGTTATTTGTTGCTAAGGTATAAAAAAACCCTGATTTTTGTGTGTTG ATATTTGTGTGCTGCAACTTTGCTGAATTAGCTTATTAGCTCAATTTGAT CTCAGATATTAGCTCAAATATTTTGGGAGATTATTTATGGTTATCTACAT AAGATCATGTCATCTGAAATAAAGATAGTTCTATTTCCTTCTTTCTATCT TAGTCCATTTGGGCTGCTGTAACAAAATGCCATAAATTGGAGGCTGAGAA GTCCAAGATCAAGGCCCAAGCTAATTCACTGTCTGATGAAGGCCTGCTTT CTGGTTCATACATGGCACCTTCTAGCTGTGTCCTCACATGGTGGAAAAGG CAAGGTAGCTCTCTGGGATTCCTTTTTGTTTGTTTGTTTGTTTTGTTGTT TTTGTTTGATTTTTTGAGACAGAGTCTCACTCTGTCACCAGGCTGGAGTG CAGTGGCACAATCTCGGCTCATTGCAACCTCTGACTCCCTGGTTCAAACG ATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGTACCCATCAC CATGTCCAGCTACTTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGT TGGCCAGGATGGTCTCGATCTCTTGACCTCGTGATCTGCCCACCTTGGCC TCCCAAAGTGCTGGGATTACAGGCATGAGCCACCGTGCCTGTCCTCCGGT ATTCTTTTTATAAGGGCTCTTTTTCTTTTTATGTGGGCTCTACCCTCATG ACCTAGCACCTTCTAAGGCCCCACCTCTTAATATCATCACACAGCAGATT TAATATATGAATTTTGAGGGGACACATTCTTTCCATAGCACTTTCCAGTA TGGATACCTTTTATTTATTTTTCTTCCCTAATTGCTTTGGTTAGAAATGT CTTCCCTAATTGCTCCACTACTATGTTGAAAAGAAGTGGCAAAAGTGGGT ATTCTTGTCTTGCTCCTCTCTTAGGAAGAAAGTTTAAGTCTTTTGCCATT AAATATGACGTTAGCTATGGGGTTTTCATATATGACATTTATCATGTTGA GGAAATTTTCTTCTTGTTTCAATGATGACAGGGTGTTGAGTTTTGTCAGA TGCTTTTTCTGCATCAATCAATATGACCATGTAGTTTCTTTGTTTTATTC CATTATTGTAGTACATTACATTAATTTTTGCATGTTGAACTATTCTTGTG TTCCTGGGATAAATTTCACTTGGTTATGGTGTATAATCCATAACCATAAC CTGAAGATATGCTGAAGAGGCTAAGTGCCATGGCTCATGCCTGTAATTCC AACACTTTGGGAGGCTGGTGTGGGAGGATCACCTGAAATCAGGAGTTTTA GAAGAGCCTGGGCAAGTAAACAAGATCCCATCTCTACAAAAAATTGAAAA TTACCGCTGGGCATGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGTGG CCGAGGCAGGCAGATCACCTGAGGTCGGGAGTTCTAGACCAGCCTGACCA ACATAGAAAAACCCCGTCTCTACTGAAAATACAGAATTAGCCAGGCGTGG TGGCACATGCCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAGGAAAATC ACTTGAACCTGGGAGACGGAGGTTGCAGCGAGCCAAGATCATGCCATTGC ACTCCAGCCTGGGCAACAAGAGCAAATCTCCGTCTCAAAAAAAAAAAAAA GAAAAGAAAGAAAGAAAGAAAAGAAAAGAAAGAAAATTAGCTTGATGTGG TGGTTGTGCACCTTTAGTCCTAGCTACTCAGGAGGCTGAGGCAGGAGGAT TGTTTGAGCCCAGGAGGTTGAGGCTGCAGTGAGCCATGATTGCACCACTG CACTCCAGCCTGAGCAACAAAGTAAGACCTCATCACTAAAAACAAATTTT TTAATACTGAAGAATTTTATTTGCTGGTATTTTGTTGAGGATTTTGCATC TATATTCACAAGAAATATTACTCTGTAGTTTTTCTTCTTGTAGTATCTTT GTCTGGTTTCAGTATCAAGGCAATGCTGGCCTCATGAGATCAATCAGGAA GTGTTACTTCCTCTTTTATTTTTTGGAAGAATTTGAGAGAATTGGTGTTA ATTCTTCTTTAAATGGTTGGTAGAATTACCAGTGTAGACATCTGGTCCTG GGATTTTCTTTGTTGGGAGGTTTTTTAGTACTAATTCCATTTCCTTACTT GTTATTAGTCTAATGAGATTTTCTGTTTCTTCTTGAGCTAGTTGTAGTAG CTCATGTGTGGAATTTTTCTATTTCATCTAAGTTATCCAAGTTTACCTAA GTTAAAGTTCCATTTTATCTAACTTGGGTAAGCCAACAAACAATACTAAA TTGTTCATAGTATTCTCTCATAGTCCTTTTTTTCTCTAAAGTCAGTAATA ACGTTCACTCTTTCATTTTTTCATTCCTGATTTTAATAATCTGAGTTCTT TCTCTCCCCCTCCCTGCAATTGAGAGTCATTTAAAAGTGTCTTGATTAAA TTTTATATATCTGTGAGTTTTCCAGTTTTCCCTCTGTTATTCTCTTCTAG TTTTATTTCATGTGATCCAAAAAGATACTTTATATGATTTCAATTTTTTT ACATTTACTAAGACTTGTTTTGTGACTAAAATATCCTTGAGAATTTCCAT GCACATTTGAGAAAAATGCACATTCTGCTGTTGTTGGACAGAGTGTTCTG TATATGTCTGTTAGGTCTAATTGGTTTAGAGTATTGTTCTAGTCCTCTCT TTCCTTATTGATCTTCTGTCTAGTTGTTTAATCCATTATTCAAAGTAGTG GCCGGGCACGGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCGAG GAGGGTGGATCACAATGTCAGGAGGTTGAGACCAGCCTGGCCAACATGGT GAAACTCCGTCTCTACTGAAAATACAAAAAATTTGCTGGACATGGTGGCA CACGCCTGTAATCCCAGCTACTCAGGAGGCCAAGGCAGGAGAATCACTTG AACCCAGGAGGCAGAAGTTGCAGTGAGCTGAGATCGCACCATTGCACTGC AGCCTGGGCAACAGAGCAAGACTCTGTCTCGAGAAACAACAAAAACAAAA ACAAAAAACAAAGTAGTGTACTAAAGTCTCCAACTACTATTGTAGAACTC TATTTCTCCCTTCAATGTTGCAAAATTTTGTTTCATGTATTTTGGTGTTC TGTTCTTTATAATTTTTATATCTTCTTAATGGATGAAAACTTTTATCAAC ATATAATGTTCTTTGTCTCTTGAGACTTTTTTTTTTAACTTAAAATCTAT TTGGGCTGATAATACAGCCACCACAACTCTCATATTGGTTGTTATTTTCA TAGAATATCTTCTTCCATCCTTCTACTTTAAAATTCTTCTATCTTTATAT CTAAAGTGAGCCTCTTGTAGATAGCATATAGGTGGATAATGTTCTCTTTA TTCACTCTGCCAATATCTGCCTTTTAACTGGAGTTTAATCTATTTATATA TAAAATAATTACTGATTAGGAAGGACTTACTTCTACCACTCAGCTATTTT TTTTCTGTGTGTCTTATACATTTTTAAGTTTCTCAATTCCTCCATTACTG GATTTTTTTTTTTACTTCTTGATTTTGTGTCTGTGTTGTTACATTTTGAT TATTTTCTCCTTTTGATAGCGGCAGGAGGCAGCCAAATGCCTGGCAGATA GAAGCTTGTCCCCCATGAAACCCCACCTTCAAGCCAAAAAATAGCCTGAA GGCTGAAAGACCGGACTGCTGGTCCCAGATGAAACCCATGATCCAGAGTG AGAACTTCCATTCCTGTTTGCCTGCCCTCTAAATAATCCCTTTTAACCAA TCGAATGTTGCCTTTTCCAATACTACCTATGGCCTGCCCCTCCCCCATTC TGAGCCCATAAAAGCCCTGGAATCAGCCACATTGGGGGCACTTTGCCAAC TTCAGGTAGGGGGACCACCTCTGTATCCCTTCTCTGCTGAAAGCTGTTTT CATCACTCAATGAAACTCTCACCTTGCTCCCTCTTTGATTGTCAGCGTAT CCTCATTTTTCTTGGGTGTGGTACAAGAACTCGGGAACCAGTGCACAAGC CAGACTTGGTCTGGGCAGCACGGGTTAGTGGGCCATCTCCCACAGCAGGT AGCATGGCCAAGTGAGGCCTGGGCAGGGCATCACCAAGGTCCCTGGCTTG CAAAGTGACCAAGGAAAAAATCCTGTGTCACTTTCCTTTTCTCATATTTT TTAGTTATTTTCCTAATGATTGCCTTGAGGATGGCAATTAACATCTTACA CTTATAAGAAGCTAGTTTGAATAATAGTTCCAATAGTACATGAACACTCT ACTCCTATATATCTCCATCCTTCTTCCTTTATATTGTTATTCCCACAAAT TATGTTTTTATACATTATATCCTCACTAACATAAACTTATTATTATTTTC TGCATTTGCCTTTTAAATCATACAGGAAAACAAGAATCACAAAGAAAAAC TACATTAATATTTGCTGTTATATTTACCTATATAGTGACATTTAACAGTG TATTTTTATGTCTTCAGATGTCTTTGAATTACTACTTAGTGTCTTTTCAT TTTAGCCTCAATGTTTCCCTTTAGCATTTCCTATAGGGCAGGCCTGCCGG TAATTAATTCCCTTTGGTTTTCTTTATCTGAAATGTCTAATTTCTTTTTT ATTCTTGAAGAATAGTTTTGCTGGCTATAAGATTCTTAGTTAATAGTTTT TTTCCCAGCACTTCAATTATTATTAAAGTGTTATTATTATTATTATTATT ATTTTGAGATGGAGTCTCCCTCTGTCACTCAGGCTGGAGTGCAGTGGCGC AATCTCTGCTCACTGCAACCTCCGCCTCCCAGGTTCAAGCAATTCTCCTG CCTCAGCCTCCCGAGTTAGCTGGGATTACAGGTGCCCGCCACCATGCCCA GCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGTCAGG CTGATCTTGAACTCCTGACCTCAAGTGATACACCCACCTTGGCCTCCCAA AGTGCTGGGATTAGAGGCATGAGCCACCATGCCTGGTCTAAAGTGTAATT ATTATTACAGCTGCCATTTGGCCTCCTTGGTTTCTAATGAGAAATCATCT GTTAAACTTATTGCAAATCCTTGGTATGTATGCTATGTGTCATTTCTCTC TTGCTGCTTCCAAGATTCTCTCTCTGTCTTTGTCTTTTGACAATTTGACT ATAATGTGTTTCAGTGTGAATTTCTTAGAGTTTATCCCACTTGGATTTCA TTGAGCTTCTTGGATGTGTACGTTTGTCTTTCACCAAATCTGGGAAATTA TTTCACCATTTCTCAAATATCTTTTTCTTCCCCTTTCCATCTCTCTTCTT CTGGAGCTCCCGTATACTTAGTTGGCATGACTGATGGTATCCTACTGGTC CCTCAGGTTCTGTTCATTTTTCTTCTTTCTTTTTTTCTGCTCTGCAGACT GGATAACTTCAATCGCCTTTTCTTCAAGTTCAATGATTATTTCTTCTGCC TGCTCAAATTGGCCATTTAACCCCTCCAGTGACTTTTTCATTTCAGTATT GTACTTTTCAGATCCAGAATTTCTATTTGGTTCCTCTTTAATAAATTCTT TTTATTGTCATTCCCCATCTGTTCATACATTGCTCTCCCAATTTCCTGTA GTTCTTTGTCCATGGTTTTCTTTAGTTAATTAAGCATATTTAAGACAGTT GACTTAATGTCTTTGACTAGTAATTCCAATGTCTAAAATTCCTTATGGAT AGCTTCTTTTAAATTATTTTTGTCCTGTTAGAGAGTCATATCTTCCTCTT TATTTGCTTTGTAATACTTTGTTGAAAACTTAACATTTTGAGTAGTAAAA TGTGGTAATTCTGAAGCCAGATTCTCCCCCTCCTTTGAGATTGGTTTTGT TGTTTGTTGAGGGCTGCAGTTGTCCATTTGTATAGTGACTTTTCCAAACG ATTTTTGCAAAGTATGTATTCTCTCTTGTGTCTGGTCACTGACGTTTCTG TTCTGGTGCCTCTGCAGTCAGCCTATGACCTGGAAGAGCATTCCTTAAAT GCATAGATTTTTTTAAAACCCAAGAAACAAAAAACCTAGCATGTATGTAC CTTTTTAAAAATCTTCTGATAGATGCCACCTGGAAGGCTGCTGCTGCCTG AAGGGGCAGAAACAAAGGCAAGCTCTACTCTGAGCCCTCAGGGAACCACC AGATAAACAAAAGAAATTTGATTCTCCAAATTTCTGGAAGACAAGGTCCT TTCTGCCCACTCCTGCTCCAGCCAGCTGCTCTAGGAACACAATTACTGTC CACATGGCCACAGGAATGTTGAAGAATGCAGGATGGTAGCTGGTTTGCCC ACACCACTCACTTATGAGCCATCAGCATGCCTCTCCCTTCATCGAGCACT CCCATGGTTGCTGTAAGTGTCCAATCAGGTTCCAGAATTCTGAAAGAGTT GACTCTTACAGGATTTTTTTCTTTTCTAACTTGCTGGTTGTTTAGATAGA GGAACCAATTCCTGAAGTTTCCTACGTTGCCAGCTTCATGAGGATCATTC CCTAGTAACTCTTTTCAGACAAAAAGCTTCATTGATTTACTGTAGGACTA GCATCAAAGAGTCTATGCCACCTAGTCTGTCTCCTTAAAACACAGAAATA ATCAGTATGCATTGGGGTAGGAGTTTGGCATTAGATCTGCCGTAAATCAA GAGCTGGGGACAGCCCATGTCTTAAACTCTGACCCAAGGGCTAAAATATC CTTTGGTAGCAACAACAGCTACAAACTATTGAACAACTTGTATGTGCCAA GAGCCTTACCTGCATTATCCCATTGAATCCTCTCAACAGCCCTGTGAGGT AGTAGAATTGTTGCCTGCCCCTTACTGAGGCCTAGAAACATTAAGGAATT TGCCCGAGGCCCTAGAGCCAGTGAGTGGCAAAGCCAGTCTCCAGACTCAG GCTGGAGATCCTACAGTTCTGTGTTACCCCAGTGTTATCCTGCCTCTCAG CACAGAGTCTTGGATGATTCTCCTAACCCCTCCCTAGGCAATGCACAGGG CTGCTCCCTGCACCCTTACTCATGCTCTGCTCTTCAACCCCAACAGTGCT GGCCTTAGGCTTTATCCCTGACACCCAGCCCCAGGCTCCATTCCATCTGT TGACAGAGGCAAACACTGGGGCAAAACTGACCTCTGTGGATACCACTGTG TCCACCTCCACCAGCTTCAGCTGAAGCCTCTGAACATCTCCAGCATGGAA GAAGCCCCAAAGGATATTTCCTGTCCCCCAGCATATGCTTGACCCTGAAG CCCTCCCCATCTAGTCAAGAAGACCAAACTGTTAACAATCCTGGAGTCAG AGTGACCCATGGGTGAATCTTAGCCAAGTCACTCATAGCTGTTGCATCCT AGTAAATCCCTTAACTCCCATAGGCTTCAGTTTCCCTGCATATAAAATGA CAGCGTTCAGCTCATCGGCCAGTTTCAATCCATCTAAAGGGTCTAGCACA TCCCCTGGCATGTGGAAGCCACAGGGCACACACTAGTTGTGGTCATTTGA TCCTGGCATGCTCTGCTGTCTCTCGGCTCTCCCCTTGCCTCTTTCCCTGA TGTCCTGGCGATCAGCCACTGCCTAACACCCTCCCACTCACCAGGCCCTT AGCCTGCCCCTTAGCACAAGAGCACAGCCGGTCTCAAGTCTACCCTGCTG TAAGCAAACACTTGCAACATCATGCTGACCTCCAGGCCCTGTTGCATCAG CGTGCCCACACTTGGTGCCCAGCTGGTACTGAGGGTATCAGGGAACAGGC CAGTGGTGGAAGGGCGGACACTTTGGGTTCCCTGGTTTCCTGGCTCCCAA TATCTTTCCCAATGGCATATGGGGTCTAGCAGCTTGGCTCATTTAACTGT GAACCTCTACCCTTTAGAATCTGGGCCTCCAGGCTTGCTTCTGTGCAAAA TGGCAGATAAGGCTCAACCTTTCTTTTTTTAACTTCATTGTTAAATATTA CTCCATTAATACCCATTTACTGCAGAAAAGGTAGGAAATACAGATAAGCA AAAAGGAAAATAAATTAAAATCCTCATACCACCATCATCAAGATAATTAC TGTCACCATTTTGGTATATTTCCTCCCAATACATATATTATCTATATCGT ATATACGACAAAAATGGATCATACTATGTTTCCTGTTCTTCCCCTGTGTT AGTCATCTATTGCTGTATAACAAACTGCCTCAAAACTTAGTGGCTTCACC TTTCCGTGTATTATGATGACAAGAATGTGGTATGACACTGTCTTATATCT GGATCATATGCTAAAAGATAGAAAATGGTTTCTAAACTTATTTGTTCTGT AATAACAAAATTTTATTTCATAAAGTGTTTTTAAAAAAAACCATAGTAGC TTGAAACAACAAACCTTTGTTATCTCACACAGTTTCTGTAGGTCAAGAATTCAGAAGCAGCTT AGCTGGGTGGTCTGGCTTGGTGTCTCTCCTGAGGTCAGGGTTTTGGCTGGGGCTGCATCACCT GAAGGCTTGACTGGGGCCAGAGGA CTGCTTCCAAAGTGGTCCACTCACATGGCTGGCAAGTTGGAGTTGCGTATTGGCAAGAGACTT CGCTTCTTCTCAATGGATCTTCCCAGAGTTCTTGTAGGCAACCTCATAGCATAGCAGTTGGCTT CCCCCAGAGGGAACAGTCCAGGAGAGAACAAGGCAGAAACCACAGGGTCTTTTCTGGCTTAG GCTCCAAAGTCATACTCCACCATTTCTGCATTATCATATTAGTTACACAGGCTAGACCTA TTCTGCATGGAAGAGACTATACCATGGGGTGAATACCAGAAGCAGGGCTATTGAAGGCCAGC TTCAAGGGCGGCTACACATTCCCTTTCAACAGTATGTCATGAACATCTTTCCATGCCAATAGA GCAGATGAATCTTACCATTTTTAATGACTACATGTAAGTGTAGCATAATTTATTTAACCAACCT CCTGTAGTTGGGTATGTGGGTTGTGTCTCGTTTTTTGATAGTAGAATTAATCATCTTGAA TATCCATCACCAAACTTGTCATATTATTTTCTTTTGATGAATGAAAAAGAAAATCAAGTCATGT CTGTCAATCAGAACCCTGAGCAACTAAGAAATGGGGGTACCACTGGGACATAGAGCAAGGTC CCTTCTGATTCTGCTCTTGTCTTTCTCTCCCCATGAAATGGGGAGTTCACTATCTACTGAGACA TCCTAGCCCACAGCTGCACAGTTCTGTCTTTTTAGAAAGCTCTAAGCAGAAACAATGTTC ATCCATCCTCCTCGGGACAGCCCTTGAGCTACTGAAGACTCTAAGCATGTCCTGGTCATCCTCC ATGAGCCATCATCTCTGAGGCCCTCCCCTTCTTGGCCCCTCTTCTCTGGACAGGTTCTGGACAG TCTTGCCCTTCCAAAATTCCTGAAAGCAGGAACTGTTCCTGCTACAATGACTCTCAACTCCAGT GCAGTAC AGACTGTTGGTGTCACCCCTTATCCTGAAGAAGAGGCACTGAGACAGGAC AAGGGTGGGTGCCCAGGAGGGCTGGCATGAGTCATGAGAATCTGGTCCCGGAGAATTAGACG GTGTGGGGAAGTAGGGGTGTTGGGCCGCTTTCTGGCCTCATGGATGCCAATGAATATCAGCAG GTGGCTCCCAGAAAGGAACTCTAGGGGATGCCTGTTGCTCTAAATAGAGGCTAGAGAGGGCA CTGGCAGTTCAGT CAACCAAGAAAGGGGGCCCACTTGCCTCAGCTTCAGGCTTTGTACACATC CTCAGCCTTTCTTGAGAACTGAATTTAGATTCTCCTCCCCTGTGCTGTGTGCTTGGCCCAGAAG AAGGGCAAGTCTCGCTGGGTGGCTGCTTCTTGGCCTGGCTGAACCAGAAGGCCCCAGTGCCAC TCCAAACCTGGGTGTGAGCCCTGCCCCCATGAGCAAACAGTAGCTCAGAGCTGGGGGCTGTG GGGGTCAGTGG CCTGTCACATGAGATCTGATGAGGCCATCTCTGCTCTATATTGGGAAAGG GATCAATTGTATCAAGGGCTTTCTTGGGAGTGATCACTCTGGCCATTGGCGAGAGACCTGGCA TTCTGACAAGGCACCCTCCATACCCTGACCCACTTGCCAGCTCCAGCTAATTTTAGCAGGCTTT GGCAGGTGCCAGCAAGTACATAGCATGTGGATGTCACTCCCAGGTGAGCCCAAGGAGAGGCC TGGGCCAGAGC CTGGAAGTCATGGTCTATGCCCATGGAGGCACCCAAAGCAAGCCTGAGGC CTGGACTTTGCAGTCACAAAATTAAGAATGATACCCCTGTTTTTTGTTTG TTTTGATCAGTTGGCCACCTTCCTCCACCACCCCTTCCCCAAGTTCCAT CAGACCCCTGGATTGTATGAAATGCAAATCGAACCTCTCTGCAGATGAA AATCCACTGGGGATCCCCTTGCCTCCAAGAGCAAGTCCAGACCTGCACCA GCGCGGGCCAGGCCCCCTTAGGACCCCCTCCCTGTCCAAGGGCATTTCAG TAAGTGTTCTGTGGCCAAGGCAGCCTGGTGACTTTCTGCCCGCACAAGGC TGAGGAATGGAAGATGGGTAGGCTGGCTCTGCACACCCCCTCCTGCTGGG CAGCAATCCCTACCCCATGTTCACAGAGTGTGGCCGGCTGCCCCATGGCT CTGTCCCCGTGGCCCTGTCAACTGTTACCCACATGGCCTACCCTCCCTTT CTGCCCTGCCTCTGACCCCATGGCAGGGGGCAGAGTATTTGAGCAGCCGC CAGGCTGAGCCCTTTCAGTGCAGAAGCCCTGGGCTGCCAGCCTCAGGCAG CTCTCCATCCAAGCAGCCGTTGCTGCCACAGGCGGGCCTTACGCTCCAAG GCTACAGCATGTGCTAGGCCTCAGCAGGCAGGAGCATCTCTGCCTCCCAA AGCATCTACCTCTTAGCCCCTCGGAGAGATGGCGATGGATGTCACAAGGA GCCAGGCCCAGACAGCCTTGACTCTGGTAAGGGTCACACCAAAGTTAGGG ACTTTGCACTGGGAGAGCAGCACCCAGGGCAGGGCCCTTGGTTTTGCAGA TTACCAAAACTAAGGCTGGGGGCAGGGAAGGCGAGCAGGCTTGGGGCACC TTGGAAGGAGGCACATGGGCCTTGGGGGTCCTGGCTAGGGCAGCTGTGCCTGCCACTGGCCCT CTGCCCACCACCCCTCCTCACTGTGGCTATCCAGTGTCCAGCCTCTCGAGGGGTTCTAGGGTAC TTATTCCTGGAGCTAACGGTGACCCAGGACACCAGTGTCCGGGGCCTGGCCTGGGGCTTTTAT GGGGGGAGCT GGCTGGCTGCCCAGGGCTGTCTGGCTCTCTGGGGGCTCTGCATGGCATTT CCAGGGGTTGGTGGATCAGGGATTCTGTCCCTCAGGAGAATGTGGGCACTAGCCCAAGGCCA CTCACTTCTGTGTACATAGCCACCTGAGGGCCCAGGAATGGAGGGGGCCAGGCTACAGCTGG ACATCTGGCACTCGGATGGGCTCTGGAGCCCCCAGGCCTGCAGCATCTGCCCAGGGACTGCCC TGGCCCTTGGCCA TTTCCTCAGGGACCCACAGCTCCACCAGCCGGCCCCTCCCAGTGCTGGAA TAGACAGTTCCTCAGTCCACATCTGCCAAAGGCGGCACTAGAAGGCATCCTGCCTTTTTTACT GCGTTCTGGAGGTGGGGTCACAAAGCACTGCTCACTGCATAAAAGGGACAGCATCCTGCCCCT GGCAGCCCTGCCTGACCAGCTCCGCCTCTCCCACTGCTATCCAACCTGTACACCCTGGTGACC ATGTCCAGGCC AGTGGCCTTAAGGACTGTCTCTGTACTGATGGCTCCACATCTACCTCTCC AGCCAGACTCTCCTCTGAACTCGGGCCTCACATGGCCAACTGCTACTTGGAACAAATCGCCCC TTGGCTGGCAGATGTGTTAACATGCCCAGACCAAGATCCCAACTCCCACAACCCAACTCCCAG GTCAGATGGAACCTCTTCTTCCCAGGCCCTTCTGTTCCTCTCCTCAGCCCCTCCCACCTCCCTTC AGAATAAGT CTAGACTCTTATCGCTTTCACCAAGCCTGCGCCCAGCATCCCTGCACAGG GATTGTTAGGACAGCCTGACGCCCTGCTTCCACCCTGCCCCAAGATGCCCCTGCTCTGCAGCC CGGCGCCTCCAGGCTTCTCACCTCCTGCTGCTCACAGCTCAGCCTCACTCCCTCCCTCCCCGCC TCTGCTCCAGCCTCAGTGCAGGT CCCTGCTCCCATCTTCTGGCAGCAGCTGCCCGACCTGGTCCCTCTTCATCTGTCCCCATTCCTTC ACCCCCCAGCCTGTCCCCAACTTGACTGAGGTTCTTTCCTGCAGATCCCCGCCCTTGAGAGGG GTTGGTCCCACTGTCAACTCTGCTTCTGTGCCCTGTGCCGCACCTGGCATTCAGTGAGCATCTG CTGAAGA GATGAGGGTCAGATGCCCTGCAGGGAGTGTGGGGGCGTCCTCAGGCAAGA AAAGTTGTACGTTTGGCTGTGGGCCCTGATTATGTGTCCTGTGACCTCTTGGGTGAGGTCAGC AAGAGAAACCTCTGCAAGCTGGCTGGGGCTGCCTCCCAGAGGCTGCCAGGGGGAGGGACAGG CTCTGTCTGTGCTCTTCTTCCGAGGCTACACCTGGGGCGCCAGGCTCTCAGGGCTCCCCAGGTA CCACCACATTT CCTACACTGCTTGGGAAAGCCCTGTAAGTTTGCACAGACACCCAGCATGA GGCTCGCCAGAGAGATACTTGTAGCTGGGGTCTGGGCACCAGGAACAGCTTGGTGCTGGGCC TGAAGTCGGGCAGGATGCAGCCTGGCCAGGTGAGAGGAAAGCTTGGAGCCAGTGCCTGGGTT CAAACTCCTCTGTGGCCTATGGTTCTGTGGGCTTGGGGAAGGGTTTGTACCTCTGTGTCCAGTT TCCTCACTTATA AAAAAAGGAGATAATAAAAGTACCCATGTCCCAGGGTGGCTGTAGCAATA ATAGGGAGGGGTGCCCAGAGCAGGTCTGGCACACAGGAAGTGTGCATCAG CCTCAGTCCCTGCCATTGGGCTTGTCCTGGGAGTCTGTGAAGCCAACCTC TGCTCCACAATGTGACCCCCAGGCTTGTGAGACCAAGCTGGGTCAGAGCT TCCTCCTCTGGGGTTGCACCAGGAGGGGAACTTCTGCAGGCCCAGATGCA CCCTGAGGAAAGGGCTTGTTCCCACCAAGAACAAGGCTCACCTTTGGAGG ATGCTCCCCACATGAGAGGTGAACCCCCAGGTCTACTGGTGACTGCAGCC TCGGAAGCTGACAGCATCTATCCTCCAACCCATGCCCACTGGGAAGTGTG TGAGGGGTCCTCATAGGCCCTGCGGTGTGGACAATGCAGAGACCCTGTAG CATCTGGCTAGGGCGGGGCCCAGATAAGAGCCCTGTGCCAGGAGAGCCTG GCCGGTTCTGCCACTGTGGGGAGACAGGCTCCCCCACCCCATGTCCCCTG CTTCCCTGCAGCCCACAGAGAATACAGACCTACTTTTACAGAAATCCAGA TTTTTGTGTAAAAGTGTCTCTATTTTAAGTAGATTTTAAGTGGTGGCAGC AAATTTAAGCTTTTGAGAATATTATACAGAACAAATCAGATTCACAGGCC AGATGCAACTTTATTTACAGAAATGGGATCAGGTCCTACCTCAGGTCCCA TCTCACGTTTTCACTTATGCCTATACGTCTCCTTCACGGGAAAGGCCACA AGAGGCCCTGCGGTAAGTGTCCCGGTGTTGATTTAAAGTCCCCAACAGTG AATATGAGGGTCCTCACTGTTGCAGCAAGAGGATACCCCCCTGTGTATCT TGGAAATGCCTGCAGCCCTCTTGCTGCAGAACAGATTCTTAGGAGAGAAA CTGTCAGATCAAAGTTAAACTTAGAGAAACTCCAAATTGCCCTCTGAACA GACGGTATCAGTTTGACATCATCCAATACCGGGATTCCTCGGGGAGAACT TTCTGGCCTAGAAGGCAGTAGAGCCAGGACTTCACCCAGTCAGTGGCAGG GCCACACGTGGGCCTTGATACAGAGGGGGAAGACTTGAGCCTCCTCGACA CCCTACAGGGCCCAGCCTCCCAACATGTGATAAGAGAAACAACAGCCAAC TTGTACCTAGCTCTCCTTATTCTCCAAGGGCTGGGCCAGTTCTCCCCACA GCCCTGCAAGGGAGGATCACTCAAGGGCCCCAACTGTCTGACAATACAGC CACACTCTGATCAGCCACCTGGGCATAGGCTCCATGCCATTGTCCTCCGC CAAGACCTCAGACTGAAATGTTGGCTCCTCCCATGAAGAACCTGGGGCCA AAGGACCAGAGTCCAGGTCCGTGGCTGCCAGGATGGGCCACTTGGAGAGA GGCACAAGGGTGGTGCCAGGCAGGTGTGAGGGCTGGACCTTTGCAAGAGC AGCATCACTTTTGTTGAGAGCCCACAGGTATCTTATAATTGGGTCCTAGG ACTTCCTGCCAGTAGCCATTGTGTGCATGGATTTGGGTGCTGGCCTCACC ATGGTGTGCTGGCTGCCCATGCCTGCAATAATGACTTCTGTAAGCCTTTC TTCATCTGCAAGATGGGTGCTGCTGGCACCTCCTCCCCGGTGCTGTGGTG ACAGGGCATAGTGTGTGAGGCTGCTATGTGAAGCACCTAATGCAGGGCCT GGCATATGGAGGAATTCAGCAAATGACAGATGCCTTCACAGTTAGTTCCT GGCATCCTCTACATTGGTGGGTGTAGGAAAGAAAGACAGAGGAGGCAAAA GTTGTAGCTGTGGGGCATTGAGGACAGCCTGGATTGTTCCACAGAGCCCT GAGGACATCTCCAGGGGTGTGCTCTGCAGGGGCAGCTGGATTGGAGGGTT AGGGGTCGGGGAGGGCGTGCACTCCCACCCATGCTCACAGCCTCGGAACA GTGCCTGCTCAGCCAACATGGGTGTTTGATTCTGTGTCTTTTGTCACAGA CTTTATCAGCCCCATCCCTTTCTGACCTTGCCTCAGTTTAAATTTTACAT GTGGGGCCTCATTAAGAGACATGGTTCTTAACTAAAGATCTGTATCCATT AGGAATGCTTTGGGCTGCAGGAAGACAAACACCTGACTCACTGTGGCATA AGTGGTTTGCGTCTGCTCCCATAAGCTGCACGTGGAGGGTGGATCTGGCA TTACTCTCTCTTCCCTACATTTGCAGTATGCTAACAGCTTTAACCTCCAG CCTTGTTTCTTCATGGTTGCAGGGTGGCTATCACAGCGCTGGCCATCACA TCCTTACACAGCTGTGTTTACAAATTTAGGGGGACATTGAAGCTCCTCCC CTGCTAAAATCAGGCTTCCCTTCACCTGTCATTGGCCAGAACTGGGTGAA ATGCCCAACTCTAGACCGATCATCAGTAAGAGGAGTATAGAATTGCTGTG CCCACCTTAGATTAATCATGGCGCAATGTGCTCCCCATACCAACAAAATC TGAGTTCTAGAAACTGAGGAAGAAGAGGAAAATGGCCGTCTTGCCTCCTG GCTGGGATTCAGAGCATCTCCAACCCTCTGAGCTTATGTGTAAGACTGTG GGCAAAAGTGTGTGAGTTTTTGTGGAATGGATCCACGGCTTTTATCAGAG CATCTTTCCTTTTTCTTTTTGATTCAAGATGAAAATATTCTTATGATTAT TTTTCTCACCACTGCCCAGAGATAACCAGCACATTAACATGGCCTTTTCT CCATGAATAGCACTAGGGTGCCCAGTGGACAGACACATAGCTGTCCACAC ACCAGCTTGCTGGGGATGCATAGGCAGAGTCACATCTGCACTCACGGCCT GTCCTCACACTGCCATGTGGAGAGCCAGCAGCCACACCATGGGCCGTCCA TGCTCACGGGAGTGGCAGTATCAGATCTGAGCTTCGTGTGCCCAGGCGTC TCTCACATCAGTGCATAGGGACCCTCTTTGTTCTGTGGCCCAGTGTGCCC ATGCCACAGATGGCTTCAGTCAGCAGACACCTCCTTCTAGACACTCACAC TCACTCCTGGCTGGCCCTTAGCACACCTGTGCAGACAGGCCCATTTATTT TCTTGTGTAAATCCCAAGTAGGAGGACTGGGTCTCTCTGACAGCAATGCC AGCTGCCTGGCACCCTCCAGACAGGTGGCTCAAGCCCCACCTCGCCAGCT CTCCCAGTTAGCCCCTCCTTTCCCTGGCTCTGACCTGAGGGACGAAGCAG GGTGCTACAGGACGCTGTGCCACAGGGATATCGTCAGGGACAGAAGCTAC TCTGCCCTCTGCTGCTCACCCCTCCAACACGCTGTGGGCTGCATTTGTTG AGTGGCTGGTACCAGACTCTGCTCTTCTGACTTTCCAGCTGGTTTTACCT GTAGTAAAGTTTGAGAAGATGGGTCATCCTGACCCCGGGGTCAGAAGACA GAAGGAGGCCCATGGCGTGTGGGGGAGATGCCCCGTGAGGCCCTCGGTGT GCAGATGCCTGGTGACAGCCCCACCCTGAGGTCCCCAGCCTACCCCCTCC CCAGCCCGACTGCTCCCATCCCCCTCCCTGTGCAGGTAGAGCAGATCCTG GCAGAGTTCCAGCTGCAGGAGGAGGACCTGAAGAAGGTGATGAGACGGAT GCAGAAGGAGATGGACCGCGGCCTGAGGCTGGAGACCCATGAAGAGGCCA GTGTGAAGATGCTGCCCACCTACGTGCGCTCCACCCCAGAAGGCTCAGGT ACCACATGGTAACCGGCTCCTCATCCAGAAGCAGCTGTGGGCTCAGCCCT AGCTGGGAGAAGCACCCCAGGCACTCCCAGACTCACAGCCAGCCCGAGAC AGAATCTCCTGGGGAGCAATGAAGTCCTCGACTTGGGCCAGTTCTCACCC TTGGCTCCTCTGGTCCGGCCCTGGGGCACTCGGGCTCACCCTGGAGCTGG CAAACCTCAGGAAAACTGGCGTTTTAAATCTCACTCCTGGCCAGGTGCAG TGGCTCACCCCTGTAACTTCAACACTTTGGGAGGCCAAAGCAGGCGGATC TCTTGAGGCCAGGAGTTTGAGACCAGCCTGCCCAACATGGTGAAACCCCG TCTCTACTAAAAATACAAAAATTATCCAGGCATGGTGGCACATTCCTGTA GTTCCAGCTACTCGGGAGGCTGAGGCATAAGAATTGCTTGAACCCGGGAG GCCGAGGTTGCAGTGAGCCAAAATCGCGCCACTGCACTCCAGCCTGGGGT GACAGGGTGAGACACCATCTCAAAAAAAAAAAAAAAAAAAGACCTCACTG CTCCCCATGGGCACTTAGGGAACTCTCCCAGCCCAGTTCTGCAGCTGGGC CATTGCACTAGATCCTCAGTTGGTCCCTGGGCTCTCGGTGACTGTCCAGG GCAGGAGTTTCCCATTGACTTTTCCCTGGTTGACCTTTGACCCCTTCCAC AGTTGACACTGGTGTCCCCAGGTGTCTGGTGGCCCCTTGTCCAGCTCCCT TAGTCCCTTGTGCCTTCCCTCCTCCTCTTTGTAATATCCGGGCTCAGTCA CCTGGGGCCCACCCAGCCCAAGGCCAGCCTGTGGGTGTCCCTGAGGCTGA CACACTTCTCTCTGTGCCTTTAGAAGTCGGGGACTTCCTCTCCCTGGACC TGGGTGGCACTAACTTCAGGGTGATGCTGGTGAAGGTGGGAGAAGGTGAG GAGGGGCAGTGGAGCGTGAAGACCAAACACCAGATGTACTCCATCCCCGA GGACGCCATGACCGGCACTGCTGAGATGGTGAGCAGCGCAGGGGCCGGGG CAGGGGGCCAAGGCCATGCAGGATCTCAGGGCCCAGCTAGTCCTGACGGG AGGTGCCACCTGTCTACCAGGGGTGGGGAGAGCGGGGGCTGGAGGACCAC CCAGCCTCAGAGGCAGCTGGAGGCCTGGGTGAACAGGACTGGCCAACATG TCCCCAAGTCCCACAGTCACCATCTGGCCAGCATTGAGAGGGGAACGGGC TGAGGAAGAGTTAGTGGCAAGAGGAACCCCAGCCAGTCACACCTTGTCCA GTTTACCAGAGGAAAAAGCAATGTGTAAGAACAGAAATGTGACCCGGCAG CCAGTGCACTGCCCCCCTCTCCAAAGGCCACCCCTCACCCTCCACCAGCA TGCACAGAAAGTGGGGTGACAGCAATCACAATGTCTACCCAGGCAGCAAG GACCCCTGACCATGGGGAGGACTGGGGTGCAGGGAACATAGAAGCAGAAT GAGGCCTAGGGGGAGTTGGGCAAGGCCAGAGCCCTAGCTGCAGCCAAGCA CATGGCCAAGGCCAGCTCCTGGAAGGGCAGGGCTCCGAGGCAGGAGGCAG GAGGCTGCCCGTGGCTACCCGTCCTCACACCCCTGCAGCTTGCTAGTCTG TCTGTGGGCTGGGTGTGAATCAAGGCAGTGGGATGGTGTGGGGACCTCCC TGGCCCCAGCAGCCAGTGAGGAGCCTGGTCAGTCAGCAGAGCATTCAGCA GTATCCAGTTCCATGGAGAGGCCCGTGTGAGGGGAGTCGGGGCTGGTCTT CAGTAAGGATGGGTGGCCAGGGCCCCTAGAAGTAGAAAAGGAGACTCCGG GTGCTGGAGACAGAAATCAAGGATGTGCCTCCATGTGGAGCCTCAGGAAT AGCTGGCCAGGCCTGAGGCTGAACCTCACAAGGTTCAGCTGGGAGGGCTA GGCTGACAGAGCACAGCCGGGCCAGGGACCAGCCTGCCCTGTGTTGCCTT GTCCCGAGGGCCACTGTCAGCAGGTCTCTGGCATGGGGGAGGCTTAGGGC CTGAGCCCAACAAGCAGCAGCGGAAGAGGAGAGGGAAACTGTGGACAGGC CTGGCATTCAGTGGCCAGGTGTTGCAGTGTCCCTGAGGAATAGCTTGGCT TGAGGCCGTGGGGAGGGCTGCCGGCCAGCGCACCCCCCCATGCCAGATGG TCACCATGGCGTGCATCTTCCAGCTCTTCGACTACATCTCTGAGTGCATC TCCGACTTCCTGGACAAGCATCAGATGAAACACAAGAAGCTGCCCCTGGG CTTCACCTTCTCCTTTCCTGTGAGGCACGAAGACATCGATAAGGTGGGCC GGGTGGAGGGGCAGAAGGCAGATGAGGGGAGGCACAGGCACCCCAGAGGA ACTCTGCCTTCAAATGTAGCCCCCATACCATGTGCTCAGAAGGGAGATCT GGATTCAAATTGTGGCCATGTCACCTGCCACCTCTAATGCTGTGGAAAAG AAGCATCACATTAGCTAATTCTGGCTGTGCGCCTTGTGAGGCACCAGCTA TGATCACCCCACTCCAGTGGAAAGAGCAGCTGGCAGTAGGGTGGGGCTCA AACTCAGGCAGCCGGGCTCTGGGTCACCTGCAGGCCACGGTCATGTCACA CTGCCTCTAGCTGAGTCAGAAATGTGAAGGAACTGAGATTCTACCCTTCC TGCAAGCTAGCAAAGTGGCCTGCCAGTTACATCTGTGCATGCACACACAC ACACAGTTATATATGCACACACATAAAACACGAGACCTTTGGGTCAGGGA GAAAGCCAGATCCTCACTCACGGCAGAAGCAGCAGCCAAAGCAACATCTC ATGTGGTTTTCCAAGCCCCAGTCCCTACAGAGACAGAGAGGGCCAGGTGG CACCTGTGCATGCAGCGGGGTACCTTGCAGGAGGGAAATCCTGATTTTAC ACAAAGCTGCTCCCCCCACGCCCTGCCTTGACTCTGGGATGACGTCTCAG AGCTGTGCAGTACAACATTCTTAAATTGGCTGGGACTCAGCCCTGCAGAA ATATGATATCTTCAAGGAGAATCGTTCCCAAAACCTCTCAAAGCTATGGG GCTGCTCTGAGCCTGTTTCCTCAGCTGTAAAGTAGGGTGCATACTTTTAT GGCCCTGTGCAGGAGGTAGTGACAGGCCCTAGCACCCTGCCTCCAGTATA TGTTAGCAGCCACGAGGCCTATCTCTCCCCACAGGGCATCCTTCTCAACT GGACCAAGGGCTTCAAGGCCTCAGGAGCAGAAGGGAACAATGTCGTGGGG CTTCTGCGAGACGCTATCAAACGGAGAGGGGTGAGGGGGCACCTGTACCT GCCGGGGGGGCTGCCCTGGGCCACCCACCCCAGCACTGCCTGCCTTTCTC CTTGGCTTCCAGCACTGCAGCTTCTGTGCTTCTTGGCAGGACTTTGAAAT GGATGTGGTGGCAATGGTGAATGACACGGTGGCCACGATGATCTCCTGCT ACTACGAAGACCATCAGTGCGAGGTCGGCATGATCGTGGGTAAGGGCTCC TTGCACCCCTGCCCCTTCCAGACTGCTGAGGCTCCCTGTGTACAACAGGC TTCAAGGGCCCTGTGGGGTGAGGACCAAACTACTTAACAACCGGTGATGT CAGAGCAGAGCCTGGTGCTACAGCCTGGGTGGTCTTGGGGTATCAAGATG GAAGCACCGTGTACAGTAGGAAGCATTTCAACGCCATGATGCCACATTCC TGCATCAGATGGTATGCCAGCTGCATATCCACCTCACCCATCAGGATTAT AATTAAAACACTTATCTGGTAAATTGACCAACTGGACAGATTGGTCCAAG TGGAAGAGGATAAGCAAAAGTGGTACCATCTCCACCCGAATGGTCTTTCC ACGGGCCTGCCCCTGCCCCTGCCCCCACCCAAAGTGAAGGCAGGTACCAG GAAAGGGAGCAGCAGTCCGCCCCTCCCAGCAGAGGGGTCTTCCACACCAA CTCGGACCTTTCTCAGAAGTTCCGGAGGTCATTATAACCAGCCTTCACTG AGGAGCAATCCAATCAGATCAGTTATCTGCTGTGCGCACAGCCGTGTGGT TCTATACTTCTCTTACTTCCATTTTCACCTTTCAGAAGGAACGTTGTCTT TAAATGCAGCATCTAAACGTGAGCCCCAGCCATCCCTGGCTGTGATCCCC CCAGCCCTTTCCACCCTATCCTCTGGAACTGCCTGGGGCTCCCCAAGACA CTTCCACATGAATTCCCACCAAGCCAAGCTGCAGCTGCTGGGCCCAGGCA TAACCCCTCCTGGGGCAGAGGTGGCAAGGAGTGACCCACCACTCACATCT GCCCCACATCCACTCTTGACTCTGCTCAGTGTTTAAAAACATGTTTATAA CAATTACCAAGATCTGAAAATTAGGAGAATTCACATCAAAGTCTGGATTT CTGTTTGTTCATAAAAAACTAGAAGGCAGCCAGGCAAGGTGGCTCACGCC AGTAATCCCAACACTTTGGGAGGCTAAGGCAGGCGGGTCACTTGAGGTCA GGATTTGAAGACTAGCTGGCCAACAAGGTGTAACCTCGTCTCTACTAAAA ATACAAAAATTAGCTGGGTGTGATGGCGCATGCCTGTAATCCCAGGTACT CAGGAGACTGAGGCAGGAGAATTGCTTAAACCCTGGAGGCAGAGGTTGCA GTGAGCCAAGATCACGCCACTGCACTCCAGCCTGGGTGATGGAGTGAGTG AGACTCTGTCTCCAAATAAATAAATAAATAAATAAAAACTGGAAGTCTAA GCATCACTGAGCCCTGATTCCTATGTGGCAGCTCGACTGACCAGCATTTG AGTTGCTGTCCCTGACAGCTTTGGGGGTGTGCAGCCCACACAGTCATGCT AGCTTGAGGCTCTGCTGTCAGCAGTTTGAAACTCTTAATAACTTGTGAAC AAAAGACTCCATGTTGTCACTCTGCACAGGGGCCAGCAAATTACAAAATT CCATATCCGGAATTGTCTACAGGAGCCTCTGGGCTGCTCCCAAGGGCCCA CACCATGCCTTACTCACTTTGGGTTGCCATCCAAACATGTCTCATGACAA AGAAGCTCAAACATGTGCATGGACAGTGCCAGAAAACAAGGGTCGTACAT AGACAAAATAAAATGATAACGTCCCACAACCATTTCTTTGATACACACTG TTTCTCTCAGTCCTCCCAACCACCTAGGTAACAGGCAGGGAAGGTGTTAC TGTTGCCTGTTAGGAAAGAGGACAGCCCTGAAAGCTGTCCCTGGCCACTG AAGCAACCCAGGTCTTCCAGCCCCAGGGAGAGCCGCCTTTCCATTGTTCC AGACAAAGCAGAGACAGGCATGGGGGAGCGGGAGAGGGACTCCTGTGGGC AGGAACCAGGCCCTACTCCGGGGCAGTGCAGCTCTCGCTGACAGTCCCCC CGACCTCCACCCCAGGCACGGGCTGCAATGCCTGCTACATGGAGGAGATG CAGAATGTGGAGCTGGTGGAGGGGGACGAGGGCCGCATGTGCGTCAATAC CGAGTGGGGCGCCTTCGGGGACTCCGGCGAGCTGGACGAGTTCCTGCTGG AGTATGACCGCCTGGTGGACGAGAGCTCTGCAAACCCCGGTCAGCAGCTG TAAGGATGCCCCCCTCCCCCACAACCCAGGCCCTGGGCCGCTCTGGTGCA GCGGCAGATGGGAGCCGGGCCATTGCAGATAATGGGCTTGTTTTTAAACA ACTCTGGGGAAAAGCAAACTGACAATCCGTTCGTAAGCTCCATCCCTTCT GCTCAGTCATGACCTGCCCCTGTGAGAGATGAAGGGTTAGTCCCAGTTGT GATGTGATAAGCCCAGACCTCTTTCCTTCCGACAGGTGATCGTGCATGCA GAGGAGGCTCTGAGACGCCCCCAGCAAGGTTCCTGGGTTTAACCCAACAT TCCCCAAAGTATGTATTTGGCCACATTCACAGAAAGAATATTAGTCTTTT GTGGAATGCTGCGGGTTGACAGTCACAGCTTGGAAACCAACCCACAGAGA GCTCATCATTAATCATGGCTATCACTTGTTTACCACCTACTGTGCCAGGC CTATGCTAATTACTTTATTAGCGTCCTCTCTGCCGCTCGCAGGCCTCTAT TATTATAGGTCAGTAGTATTCGATTTATTTAAATTAAATACGGAAGGTCA TAGATTAAGCAAGAAAGTGCCAGCAACATGGTGCGTGCCTCTGACTGGGC ACTAACCCTCCAAGTCTTAGTTTTCCCAACCATAACTGGCCAATGAACAG CAGCTCTGGATGCAGCTAAAGGAAGACTGAAGCTGTAGGTCCCGTGCTCG GCGCAGGGCCCCCTGCAAGGAAGGTTTCGGAGGGACTGGATGGGGTCTTT GAACTATCTGTCTTTCCCTTTACTGCAGTGGGCCCAGGGGCAGGCCAAAG TTGCTCCCGTGATTGACTTGAACGTGCACGTTCCTAATCCCTGACATTTC TAAAGCTCTGGCTCATTAACGAGGGAAAGACGTGAACCAGCTGGGGGAGT GGGGATCGCAGTGCCCCACGTGGCCGCCTCGTGACCTCAGTGGGGAGCAG TGGGGCCGGCTCCCGGCTTCCACCTGCATGAGGGGCCCTCCCTCGTGCCT GCTGATGTAATGGACCTGCCCTATGTCCAGGTATGAGAAGCTCATAGGTG GCAAGTACATGGGCGAGCTGGTGCGGCTTGTGCTGCTCAGGCTCGTGGAC GAAAACCTGCTCTTCCACGGGGAGGCCTCCGAGCAGCTGCGCACACGCGG AGCCTTCGAGACGCGCTTCGTGTCGCAGGTGGAGAGGTGTGCGGAGGAGG AGGGTGGGTGCAAAGGGCAGGGGCTGGGGACGCCCGGGCACTGCAGACTT GGTCTCAGGGCGACGCTGAGTCCCAGGCCCGGGGCGCAGGGATGGGAAAC TAGGGCCTGGGGCGGGATTCCGGGCGTGGGCGGGGCCCGGGGCGGGGCAC AGGGGGCGGGGGAGTGGGCGGGGCCCGAGGCCGGGCGCTGGAGGCGAGGG CGGGGCAGGGACGGGTCCAAGGGCAGGAGGCTGGGACAGGACGGGGATGC AAAGGGAGGGGCGGGGCCCGAGACGGGGAGGAGGGGGAGGGCCCAAGGGG AGGAGGCGGGGTCCGGACGGGGATGCCAAGAGCAGGGATGGGAGCGAGCC TGCGTCCGGGCACTGGTCCCCATCCGTGAGTCCCCTCGGTGCTCCCTGCC CGCCGTGGCCATCCTCTCACATCACTCACAACCCCAAGGCGCGGCATGGT TGACACCCCCACGTTAGGACGGAGACCCTGGGCTTAGTTAGAGGGGGCAG TACTAACCAGTCCCTGGCGGAAACGCTTTGGCTGGGTGAGGTGAGCGGGA TCGCCCCCATTTCTCCAGAGAGGGGTCCCGGCTCAGCGAGGGAAAGAGGC CGCCGCTGGGGGGACGGCTGGCCGGGGCCCCTCCCTGGAGAACGAGAGGC CGCCGCTGGAGGGGGATGGACTGTCGGAGCGACACTCAGCGACCGCCCTA CCTCCTCCCGCCCCGCAGCGACACGGGCGACCGCAAGCAGATCTACAACA TCCTGAGCACGCTGGGGCTGCGACCCTCGACCACCGACTGCGACATCGTG CGCCGCGCCTGCGAGAGCGTGTCTACGCGCGCTGCGCACATGTGCTCGGC GGGGCTGGCGGGCGTCATCAACCGCATGCGCGAGAGCCGCAGCGAGGACG TAATGCGCATCACTGTGGGCGTGGATGGCTCCGTGTACAAGCTGCACCCC AGGTGAGCCCGCCCCGCTCTCTCCCTGGTAAAGTGGGGCCCAAAAAGCGC GCGCTCCAAGGTTCCTTGCGGTTCCCAAGCTCCAAGATTTCGTAGTCCTC TTCTCGTCCCCCTTGGCCTAGATTTGGGGGAAGGGTCGACTGCGTGCAGG GCGCCCGGTAATGAATGTGGAGGATGAGGTGGGAGGAGGGACGGCAGCCC TGCTTCTCTTCTGCCCAGCTTCAAGGAGCGGTTCCATGCCAGCGTGCGCA GGCTGACGCCCAGCTGCGAGATCACCTTCATCGAGTCGGAGGAGGGCAGT GGCCGGGGCGCGGCCCTGGTCTCGGCGGTGGCCTGTAAGAAGGCCTGTAT GCTGGGCCAGTGAGAGCAGTGGCCGCAAGCGCAGGGAGGATGCCACAGCC CCACAGCACCCAGGCTCCATGGGGAAGTGCTCCCCACACGTGCTCGCAGC CTGGCGGGGCAGGAGGCCTGGCCTTGTCAGGACCCAGGCCGCCTGCCATA CCGCTGGGGAACAGAGCGGGCCTCTTCCCTCAGTTTTTCGGTGGGACAGC CCCAGGGCCCTAACGGGGGTGCGGCAGGAGCAGGAACAGAGACTCTGGAA GCCCCCCACCTTTCTCGCTGGAATCAATTTCCCAGAAGGGAGTTGCTCAC TCAGGACTTTGATGCATTTCCACACTGTCAGAGCTGTTGGCCTCGCCTGG GCCCAGGCTCTGGGAAGGGGTGCCCTCTGGATCCTGCTGTGGCCTCACTT CCCTGGGAACTCATCCTGTGTGGGGAGGCAGCTCCAACAGCTTGACCAGA CCTAGACCTGGGCCAAAAGGGCAGCCAGGGGCTGCTCATCACCCAGTCCT GGCCATTTTCTTGCCTGAGGCTCAAGAGGCCCAGGGAGCAATGGGAGGGG GCTCCATGGAGGAGGTGTCCCAAGCTTTGAATACCCCCAGAGACCTTTTC TCTCCCATACCATCACTGAGTGGCTTGTGATTCTGGGATGGACCCTCGCA GCAGGTGCAAGAGACAGAGCCCCCAAGCCTCTGCCCCAAGGGGCCCACAA AGGGGAGAAGGGCCAGCCCTACATCTTCAGCTCCCATAGCGCTGGCTCAG GAAGAAACCCCAAGCAGCATTCAGCACACCCCAAGGGACAACCCCATCAT ATGACATGCCACCCTCTCCATGCCCAACCTAAGATTGTGTGGGTTTTTTA ATTAAAAATGTTAAAAGTTTTAAACATGGCCTGTCCACTGTTCTTTGACT TCTGTGCATTAGGACTGTGGGGACAATCTATAAAGAGTCTGCGTCACATG CATGAAGACACTTCAGTATCTCGGCAATGCCCTCCAGACAGCTCCTCCAG CCATCTGTGCCAAGGGGAGTGTGAGGAGTGACAGACCAGGCTGTAGGAAC AGGAATGGGGTGTCATGGGGGATGGCAGAGCAGTGGACAGTACACTGCCT GGCCCGGGCCCCTGCTTGCCTGCCCATGGAATGTGTGCAGAGGGAGTGCC AGGCCAGGTGCTGCTCTGGAGAAGTGGGGGAATGAGGCTGGTCCTGCTGC AGGTCAGTCTCAGCACCGTCCTGTCCAGTCAGAGTCACTTAGGTTTGCCA GTGAGTAGGGGCCCAGATACATGTTGGATTTCTAAGGTCCCTCCAGATGC TCCTGTCAGTGGAACGCCTATTTAGAGTTAGCCAAGCGTAGGCATAATGC CATCTTTCTGCAGCATAAAATACAGTGACATAGAAACATATTTGTGTGAT TTTCATGCATTCCTTTTTTGATGAGAGATATTACCCAGCTAATTAGGAAC AACTGTTTTGTTTCCTTCAGATCATAACCCAAAGTTGTGATTTTGAAAAG TCATGTCCCCCTTCAGATTTCTTGTTTTCTGCTACTTCTCATGTGGAATT GCTTTGGCTCTTCTTAGTTCTCTTGAGTCTAAATTATTCCTTATAAGTTG GTGCAAGCATCTGATTATTTTGTTATCATTACTGTTATGCTCAAGCATTC ACAGAGTGGAACACATTTTAATATCAATTGCTTTCTATTTCTCCTTTATA TTACAGTTCAGGACATTGTATTAATTATTAAAATTCTATTCGTAGGTAGG TTATATGACTGAATTGAAATAGATAAAATGAATTTCTTTTCTAGATAACA AAGGAGGTGTCATAAAACACTTGTTATGGGCCAGTGTGATGGCTCATGCC TATAATCTCAGTGCTTTGAGAGGCTGAGGTGGAGGATTGCTTGAGGCCAG GAATTTGAGACCAGCCTGGGGCAACATAGCAAGACCCCATCTCTTAAAAA AAAAAGGGTGGGGCGGGGGGGCACTGCTGGGCGCGGTGGCTCATGCCTGT AATCCCAGCACTTTGGGAAGCCAAAGCAGGTGGATCAAAAGGTCAGGAGT TCGAGATCAGCCTGGCCAACATGGTGAAACCCCAACTCTACTAAAAATAC AAAAATTAGCCGGGCATGATGGCGGGTGCTTATAATCCCAGCTACTCAGG AGGCTGAGGCAGAAGAATTGCTTGAACCCAGGAGGCGGAGGTTGCAGTGA GCAGAGATTGCACCACTGCACTCCAGCCTGGGCAACAGAGCGAAACTCTG TCTCAAAAATGAATTAATTAATTAAAAAAAGAAAAAAAAAACACTGGGCA GGGTGGTGTGCACCTGTAGTCCCAACTACTCCAGAGGCTGAGGCAGGAAG GAGCACTTGAGCCCAGGAGGTTGTCTGCAGTGAGCTCTACTCATGCCACT GCACTCCAGCCTGGGTGACAGAGCTCAGTGGCTTACACCTGTAATCCTAG CACTTTGGGAGGCTGAAGCAGGCAGATCACCTAAGATCAGGAGTTCGAGA CCGGCTGGCCAACATGATAAAACCCCGTCTTTACTAAAAATAAAATAAAA TAAAAAATATATATAAAAATTAGCTGGGTGTGGTGGCACATGCCTATAAT CCCAGCTGCTTGGGAGGCTGAGGAACAAGAATGGCTTGAACCCGGGAGGC AGAGGTGGCAGTGAGCTGAGATCGCGCCACTGCACTCCAGCCTGTGCGAG AGTGAGACTCTGTCTCAAAAAAAAAAAAGGGAATTTAAGAAATTTAAAAG AAAACTCTTGTTATATAAAAAGGGTATTGGGTCTGACAGATAAGAGCTCC TGCACTCTACCAGCCAGCTACTGACAGACATAGGTCTGGCTCCAGTGGAG GGGCAGCAGCCAGTGAGCCCAGCCTGGGGTGGCCCACTCCTGCTGCCTCC AGGATGTCCCCTGTTTCCCCAGCCCCTCTGCTGTGCCCTCGGCCCCAGAA GCTGGCGAGACTGCTTCTCTGGAACAGCATCACGCAGGCCTGCCCATCGG CCCACTGTGCACCAGGCCTTCTGGGGATACAGATGTCAACCAGGTGGGGT GCTCAGGAGGGGCACAGAAGCCAGGAATGACAAACACATCAGCCACCAGG CAAATGGGAAATGTGCCCCAGAAGCTCCCTGCTGAGGATGTTAGGGAGAG CATTCTGAAGTAGTGTGGTTGAGATGAGGCTTGAGGAAGGCAAGGCTCCA AACAGCAGGGCAGACTGGGAGCAAGGTAGACTGCATGGGAGGGCAGCTGA TGGAGCTCCTTAACCCTCTGGAATTGCCCCAAAGCCAAGCAAAGTGTTCT TCTTGGGGTCACAGCTAGCTCAGGGATGCCTTCTGCCCCTTGGTCAGAGG GGCAAAAGGTCAGAGCCTAGGGTCACCAAAACCTCTGGGAAGCCCCGGGG GTCTCAGGCCACAGACCATCCTCAGAACTACACACTGCCCTCCCATGCCT GGCGGGGGCCCTGGACTGGCCCTCACCAGCTGTCTTCTTGCACTGGCCAG GGTTCTGGCTGGACTGGCAAGGAGGGGTGGTCAGATACAGGAGTAACTGG ATCCCTTCATCAGGACCTAGGGTGGTGAGAGCTTTGAGCCTGCTCTGCTC CAGGCAGACATTGTGTCTGGCCCTGCCAGGATGGATAGACAGCAGGATGT TACACGTTGAGGACATGAAGGTCATCAGGAATGTGGCTGGAATCTGTTAG GCCTCCCCCAGCCCAGGCGGGGGCTGCCAAGTTTGGGCCTATCCTCTGTT CCTCTCCTTATTTGGACCTTCAGGTGATAAGGCTGAGACATAAAGGAGGC TGGGCCCTGCCACCACGACAGCAGCCACACCTCTGCAGAGAGAATGGTGA GTGCCTGCTGGGGAAGAAAGGCTAGCGGTCTCCCAGGTGCTGGCCTTTGG GCTGGGGGAGCAGAGTTTTCTGTGCTTGTGTTGGGTTGAGGGTGGTCCCC AGGGAGAGGAAGAGGATCCTGGCCCTGGCTCTCCTGGGAATGCTCTGGGA CTGTGCATGATGGGTGGGGTGGGGAGACTCTGAGGAGTTGGGGAGAGGAC CCCTCCCTACTCACAGTGTTGCAGGCCAGCAGGAAGGCGGGGACCCGGGG CAAGGTGGCAGCCACCAAGCAGGCCCAACGTGGTTCTTCCAACGTCTTTT CCATGTTTGAACAAGCCCAGATACAGGAGTTCAAAGAAGTGAGTGCCCAC TCCCAGTAGCCTCAGATCCCATCCTGGCCCCCCCACCCCACCCCACATAC ATACCCCCCTTCTACCCTGACCTTGCCTCTCACACCACCCAGGTCTCTCC CCCACCTCCCACCTTCCCTAGAGCTGGGGGCTGCTCCCACCTGAAGGCCC CCATCCCACAGGCCTTCAGCTGTATCGACCAGAATCGTGATGGCATCATC TGCAAGGCAGACCTGAGGGAGACCTACTCCCAGCTGGGTGCGTGCACCCA CCTCCCACCCTGCGCACTGGGGTCCCTACTCTGAGCTGCTGGGCGGGTGG GAGTGGCTGGGGGGACAGGACTCTGCTCCCCTGCTTCCCCTCCTCCCCGT CTCCTCACACTGCCCTTCCCCCCTTGTCACGCCTTGCTTCCACTTCACCT TCCCGACCCACAGCTGCCTCTGCCCCTCCAGCCCCTGTGGCCAGGATGGA GGGAGGGCGGCCTGGGCCTTCTGGGGGACACCCAGGGTCCCTGTGTGCAC CTCATGCCCCACCCCCACCAGGGAAGGTGAGTGTCCCAGAGGAGGAGCTG GACGCCATGCTGCAAGAGGGCAAGGGCCCCATCAACTTCACCGTCTTCCT CACGCTCTTTGGGGAGAAGCTCAATGGTGAGCCTGGGACAGAGCTGGGCA CCCTTGGCCAGGCAGGGAGCCTGCACCCTGCCTGAACCCCACCTGAACCC TGCCTGAACCCCACCTGAACCTTACATGAACCCCACCTGAACCCTAACTG AACCCCACCTGGACCCACCTGGACTCTTCCTGGCCATGACCCATTCCAAG CACATCCTCTGCCCCAGAATCCCATGTGCACTGGTCACCCCAGTGCTGAC TTGGAGCCAGGAAATGTGCCTTCAGCCCCCACCCCCAAATTCCAGTCTCC CAGCCAAGCTGCCCGCCTCAGGAGGATGACCATTCCCAGCCCCACTGATC CCCGAGAAACATTTTATGTTAGGGAATACCCCCACCTCTTCTGGGATGTG GGAGGCTCCTCATGCAGCCCAGTTCCTCCTGCGGGGGACCTGGGATGCTG GAGACATGGATGCTCACCTGGCTGCCTCGGCCTTCCAGGGACAGACCCCG AGGAAGCCATCCTGAGTGCCTTCCGCATGTTTGACCCCAGCGGCAAAGGG GTGGTGAACAAGGATGAGTAAGTATGGGCCCAGCCAGATGAGGAGCACCG TGGTGGAAGCAGAGAGCGGGGTGAGGCCCCTAGTGAGGGGGGCTGCCTGT GCTTCGGGGCCTTACACTGCTCTTTGGGGTGCAGCCAACCCTTCCCTGCG CCATGGGAGCCTCCGTACCCACCTTCCCTGTGCAGTCACTCCCCCGCAGT CTCCTGCTCAGACCCTCCTCACCCCCCAGGTTCAAGCAGCTTCTCCTGAC CCAGGCAGACAAGTTCTCTCCAGCTGAGGTGAGGCTGCCCAGCCCCTTCA ATACTCATCCCCAGCACCTTCTCTGGGCCTTCACCCATGACCCAGAGCCC AGTACCAGTGAGGCAGTTGCTGGAAGGGTGAGCCGAGGGCCCTTCTGGAG GAGGTGCCATCTCTGTTGAGACCTAGAGGGTAAAGATGTGGAGTCAGAAA AGAGGGCAGGGTGCGCCAGGCAGGGAGACTGTGCACAGACCTGGGGGGAA GTGGATAGGGAGAGGTTTCGTACACTCGGGGTGGGCCTGTGCCTGTGGCT GGAGGGGCGTCCTTTGCCTCTTGGCCCACATTTGCACTGACTCCTCACTC TGCCCAGAGTCAGCCAAGAGAAAAACATTAACCCAGAGTCTGGGGTCTAG GGTTGAAAAGCTAAGGCAAAAAGCACAGATGCAGGGGGCAGACAGAAAGG CCACAGGACTCAGGTGAGGTCTCTGCCGGGCTGGGCCAGGAGCCAGGGGA CTGCCACTCACCAGTGTCCCCTGCAGGTGGAGCAGATGTTCGCCCTGACA CCCATGGACCTGGCGGGGAACATCGACTACAAGTCACTGTGCTACATCAT CACCCATGGAGACGAGAAAGAGGAATGAGGGGCAGGGCCAGGCCCACGGG GGGGCACCTCAATAAACTCTGTTGCAAAATTGGAATTGCTGTGGTGTCTT GTCTGTGACAGATGGGTTGGGGACCAGCCAAGGGGGATCCCAGGGTCTCA GTGCGCACATCACCATGATCATGGCCACCATCTACCTCCTGGGAGCTGGC CCCTCGCCAGCTCACCTTGATTCACTCCCATGATGCCAAGTGAAGTGTGA ACTATGATCATGCCTAGTTTACAGATGAGGACACTGAGGCCCAGAAAGTG TGAGCATCTTACCAAGGCCAGCCCTCTAGAAGAGGAGATGGTGGGATTTA CACCACCTCCACCAAGCCCAGGAATGAGCCACAAAGTGGGCACTGCCCAG CTACTTGGGGCTGTGCAGAGAAGAGGCTGCTTGCTGGGCACTCAGCAAAC TCTGCCCAACAGCCCAGCGGGTGGGCAGCAGCCCTGGGACCCCCACACCC AACCACACAGCCTCCCCTGGCCCACTGCTCGCACCCCATCTCAATACACT GGCTTGGGTGCCTCCCTGCATGGGCCCTTTGTGAAAGGCAGAGAGGTACC CATTTGAAACACAACCAGCTTCTCATTGCAAATACAGGCAAGGCACTAAG ACATGAGGAACATGGACACCAAAGCAGGGGCCAGGTAACATGCAAATTTC TAGAGGAAATGCCCAGAACCTGGCATCATGCCTCCTGAGCCCCTCATGCG CCGTGAGGGGTAAGAGGGTCAGACAGCTGGAGTGTAGGGAGACGACTTCT CAGGAGAGAATAGTTAGTGCTCCCGTCACCCTTCATCTGAGAACCCAAGA GCTAGAGGAGAAAGTGATCCTCATGAGTACCAGAGGAGCAGCAGGGGACA TCCAAAGCACCAGAGAGAGAAACAGAGACAGAGAGACAGGCAGTGACAGC TCAAACCTCAGCCAGATCCAGAGCATACAAAGTCTCCTGCCTACAGGACA GCCCAGTAAGAGCTCTCAGCTTGCCTCCTTCCCTCCCCACAAGCCCTGCT GCAATCCCTGTACCTGGGGGTCAGTGGGAAGGAGGTGAGCGAGAAAGGAG GGGCACCCCTTCCTGAAGGCCCCAAGAGGAAAGGCGTTTTCACCCAGACA GGTGTTCAGTTTTGATTTTATCTGGCGCCTGGCAATTTAATTACTAAATT GAAACTTGAGACTTTCTGGAATTATGGCATTTTCTGTTGCTTAGAGAGAT TACAAAAGTCACGAACTGCCTGAGTTTCCATCCTGAAAGCAGGCCACCAG CCCACTCCACTGACCATGCTGGAACAGTGGATGAACAAAATCAAGTACCA TTAGGATTCTACCACATGAGTCTGCTTGTTCAACAAGCTGATTTCATAAA GTAAGGGATCATGTTATAATCCAAGCTCTACAGGGGTAAATTGTGAAAGA CTAAAATGAACCAAAAAGATCATAGGTGTCCAGTTATCTGATTTGATGGG GTGTCTGAACCTTTTGTTATCTTTGAGCTGTTTCAAAACTCTCTAAATTA TTATTATTATTTTTGAGACAGAGTCTCTCTCTGTCACCCAGGCTGGAGTG CAGTGGCATGATCTCAGCTCACTGCAACCTCCACCTCCCAGGTTCAAGTG ATTCTCATGCCTCACCCTCCCAAGTAGCTAGTATTACAGATGGGCACACC TTGCCTGGCTAATTTTTGTATTTTTAATAGAGACGTGGTTTCACCATGTT AGCCAGGCTGGTCTCGAACTCCTGACCTCCGTTGATCCACCTGCCTCTGC CTCCCAAAGTGCTGGGATTACAGGGGTGAGCCACCGTGCCCTGCCACAAC TCTAAATTATAACTAATAGCAAGGCAATGGTTCTTCTCTATTAACGTGCA AATAAATGTTGTCCAGTGGAAGCACAACTGATTTTTCCCTTCTCTGTGGA AGAAGCCAATTTTGCATCTATTAAGCAAATTCATCTGGGCATTCCTAACC GTCTACACATGCACCGGCTCTTTGAATTCTTCTCTGAACCAGGCCCAGGA ATAAGCCACAAGATGAGCACTGCCCAGCTCCTTGGGCTGTCACATCTTAT TGATTCCCACATGAATTCACAAGTAAATAAAATATTTGGCGGTTGTTCAC TTAGTATGCAAGTCAATATTTTGCTTTAAAAATATTATCCTTTCACACTC CTGATATAGTTGTCTGATAAGGTTAGTCCTTCCCACACCAAAACTGCCTG TATTAGTGTTGTTTGGAATAAACTGAGGGTAGAATGTATATGGTGTGTGT ATGTGGTGTGTGTGTTTGTGTGTGTGTGTGTGTGAGAGAGAGAGAGAGAC AAAAGAGAGAGACAGAAGGATAGAGAGAAACAGATGGGCACAGACCCAGG ACATGAGTTCAGCCTACACTGACCAATATGACAGCCACTGGCCACTTGAA ATGTGGTGTGAGTTGGGATATGCCAAAAGTGTAAAATGCACACAATATTT TGAAGATTTCATACAAAAAAGAATGCAAACATCTCATTAATAACTTTTAT ATAGATCACATGTTGAAATGATAATGTTTTGGATATTAGATTATTACTAA AATTAATTTCACCTATTTCTTTTCACTTTTTAAATGTGGCTACTAGAATA TTTAGAATTCCATAAGTGGCTTGCATTTCTGGCTTTCACTCCTGTTGGAA AGCACTGAGTTAGACTGTGTAGTACGTCTATTTAAGACTGCAGTTTCCAG GCCGAACACCGTGGCTCACGCCTATAATCCCAGCACTTTGGGAGGCCGAG GCGGGCAGATCACCTGAGGTCAGGAGTTTGAGATAAGCCTGGCTAACGTG GTGAAACCCTGTCTCTACTAAAAATACAGAAATTAGCCAGGTGTGGTAGT GCATGCCTGTAGTCCCAGCTACTAGGGAGGCTGAGGCAGGAGAATCTCTT GAACCCAGAAGGGGAGGTTGCAGTGAGCCAAGATCAAGCCACTGCACTCC AGCCTAGATGACAGAGCAAGACTCCATCTCAAAAAAAAAAAAGTAGAATA AAAATAAATAAATAAATAAAGACTGCAGTTTCTGGGAGACTCTGAGGCAG GCATTAGCCTTCTCTGCAGAGAGTACTTGCAGCAGGGAGCAGCAGTTTTG ATGTCCTCAAAAGGAGCCAATTTCATTTGGGTAGGGTTGCCTCTGAGTAT TCTAGCAGTACAGACAGAAAGGAGAGAAGGCTGTTTCCAGAAAGCAGAGA TCATACGAATTACTTGTGAGACCAAACTTGTTCCTCAGGTGAAGCTCAGG CATCCCTTATGTGGAGTGTCTAACAGTCTACACCTGAGGATGTTGGACAT AAGGGGGTGTGAGGTGGGCATGGCTGGGGAGAGCTCTGGGAGGGGGAAAA CCAGCTCCATGTTGTCCACCCACTGAAAGGAAAGCTCCCTCTGGGGGAGG TAGATGCCCCCTGGCCAGGCCTGCAGGGCCCTGCTCACTGTGAGCCCTGT GTGGTCCTGGCCTGGGTCCCACCAGCCATTGCCAGGCAACAGCTCCCAGT TGGAAAACAGAGCAAGGCTCCCTCTTAGAAAAAAAAAAAAGAAAGAAAGA AAAGAAAAGAAATACAACAGGTAACTAAGCATGACGGCTCACGCCTGAAA TCCCAGCTACTTGGGAGGCCAAGGCAGAGGATTGCTTGAGACTGGGAGGT TGAGGCAGCAGTGAGCCAGGATTCTGCAATTGCACTCCAGCCTGGGTGAC AAAGTGAGACCCTAGTAAAAAAAAAAAAAATAGAGACAGAGAAAGAAAGA CATGCAACAGGGCCAGGCGCAGTGACTCATACCTGTGATCCCAACACTTT GGGAGGCAGAGAAGGGAGGATTGCTTAAGACCAGGAGTGCAAGACCAACC TGGGCAACATGGCAAAAACCCATCTCTTCAAAAAATAAAAAAATTAGCCT GTTGTGGTGGTGCGCACCTATAGTCCCAGATATTCAGGGAGCTTGAACCA GGTCCAGGCTGCAGTAAGCCATGATCGTGCCACTGCACTCCAGCCTGGGT GACAGAGCGAGACCTTGTGAGAAAGAAAAGAAAGAAGGGAAGGAAGGAAG GAGGGAAGGAGGGAAGGAGGGAGGAAGGGAGGAAGGAAGAATATAGGACC CAAAGGCCTAAATGCCCCTACTGTGCCCCAGTTCTGCGTGACTCAGGACC AGCCTCCTCCACACTCCCACCACCACAACCCTGCACCCTACTTGTTCCTG GGGGCCCCAAGGGGAGCCTCACCAGAAGCCTCCTCATAAACCCACTGCCC CTTACCTTTCCTGTCTTTCTAGAAGCCTCAGAAGCCTTGCCACTCTAAGG ACACCTCCATCTGAGCCAAGGCGCTCGCTCCAGATGTCCCAGAGCTCCTG GTCCTGGGTGTCCCTGCCACACAACCCCCCATGGAGCCCTGCTCTGGCTC AAGCCCCCTGACTGTGCATGAGCAGGCCTGTTGCCCTCACTGGGACTGTC CAGAGCCTTCCCATCTCTCTGGAGGGACTTCCATCAGTTTCTGCCCCTTC TCCTCTGCCAAGAACTCACGTTCAGTCTGATAGCAGAAGAATCATCTGGC ACCCTCCTGAATGGAACCCAGAGTACCTCCTTTGTGGACCGGTCTCTGGA TTTTCCCCACTCTCTCCCTTCAGCCATGCTGATGGCAGAGAAGGTAAGAA CTTCCAGCCCACTTCTCTGGCGAGGGGAACTTGTCATCTGGGTCTGCAGA GAAGGTTCCACCTTATGCTCATAGTACATTATCTTTACTATGTACTAGGA TATCACATTTAAAAGGACAAAAAAGGCCAGGCAGTGGCTCATGCTTGTAA TCCTAGCACTTTGGGAGGCTGAGGCAGGTGGATTACCTGAGGCCAGGAGT TCAAGACCAGCCTGACCAACATGGCGAAACCCCATCTCTATTAAAAATAC AAAAATTAGCTGGGTGTCGTGGCATGTGCCTACAATCCCAACTACTTGGG AGGCTGAAGCAAGAGAATCACTTGAACCCAGGAGGCAGAGGATGCAGTGA GCTGAGATCGTGCCACTGCACACCAGCCTGGGCGACAAACCGAGACTCCA TCTCAAAAAATAATAATAATAAAATACAACAAAATAAAAGAACAAAAAAA AAGAAATGTAAAATACTTGAAGGGGCTTGTATAACATTAATAGGATTGAC AGTATCTGCTTTCCAGGCTGAAGTGATTCATTCATTATTCTAGACGTCTT TAGTCCTTTGCAATTTGTGGTAATTAGGCTTTTCTTTTTAACATTAAAAA TATACAAAAATAAAAGGCAAAAAAAGCATCATCCCATTAGTCTGACCTTC CCCTCCTCCATCCCTGCCCCAACACCCTGAAGACCCTGGATGCAAACAAA GGCCCGAGGGAGCCTCTTCCCTCGCAGTGCAGGCCTCACCTGGGGCTCAG AGTCAGAATCTGCATTTTATTCCCTAGGACAACCTCTAGTCAGGGCAGAG GCCGGCTGTGCTGCCCAAGTGCCCTAACCCTAGCTTTGAGGCACCAGAAG GGCAAATGGAAATTAAAAATGAGAATAAGTTTATTCTCCTTGGTGAAAAA AAAAAAAAAAGACTTTCCCCTCTCCTTTTTCTTTAGAAAATCTATCATTG CAAGTTCCTTCCTGGACTTTTTTTATGTAGATCTGTTCAAAAGCTAAATA AGCCTCTTTCAAGTTTCACATCCCAGGAATGTCTCCTTAAGGACCTAGGA GCCACCATTTGAAGTGTAATCACCAAGGGAGATACATCCTTATCTCCCAG TTTCCGTGGGCAAAGGGGAGCCTAACTTTAGCCCGGTGCCTAGCTCAAGT TGCAAACACACTTCCAGTCTTAAAGGAATGAATTTATTTTTTTTCCTTTA GGCAAACCCAGGTAGCCACCACAGTTACCTGGGGATTCACAGAGAACTGT GTGTGACCACTGGTGCTGTCAAGTCCTCTTACCTGAGCACCTGTGACGTT TCCCTTGAGAACGTGTACGGGATGGGTTGCACCTGGTTATATACAAGCGT GAGACTTCTTTCTGCCTTTGTAATTTATTAGCAGATTATCTGTGATGAGC ATCGCAATCTGTTTAATGCCTATTCAATAATTAAATTTTTCTTTCTCTTC TTTTGTGGAAAGGTTTTCTGCATTGGCAGGAGATTTTTGTTTTCGATTAT GTCCCCAACATGCCTGATGTTCCACCCCTCAAGAGCCTCAGCCTTGCCCA GGGAGGGCATGGGGGTGAGTGGCCTCTCCCACAGAGAGTGCTGGCCAAGT TGGCCCAGGTGCGCAGCAAGGGCTGCTGCCCAAAGGCTCCCTCCTGGTTG - The human liver glucokinase genomic DNA is 46,000 base pairs in length and contains ten exons (see Table 2 below for location of exons).
- The human adipocyte enhancer binding protein has the amino acid sequence depicted in SEQ ID NO:3:
MAAVRGAPLLSCLLALLALCPGGRPQTVLTDDEIEEFLEGFLSELEPEPREDDVEAPPPPEPTPRVR KAQAGGKPGKRPGTAAEVPPEKTKDKGKKGKKDKGPKVPKESLEGSPRPPKKGKEKPPKATKKP KEKPPKATKKPKEEPPKATKKPKEKPPKATKKPPSGKRPPILAPSETLEWPLPPPPSPGPEELPQEGG APLSNNWQNPGEETHVEAQEHQPEPEEETEQPTLDYNDQIEREDYEDFEYIRRQKQPRPPPSRRRR PERVWPEPPEEKAPAPAPEERIEPPVKPLLPPLPPDYGDGYVIPNYDDMDYYFGPPPQKPDAERQT DEEKEELKKPKKEDSSPKEETDKWAVEKGKDHKEPRKGEELEEEWTPTEKVKCPPIGMESHRIED NQIRASSMLRHGLGAQRGRLNMQTGATEDDYYDGAWCAEDDARTQWIEVDTRRTTRFTGVITQ GRDSSIHDDFVTTFFVGFSNDSQTWVMYTNGYEEMTFHGNVDKDTPVLSELPEPVVARFIRIYPLT WNGSLCMRLEVLGCSVAPVYSYYAQNEVVATDDLDFRHHSYKDMRQLMKVVNEECPTITRTYS LGKSSRGLKIYAMEISDNPGEHELGEPEFRYTAGIHGNEVLGRELLLLLMQYLCRERYDGNPRVRS LVQDTRIHLVPSLNPDGYEVAAQMGSEFGNWALGLWTEEGFDIFEDFPDLNSVLWGAEERKWVP YRVPNNNLPIPERYLSPDATVSTEVRAIIAWMEKNPFVLGANLNGGERLVSYPYDMARTPTQEQLL AAAMAAARGEDEDEVSEAQETPDHAIFRWLAISFASAHLTLTEPYRGGCQAQDYTGGMGIVNGA KWNPRTGTINDFSYLHTNCLELSFYLGCDKFPHESELPREWENNKEALLTFMEQVHRGIKGVVTD EQGIPIANATISVSGINHGVKTASGGDYWRILNPGEYRVTAHAEGYTPSAKTCNVDYDIGATQCNF ILARSNWKRIREIMAMNGNRPIPHIDPSRPMTPQQRRLQQRRLQHRLRLRAQMRLRRLNATTTLGP HTVPPTLPPAPATTLSTTIEPWGLIPPTTAGWEESETETYTEVVTEFGTEVEPEFGTKVEPEFETQLEP EFETQLEPEFEEEEEEEKEEEIATGQAFPFTTVETYTVNFGDF - and is encoded by the genomic DNA sequence shown in SEQ ID NO:7:
CAGCAGGGCCAAGGTCTTGTGACAATGTCTGGAGGTGCCCCTATTGTCACACTGGGGGTCTCC TACTGGCCTGCAATGGGAGGAGGGGCTGCAGCCCCACATCCTGTGCAGAGTGCTAGTGCTGA GGCGGAACCCTCCTCAGAGCTGCCCCTTCTCCTCCAGGTTGTTACCCCTTCTACAAAACTGACC CGTTCATCTTCCCAGAGTGCCCGCATGTCTACTTTTGTGGCAACACCCCCAGCTTTGGCTC CAAAATCATCCGAGGTAATTTTTGTCTTCTGGGGGCCCAGGCTGATTTGCTGATTTGCTCTCAC CTGGGGACAAGGTTCACAGAGAAGAAAACCTGCATTGTGGAGTCCCCCTGGCCCTTGTGGGA TGGACAGCTGAGGTCTTCTGCACAGCTGCCATTTCACTGTGGGAGCCAAGCTGCCTCGCCAGC TGGGCAGGGACTGGAACGGCTCCCAGCCTGTGTGCCTCTCAAGGCTAATCTCTGGTCTCCT ATTGTCACTGCCCCACTGTGTGCCAATGGGGACTCCTGTTTATTTCTGGCAGCTTCTCTTTGAG GCAGGACTTACTTGGAACCTACAGTGGGTCCTATGTGACTTCTTTGCAGGTCCTGAGGACCAG ACAGTGCTGTTGGTGACTGTCCCTGACTTCAGTGCCACGCAGACCGCCTGCCTTGTGAACCTG CGCAGCCTGGCCTGCCAGCCCATCAGCTTCTCGGGCTTCGGGGCAGAGGACGATGACCTG GGAGGCCTGGGGCTGGGCCCCTGACTCAAAAAAGTGGTTTTGACCAGAGAGGCCCAGATGGA GGCTGTTCATTCCCTGCAGTGTCGGCATTGTAAATAAAGCCTGAGCACTTGCTGATGCGAGCC TTGAGCCCTGGGCACTCTGGCTATGGGACTCCTGCAGGGGTGCCCACAGTGACCATAGCCCAT GCACCCACCAGCCGGTCTCCCTCCTCCCCATCCCTGACACCTCAGAATGTGAGCAGTCCGTGC CATGAGCTTGTTTTATTGGAGTGACCTTGGCTCCCTCCCTCTGCCCCTACTCCAACACTGCAGC AACCCCATCTCTTACGAGACTGGCAGGTGGAGCAGGAGCCTCTACACAGCCTCTGGCTCTTAG GTCCCAGTCATGTTTGCACCCCCTCAAAGGGGCAGGACCAGCCCTTCCTTTCAGTGTCCATAC CAGGGGCCTTCCATGTGCTGATGGGTGATGTGACTGTGGTCAGCAGGCTTGGGAAGTGC TGCTGCTGTAGCTTGAGTTGGGCTGGGGTCTTGGTAGGACGCTGATCTCAGAAGTCCCCAAAG TTCACTGTGTAGGTCTCTACTGTTGTGAAGGGGAATGCCTGGCCAGTGGCTATCTCCTCCTCTT TCTCCTCCTCCTCCTCTTCCTCAAACTCGGGTTCCAGCTGGGTCTCGAACTCAGGCTCCAACTG GGTCTCAAACTCGGGCTCCACCTTGGTCCCAAACTCGGGCTCCACCTCGGTCCCAAACT CTGTCACCACCTCTGTGTAGGTCTCAGTCTCCGACTCCTCCCAGCCAGCGGTGGTTGGCGGTAT GAGGCCCCAGGGCTCTATGGTAGTGCTCAGGGTGGTGGCAGGGGCAGGGGGCAGCGTGGGAG GCACAGTGTGGGGGCCTAGGGTGGTGGTGGCGTTGAGGCGCCGCAGCCGCATCTGTGCCCGA AGCCGCAGGCGGTGTTGTAGGCGTCGCTGCTGCAGGCGTCGCTGTTGGGGGGTCATAGGGCG CGATGGGTCTATGTGTGGGATAGGCCGGTTCCCGTTCATGGCCATGATCTCCCGGATGCGCTT CCAGTTGGAGCGAGCCAGGATGAAGTTGCACTGAGTGGCCCCGATGTCATAGTCAACATTGC AGGTCTTGGCGCTCGGGGTGTAGCCCTCCGCGTGGGCTGTCACGCGGTACTCACCCGGGTTCA AGATTCGCCAGTAATCACCACCACTGGCTGCGGAGGGAGAACGATCCGGCTGCCCCAGAGCG CCCCTCCCAGGCCCCCACCCTCCCACTCAGTCCTGCCCCCAGCCCCGCCCTCCCCCTCTGAGTT CCCGCCCCCAGCACCGCCCTCCCTCTCTGAATTTCGCCCCCAGGCTCCCCAGACTCTACCTGCT CGCTGAGTTCCTCAAGCCCCCACCCTCTCTGGCGGGTCCTCCCTCAGAAAGATGGGGTAAGG TGTGCACACTAGGTACCTGTCTTCACGCCGTGATTAATGCCACTCACAGAGATGGTGGCGTTG GCAATGGGGATGCCTTGCTCGTCCGTCACCACCCCCTTAATGCCGCGGTGCACCTAGGGAAGC AGGTGAGGGCTGCTGGTCCTCAGGAAGGTCCAATGTGGTCCGCTGCTCCCTCCCGCCCATCCA GGAGCCTGTGCAGCCTCCTCTCCCCAGGCATTGCCCTAGCCACCCCACCTGCTCCATGAAGGT GAGCAGCGCCTCCTTGTTGTTCTCCCACTCGCGGGGCAGCTCACTCTCATGAGGGAACTTGTC ACAGCCCAGGTAGAAGGAGAGCTCCAGGCAGTTGGTATGCAGGTAACTGAAGTCATTGATAG CTGGCCGGGGACAGATACAGACCCAAAGTCAGCCCCTCTCCGGACCAGGCCCCGCCCACAGC CCCTCCCAGGCTGACTCACTCCCGGTCCGGGGGTTCCACTTGGCCCCGTTGACGATGCCCATG CCGCCGGTGTAGTCCTGGGCTTGGCAGCCTCCGCGGTAGGGCTCGGTCAAGGTGAGGTGTGCG GAGGCGAAGGAGATGGCAAGCCACCGGAAGATGGCGTGGTCTGGAGTCTCCTGGGCCTCGGA GACCTCGTCCTCATCCTCCCCCCGGGCTGCTGCCATGGCTGCGGCCAGCAGCTGCTCCTGGGT AGGCGTGCGGGCCATATCGTAGGGGTAGGATACTAGCCGCTCGCCGCCGTTCAGATTTGCTCC CAGCACGAAGGGGTTCTTCTCCATCCAGGCAATGATGGCCCGGACCTCCGTGGATACCTGGAG TGGCCAGCACGTGTGAGGCCAGGGCTGCAGCTCCGGCCACTATCCCCAACCTAGCCCGATCAC CCTCCATGAAGCTTCACACCAGTACTCGCACGATCCCCTGTCCCCCAACCCCCAGAGCCTCAG CGTCTGGAGTTCAGGCACCGTCAGCCCCACCCCCAAGCCCAGAACACCAGGACCCCAGGGTC CAGCTGCTCCCTCCTGCCCTTTCAGCCAGGCTGTAGCCTCACCGTGGCATCTGGCGAAAGGTA GCGTTCAGGGATGGGCAAGTTATTGTTGGGGACCCGGTAGGGGACCCATTTCCTCTCCTCAGC TCCCCAGAGCACAGAGTTGAGATCCGGGAAATCTTCAAAGATGTCAAAGCCCTCCTCAGTCCA CAGTCCCAGCGCCCAGTTCCCAAACTCTGAGCCCTGTGGGGAGCCAGCAGGGTAGGCATCGG CTACCCACACCCCCACAACCCCCAGCTGCCTGGACCCTGGCCAGCCTCACCCTTCAACCCACC ATCTGCGCTGCCACCTCGTAGCCATCAGGGTTCAGTGAGGGCACCAGGTGGATGCGTGTGTCC TGCACCAGGCTGCGCACACGTGGGTTCCCATCGCGGTACTCTCGGCACAGGTACTGCATGAGC AGCAGCAACAGCTCTCGGCCCAGCACCTCGTTGCCATGGATCCCAGCAGTGTAGCGGAACTCG GGCTCCCCTGCAAGGGCGGGAGCCTCAGTGAGCACTCAGTCTCCCGAGGCCCAGGGCAGCTG AGGAAGGACCCAGACCCACCTCATACCCGAGGGTCTGGGGGACAGCTGGGGCTCCTAGGGCC CTGTAAGACAAGCCAGAATCCCCAGAGAGGCTCCGGAACAGGCGGGAGGCAGTGAGCTCTGC ACATCAGCAGCAGAGGCCAGCTGCTGGCCCCCACAGACCCTCCCCCAGTTCATGCTCCCCAGG GTTGTCTGAGATCTCCATGGCATAGATCTTGAGGCCTCGTGAGCTCTTGCCCAGGCTGTAAGT GCGGGTGATGGTGGGGCACTCCTCGTTCACCACCTTCATGAGCTGGCGCAGAGGGGGAGGAC GTGGAATCAATCATGCAATCCGTCCCCCGCTGACCATGCCCCTTCCACTTCCAGGGCCTGCTCT ATGGCGAGGGACGGGCATGACCCCTTCACGCAGCCCCCAGGTACTGGCCTCCTTCCTAAGGTG AGGGACAGCCAGCATCCCTGGAACCAGTAGGGACTGGGCCCAGTGACAGAAGCACCAGGCAC ACACTCCCGTCAGCCACAGACAGGTCCCACCCCCAGCCCCAGGATATATGCTCCCAACCTGGC GCATGTCCTTGTAGCTGTGGTGCCGGAAATCCAGGTCATCGGTGGCCACCACCTCATTCTGTG CGTAGTAGCTGTAGACAGCTGCAAGGGAGGCGGGGTTGTCTTTAGCTGGGTGCCGGCTGGCCC ACCCTAGCACCCCACCTCCACTCAGAGCCCCTGCCAGCCCTCCACACTCACGGGCCACAGAGC ACCCCAGCACCTCCAGGCGCATGCACAGGCTGCCATTCCAGGTGAGTGGGTAGATGCGGATG AAACGAGCCACCACCGGCTCTGGGAGCTCACTCAGCACGGGTGTGTCCTTGTCCACGTTCCCA TGAAAGGTCTGGGGAGAGGCAGGCCTCAGAGCAGTACTGCCAGCCCCTCTGAGAGCCCACCC CTCGCCCAGACAATGGGAGCAGAGCCAAGAGCCTGGGCATGGTGCCCACCATTTCCTCATAG CCGTTGGTGTACATCACCCATGTCTGGCTGTCATTGCTGAAGCCCACGAAGAAGGTGGTCACA AAATCGTCACTGTGGAGTGGACAGTGGTCAGAGCAAGGGTCTTCCCCCTCCCAGGCCCTCAGG TGGCCTGAGCCTCCCTCTTCCGAGCCCCAAGAATTTAAGAGCTAGCAGGGTGGTGCTGCACG GCCCAGGTGTTGAGCCTGGGTCCTATGCCCGTCACATAGCCATGGGCAGGTGATCTGTCCCTA AACTCATGTGCTATCAGGACACAGGGGCTGACTGACCAGGCTGAGGAGTGGGGATGGGCAGG GTGAGTCCCTCACTGATCTTTTTGGCCTTCTTTGGCTGGGCCAAAGAAGGGCCCACTGGAATCT CCTTAATGGGACACAGAGCCATGCCTATGTAGCCACTCCCCTCTGCCAACTATCCATGAGC CTGGCCACGCACTGGATGCTGGAGTCTCTGCCCTGGGTGATGACGCCTGTGAACCGGGTAGTC CTCCTGGTGTCCACCTCTATCCACTGGGTCCTGGCATCGTCCTCGGCACACCACGCACCATCAT AGTAGTCGTCCTCAGTGGCACCGGTCTGTCCAGGGGGCAGGGGAGGCTGAGCATGGGCGGAG GAGTCCCTTTATCCCAGTTGGGAGATGGGCCCATCCCAATGCCCACCTGCATGTTGAGCCGG CCGCGCTGTGCCCCCAGGCCGTGGCGCAGCATGGAGGAGGCTCGGATCTGGTTGTCCTCAATA CGGTGTGACTCCATCCCAATGGGGGGACACTCTGAGGACGCGTACCCCAGAATGGTGGCTCA CTAGCTCCATCCTTCCCTCCACCAAACCCAGAACCAAGGAGCCCAGAGCCCACTCCCGGCACA TCGGGGGCACAGTCAGAGGGCAGCTCTGGTCAGCTGGTGGCTCCCTGGTGCCCTGCACCAGC CCACCTGGAATCGACTCAAAGCCAGGCCAGGAGCTGTTTCCAATCCCAGCCTGTGCTTCCCCT CCCTGGGCCTCAGCTGCCCCATCTGGAGAACGGGCTGACCATGCCCAGCTCTCAGGGGACACA CGTGAAATCACAGGTAGAGCTCCCCCAGGGCGCAGCCACAGATGTCATCCAGATGGGGACGG TCTGCACAATGGCCCTGCAGGGATACCTGTGAAGGTACCTGAGGTCCTCACTCCCCACCAAGG CCCCAGGTCCTCCCCCTACCACGCCCAGCCACTAGGGGCCCTGGGGAGCTGCCACCCTCCTGA AGCAGGCCAGCCTGGGGTCCAGGGCTGGGGCAGCCAAGCGAGGCTATCCTGGGCTCCCGGGG CCCCTCCCTTCTGGGTCCCAAGAATCTGAGTAGGAAAGGGTTCCGGGGACCTGGGTCCTGTTT GTGACATTGGGCCAGTCACTTGTCCCAGCACCCCCATCCTGTGGCCCCCACCCTCACCCCCTTG TGCCCCCCACTTACTGACTFTTCTCCGTAGGCGTCCACTCCTCCTCCAACTCCTCGCCCTTTCGG GGCTCTAGGGACAATGAAGGGAGGACATGGCACCAAGGGCCCGGGAGGCAATCAGGAGTCC AGATGCTGCCCCACAGGGACCCAGGCCCCAAGCCCCAGCCACACACCTTTGTGGTCCTTGCCC TTCTCCACTGCCCACTTGTCGGTCTCCTCCTTGGGGCTGCTGTCCTCCTTTTTGGGTTTCTCTGG AAGGTGCAAGGTAGGAGGGGCCAGTCAGCCTGGCTCTGGGCTTTGAGGACCATGTGGGGTGG ATCAGGCAGGCCCCAGGTGGCCTTCAGGGCAGGCCTGGTGTGGGAAGTCCTTGGTCCCACTCA CTCAGCTCCTCCTTCTCTTCGTCCGTCTGGCGCTCAGCATCGGGCTTCTGGGGCGGAGGAGGCC CAAAGTAATAGTCCACTATGGGGAGGGAGAGCCAGCTGAGGCTGCCCTGACCCTGCTGCGGG GCCTCAGCTCCTGGGTCCACAGGAGCTCAGCAGGACAGGACCGCGCCAGAGGGGAGGAGGAC GGGAGATGGGGGACAGCTGAGTTGGGAGAGGGTCTTGCAGGAGTCAGGAGCAGCCCGAGCTC AGGGGCAGCTGAGCAAGACCCTGCTGAAGTCACCAGCCCGGCCTTCCAGGAGCATCTGGCCT GGGGAAAGGACTCGAGGCCCAGGGCATGGGAAAGGCCTGGAGGGACAACTGGCACCTGTGC CTGGGGTTGCGGGCTGGGGGGTGAGATGGGGAGACATTGGAGGCACTGATGGGGACCTGGGG GCAGGGAAATGGCGATGCACGGGCTGCCACCCAGGAGGAAAGGGAACCTGAGGGCTCCAGG GACGCAGGGGCATGAGCAACAGGGAGGCAAAAGCCCTCGGGCTCCCTGAAGAGAGTGGGGC AGTGGCCACGAGCCAGCGGGAAGCCAGTTAGAGCACAGGACTGGGAGGGCTGGAACCCACA TGGGTGACAGGGCAGAGTGTGTGCCTAGGGACACCCCTGTGGGGGTCACAGCCAAGCAGGAA TGGGCACGCAGGGACAGCAGGGACAGCGAGGTAACCACGGGCACAGGTGGGGTTGCAAGGT GGGTGAGTTGCCCCAGCTGGCTCCTGACCACACCCCAGCCCCGACCCCCACCTGCCTATGTCC CTCAGACTCTGGGGTGCTGGGTACTCACTGTCATCGTAGTTGGGGATCACGTAACCATCACCA TAGTCAGGGGGCAGCGGGGGCAGCAGAGGCTTCACAGGAGGCTCTGGGGAGGCGGGGAGGT TAGGAGGGGGCCAGAGCGCCGTGGCCATGGCACCTCCTCTCCTGCCCCCCATCCTACCAATCC TCTCCTCCGGGGCTGGGGCCGGGGCCTTCTCCTCAGGGGGCTCTGGCCAGACCCGCTCGGGCC TCCTCCTTCTGCTTGGGGGTGGCCTGGGTTGCTTCTGGCGCCGAATGTACTCAACTGAGGGGG AGGCTGGCTCAGAGTGGGGCCCAAGGCTGGGATGGGCCCATTGGCACATCCCCCAGGCCAGG GGTCCGACCCAGGTGGGGCTGGCAGGACCCTACTCAAAGTCCTCATAGTCCTCCCTCTCGATC TGGTCATTGTAGTCCAGTGTGGGTTTGCTCGGTCTCCTCCTCCGGCTCTGAGGGGAAAGCGCTG GTAGCTGCCTGACAACCCCACCCAGGCCTACTCTGGGGAAGCCCTCAGTCCAACCAGCCAGG GCAGCTGGCCCCAAGGCCAGGCGGATGACGGCCACTCACCAGGCTGGTGCTCCTGTGCCTCCA CATGGGTCTCCTCTCCTGGATTCTGCCAGTTATTTGAGAGGGGCGCCCCTGCAACACAGGAGT TCCAGAAGCAGGTGGGCGGGAGGCCTGCTCTGACCACCTTGGGAGCCTCAGGCCACCAGCCA CCCATAGAGCCCACACAGAGCCTGTGGACACCCTCCTGAGGCCGAGCTCACTCCAAGGAGGC CTGAGCTCCTCTGGCCTTCAGCATCCTGCTGGCATCTCATGGGGCCAGAGAGCTGGGCCCACC TTCTGGGGAACCTACTGTGCTGCTGGAGGCCCTACCACAAAGCTGTCCCCAGCGGGAGAAGG CAGGAGGGAACTCCATGGGCTCAGAGCCCAGGGACATCTGGGCAGGGGCCTGAGGGACAGA GGTCCCACCCAAAAGGCTGCCAAGCCCTCTCCCTACCCAAAAGAGGCTACAGCACTGAGGGA GCCCACCAATCAAATTGTGAAATTTATAGCAAAAGTGAGGTTCCCATCCAGTGGGGAGCTGA AGGTCTATAGGAAGCAGGGCCCCAGAAACCTGCCTCCCACTCCCTGCCTCCACCCGAGCAGGC AGTCAGAGCCCCATCACCCCAGAGGAGCCCGGCACAAACCTCCCTCCTGGGGTAGCTCCTCGG GGCCAGGGCTGGGGGGTGGGGGCAGTGGCCACTCCAGGGTTTCTGAGGGAGCCAGAATGGGG GGCCTCTTCCCTGACGGGGGCTTCTTGGTGGCCTTGGGTGGCTTCTCTTTGGGCTTCTTGGTGG CCTTGGGTGGCTCCTCCTTGGGCTTCTTGGTGGCCTTAGGTGGCTTCTCCTTGGGCTTCTTGGT GGCCTTGGGTGGCTTCTCCTTCCCCTTCTTGGGCGGCCTGGGGGACCCCTCCAAGGACTCCTTG GGCACCTTGGGGCCTTTGTCTTTCTTGCCTTTCTTCCCTTTGTCTTTGGTCTTTTCCGGAGGCAC TGTCCAAGATGCAGACTCGTGTCAAATGAACAGAGCCAGCTCTGTGCCCCCATGAGGCCCCTC TCTAGATGCCCAGAACCTGGGCACAGGGACTCTTGTCAGTTCCCAGTGCGGATCAGCAAACTG AGAGGTTAAGTCATTTGCCCAAGTGGCAAACTGGGATCCGGACCCAGATTTTCTGTCTGCAAG TCTGGGGCTGTGACCACCAATCTCAACCTCTCTAAAGACTGAGCGTAGGGTTCCCAGTTCCCA GGGGGAGGCCCTCATCCCCCCACCTGCCAAAACCTCAATAGGGTTCCTTACTATCCACTCCT CCACTATTCTGTTCTGGGCACAGAAGGGGCAGAGAGGTGACTGAGCCATCCAGGCCTGGAGG AGCATCTGGTCATCCCTGCCAACTGCCATACAAAGGAAGGGACATGGGCCCAAGACCTTCCCC TGGTCTCCTACGGGGCAAGAAAAGCTTCAAAGAAAAGGGACACTTGGTTGAGTATTGAAGCC CAAAGAAGAGGAAGTGGTCTCCTFTCGAGAAGTAAGGGGTTTGAATTGATTGGAAGGATAG GGAGTCCTGGGGGGTTCAGGGATCACACAGAGGACAGAAAAGACAGGTAGGGAGCTTGTGG CTCGACACTCATTTCAGAGTCTGGGAGAGGGAGCAGGGACTGGTTGTGAGGATTCCCCATGG GAATCCTCCCAGGACCCTAAGCAGGAGCTGCAAGTGCTGTTGAGAACCTGATGAGAGGTGGG GAGCATGAGGGAAGTTTGGCAGAAACACAGGAAAGCTACCAAATGCAGACAGCCAGGGGAC GCAGGGCTGCTAGAGCGGTGCCCCAGAGCCAGGAGAGCAAGCCTGGAAGGAGAGCCAGAGG CAGGAGGGGCACAGGCAGCCCAGGGTGTGGGAAGCAGCCAGGAAAGATCTAGAGCTGGGGT GGCAGGGGAGGGGCTGCTGACATCAGGAATGTTGGATGGTGCCTTGGAATCTCCTGGGAGAC AGGGATCACAAGACCCTCTGCCACCTTCCAGAGGGCCACGATGAAAACAGCTAAGATTTACT GACAACTGATTATGCAAGAGGCCGTGGGTTAAATGCTTCAGTGATGCATCACCTCATCTAATT TCCTGTACTAATGTAGGACCACCCATTGCTCACCACCACCTGAAGCCCTGTGCTCACCACCAC CTGAAACTCTCTCACCTACGTGAGACCTCCTGGAGTAGGAGGGCAAAGGCAGGAGGGAGGGA CGACGTGAAGCTGTGCCACCAACAGGGAGAGTGGTCCCATTAGTATGGCAGGGGGTGACACA GCACAGTCCCCTGTGGCTCAAGCCTAGTACCTGTCGCGTACTGGAGGAATGGGGATAAGCGA CCCGTACAACCACAGCACCAACCCTAGAGCCACCGGCCCCCAAAAGCGGCCCTGCCGCCCGG GTGCTGGATGTGCCTCCACGCCAGCGCTGACCTCGGCCTAGCACAGGGTCCCTCCAGGCATCT GGGCTCGCGTGCGCATTAGTAAGCCAGCCATTCCTCCCCTAGCAGACTGGGGAGTGGCCAGAC CCTACCGAATCCCCCTGTTCCCACCTGAGATGCCAGCCCCCCACACCCCCGCCCTGCCCTGGG CTCTTACCTTCTGCGGCCGTCCCTGGCCGCTTCCCTGGCTTGCCCCCCGCCTGGGCTTTTCGGA CCCGCGGGGTGGGCTCGGGAGGCGGCGGGGCCTCCACGTCGTCCTCCCGGGGCTCAGGTTCTA GCTCTGACAGGAAGCCCTCGAGGAACTCCTCGATCTCGTCGTCGGTCAGCACCGTCTGCGGGC GCCCTCCAGGGCACAGGGCCAGCAACGCCAGGAGGCAGCTGAGCAGGGGCGCCCCGCGCAC GGCCGCCATGGCCGCGGCACGCGCGGGGGGCTCCGGGGAGGGCGCGGGGGGTCAGGGGCTCT GGGTCTCTGGGAAAGGGCGGAGAGGGGATCGAGACGGGTGAGGGAATCCAGGAAGGGGCGG GAGAGAGGATGGGGTGAGCGAGGGAATCCGGGAAAGGGAGGGAGAGTGGATTAGGGTGGGC GAGGGGACCCGGGAAGGGGTGCTGGGGGGCTCCGAAGCCAGAGGGGCTCAGGGGTGGTCGG GGCGCTCCGAGGTCTGGCGGCTAATAGGCGCTCCGGCCCCGCGTGGCGCACTCCCGCGCGGAT AGCCGTCTCCAAAGCGCTGGCGGGGCCCGGGGCGGGGGCGCCGGGGCTTCCGGAGCCGGCTC CCCACCCCCGGGGAGGAGGAGGAGGAAGAGAAGGAGGAGCCGAGAGTGGACGGAGGGGCTG CGGGGGGGCGGGGGGCGGGGGGCGGGGGGCTAGGGGCGGGGCAGGCGGGCGGGCGCTGGCG GCGAGCGTCCCAAGCCCGGAGACTTGCGCCTAGGACAGAGGGGCAGGGGGCGGGGCGACTG GGAAGACAGAGGGCCTGAGGGAAGGAAAGGTGGTGGGGAGGGCCTGGGGTGCGGGTCTGAG GGGGCCGACATCCCTCCTCCTTCTGCCCTAGGCACCCCCCTTAAGGCGGGACCCCGAGTCCAC CGGGGCTCTGAGCCCTCCGCGGGTGACCAGGAACCCTGGACGGAAAGCCGTGGTGTCAGGCC TCTGAGACCTCTCTCAATTCGGAGGGCCACAGAAAGGCCACCCCATCCTTCCCAGGCTCTGGA GCCTCTGCCCATGGGCCCTGCTGCATCCCAGCGTCAATTCATTCAGTCATCCTACCAACCTCTT CAGGTCGGTGTGGGGCCGGGCCCCGTGCTGGGCCCCAGGGAGGGACAGCACAGTGGGAACTC ACTTTCCAGCCAGGAGGCAGGTGCAAAACTGCCCTCAGAGTGGCCAGCTGCCCCGCTGGGGG TAGGAGTCCCATGTAAGGGCATGCCATCCCTCCCCTCCGGGTCCCAACGTGGACAGAAAGCCA TTTATCACCTTCTTCTTACCAGAACTCATTTTTTAAAAAGTGTCTACCATACCTCCAGCTGCCA CATGGACCCAGAGGGCCCAGAGGACCCAGAAGGCAGGTGGATTGAGTGTCAACTGATCCCAG TTGGCTGCCCTACAACGGCCATCAACAGGCAGAGTGGTCCCATTAGTATGGCAGGGCGTGAC ACAGCACAGTCCCCCGTGACTCAAGCCTAGTCCCTGTCTCATACTGGAGGAATGGGGAGCTAA GGACAGAGCTCCGAGGACATTCCCCCTTAAAGGAATGAGGACACAAGAGAAAGCTCACAGGT AGTCCATGGGCCAAGTGCAGAGGCAGACAGCCCTAAGCCACGATTGTCTGCGGGGTTTGGCC CCAGTGAAGTAGTCAGGTAGGGAAGCCTAGGAGCCCCTGGGATGATTGACAGGGCAGAGTTT GGACCTGGGGTCAAAAGGAAAGAGGAAAAGTGGGTCAGGAAGCACCTGGGTCCCCAGAGCA GCCCCGAGTGAGTTGGAGCAGGCAGCAGCCGGGGAGGCCACAGTGGAGGCTGCTGGGCCTGG GATACATGCCACCCCCTGGGAGCAGGACCACAAGGAGGCCTTGCCTCCTCTCACACCTGGTCC TGCCAAGACCCTGCCTTTGCTTTCTCACTGCATCTCCTTGAAAAAGCAGTGGGACTGTGTCAG GTTCTGGCTCTACCTCCCAGGCACCACATCTCGGCAGGTAGCCTCAGTGCCGTCCACCTGTGTC CCTGTTCTCCTTGTCGTTCATACAGGATCATGCATGTGCTGTGCCTAGCACACATTCTTGGCAC TCACACTGCTGCCTTTTAGCTCTCATCATTTGCCCTCAGAGATCAACCTGAGCTGTGCCCACTG GGGCGCTCAGAGCAGACCCTGAGCCCCAACACCCAGGCTCCCTGTGCACCTGAGCCTGCCTCT GCCTGCCACGTGCCCCCAGGCCAGTCCTGGTGGCAGCAAGGATCCGCAAGCTCTCCCCTTTCC TCATCCTCTGCAAAGCTCTGAATCATCTTTCTCAAAACTTGTTCTGGGAATTTGCTCCGTTGCC CCAGTTGAGCATGTCAAGCCCGGCGGCCCAAGGCTGGGGTGAAGCAGCGTGGCACGTCACTT CCCTGGGAACAACTCACACATGGATTGGATTTGGGTCCAACATCCTCTGCCAGGGAAAATAGA AGCCATAAGAAAACAAAAAAGGAACAGAAGGAGGCTTTCTTCAGTCACAGCGAGTCACCAA CAAAAACATGTGCAAAAGCTCTCATGGAGAGCTGGGCCACAAGGAGGGCCATGATGTTGGGG GCCCTCTGACACCAAGGGTGTGGGCAGGTGGATGGGAGGCAGCTGCCCTCCATGCCAGGCTG ATGTGCCTCCCTTTGGGTGGTGGGGCTGGGACTCCCACTCCACTTGAAGACCTGCACCAAAAA GTCCTTTAGCCCTGTGCCCAGGCTCTGCCACGGGGCCGGTGAGGGGACTTCTCCCCTCTGCTG CCAGAGTGAAGCCAGTCAGGGGGATGGGAGGCTTGTAGCCAAGAGCACCTAGTGGCTTTCAG GGTCCCTTACCCCTGCCACTTAGCAGGGTCTGCACCTGCATCCAAGTGTTCTCCTGGGCTACAG TGGGGGGCTGGTAGACACTCTGGTGATCCACTTTCAGCTTCCCACATGGATGTGGCAGGGACT GCTTTGGCATTTCCCTACCCCAAGGGACAGCCACTGCGGCAGGACTGGGCTGGGGAGGGTGG GGCCTGCGCTGGGGAGGGTGCCCCCTGTCCCTTGCTGCTGCTGGAATGGGAAGGAGAGTTGTT GAGAGAGCCAGAACTGTCCAAGGGTGGAAGCTGGCGAAAGTGACCTGCAGGGAACAGGGAG ACAGGGAGCATGGCCCAGTGAGTAGGTCCTATGTAGCTCTGAGGCCATCAACCCTGCCATGA GGGCTGAGACCCCAAGAGAGAAGTTGAGGTTGGGTCAGGGGCCTGTTAGTGCCAGCTGAGGA GGGGGACAGGCCAGCCTCCTCCCACTGGGACCCAAGCTATAGCTCCTGAGCCTCCAGAGCTGC CTGGTGCCTCAACGTGGTCAGAGGTGGAAACTCACCTGCCAGCAGGCCGAGTGTGCCTGAGTT CTGACTGTGGGGATCTGCAGGGCACAGAAGGATAAGAGGTCATCAGGGCCTGGGGACAGGCA GGAGTGGCAGGGTCTGGGAGGCTGGGAGCAGACCCTCCCAACCTGCCCCATGGCCTCCGTGG CCCCCAGGACCCCCATGGCAGCAGCTCAGACACGGGTTGTGCCTCAGAAGGAAGTGAAGCTG TGTGTACCGAGATGGCCCAGCAAACCCTTTGTATGTAAACTTCCGCCACAGCCCAGCTGTCCA GCACCAGCATGTGTATCTGGGGGAGGGGGATAAATAGAAGGTCTGGGAGGCCTGGGATCTGG CCAGCAGGCTACTGGGATCACAGATGCCAGCCCCTCCATATCTCCGCTTGAGTCCTGGATCTG CCTCCTGGGACCAAAGGGGAAAGGACCAGGCTAGGCTCCTTCCTTTTTGTTCTTCCCTCTTGGG GGAGGCTCCTAGAAACTCCCCCTTCTCTGCCGCCCAAGTGCCTGGATATTACCAGTGGGGTTA GCCTGTTTGGGCCCACAAGATGGGATGGCTCCCAGAGCCATGGGACCTGAGGTCTCCCAGAC AGTGTCTAGCCACCCTCACAACTGGCAGAACAATTTCCTTGGTTTTCAACAACTTGAAAAACA TATGTGATTTTCCACAGTCCGGTGCTTCTCAGGCCTGGCTGCTGAGTGAGCAGAGTTCATGCTG AATTCCTTCCACTCACCACAGGGCAGACAGCAAGCCCAGCTGTGGGGACTCGGTTGGGGTGG GGGTCACCACAGCAAGGCGCGGGGAGTGGGGAGGGGGGCAGGCTTCCAGCACTGATGAGTA ATTCTGCTGCCCGAAGATCTGGGAAGAGGGCATGTGACAACTTAGTGCAACAATCTGCCCAGT GTTAGGTCAGAAGGAAGGAGAGGTCGTTCAAAATGGAGTCTGGTGGAAAAAATAATGTTTGG CCCCACCTCATACCTCCCTCAAAATTAACTCCAGATTAATGAGGTAGATGTTAGAAGAGGAAC CAGGGAAGGACTACAAGAAAATATGGAGTCTTTATTTACATTGTGAGGTTTTCTTTAGGTTTT GTTTGTTTTTGTTTTTGATATGGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCGAT CCCGGCTAACTGCAACCTCCGCCTCCCAGGTTCAAGAGATTCTCCTGCCTCAGCCTCCCAAGT ATCTGGGGATTACAGGCACATGCCACCATGCCCGGCTTTTTTTTTTTTTTTTTTTTTTTGTATTT TTAGTAGAGATGGGGTTTCACCATGTTGACCAGGCAGATCTCAAACTCCTGACCTCAAGTGAT CCACCCGCCTCAGCCTCCCAAAGTGCTGGGCGCCCGGCATGTGTGCCCAGCCTATATTGACAT TCTTGATGGAGAAGTCTCTTAAGGAAGGACAGAGAAGTTTGGTTGCATAAAAGTTTTTACCTT CTGTACATCAAAATATACTGAAAATGAAAATAAAGAGCAAACAAAATACTGAGAAAGAATGC AGTGCTTAGAGAGCGAACATTCCTGGCCTCCTGTAGTTTTAGGAAGCAGCTGTGGCCTCAGAC CCATCTGCTGTGAACCTCTACTCCATATTTATTGCACTTTCTGTCTGTGAGCGTCGGTTTCTCTC CTCTATAACAATAGGATAATAATGACACTACCATGCCTTGCAAAAATGCTACAAGGGTTCACT GAGATAAATCTGGAGAGTCATGCCTGAAAAATAGTAAGTCGTTGATAAAGGGAAGCTGCTAT TAATAAATAAAGCTTTTTCTTTTTTTTTTTTTTTGAGATGGAATCTCACTCTGGCGCCTAGGCTGG AGTGCAGTGATGCAATCTTTGGCTCACTGCAACCTCCGCCTCCTGTGTTCAAGCAATCCTCCTAC TTCAGCATCCTCAGTAGCTGGGACTACAGGTGCGCACCACCATGCCCGGCTAGTTTTTTACATT TTTAAAGCTATTAATAGGCCAGCCACAGTGGCTCATGCCTATAATCCCAGCACTTTGGGAAGC TGAGGCAGGTGGATC - The adipocyte enhancer binding protein 1 is 16,000 base pairs in length and contains 21 exons (see Table 3 below for location of exons). As will be discussed in further detail below, the human AEBP1 gene is situated in genomic clone AC006454 at nucleotides 137,041-end,
- POLD2 has an amino acid sequence depicted in SEQ ID NO:4:
MFSEQAAQRAHTLLSPPSANNATFARVPVATYTNSSQPFRLGERSFSRQYAHIYATRLIQMRPFLE NRAQQHWGSGVGVKKLCELQPEEKCCVVGTLFKAMPLQPSILREVSEEHNLLPQPPRSKYIHPDD ELVLEDELQRIKLKGTIDVSKLVTGTVLAVFGSVRDDGKYLVEDYCFADLAPQKpAPPLDTDRFVL LVSGLGLGGGGGESLLGTQLLVDVVTGQLGDEGEQCSAAHVSRVILAGNLLSHSTQSRDSINKAK YLTKKTQAASVEAVKMLDEILLQLSASVPVDVMPGEFDPTNYTLPQQPLHPCMFPLATAYSTLQL VTNPYQATIDGVRFLGTSGQNVSDIFRYSSMEDHLEJLEWTLRVRHISPTAPDTHGCYPFYKTDPHF PECPHVYFCGNTPSFGSKIJRGPEDQTVLLVTVPDFSATQTACLVNLRSLACQPISFSGFGAEDDDL GGLGLGP - and a genomic DNA sequence depicted in SEQ ID NO:8.
CCCTCCTCCATCCCTGCCCCAACACCCTGAAGACCCTGGATGCAAAGAAAGGCCCGAGGGAG CCTCTTCCCTCGCAGTGCAGGCCTCACCTGGGGCTCAGAGTCAGAATCTGGATTTTATTCCCTA GGACAACCTCTAGTCAGGGCAGAGGCCGGCTGTGCTGCCCAAGTGCCCTAACCCTAGCTTTGA GGCACCAGAAGGGCAAATGCAAATTAAAAATGAGAATAAGTTTATTCTCCTTGGTGAAAAAA AAAAAAAAAGACTTTCCCCTCTCCTTTTTCTTTAGAAAATCTATCATTGCAAGTTCCTTCCTGG ACTTTTTTTATGTAGATCTGTTCAAAAGCTAAATAAGCCTCTTTTCAAGTTTCACATCCCAGGAA TGTCTCCTTAAGGACCTAGGAGCCACCATTTGAAGTGTAATCACCAAGGGAGATACATCCTTA TCTCCCAGTTTCCGTGGGCAAAGGGGAGCCTAACTTTAGCCCGGTGCCTAGCTCAAGT TGCAAACACACTTCCAGTCTTAAAGGAATGAATTTATTTTTTTTCCTTTAGGCAAACCCAGGTA GCCACCACAGTTACCTGGGGATTCACAGAGAACTGTGTGTGACCACTGGTGCTGTCAAGTCCT CTTACCTGAGCACCTGTGACGTTTCCCTTGAGAACGTGTACGGGATGGGTTGCACCTGGTTAT ATACAAGCGTGAGACTTCTTTCTGCCTTTGTAATTTATTAGCAGATTATCTGTGATGAGC ATCGCAATCTGTTTAATGCCTATTCAATAATTAAATTTTTCTTTCTCTTCTTTTGTGGAAAGGTT TTCTGCATTGGCAGGAGATTTTTGTTTTCGATTATGTCCCCAACATGCCTGATGTTCCACCCCT CAAGAGCCTCAGCCTTGCCCAGGGAGGGCATGGGGGTGAGTGGCCTCTCCCACAGAGAGTGC TGGCCAAGTTGGCCCAGGTGCGCAGCAAGGGCTGCTGCCCAAAGGCTCCCTCCTGGTTG GCATGGGTCGGGACCCTGTTGTGTTGTGTTTTCGCTCTTTTTCGTAGAGTTCAAGGGGGTCCTG CTATGTTGTCCAGACTGGTCTTGAACTGACCTCAAGGGATCCTCTCGTCTCAGCCTCCCAAAGT GCTGGGATTACTGTGCCCAGCTTTGTGTTGTATTTTCTGATCTTATCCTGCAACCTCTTGAGCC CCCAACCTGGGCCCCAGTTCCTGCTGTGCCCCAGCCTGCCAGCCCTCTCTCTCTGCAT ATTCTTTCTTTAGCTGAGTTAACACCACTGATAAGGTTAAAGACAGGCTCTTAAATTTCTGCCC TGGCATGAGAAATATGTGACCCAGATGCTTCTCCAGCTTTAGCTGTCCAGTGTAACTGTCAGGG ACTGATGGGCGCGTGCTGGCCCACAGCCCACCTCAGTCCTGACCCTCCCTGACAGGCTGAGAG AGGCCCCAGCCTGAACCTGGACTCCCCCATGTTCTGATATTCCTGCACAAGAGTGCAGAG GCCTGGTTAAGCTGGAGAAACATAAGGAATAGGTAGGTCTGCACACACTCACCTCTTCCTTTG CAGTGAACCTTCTAGAATCTTCTAGATGGAAAAGCTGGGGGTGTGGAGGTGTAGGGATAGGA CAGCTGGGGGAGGCCTTGGCCAAGGTCAAGGAGTAGGCCCAGTCTCCCTCTCTGTGTGCCTGT CTGGGACTCGGTTTCCTGTCTGTGAAGCAGGGCTGGACGGGATATTGACAGCACCTGATGGTC ATTGAGCTCCTCTGCCCCAGGCACTCAGCTGCTGGGCACAGTGCACACGTGGCAGTCCGGTGC CCTCTCACGCTCCGTGATGACTGAGTCTGTAGTTACACCCCTGGCCTCAGAATAAAGACTACA CTTTCTGCCTCCCTCACTGGCAGGTATGACTAGGTGTGGTGGCAGTTTTCTCCTTAAGAGACAG ATGTTTGTGCCTCCCTCCAACCCGCTGGCTAACACCTAGCTGGCACACAGCCTCCTGGGGCTA TGAAGATGAGGGCCACAGCCACAGGGTGGGGGAGCCGTGAGCTGGGTCTGGCTGCGTCTCTG ACATATGGGGGCATCACACATCACCTCTACCTCCCATCGAATGCTACACGAAGAGAACAAACT CCACCTGATGGAAGCTGCTGTTGTTTGAAGTCTTTCATGCTCACAACAGAACCTAACCCCAAC CAATACAGTATGAGTATTGGCCCCACGTGGTTAAGCAAGCTGTCCAAGGFFACACACAGCTGG GAGGTGGTGGAGCTGGGTTTGAGCCTGTTATTGACCTTTGTGCAGACAGACCTCAGAGCAGAG CACAAGGCAGCAAGGCTGTGGGTCTGGGGCTCCCTCTCCAGGAGAATCAACTGGCTGCACAC AGCCTGGAGAGCCCATGGGCAACCTGAGTCCTTGCACCTGGAAGTTTCTGTGTCCCACACATA TCCAGGAGCTTAAAATGAAGATGTCTGAATTACCCAACCTCTTGATAGCACCAACCCAACCTT CCAGCCTCCTCTTCTGAGGTCAGCCCAGAGCAAGCCCCTTGCAAAGCTGATTTAACTCAGAA CCACTGGGCATACCCACAGGGCAGTGACCCTGCAGCCCTCGATCAAATGTGCAGATGGACTTG GGGGTGGGCTGGTACCCCAGATGGCCTCATTCTCCCAGGGTTGCAGAGCCCCTGAAAGCCACA GCCCTGTGTGCACACCACTGGGGAGTCATCACAGGATACTTCAAGAATTCAGTGCCAGGCAA GGTGGCTCATGGCTGTAATCCCAGCACTTCGGGAGGCTGAAGCGGGCAGATCACCTGAGGTC AGGAGCTAGAGACCACCCTGGTCAACATAGGGAAACCCCATCTCTACTAAAAATACAAAAAT TATCTGGGCGTGGTGGCGGGTGCCTGTAATCCCAGCTACTCAGGAGGCTGAGACCGGAAAAT CGCTTTGAGCCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATTGCACTGCTGCACTCCAGCTTGG GGGACAGAGTAAGACTCCATCTCAGAAAAAAGAGTTCTGTGTATCATTTAATGTGGAGATCCT CCCATCACGAGGATGAGGCTGTTTCTCTACTCCCCAGATCTGGGCTGGCCTGTGGTTTGTTGAC CTCAGCCTTGTAGTTCTCACTTTCCTGGAACCTGAATGCCACCACGCGACATCCATAAGACAA AGCCCAGGATAAAAGATCACTTGGAGAGACAGGCCTGGCCTGGCACCACCCCGGCTGAGGCT GGACCCCTGGGAAGGAGACTCTGATGGACCTCCAGACCCAGT CAAATGACCACTTCCAAGGTCAGGCAAGAAGGGACAAAGAGCCACTGGCTCAGCCCACAGCA TCTGAGAAATAAGAAACCGCTGCATTTTTTGAGCCAGTAAGATTTGACAGGTTTGTTTTGCAG CAATAGATGAGTGGTACCTCATCTTAGCCCATGTTCTGATGAAGACAAACAGTAGCATTGACA AAGTTTTAAGAAAAGTTAACCAAAAACTGGGATTCCTTTCTTCATTTTGACCCTTTGTTACAAG AAACAGAGGCCCACCCCACCAGACTCACTGTTCACTGGTCCCTGAGTGCCTGTGAGTCTCAGT GGGAGTTACCTTGAGACCAGCCCTTCTGAGTGGAGGGTGCTGGGTGCTGAGGTCAAGTCGAG CTCAGTCCAGGCTAAAAGGAGAGCAGCTCTGGCCAGGCTGTCAGGGCTGTGGCCTCCCCAAG AACCTCCTACCCTGGCCCCTCCAGGCTTTGCTGCTATGGTTGTGTGAGGGGAGTTGCTGTCCCA GCATTCTGGCCCCCTTGCCCCCAGCCCCTCCCTGACCTCCACGGGCTTCAGGCCTCAGTCCAGA GTCACCTCCTCTAGGAAGCCATCCCCCAGTGCAAGTCTGGGCAACATTCCTCCTTGCCTGGCC CACCTGCTCACTCTCATGCTATGGCTTTCTGTAAGCAAACACAAAGATAGGAACAACTCTGTC CCTGGCACAGAGCAGATGCTCTGGCAATATCTCATGAGTGAATGAAGGCACATGACAAACCT CCAGACCTGTGGAGACTGAAGGCTGAGAGCCTTTATAGATGCTGTGGGGCCGAGGAGTTTGC CAACTACAGCAGGTCATGCCCAGAGGTTTCTCTCTGGGTAGCAAGGTGTGTCTCCCACCAAAG GCCATTGGCATGGGGCCCGCCCTGCTGACCCGAGGCAGTGCACAGCAGAGGCCAGATGCAGT GAGAAGGAGCCTCTCCTTGGCCTGCTGTCTGCTGCCATGCCTGTGGGGGCGTGGACACAAGTG TGTGGCATAGAAGGTGGTGTGGCAGGTGAGAGGTTGGGGGTGTGTATGTAGCAGGTGTCTGT GTGTGTATGTGCATGTGGGGGTGTGTGTGCATGCATGTGTGTGTGTGCATATGCACGTGTGTG CATATGCATGTGTGTGCATGGAGAGAGAAGACCTCCTCTTTCTGGCCCCTCTCCTAGCTGCCCC CCTCCCTCCTGCTGCCAACACACTGTCAACCCTTCACTGTCTTTTTCCTTGGGACTCGTTGATCT GTCTCTACCATCCCAGGTGTCTGGAGCAGCCTCTAACCTTCCATCTGCCAAGGTACTTCAGCCC CACCCCTCCCAGCTGTGGAATGTCCCCTAGGATGTGCCACTGACACAAAGAGCCACACAGCTC CAAAATAGAATATTATCTAACCCACTGCTCCCTTTGCTGTCAGCAACACCTCCACCATGCTTCT CCCAGGACCCCCCFTTGAACTCTCTGCTTCCTCCCTGAGGCCAAAGGAAAGACAGGAAAGGGG CCACCTTCCTGTCCTTGGGTCCCACAGAGATGTATCCTTGTAATGAAACCTACTTTATGCTTGA GTTGTATCCAGTTAGTTTCTGTGGCTTGCAATCAAGACCCACACCCACCTCAACCCAGGCTCTA GAGAGTAGACCCTTGTTTTTGCCTGGCTTGGGTCGACCTGGCACCTGCCAGGGTCCCAGCCTC TGAGTCAGCCCACCTTGCCCTCATCGGTGCCACCTCCAGGCGGCTGT ACATAGACTCTGGCTTCTGCCCTGGCCTGGCCTCTGGGAACTGCAGCTGTCTGCTTCCATCCTA TGTGGATGGTGCCTGAAAGTGAATAGGGATCAGTTACCAGCCCAGTATCTGTCCCCTTCTCAA TAGCACTGATTCCTATGGGGAACTGCTTTTCTTGGACTATGTATGGGTTTGGTGGGAGGGTAG TTCCTGTAACCAACCCTACAGGGTGTAGGAACCTAGACTCTCAGCAACATAACAGGCAGC AGGCTCCCAAGCTAAGTCTGGCCAGCTGGGCCACCTCTCCCAGATTCTGTTTCATGAGAGCAT CATCCAAGAGCAGTGGGAACACTGGGGACGGTCCAGCCTAGGACTGGTATGCAGATCAGAGA ATCCCAGATAGAAGGTGATTGCTGTTCTTCCAGTTTCTTGGCCCTCCAGAGCAACCATACTTCC CATCTGCCCCAAAACCTGATCCTCCAAACTCCCACCATTTCTGTGCATCCCCAATATCTAA TAGATCAACTGCCTTTCATTTACATTTGTCACAACCAAATGATACACCTGCCCTTCACCCAGTA CTGAACTGCAGCTGGGTTAGTCCAAATTCAGGGCCCACGTGTCATTTCAAGCCTGTCTTGAAT AATGTACACCTTCCTGCAATGTGAGGATGGCCACCACCTTGGTCTTATACCCACGGGTGTCCT GAGCTACATTTCTCATAATCAAAAATAAACTCAACACATCACTCCAGCCTGAGCAACAGA GCAAGACACTAGCTCTAAAAATAAAAAATAAAAACAAACAAATGAAAAACCCAGCAAACTT GGGGAAAGAGGAAGCACCTGATTTCCAGAGTTTCCACATCATGAGATGCAAATGTCCAGTTTT CAACAACAACAACAACAACAAAAAAAAAATCACAAGGCATACAAAGAAATAGGAGACTAAG ACCCACTCAAAGGAAAAGAATAAATAAGCAGAAGCCATACCAGAGGAAAACCAGATGGCTG ACTTACTAGACAAATACTTTAAAACAACTGTCTTAAAGATGCTTGAAGAGCTAAAGGAAAAT GTGAACAAAGTCAAGAAAGTGATGGAACAAATGGAAATTCCAATAAAGTGATAGAAAACTTT TTGGAGTTTTTTTTCTTGGTAGCAAAAAATTATGAAGCTGAAGAATACAATAAATTCCCTAGA GGGCTTCAAAGGCAGATGTAAGCAAACTTGGCCAGGTGCAGTGGCTCATGCTCATAATCCAG CACTTTGGAAGGCTGAGGCAGGAGGATTGCTTGAGCCCAGGAGTFJTGAAACCAGCCTGGGCA ACATAGAAAAACGCTATCTTTAAAAAAACTTATATAAAATTTAAAAATTATAAAATTTATTTA AAAAATCAGCAATTTGAAGACTGGACAGGGAAATTATCAAATTTGAGGAACAGAAAGGAAA AAGATGGAAGAAAAATAAACAGAGCCTAAGAGACCTGCGGGACACCATCAAGCAGACTAAT ACCCATTGTGGAAATTCCAGAAAGAAAAGAGAGTGAAGGACCAGAGAGATTATTAGGAGAA ATAATGGCTGAAAATGTCTCAAATTTGATGAATGACATGAATATGAACATTCAAAAATCTCGA CAAACTCCAAGTAGGAAAAACTCAAAGATACTCATACTGAGATTCATCATAATCAAACTGCTG AAAGCCAAAGACAAGGAGACAATATCAAAAGCTGCAAGAGAGAAGTGACTCATCACATACA AGGGATCTTTCAAAAAGATTATCAGATATCTTGGCTGGGCACGGTGGCTCACACCTGTAATCTT AGCACTTTGGGAGGGCGAGGCAGGTGGATCACTTGAGGTCAGGAGTTTGAGACCAGCCTGGC CAACATGGCAAAAACCCATCTCCATTAAAAATACAAAGATTGGTGAGGCATGGTGGTGCATG CCTGTAATCCCAGCTACTCGGGAGGCTGAAGCAGGAGAATCACTTGAACCTGGGAGGCGGAG GGTGCACCAAGCCAAGATCGTGCCACCACTGCACTCCAGCCTGGGTGACAGAGTGTGACCTTG TTTCAAAAAAAAAAGAAAAAGAAAAAGAAAAAAAAGATCATCAGCTATCTCATCAGAAACCT CAGAGGCCAAAAGGCAGTAGATTGATATATTCAAAGTGCTAAAAGAAAAAAATAAATCTGTC AGCTGAGAATCCTGTATCTGTATCTCACTTAACCATTATTTTAAAATAAGGGAAAATGAAGAC ATTCCCAGATAAACACAAGCTGAGGGAGTTCATTATCACTAGATCTGCCCTGCAAAGAAAGCC AAAGAAAGCCTTTCAGGATGAAATGAAAGGATACTAGACAGTGACTCAAAGCTGAATAAAGA GGCCAGGCATAGTGGCTCACACCTGTAATCTCAGCACTTTGGGAGGCTGAGATGGGCGGATC ACCTGAGGAGTTTGGAGACCAGCCTGGCTAATATGGTGGAACCCCATCTCTACGAAAAATACA AAAATTAGCCAGGTGTGGTGGCACATGCCTGTAATCCCAGCTACTTTGGGAGGCTGAGGCAAG AGAATCACCTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCGAGATTGTGCCACCGCACTCCA GCCTGGGTGACAGAGTGATACCCTGTCTCAAAAAAAAAAGCCGAATAAACGAATAAAGATCT CATCTATGGCCGTACCACCCTGAATGTGTCCAATCTCAGAAGCTAAGCAGAGTTGGGCCTGGT TAGTACTTGGAGGGGAGAAATAACGGTCTATGCTAAAGGAAAATTCAGGTGCAATTAAAGTA AAATTAATTATATAAAAGAGAATACATTAAAAGCTAGTATTATTGTAACTTTGGTTTGTAATT CCACCAAGTGGAATTTGTTCCTGAAATGCTAGAATGGTTCAACATAAAAATCAATAAATGTAA TAGACCACATTAACAGAAAAAAAACCCACACGGTCATCTCAATTGATGTCAAAAAAGTATTT GACAAAATTCAACACTCTTTTGAAAGAAGAAAAAGCTCAACAAACTAAGAATAGGAGGAAAC TACCTCAAATAATAAAATCCATAGGCCAAATCCCCAAACTCACAGCTAGCAACATATTTAATG CTAAAGACTGAAAGCTTCCCCTTTAAGATCCGGAATAAGACAAAGATGCCCACTTTCACCACT TCTACTCAACATAGTATGGGAAGTTCTAGCCAGAGTAATCAGGTAAGAAAAAAGAAATAAAA AGCATCTGAATTGGAAAGGAAAAAGTAAAATTATTTGTTTGCCCAATACATGTACAATGTTTC AGGTGAAGGCTCAGAACAGTACAACCTTACCAGCAAGAGTCCTGCTGTCTCTGTGTGAATCCC AGCTATTACTCACTAGCTACATGATCTCTCTTGCCCTCCCTGCCTCAATITTCCTCATGTGTAAA GTGGGAGAAAAATAATAGTTCATGCTTCAAAGGTTTTTTGTTTGTTTGCTTGCTTTGAGACAGC GTCTGGCTCTGTCGCTCAGGCTGAAGTGCAGTGGTGCAATCTTAGGTCACTGCAACCTCAGCC TCCTGGGCTTAAGCGATCCTCCCACCTCGGCCTCCCAAAGTGTTGGGATACAGGCGTGAACCA CTGTGTCTGACCCAAAGGATTATFTTGAGGAGCAGATGAATTAATGTGTCATAACCTCAAAGCA GTTGCAAAGGCGTTTAATAATTAAAATATCACATTTTAAATTAAAATATAAGGCTGGGCGTGG TGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGG AGTTCCACACTAGCCTGGGCACCATTGGGAGACCCTGTCTCTACACACACACGCACACACACA CACACACACACAAACTTAAAGTAGCCAGGCGTGGTGCTGCGCGCCTGTTGTCCCAGCTACTCG GGAGGCTGAGGCGGGAGAATCACTGGAGCCTGGGAGTTCGAGGCTGCAGTGAGCCGAGATCG CACCACTGCACTCCAGCCTGGGCCACAGAGCAAGACGCTGCCTCAAACAAACAAACAAAAAC AAAAATTAAAATATTAAGTAATAATTAACGAGTGTTAATATCCACTCGTTGTGGAGACAAGAC CTGGACTTAGGAAACAGGCCCAGGGAAGTAGCAGAACAGTAGCGCTAGAGGACGCCTGGGA GAATCAGCGCGCGGCGGGAAGAGCCCGGGAAGCTTAGTGGGGAAGCGTCTCTTGATGGGGTG AGGAATTCTATAAATTAGTGGAGATGGAAAAAAAAAAAAAAAAGTATTCCCAAAGTGGGAG ACAGCACTCAGAAAGACGTGGTGGTAAGAACGAGTATGAGTAACGGGGACAACGAGGACAC TGGAGATTGGGGAGTGTTGGGCTGGAAGCTGGTGTGCAGCTGTGGGCAAGCTAGGGAGGACC CCGAAACCGCCAATGCGTTTCCCGGACGCAGACGCTGGCAGGACGGGAGGAACCCCGAGACC CCGCGCCATCCCTTCAGGAAGAGTTACTTCTCCCCGGCCAAGTTAGTGGGCCTTGGGCCTTCTT TCTGTTGGGATCCTCCTCGCGTGTCGCCATCGCTACAAGTGGGCAGCTCTGCGGGGAAAGCTG GGACGCTGGGGGCTTCACCAAGGAGGCTGGCGGCCGACCACTGGGAGGTCTGGCGGGGTGAC GACCACTGGGAGGTTTGGGCAGGGCCTGACGGGGTGACGCGGTCAGCCCACTGGAGGCCGAC ACCCCCCGTCAGCCCAACCCCTGCACGCGCGGCCGCCAACCAAAGACCCGCGGCGCCGGCCT GCGAGCCCCCGCCCCGCGTTGCCCAGGAAACCGAGGGTGTGGCTCCGCGTTCTCTGGGCGTCC CAGGGACTGGGCGCACAGTGGTCGGCGGGATGAGGCGCCTGGTGACGGACGGGGCGAGGAG GGCAGCGATTGGTGAGATTAGGCGATGGGCGGGGAAGCCGCGCGGGGATTAGCGAGTTGCGG CGATGGGCGGGGCAGGCGCGCGGGGATTGGCGGGATGCGGCGCGCCGCGCGTTGAGTGGGGT CCAGGGAAACGGGGTCAGCTGGGGGTGGCAGTTCCAGGCCGCGAGGCCGGGCTCCTGGGTCG GTGGGCTGGTGTCTTGGCGGACGTCCCGCAGCTGCCGCGTGGATCCGAGCCGGGGCACCCGCC GTGACTGGGACAGCCCCCAGGGCGCTCTCGGCCCCATCCCGAGTAGCGCGGCCTGGCTGCTGC CGCCATCAAGCACGTTCGAGCCAAAAGCTCCTAACGAGTCACTCGTTAGACACGTGTGCGGA GCCTGTGTCCCAGGCCAGTGCTGTCCCGTGGAGATAGATTGCAAGCCGCTAGGGAATTTTTTA ACTTTCTAGTAGGTGTACGAAAAAAGTAAAACGAAACAAATCAATTGGAGTAAATCCATAAA TATATTCAAACTATTATTTCAATTGTATGTGAAAAAATTATTGGGATAYTTCTTTGTACTATTCTT AGAAATCCAYTTTGTGTCCAACCCAAACATCACAGTTGGACTCACCACATCTCCTGTACTTCG TAGCCCTAGGTGGCTAGTGGCATAAGACACAAAAATCTCAGCTCTCCTGGAGCTTATGGTCTA GTTGGAGCAGGCAGACAATACAFTTTTAAAATATACAGTTTGTTAGAAGGTAAATGTTGTAAACA ACAATAACAGTTGAAGTACTGGGGAGAGTTGCAGTTGTAAATCAGATGGGCAGGGCACAAGG TAACATTTGAGTAAAGATGTAAGAACTTGAAGGAGATGGGCAAGTGAGCTCTATAAGTATAC GGGAGAGGGGCAAGCAAGAGTTCAGAGGCCCCTGCTGTGGGGAGGGATCCAAGGTGGAGG AGTGGGAACCAGGAGGGGAGAGGACCAGTGGAGCAGATCTCATAGGCAGTTGTAAGGACTTG GGGCCTTATTCAATGAAATGAGGACACTTTGGAGAGTTTTGAACAGAGCAGTGACTGATTTAT GTTTTTGGTTTTGGTTTAGTTCTATTATTATTTAATAATAGGCTTATTATTTCACAGAAGTTTTAT TTAATAAGGCAGACCTCTTGTCTGGAAATGAGACAGGTGCCGGAGAGCTGGATGGAGGCAGA TCGGGAATTCCATTTGGGGCAAACTGAACTTGATTGAGACCCTGGTAGTTGTCCAGATGGAAC AGGACACCTGAGTCTAGGGflCGGGAAGAACTCCAGATGGGACAAACACTCCTAGCTTTCCTT TTCTCTTYFTGGATGACCGCTACAGGGTGAGACATCGGTATCCAGGCACGATAAATTTCCAAG TGGACACAATGTCTGGTGTCAACTACAGCTGTTCTCCTTCTTTTCCCAGTATCCTTTGGGTGCA GTGAGACACCAGGAGAGCTGCTGCTTTGGGGGATGGACAGGGGCAGCAGGAATGCCTTTGTG TTTTCGCAGTGAACCTCCTTGGCCTGGGCGAAGCTGTGTGGACCAAGCAAGTCAGGAGTGTGG CCATGTTTTCTGAGCAGGCTGCCCAGAGGGCCCACACTCTACTGTCCCCACCATCAGCCAACA ATGCCACCTTTGCCCGGGTGCCAGTGGCAACCTACACCAACTCCTCACAACCCTTCCGGCTAG GAGAGCGCAGCTTTAGCCGGCAGTATGCCCACATTTATGCCACCCGCCTCATCCAAATGAGAC CCTTCCTGGAGAACCGGGCCCAGCAGCACTGGGGTAAGTGAGAGTTTGGGAAGGTGCTTCCC CCACAGCATCCCTGAACTTAGAAGTGTTCTGCAAGAGAATGGGAACAGTTTATCTAATTGATC CCACTTCCTGTTACCTTGGGAAAATTAACCTCTTLTTTCCCTCAGTTTCTTCTTAAGATAGTAAC AAGGATTAAATTAAGTAATTTGTGGGTFTTGGAGTTAGTTTTAGTTCAGAGGCTGGTTGGAGAT GAGGACTTAGTTCTGGCGGTGATGGCGATTACTTCACTGGCAGAGGAAAATGGTTTTCCTATC TTCAGTGCAGATTATTCAGGTATTTGCCTGTGCTGTAGCCAGAGAGCCCCTCAGTGTGGCAAG CCTGGCGCCAGGCACCAGGAGCCAAGACTGGTGAGGATGCACTCTCTGGTCTCGAGGGGACC CCCTCTGTTCACTCATGTCTGTTTGCCTGTCCTCCTGGCCCCCATATTTGCTGGCCATGAATTTT CCTGTCCCTTGGGCCCTCTGTCTTTCCTAATAAAGTGGCCTGCCCAACACAACCCTTGTTCTTT GCCCCCATTTCTTCCCTGGTGATCTCTCCTGCAGTTGGATTACTCTTGGTGGTGAAGCAGGGAC CCCCATCTCCCCCTTTGAGTTTATTTGAGTTTTAGGTGCTGCTGCATTCCCCCATTCCTACCACT TACATAAGAGTGGCTTTCCAGGTAATTTTCAAATCCATCTCCTATTATATTTTTAAACTGAGGA TTTAGTAGGTGAGACCAGGTCTTACTCATTTTACTGTCCTTGGCACCAGGCAAAATGGATCTC AGCCCTAGTTGCACATTGGAATCCCCTGGGGAGCTTTGAGAAGCCCATCTCATCCCATGCCAA GCCAAGATCAATTCTCGTTATAGGCAGGCGGAGAACCCTGGGCCTAGAAATCTAGCTAGAAC CTCAAATTCATTAGGGATATGTATTAGTCCATTTTCACATTGCTATAAAAAACTACCTGAGATA GGGTAATTTATAAAGAAAAGAGGTTTAATTGACTCACAGTTCCTCATGGCTGGGGAGGCCTCA GGAAACTTAACAATCATGGCAGAAGGTGAAGGGAAAGCAAGGCTCTTTTACATGATAGCAGG AGAGAGAGAGCAAGGGGAACTGCCAACCATTTTTAAACCATCAGATCGCATGATGGCTTGAT CTCACTCACCATCACAAGAACAGCATGGGGGAAATCCACCCCCACAATCCAGTCACCTCCCAC CAGGTCCCTCCGTCAACACCGTGTGGATTATAATTCCAGATGAGATGTGGGTGGGGACACAGA GCCAAATCATATCAGGATGTTTTTCTGTTTTTGTTTACCTGAGACAAAGTGCTGTTCACCTCTCCT CTCCCACATAATCAGGGGCTCCCTCCTGCGGCTCCGGTAGCTTTTCCTCACTTTCCTTTCAGCC CTCGGGACACCTTCCTTGGCTCCTTTCAGAGCTCAGTTACTACTTGGGCCCAATGTCAATGCCA CCTTCTAGATTCTTTCCGGCAGCACCTCCTCTGGTCGCACATLTTCTCTTCCAGTTATTGGAGCT GTCAAAAAAGCTCCCCAGTGATGGACGATAGCGATTTCACTGTGCTCACAGACTGGTCAGGA AACCAAACAGCTGCCACAGTGAATGTGTTGATAGCAGCGGGGCAGCAGTAGCACTCGCTCAC AGGCCTGGTGGTTGGTGCTGGCCCCCACCCTGAATACCTACATGTGGCTTCTCCATGTGGCCT GTGCATCCTCACTGAAGCTCAGCCTGTCTCTCCAAATTGGTCTTTCCACTCACCTGTTCCCCAA ACCTGCCCAGACCTTCCTGCTGTAGGCTTTTCCCTTCACTTGGCACACTCTTTCCCTTGTCTTCC CATGGCCCCATCTAAGCCCCACTGTCAGCTGAAGTGTTATATTCTTTGAGGGGCCACCTGAAG CCACCTTGCAATGAGGGCCTCCGTTTTCTACCTCAGCTCACCATTTGTTCACAGCACTTGTCAC TGTGGCGAGTTACTTGTCTATGGCCTGTTGTCGTTCTCCTGCCTAGACCCAGTGGGCTGAGTGG GGGCAAGTGTTGGCTTTTATGTCCAGTTTTGATCTTGGTGCCAGCACATTGCCTGGGTGGAAG CATGTCCTACTATCGGTTACAGGGATGTCATTCTGCCCAGTGCTCAGGGGCATACACTTGGAT CCCAGTTGTGTGCCCTTGGACACATTGCTTAACCTCTCTGTGCATCAGTTGGGTGATAATATCT ACTCCTGGCACATTTTCAGCGTTGGCTGAGTTACATTACAGTGCTTAGGCCACCTGGGGGAGA GTAAGAGTGGGATACGTGAGGATGTGGAGTCTGTTGCATTTCTGTCTGCTGCTGGCATCCTTCT TGTCTTGTTTTGAGTTGCTCGCCTCTGTCTGCTCCCTAGGGCGTAGATTTGAGGAATATTCCTG GTTCTTCCCAGGCAGCAGGGGCTCAGGCTGTGCTGGAGTCAGCTAGGCTAAGGGGCTGGTCTG GCATCCGCGTTGTCCTGTCACCTCCTTGGTGTTTTTCTCCAGGCCTGGATCTGTGCTGTGTGGGC ACCTGTATTCCTCCCTCCTGCCCTCACTGATTCTCCATACCTTTCTTCGAGAGTGCCAAGCC CCTCCCATGTGTTCTTGTTCATACCTAGGATCCCGGGAAGGGGCTGGGGAAGACGGTGCCCAG GTGCCCTGGGTAAACAAAGCCACCTGACTCCACGGGAATGGAATGGGTGGAGGGGATCTGAG GTCTGCATTTTGAGTATCTCTGGTCTCAGAGGATGAAGCATFTTGGTGGGGGTTGGGGGTGGGG GGTAGGGTGGAAGAATCTAAAGTCTTAAAAGAAAATGGCAGTTATTTGTGGGACAGGGCTGT GTTGAGACTTGGCATGCTTCTTTTTAAGAGTCAGTGTTGTAATTTAGGTATAAGTGAAGCAGT ACTTTGTATTAGTTTCCTGTAGGCGCTGTAACAAAGCACCACAAACTGGTTGACTTAAAACAA CAGAGATGGCCGGGCACGGTGGCTCACGACTGTAATCCCAGCACTTTGGGAGGCCGAGGCGG GCAGATCACAAGGTCAAGAGATTGAGACCATCCTGGCTAACACGGTGAAACCCTGTCTCTACT AAAAATACAAAAAAAAAAAAATTAGCTGGGCGTGGTGGCACACGCCTGTAGTCCCAGCTACT CGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCTGAGA TCGCGCCACTGCACTCCAGCCTGGATGACAGCGAGACTCCGCCTCAAAACAAAAACAAAAAC AGAAACAACAATAACAGAAAAACACAGACATTTACTCTCTGGCAGTTCTGGAGGCCAGAAGT TGAAATCCAGATGTCAGCAGGATFTGGCTCCTTCTGAAGGCCCGAGGGGAGGGTCCTTCCTGGC CTCCTCCCTGGTGTTCCTGGGCTTGTGGCCGCATCACTCCGCTCTGCCCGTCTTCACACTCCCT CTTGTCTGTGTGTCTGTCTCTCTGTTCTCATGAGGACACTTGGCATCCAGGGCCCAACCACACC CAGAGTCCCTGGTCTCCTGTGGCTGACTCACTTTTTACTGTCACCGTGAAGTCCAGGGGGTCCT TGTACTTGATGTTCTCTCCTGGCAAGGCCAGGGCCCTGTGATTGGCCTCTCATGGAGTGCTGG GCAGGGCCTCCATGGCCTCTGTCGGGCGGGGGGGCTACTTCATCTCTGAGTCTGTACCCCTCG TGTCCCAGGCAGTGGAGTGGGAGTGAAGAAGCTGTGTGAACTGCAGCCTGAGGAGAAGTGCT GTGTGGTGGGCACTCTGTTCAAGGCCATGCCGCTGCAGCCCTCCATCCTGCGGGAGGTCAGCG AGGAGGTGAGGCAGGGTGCTACACAGTGGGGCCGCCAGGCAGACCTGGCCTCCCACTAGAAC ACCTCCCTGGAGGTGGGGTTGTGGGGAAGCAGGTTCAGAGACAATGGACTCCAGAGGGGTGG GGGCTGCGGTGCCAGCTCACTAACACCAGAGCTTTGGTGGGCTCTGGCCCCAAGATTATACCT CCTGTCTCTGCATTCCAGCACAACCTGCTCCCCCAGCCTCCTCGGAGTAAATACATACACCCA GATGACGAGCTGGTCTTGGAAGATGAACTGCAGCGTATCAAACTAAAAGGCACCATTGACGT GTCAAAGCTGGTTACGGGTAGGGAGCCCAATGAGAGGATGTGGGTGATGCAGGTGAAGAGCC CAGCGGTGGTGTGTTAGGGATGGTGTGAGTGGGGAGCCTGGGGGGAGTGGGGGGGTGTGGCC TGGGCACACGTGTGTTCTTGAGGAGGTAGGTGAGGCTCCAGGCGGTCGGAGGCCATCAGATT GGGTGAGACCTGGCTGGGAGATGGGTCTCCCCACCTCCATCCAAGGGCAGTGACTCCAGGAA GCAGGCATGCATCCTGGAGTCCTAGGTGAGAATTCACCAATGTGGTTGTGGAGAACTGGCTTG TTTTGCCCGTTGGGGTGACTGGAAGGAGTGGTAGCACCTGGGGCTCCCTGCTCAGGCCTGATG CCACTGCTCCCCAGGGACTGTCCTGGCTGTGTTTGGCTCCGTGAGAGACGACGGGAAGTTTCT GGTGGAGGACTATTGCTTTGCTGACCTTGCTCCCCAGAAGCCCGCACCCCCACTTGACACAGA TAGGTGAGCAGCAGTTCTCGGGAGCTGGAACCAGCTCATGGTCAGTGGAATCTTTGAGTTGCA CCTAGGAGGGGCTGCCTCCCTTCTCGGCACCCTGGAGGACCCCACCTTCTCCCGCAGGTTFPGT GCTACTGGTGTCCGGCCTGGGCCTGGGTGGCGGTGGAGGCGAGAGCCTGCTGGGCACCCAGC TGCTGGTGGATGTGGTGACGGGGCAGCTTGGGGACGAAGGGGAGCAGTGCAGCGCCGCCCAC GTCTCCCGGGTTATCCTCGCTGGCAACCTCCTCAGCCACAGCACCCAGAGCAGGGATTCTATC AATAAGGTATGGAGCCCACCTGGCTGCATTCAGCCCCAGCCCAGGAGCCTGCAAGCCTGTAA GACCCTCCTTCCCCAGGGCGAGTAGGGTACCCTGTGAGGTCTCGCAGGTCGGTGGGAAGCGCC CTGCAGTGACTCTGGGGCCTCCTGCAATGGGGCTCCTCATGCCCAGGCCCTCGCTGAGGATGG TGGGAGGCTTGAAGGGAGTGAGGGTCTATGGGACAACAACTGCATCTTCCAGCTGGTGGGGC TCTACTCTCCTCTGAGCCTGGGACTCGCCTGGGCCTGATGGCCTTCTGGGCTTCTATTCCAGGC CAAATACCTCACCAAGAAAACCCAGGCAGCCAGCGTGGAGGCTGTTAAGATGCTGGATGAGA TCCTCCTGCAGCTGAGCGTGAGCGAGCTGGGGGCTGGAGGGGTGATGGGGATTGCAGTCTTC AAAGCTGCCACTGGGCAACAGAAGGCAGGCAGGAGGGCAGGGGGAGTGGCCGGAGTTGGTG TAGGGGGCTCCTTCGGGGCCCTGTGAGCTCTCCCTGCCCTGTGCCTTCCAGGCCTCAGTGCCCG TGGACGTGATGCCAGGCGAGTTTGATCCCACCAATTACACGCTCCCCCAGCAGCCCCTCCACC CCTGCATGTTCCCGCTGGCCACTGCCTACTCCACGCTCCAGCTGGTCACCAACCCCTACCAGG CCACCATTGATGGAGTCAGGTAGCTGGCACAGCCACACTTCAGTCTGACCCAGCCTTTTGCCT CAGGAGGCACAAAGAAGGGAGGGGAGGGAGGGCCCAGGAAGGTGGCAGGGCTGCAGAGGC CCACCTAGCATCTGTTTCCTTCTCTCTGGGGCATCCCCACAAGAGCGCCAGATGAGCTCTGGGC TGACCACTATGGGTGGCACCCAAAGCCAAGAGTCAGCTGAGCTTTGCCTTGCAGATTTTTGGG GACATCAGGACAGAACGTGAGTGACATTTCCGATACAGCAGCATGGAGGATCACTTGGAGA TCCTGGAGTGGACCCTGCGGGTCCGTCACATCAGCCCCACAGCCCCGGACACTCTAGGTAACA GGCTCAGCCATACAGGGTGGGAGCAGAGGGCCAGGAGGCCTGGCAGGACCCTGAAGTGCAC AGGGTCCCCCTGTGGGTTTGCACTTGCCAGCATTGCTGAGAACTGTCTGAGGAGAAGTTCAGA GGCTTGGCACCTGCTCTGGAAGCTACTCTGGAATCTCTAAGGCCAATGGCTGCCCACC CCAACGGGCAGCAACAGCAGGGCCAAGGTCTTGTGACAATGTCTGGAGGTGCCCCTATGTC ACACTGGGGGTCTCCTACTGGCCTGCAATGGGAGGAGGGGCTGCAGCCCCACATCCTGTGCA GAGTGCTAGTGCTGAGGCGGAACCCTCCTCAGAGCTGCCCCTTCTCCTCTAGGTTGTTACCCCT TCTACAAAACTGACCCGTTCATCTTCCCAGAGTGCCCGCATGTCTACTTTTGTGGCAACACCCC CAGCTTTGGCTCCAAAATCATCCGAGGTAATTTTTGTCTTCTGGGGGCCCAGGCTGATTTGCTG ATTTGCTCTCACCTGGGGACAAGGTTCACAGAGAAGAAAACCTGCATTGTGGAGTCCCCCTGG CCCTTGTGGGATGGACAGCTGAGGTCTTCTGCACAGCTGCCATTTCACTGTGGGAGCCAAGCT GCCTCGCCAGCTGGGCAGGGACTGGAACGGCTCCCAGCCTGTGTGCCTCTCAAGGCTAATCTC TGGTCTCCTATTGTCACTGCCCCACTGTGTGCCAATGGGGACTCCTGTTTATTTCTGGCAGCTT CTCTTTGAGGCAGGACTTACTTGGAACCTACAGTGGGTCCTATGTGACTTCTTTGCAGGTCCTG AGGACCAGACAGTGCTGTTGGTGACTGTCCCTGACTTCAGTGCCACGCAGACCGCCTGCCTTG TGAACCTGCGCAGCCTGGCCTGCCAGCCCATCAGCTTCTCGGGCTTCGGGGCAGAGGACGATG ACCTGGGAGGCCTGGGGCTGGGCCCCTGACTCAAAAAAGTGGTTTTGACCAGAGAGGCCCAG ATGGAGGCTGTTCATTCCCTGCAGTGTCGGCATTGTAAATAAAGCCTGGCACTTGCTGATGCG AGCCTTGAGCCCTGGGCACTCTGGCTATGGGACTCCTGCAGGGGTGCCCACAGTGACCATAGC CCATGCACCCACCAGCCGGTCTCCCT - The POLD2 gene is 19,000 base pairs in length and contains ten exons (see Table 4 below for location of exons). As will be discussed in further detail below, the POLD2 gene is situated in genomic clone AC006454 at nucleotides 119,001-138,000.
- The polynucleotides of the invention have at least a 95% identity and may have a 96%, 97%, 98% or 99% identity to the polynucleotides depicted in SEQ ID NOS:5, 6, 7 or 8 as well as the polynucleotides in reverse sense orientation, or the polynucleotide sequences encoding the SNARE YKT6, AEBP1, human glucokinase or POLD2 polypeptides depicted in SEQ ID NOS:1, 2, 3, or 4 respectively.
- A polynucleotide having 95% “identity” to a reference nucleotide sequence of the present invention, is identical to the reference sequence except that the polynucleotide sequence may include on average up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence, the ORF (open reading frame), or any fragment specified as described herein.
- As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.
- If the subject sequence is shorter than the query sequence because of 5′ or 3′ deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5′ and 3′ truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5′ or 3′ ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5′ and 3′ of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identify, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5′ and 3′ bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence are calculated for the purposes of manually adjusting the percent identity score.
- For example, a 95 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5′ end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5′ end. The 10 unpaired bases represent 5% of the sequence (number of bases at the 5′ and 3′ ends not matched/total numbers of bases in the query sequence) so 5% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 95 bases were perfectly matched the final percent identity would be 95%. In another example, a 95 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5′ or 3′ of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5′ and 3′ of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are made for purposes of the present invention.
- A polypeptide that has an amino acid sequence at least, for example, 95% “identical” to a query amino acid sequence is identical to the query sequence except that the subject polypeptide sequence may include on average, up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the referenced sequence or in one or more contiguous groups within the reference sequence.
- A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Com. App. Biosci. (1990) 6:237-245). In a sequence alignment, the query and subject sequence are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.
- If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.
- The invention also encompasses polynucleotides that hybridize to the polynucleotides depicted in SEQ ID NOS: 5, 6, 7 or 8. A polynucleotide “hybridizes” to another polynucleotide, when a single-stranded form of the polynucleotide can anneal to the other polynucleotide under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al., supra). The conditions of temperature and ionic strength determine the “stringency” of the hybridization. For preliminary screening for homologous nucleic acids, low stringency hybridization conditions, corresponding to a temperature of 42° C., can be used, e.g., 5×SSC, 0.1% SDS, 0.25% milk, and no formamide; or 40% formamide, 5×SSC, 0.5% SDS). Moderate stringency hybridization conditions correspond to a higher temperature of 55° C., e.g., 40% formamide, with 5× or 6×SCC. High stringency hybridization conditions correspond to the highest temperature of 65° C., e.g., 50% formamide, 5× or 6×SCC. Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA.
- Polynucleotide and Polypeptide Variants
- The invention is directed to both polynucleotide and polypeptide variants. A “variant” refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar and in many regions, identical to the polynucleotide or polypeptide of the present invention.
- The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred.
- The invention also encompasses allelic variants of said polynucleotides. An allelic variant denotes any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
- The amino acid sequences of the variant polypeptides may differ from the amino acid sequences depicted in SEQ ID NOS:1, 2, 3 or 4 by an insertion or deletion of one or more amino acid residues and/or the substitution of one or more amino acid residues by different amino acid residues. Preferably, amino acid changes are of a minor nature, that is conservative amino acid substitutions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of one to about 30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to about 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain.
- Examples of conservative substitutions are within the group of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine). Amino acid substitutions which do not generally alter the specific activity are known in the art and are described, for example, by H. Neurath and R. L. Hill, 1979, In, The Proteins, Academic Press, New York. The most commonly occurring exchanges are Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, as well as these in reverse.
- Noncoding Regions
- The invention is further directed to polynucleotide fragments containing or hybridizing to noncoding regions of the SNARE YKT6, AEBP1, human glucokinase and POLD2 genes. These include but are not limited to an intron, a 5′ non-coding region, a 3′ non-coding region and splice junctions (see Tables 1-4), as well as transcription factor binding sites (see Table 5). The polynucleotide fragments may be a short polynucleotide fragment which is between about 8 nucleotides to about 40 nucleotides in length. Such shorter fragments may be useful for diagnostic purposes. Such short polynucleotide fragments are also preferred with respect to polynucleotides containing or hybridizing to polynucleotides containing splice junctions. Alternatively larger fragments, e.g., of about 50, 150, 500, 600 or about 2000 nucleotides in length may be used.
TABLE 1 Exon/Intron Regions of Polymerase, DNA directed, 50 kD regulatory subunit (POLD2) Genomic DNA LOCATION (nucleotide no.) EXONS (Amino acid no.) 1. 11546 ------------ 11764 1 73 2. 15534 ------------ 15656 74 114 3. 15857 ------------ 15979 115 155 4. 16351 ------------ 16464 156 193 5. 16582 ------------ 16782 194 260 6. 17089 ------------ 17169 261 287 7. 17327 ------------ 17484 288 339 8. 17704 ------------ 17829 340 381 9. 18199 ------------ 18303 382 416 10. 18653 ------------ 18811 417 469 -
TABLE 2 AEBP1 (adipocyte enhancer binding protein 1), vas- cular smooth muscle-type. Reverse strand coding. LOCATION EXONS (nucleotide no.) (Amino acid no.) 21. 1301 1966 1158 937 20. 2209 2304 936 905 19. 2426 2569 904 857 18. 2651 3001 856 740 17. 3238 3417 739 680 16. 3509 3706 679 614 15. 3930 4052 613 573 14. 4320 4406 572 544 13. 4503 4646 543 496 12. 4750 4833 495 468 11. 5212 5352 467 421 10. 5435 5545 420 384 9. 6219 6272 383 366 8. 6376 6453 365 340 7. 6584 6661 339 314 6. 7476 7553 313 288 5. 7629 7753 287 247 4. 7860 7931 246 223 3. 8050 8121 222 199 2. 8673 9014 198 85 1. 10642 10893 84 1 -
TABLE 3 Glucokinase LOCATION (nucleotide no.) EXONS (Amino acid no.) 1. 20485 ------------ 20523 1 13 2. 25133 ------------ 25297 14 68 3. 26173 ------------ 26328 69 120 4. 27524 ------------ 27643 121 160 5. 28535 ------------ 28630 161 192 6. 28740 ------------ 28838 193 225 7. 30765 ------------ 30950 226 287 8. 31982 ------------ 32134 288 338 9. 32867 ------------ 33097 339 415 10. 33314 ------------ 33460 416 464 -
TABLE 4 SNARE. Reverse strand coding. LOCATION (nucleotide no.) EXONS (Amino acid no.) 7. 4320 ------------ 4352 198 188 6. 5475 ------------ 5576 187 154 5. 8401 ------------ 8466 153 132 4. 9107 ------------ 9211 131 97 3. 10114 ------------ 10215 96 63 2. 11950 ------------ 12033 62 35 1. 15362 ------------ 15463 34 1 -
TABLE 5 TRANSCRIPTION FACTOR BINDING SITES BINDING SITES SNARE GLUCOKINASE POLD2 AEBP AP1FJ-Q2 11 11 AP1-C 15 15 7 6 AP1-Q2 9 5 AP1-Q4 7 4 AP4-Q5 36 5 43 AP4-Q6 17 23 ARNT-01 7 5 CEBP-01 7 CETS1P54-01 6 CREL-01 7 DELTAEF1-01 64 12 5 50 FREAC7-01 4 GATA1-02 19 GATA1-03 12 6 GATA1-04 25 6 GATA1-06 8 5 GATA2-02 10 GATA3-02 5 GATA-C 11 6 GC-01 4 GFII-01 6 HFH2-01 5 HFH3-01 10 HFH8-01 4 IK2-01 49 29 LMO2COM-01 41 6 27 LMO2COM-02 31 5 7 LYF1-01 10 13 6 MAX-01 4 MYOD-01 7 MYOD-Q6 32 19 7 12 MZF1-01 99 40 15 94 NF1-Q6 5 7 NFAT-Q6 43 8 7 8 NFKAPPAB50-01 4 NKX25-01 13 14 5 NMYC-01 12 8 S8-01 30 4 SOX5-01 21 20 4 4 SP1-Q6 8 SAEBP1-01 4 SRV-02 5 STAT-01 6 TATA-01 8 TCF11-01 47 28 5 19 USF-01 12 8 6 8 USF-C 16 12 12 8 USF-Q6 6 - In a specific embodiment, such noncoding sequences are expression control sequences. These include but are not limited to DNA regulatory sequences, such as promoters, enhancers, repressors, terminators, and the like, that provide for the regulation of expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are also control sequences.
- In a more specific embodiment of the invention, the expression control sequences may be operatively linked to a polynucleotide encoding a heterologous polypeptide. Such expression control sequences may be about 50-200 nucleotides in length and specifically about 50, 100, 200, 500, 600, 1000 or 2000 nucleotides in length. A transcriptional control sequence is “operatively linked” to a polynucleotide encoding a heterologous polypeptide sequence when the expression control sequence controls and regulates the transcription and translation of that polynucleotide sequence. The term “operatively linked” includes having an appropriate start signal (e.g., ATG) in front of the polynucleotide sequence to be expressed and maintaining the correct reading frame to permit expression of the DNA sequence under the control of the expression control sequence and production of the desired product encoded by the polynucleotide sequence. If a gene that one desires to insert into a recombinant DNA molecule does not contain an appropriate start signal, such a start signal can be inserted upstream (5′) of and in reading frame with the gene.
- Expression of Polypeptides
- Isolated Polynucleotide Sequences
- The human chromosome 7 genomic clone of accession number AC006454 has been discovered to contain the SNARE YKT6 gene, the human liver glucokinase gene, the AEBP1 gene, and the POLD2 gene by Genscan analysis (Burge et al., 1997, J. Mol. Biol. 268:78-94), BLAST2 and TBLASTN analysis (Altschul et al., 1997, Nucl. Acids Res. 25:3389-3402), in which the sequence of AC006454 was compared to the SNARE YKT6 cDNA sequence, accession number NM —006555 (McNew et al., 1997, J. Biol. Chem. 272:17776-177783), the human liver glucokinase cDNA sequence (Tanizawa et al., 1992, Mol. Endocrinol. 6:1070-1081), accession number NM—000162 (major form) and M69051 (minor form), , AEBP1 cDNA sequence, accession number NM—001129 (accession number D86479 for the osteoblast type) (Layne et al., 1998, J. Biol. Chem. 273:15654-15660) and the POLD2 cDNA sequence, accession number NM—006230 (Zhang et al., 1995, Genomics 29:179-186).
- The cloning of the nucleic acid sequences of the present invention from such genomic DNA can be effected, e.g., by using the well known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis et al., 1990, PCR: A Guide to Methods and Application, Academic Press, New York. Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligated activated transcription (LAT) and nucleic acid sequence-based amplification (NASBA) or long chain PCR may be used. In a specific embodiment, 5′ or 3′ non-coding portions of each gene may be identified by methods including but are not limited to, filter probing, clone enrichment using specific probes and protocols similar or identical to 5′ and 3′ “RACE” protocols which are well known in the art. For instance, a method similar to 5′ RACE is available for generating the missing 5′ end of a desired full-length transcript. (Fromont-Racine et al., 1993, Nucl. Acids Res. 21:1683-1684).
- Once the DNA fragments are generated, identification of the specific DNA fragment containing the desired SNARE YKT6 gene, the human liver glucokinase gene, the AEBP1 gene, or POLD2 gene may be accomplished in a number of ways. For example, if an amount of a portion of a SNARE YKT6 gene, the human liver glucokinase gene, the AEBP1 gene, or POLD2 gene or its specific RNA, or a fragment thereof, is available and can be purified and labeled, the generated DNA fragments may be screened by nucleic acid hybridization to the labeled probe (Benton and Davis, 1977, Science 196:180; Grunstein and Hogness, 1975, Proc. Natl. Acad. Sci. U.S.A. 72:3961). The present invention provides such nucleic acid probes, which can be conveniently prepared from the specific sequences disclosed herein, e.g., a hybridizable probe having a nucleotide sequence corresponding to at least a 10, and preferably a 15, nucleotide fragment of the sequences depicted in SEQ ID NOS:5, 6, 7 or 8. Preferably, a fragment is selected that is highly unique to the encoded polypeptides. Those DNA fragments with substantial homology to the probe will hybridize. As noted above, the greater the degree of homology, the more stringent hybridization conditions can be used. In one embodiment, low stringency hybridization conditions are used to identify a homologous SNARE YKT6, the human liver glucokinase, the AEBP1, or POLD2 polynucleotide. However, in a preferred aspect, and as demonstrated experimentally herein, a nucleic acid encoding a polypeptide of the invention will hybridize to a nucleic acid derived from the polynucleotide sequence depicted in SEQ ID NOS:5, 6, 7 or 8 or a hybridizable fragment thereof, under moderately stringent conditions; more preferably, it will hybridize under high stringency conditions.
- Alternatively, the presence of the gene may be detected by assays based on the physical, chemical, or immunological properties of its expressed product. For example, cDNA clones, or DNA clones which hybrid-select the proper mRNAs, can be selected which produce a protein that, e.g., has similar or identical electrophoretic migration, isoelectric focusing behavior, proteolytic digestion maps, or antigenic properties as known for the SNARE YKT6, the human liver glucokinase, the AEBP1, or POLD2 polynucleotide.
- A gene encoding SNARE YKT6, the human liver glucokinase, the AEBP1, or POLD2 polypeptide can also be identified by mRNA selection, i.e., by nucleic acid hybridization followed by in vitro translation. In this procedure, fragments are used to isolate complementary mRNAs by hybridization. Immunoprecipitation analysis or functional assays of the in vitro translation products of the products of the isolated mRNAs identifies the mRNA and, therefore, the complementary DNA fragments, that contain the desired sequences.
- Nucleic Acid Constructs
- The present invention also relates to nucleic acid constructs comprising a polynucleotide sequence containing the exon/intron segments of the SNARE YKT6 gene (nucleotides 4320-15463 of SEQ ID NO:5), human liver glucokinase gene (nucleotides 20485-33460 of SEQ ID NO:6), AEBP1 gene (nucleotides 1301-13893 of SEQ ID NO:7) or POLD2 gene (nucleotides 11546-18811 of SEQ ID NO:8) operably linked to one or more control sequences which direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences. Expression will be understood to include any step involved in the production of the polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
- The invention is further directed to a nucleic acid construct comprising expression control sequences derived from SEQ ID NOS: 5, 6, 7 or 8 and a heterologous polynucleotide sequence.
- “Nucleic acid construct” is defined herein as a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or which has been modified to contain segments of nucleic acid which are combined and juxtaposed in a manner which would not otherwise exist in nature. The term nucleic acid construct is synonymous with the term expression cassette when the nucleic acid construct contains all the control sequences required for expression of a coding sequence of the present invention. The term “coding sequence” is defined herein as a portion of a nucleic acid sequence which directly specifies the amino acid sequence of its protein product. The boundaries of the coding sequence are generally determined by a ribosome binding site (prokaryotes) or by the ATG start codon (eukaryotes) located just upstream of the open reading frame at the 5′ end of the mRNA and a transcription terminator sequence located just downstream of the open reading frame at the 3′ end of the mRNA. A coding sequence can include, but is not limited to, DNA, cDNA, and recombinant nucleic acid sequences.
- The isolated polynucleotide of the present invention may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the nucleic acid sequence prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying nucleic acid sequences utilizing recombinant DNA methods are well known in the art.
- The control sequence may be an appropriate promoter sequence, a nucleic acid sequence which is recognized by a host cell for expression of the nucleic acid sequence. The promoter sequence contains transcriptional control sequences which regulate the expression of the polynucleotide. The promoter may be any nucleic acid sequence which shows transcriptional activity in the host cell of choice including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
- Examples of suitable promoters for directing the transcription of the nucleic acid constructs of the present invention, especially in a bacterial host cell, are the promoters obtained from the E. coli lac operon, the prokaryotic beta-lactamase gene (Villa-Komaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731), as well as the tac promoter (DeBoer et al., 1983, Proc. Natl Acad. of Sciences USA 80: 21-25). Further promoters are described in “Useful proteins from recombinant bacteria” in Scientific American, 1980, 242: 74-94; and in Sambrook et aL, 1989, supra.
- Examples of suitable promoters for directing the transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidulans acetamidase, Fusarium oxysporum trypsin-like protease (WO 96/00787), NA2-tpi (a hybrid of the promoters from the genes encoding Aspergillus niger neutral alpha-amylase and Aspergillus oryzae triose phosphate isomerase), and mutant, truncated, and hybrid promoters thereof.
- In a yeast host, useful promoters are obtained from the Saccharomyces cerevisiae enolase (ENO-1) gene, the Saccharomyces cerevisiae galactokinase gene (GAL1), the Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes (ADH2/GAP), and the Saccharomyces cerevisiae 3-phosphoglycerate kinase gene. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8: 423-488.
- Eukaryotic promoters may be obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus, bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and SV40. Alternatively, heterologous mammalian promoters, such as the actin promoter or immunoglobulin promoter may be used.
- The constructs of the invention may also include enhancers. Enhancers are cis-acting elements of DNA, usually from about 10 to about 300 bp that act on a promoter to increase its transcription. Enhancers from globin, elastase, albumin, alpha-fetoprotein, and insulin enhancers may be used. However, an enhancer from a virus may be used; examples include SV40 on the late side of the replication origin, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin and adenovirus enhancers.
- The control sequence may also be a suitable transcription terminator sequence, a sequence recognized by a host cell to terminate transcription. The terminator sequence is operably linked to the 3′ terminus of the nucleic acid sequence encoding the polypeptide. Any terminator which is functional in the host cell of choice may be used in the present invention.
- The control sequence may also be a suitable leader sequence, a nontranslated region of an mRNA which is important for translation by the host cell. The leader sequence is operably linked to the 5′ terminus of the nucleic acid sequence encoding the polypeptide. Any leader sequence that is functional in the host cell of choice may be used in the present invention.
- The control sequence may also be a polyadenylation sequence, a sequence which is operably linked to the 3′ terminus of the nucleic acid sequence and which, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence which is functional in the host cell of choice may be used in the present invention.
- The control sequence may also be a signal peptide coding region, which codes for an amino acid sequence linked to the amino terminus of the polypeptide which can direct the encoded polypeptide into the cell's secretory pathway. The 5′ end of the coding sequence of the nucleic acid sequence may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region which encodes the secreted polypeptide. Alternatively, the 5′ end of the coding sequence may contain a signal peptide coding region which is foreign to the coding sequence. The foreign signal peptide coding region may be required where the coding sequence does not normally contain a signal peptide coding region. Alternatively, the foreign signal peptide coding region may simply replace the natural signal peptide coding region in order to obtain enhanced secretion of the polypeptide. However, any signal peptide coding region which directs the expressed polypeptide into the secretory pathway of a host cell of choice may be used in the present invention.
- The control sequence may also be a propeptide coding region, which codes for an amino acid sequence positioned at the amino terminus of a polypeptide. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to a mature active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding region may be obtained from the Bacillus subtilis alkaline protease gene (aprE), the Bacillus subtilis neutral protease gene (nprT), the Saccharomyces cerevisiae alpha-factor gene, the Rhizomucor miehei aspartic proteinase gene, or the Myceliophthora thermophila laccase gene (WO 95/33836).
- Where both signal peptide and propeptide regions are present at the amino terminus of a polypeptide, the propeptide region is positioned next to the amino terminus of a polypeptide and the signal peptide region is positioned next to the amino terminus of the propeptide region.
- It may also be desirable to add regulatory sequences which allow the regulation of the expression of the polypeptide relative to the growth of the host cell. Examples of regulatory systems are those which cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in prokaryotic systems would include the lac, tac, and trp operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the TAKA alpha-amylase promoter, Aspergillus niger glucoamylase promoter, and the Aspergillus oryzae glucoamylase promoter may be used as regulatory sequences. Other examples of regulatory sequences are those which allow for gene amplification. In eukaryotic systems, these include the dihydrofolate reductase gene which is amplified in the presence of methotrexate, and the metallothionein genes which are amplified with heavy metals. In these cases, the nucleic acid sequence encoding the polypeptide would be operably linked with the regulatory sequence.
- Expression Vectors
- The present invention also relates to recombinant expression vectors comprising a nucleic acid sequence of the present invention, a promoter, and transcriptional and translational stop signals. The various nucleic acid and control sequences described above may be joined together to produce a recombinant expression vector which may include one or more convenient restriction sites to allow for insertion or substitution of the nucleic acid sequence encoding the polypeptide at such sites. Alternatively, the polynucleotide of the present invention may be expressed by inserting the nucleic acid sequence or a nucleic acid construct comprising the sequence into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
- The recombinant expression vector may be any vector (e.g., a plasmid or virus) which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the nucleic acid sequence. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vectors may be linear or closed circular plasmids.
- The vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.
- The vectors of the present invention preferably contain one or more selectable markers which permit easy selection of transformed cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like. Examples of bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, or markers which confer antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracycline resistance. Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take of the nucleic acids of the present invention, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980).
- The vectors of the present invention preferably contain an element(s) that permits stable integration of the vector into the host cell genome or autonomous replication of the vector in the cell independent of the genome of the cell.
- For integration into the host cell genome, the vector may rely on the polynucleotide sequence encoding the polypeptide or any other element of the vector for stable integration of the vector into the genome by homologous or nonhomologous recombination. Alternatively, the vector may contain additional nucleic acid sequences for directing integration by homologous recombination into the genome of the host cell. The additional polynucleotide sequences enable the vector to be integrated into the host cell genome at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should preferably contain a sufficient number of nucleic acids, such as 100 to 1,500 base pairs, preferably 400 to 1,500 base pairs, and most preferably 800 to 1,500 base pairs, which are highly homologous with the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding nucleic acid sequences. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.
- For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB110, pE194, pTA1060, and pAMβ1 permitting replication in Bacillus. Examples of origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6. The origin of replication may be one having a mutation which makes its functioning temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, Proceedings of the National Academy of Sciences USA 75: 1433).
- More than one copy of a polynucleotide sequence of the present invention may be inserted into the host cell to increase production of the gene product. An increase in the copy number of the polynucleotide sequence can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the nucleic acid sequence where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the nucleic acid sequence, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
- The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra).
- Host Cells
- The present invention also relates to recombinant host cells, comprising a nucleic acid sequence of the invention, which are advantageously used in the recombinant production of the polypeptides. A vector comprising a nucleic acid sequence of the present invention is introduced into a host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The term “host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source.
- The host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-unicellular microorganism, e.g., a eukaryote. Useful unicellular cells are bacterial cells such as gram positive bacteria including, but not limited to, a Bacillus cell, or a Streptomyces cell, e.g., Streptomyces lividans or Streptomyces murinus, or gram negative bacteria such as E. coli and Pseudomonas sp.
- The introduction of a vector into a bacterial host cell may, for instance, be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Molecular General Genetics 168: 111-115), using competent cells (see, e.g., Young and Spizizin, 1961, Journal of Bacteriology 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, Journal of Molecular Biology 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, Journal of Bacteriology 169: 5771-5278).
- The host cell may be a eukaryote, such as a mammalian cell (e.g., human cell), an insect cell, a plant cell or a fungal cell. Mammalian host cells that could be used include but are not limited to human Hela, embryonic kidney cells (293), lung cells, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese Hamster ovary (CHO) cells. These cells may be transfected with a vector containing a transcriptional regulatory sequence, a protein coding sequence and transcriptional termination sequences. Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.
- The host cell may be a fungal cell. “Fungi” as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK) as well as the Oomycota (as cited in Hawksworth et al., 1995, supra, page 171) and all mitosporic fungi (Hawksworth et al., 1995, supra). The fungal host cell may also be a yeast cell. “Yeast” as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, F. A., Passmore, S. M., and Davenport, R. R., eds, Soc. App. Bacteriol. Symposium Series No. 9, 1980). The fungal host cell may also be a filamentous fungal cell. “Filamentous fungi” include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra). The filamentous fungi are characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.
- Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus host cells are described in EP 238 023 and Yelton et al., 1984, Proceedings of the National Academy of Sciences USA 81: 1470-1474. Suitable methods for transforming Fusarium species are described by Malardier et al., 1989, Gene 78: 147-156 and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J. N. and Simon, M. I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, Journal of Bacteriology 153: 163; and Hinnen et al., 1978, Proc. e Natl Acad. f Sci.s USA 75: 1920.
- Methods of Production
- The present invention also relates to methods for producing a polypeptide of the present invention comprising (a) cultivating a host cell under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.
- In the production methods of the present invention, the cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.
- The polypeptides may be detected using methods known in the art that are specific for the polypeptides. These detection methods may include use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. In a specific embodiment, an enzyme assay may be used to determine the activity of the polypeptide. For example, AEBP1 activity can be determined by measuring carboxypeptidase activity as described by Muise and Ro, 1999, Biochem. J. 343:341-345. Here, the conversion of hippuryl-L-arginine, hippuryl-L-lysine or hippuryl-L-phenylalanine to hippuric acid may be monitored spectrophotometrically. POLD2 activity may be detected by assaying for DNA polymerase_activity (see, for example, Ng et al., 1991, J. Biol. Chem. 266:11699-11704).
- The resulting polypeptide may be recovered by methods known in the art. For example, the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.
- The polypeptides of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing, differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, J. -C. Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).
- Antibodies
- According to the invention, the SNARE YKT6, human glucokinase, AEBP1 or POLD2 polypeptides produced according to the method of the present invention may be used as an immunogen to generate any of these polypeptides. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library.
- Various procedures known in the art may be used for the production of antibodies. For the production of antibody, various host animals can be immunized by injection with the polypeptide thereof, including but not limited to rabbits, mice, rats, sheep, goats, etc. In one embodiment, the polypeptide or fragment thereof can optionally be conjugated to an immunogenic carrier, e.g., bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH). Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.
- For preparation of monoclonal antibodies directed toward the SNARE YKT6, human glucokinase, AEBP1 or POLD2 polypeptide, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. These include but are not limited to the hybridoma technique originally developed by Kohler and Milstein (1975, Nature 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). In an additional embodiment of the invention, monoclonal antibodies can be produced in germ-free animals utilizing recent technology (PCT/US90/02545). According to the invention, human antibodies may be used and can be obtained by using human hybridomas (Cote et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:2026-2030) or by transforming human B cells with EBV virus in vitro (Cole et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, pp. 77-96). In fact, according to the invention, techniques developed for the production of “chimeric antibodies” (Morrison et al., 1984, J. Bacteriol. 159-870; Neuberger et al., 1984, Nature 312:604-608; Takeda et al., 1985, Nature 314:452-454) by splicing the genes from a mouse antibody molecule specific for the SNARE YKT6, human glucokinase, AEBP1 or POLD2 polypeptide together with genes from a human antibody molecule of appropriate biological activity can be used; such antibodies are within the scope of this invention.
- According to the invention, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce polypeptide-specific single chain antibodies. An additional embodiment of the invention utilizes the techniques described for the construction of Fab expression libraries (Huse et al., 1989, Science 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity for the SNARE YKT6, AEBP1, human glucokinase or POLD2 polypeptides.
- Antibody fragments which contain the idiotype of the antibody molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab′)2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab′ fragments which can be generated by reducing the disulfide bridges of the F(ab′)2, fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.
- In the production of antibodies, screening for the desired antibody can be accomplished by techniques known in the art, e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbent assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention. For example, to select antibodies which recognize a specific epitope of a particular polypeptide, one may assay generated hybridomas for a product which binds to a particular polypeptide fragment containing such epitope. For selection of an antibody specific to a particular polypeptide from a particular species of animal, one can select on the basis of positive binding with the polypeptide expressed by or isolated from cells of that species of animal.
- Immortal, antibody-producing cell lines can also be created by techniques other than fusion, such as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. See, e.g., M. Schreier et al., “Hybridoma Techniques” (1980); Hammerling et al., “Monoclonal Antibodies And T-cell Hybridomas” (1981); Kennett et al., “Monoclonal Antibodies” (1980); see also U.S. Pat. Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,451,570; 4,466,917; 4,472,500; 4,491,632; 4,493,890.
- Uses of Polynucleotides
- Diagnostics
- Polynucleotides containing noncoding regions of SEQ ID NOS:5, 6, 7 or 8 may be used as probes for detecting mutations from samples from a patient. Genomic DNA may be isolated from the patient. A mutation(s) may be detected by Southern blot analysis, specifically by hybridizing restriction digested genomic DNA to various probes and subjecting to agarose electrophoresis.
- Polynucleotides containing noncoding regions may be used as PCR primers and may be used to amplify the genomic DNA isolated from the patients. Additionally, primers may be obtained by routine or long range PCR, that can yield products containing more than one exon and intervening intron. The sequence of the amplified genomic DNA from the patient may be determined using methods known in the art. Such probes may be between 10-100 nucleotides in length and may preferably be between 20-50 nucleotides in length.
- Thus the invention is thus directed to kits comprising these polynucleotide probes. In a specific embodiment, these probes are labeled with a detectable substance.
- Antisense Oligonucleotides and Mimetics
- The invention is further directed to antisense oligonucleotides and mimetics to these polynucleotide sequences. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription or RNA processing (triple helix (see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al, Science, 241:456 (1988); and Dervan et al., Science, 251: 1360 (1991)), thereby preventing transcription and the production of said polypeptides.
- The antisense oligonucleotides or mimetics of the present invention may be used to decrease levels of a polypeptide. For example, SNARE YKT6 has been found to be essential for vesicle-associated endoplasmic reticulum-Golgi transport and cell growth. Therefore, the SNARE YKT6 antisense oligonucleotides of the present invention could be used to inhibit cell growth and in particular, to treat or prevent tumor growth. POLD2 is necessary for DNA replication. POLD2 antisense sequences could also be used to inhibit cell growth. Glucokinase and AEBP1 antisense sequences may be used to treat hyperglycemia.
- The antisense oligonucleotides of the present invention may be formulated into pharmaceutical compositions. These compositions may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
- Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.
- Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
- Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.
- The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.
- In one embodiment of the present invention, the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.
- The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50 as found to be effective in in vitro and in vivo animal models.
- In general, dosage is from 0.01 ug to 10 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 10 g per kg of body weight, once or more daily, to once every 20 years.
- Gene Therapy
- As noted above, SNARE YKT6 is necessary for cell growth, POLD2 is involved in DNA replication and repair, AEBP1 is involved in repressing adipogenesis and glucokinase is involved in glucose sensing in pancreatic islet beta cells and liver. Therefore, the SNARE YKT6 gene may be used to modulate or prevent cell apoptosis and treat such disorders as virus-induced lymphocyte depletion (AIDS); cell death in neurodegenerative disorders characterized by the gradual loss of specific sets of neurons (e.g., Alzheimer's Disease, Parkinson's disease, ALS, retinitis pigmentosa, spinal muscular atrophy and various forms of cerebellar degeneration), cell death in blood cell disorders resulting from deprivation of growth factors (anemia associated with chronic disease, aplastic anemia, chronic neutropenia and myelodysplastic syndromes) and disorders arising out of an acute loss of blood flow (e.g., myocardial infarctions and stroke). The glucokinase gene may be used to treat diabetes mellitus. The AEBP1 gene may be used to modulate or inhibit adipogenesis and treat obesity, diabetes mellitus and/or osteopenic disorders. POLD2 may be used to treat defects in DNA repair such as xeroderma pigmentosum, progeria and ataxia telangiectasia.
- As described herein, the polynucleotide of the present invention may be introduced into a patient's cells for therapeutic uses. As will be discussed in further detail below, cells can be transfected using any appropriate means, including viral vectors, as shown by the example, chemical transfectants, or physico-mechanical methods such as electroporation and direct diffusion of DNA. See, for example, Wolff, Jon A, et al., “Direct gene transfer into mouse muscle in vivo,” Science, 247, 1465-1468, 1990; and Wolff, Jon A, “Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs,” Nature, 352, 815-818, 1991. As used herein, vectors are agents that transport the gene into the cell without degradation and include a promoter yielding expression of the gene in the cells into which it is delivered. As will be discussed in further detail below, promoters can be general promoters, yielding expression in a variety of mammalian cells, or cell specific, or even nuclear versus cytoplasmic specific. These are known to those skilled in the art and can be constructed using standard molecular biology protocols. Vectors have been divided into two classes:
- a) Biological agents derived from viral, bacterial or other sources.
- b) Chemical physical methods that increase the potential for gene uptake, directly introduce the gene into the nucleus or target the gene to a cell receptor.
- Biological Vectors
- Viral vectors have higher transaction (ability to introduce genes) abilities than do most chemical or physical methods to introduce genes into cells. Vectors that may be used in the present invention include viruses, such as adenoviruses, adeno associated virus (AAV), vaccinia, herpesviruses, baculoviruses and retroviruses, bacteriophages, cosmids, plasmids, fungal vectors and other recombination vehicles typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression. Polynucleotides are inserted into vector genomes using methods well known in the art.
- Retroviral vectors are the vectors most commonly used in clinical trials, since they carry a larger genetic payload than other viral vectors. However, they are not useful in non-proliferating cells. Adenovirus vectors are relatively stable and easy to work with, have high titers, and can be delivered in aerosol formulation. Pox viral vectors are large and have several sites for inserting genes, they are thermostable and can be stored at room temperature.
- Examples of promoters are SP6, T4, T7, SV40 early promoter, cytomegalovirus (CMV) promoter, mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, phosphoglycerate kinase (PGK) promoter, and the like. Alternatively, the promoter may be an endogenous adenovirus promoter, for example the E1 a promoter or the Ad2 major late promoter (MLP). Similarly, those of ordinary skill in the art can construct adenoviral vectors utilizing endogenous or heterologous poly A addition signals.
- Plasmids are not integrated into the genome and the vast majority of them are present only from a few weeks to several months, so they are typically very safe. However, they have lower expression levels than retroviruses and since cells have the ability to identify and eventually shut down foreign gene expression, the continuous release of DNA from the polymer to the target cells substantially increases the duration of functional expression while maintaining the benefit of the safety associated with non-viral transfections.
- Chemical/physical Vectors
- Other methods to directly introduce genes into cells or exploit receptors on the surface of cells include the use of liposomes and lipids, ligands for specific cell surface receptors, cell receptors, and calcium phosphate and other chemical mediators, microinjections directly to single cells, electroporation and homologous recombination. Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTIN® and LIPOFECTACE®, which are formed of cationic lipids such as N-[1-(2,3 dioleyloxy)-propy1]-n,n,n-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Numerous methods are also published for making liposomes, known to those skilled in the art.
- For example, Nucleic acid-Lipid Complexes—Lipid carriers can be associated with naked nucleic acids (e.g., plasmid DNA) to facilitate passage through cellular membranes. Cationic, anionic, or neutral lipids can be used for this purpose. However, cationic lipids are preferred because they have been shown to associate better with DNA which, generally, has a negative charge. Cationic lipids have also been shown to mediate intracellular delivery of plasmid DNA (Felgner and Ringold, Nature 337:387 (1989)). Intravenous injection of cationic lipid-plasmid complexes into mice has been shown to result in expression of the DNA in lung (Brigham et al., Am. J. Med. Sci.298:278 (1989)). See also, Osaka et al., J. Pharm. Sci. 85(6):612-618 (1996); San et al., Human Gene Therapy 4:781-788 (1993); Senior et al., Biochemica et Biophysica Acta 1070:173-179 (1991); Kabanov and Kabanov, Bioconjugate Chem. 6:7-20 (1995); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Behr, J-P., Bioconjugate Chem 5:382-389 (1994); Behr et al., Proc. Natl. Acad. Sci., USA 86:6982-6986 (1989); and Wyman et al., Biochem. 36:3008-3017 (1997).
- Cationic lipids are known to those of ordinary skill in the art. Representative cationic lipids include those disclosed, for example, in U.S. Pat. No. 5,283,185; and e.g., U.S. Pat. No. 5,767,099. In a preferred embodiment, the cationic lipid is N4-spermine cholesteryl carbamate (GL-67) disclosed in U.S. Pat. No. 5,767,099. Additional preferred lipids include N4-spermidine cholestryl carbamate (GL-53) and 1-(N4-spermind)-2,3-dilaurylglycerol carbamate (GL-89).
- The vectors of the invention may be targeted to specific cells by linking a targeting molecule to the vector. A targeting molecule is any agent that is specific for a cell or tissue type of interest, including for example, a ligand, antibody, sugar, receptor, or other binding molecule.
- Invention vectors may be delivered to the target cells in a suitable composition, either alone, or complexed, as provided above, comprising the vector and a suitably acceptable carrier. The vector may be delivered to target cells by methods known in the art, for example, intravenous, intramuscular, intranasal, subcutaneous, intubation, lavage, and the like. The vectors may be delivered via in vivo or ex vivo applications. In vivo applications involve the direct administration of an adenoviral vector of the invention formulated into a composition to the cells of an individual. Ex vivo applications involve the transfer of the adenoviral vector directly to harvested autologous cells which are maintained in vitro, followed by readministration of the transduced cells to a recipient.
- In a specific embodiment, the vector is transfected into antigen-presenting cells. Suitable sources of antigen-presenting cells (APCs) include, but are not limited to, whole cells such as dendritic cells or macrophages; purified MHC class I molecule complexed to β2-microglobulin and foster antigen-presenting cells. In a specific embodiment, the vectors of the present invention may be introduced into T cells or B cells using methods known in the art (see, for example, Tsokos and Nepom, 2000, J. Clin. Invest. 106:181-183).
- The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
- Various references are cited herein, the disclosure of which are incorporated by reference in their entireties.
Claims (22)
1. An isolated genomic polynucleotide, said polynucleotide obtainable from human chromosome 7 having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a polynucleotide encoding a polypeptide selected from the group consisting of human SNARE YKT6 depicted in SEQ ID NO:1, human liver glucokinase depicted in SEQ ID NO:2, human adipocyte enhancer binding protein depicted in SEQ ID NO:3 and DNA directed 50 kD regulatory subunit (POLD2) depicted in SEQ ID NO:4;
(b) a polynucleotide selected from the group consisting of SEQ ID NO:5 which encodes human SNARE YKT6 depicted in SEQ ID NO:1, SEQ ID NO:6 which encodes human liver glucokinase depicted in SEQ ID NO:2, SEQ ID NO:7 which encodes human adipocyte enhancer binding protein depicted in SEQ ID NO:3 and SEQ ID NO:8 which encodes DNA directed 50 kD regulatory subunit (POLD2) depicted in SEQ ID NO:4;
(c) a polynucleotide which is a variant of SEQ ID NOS:5, 6, 7, or 8;
(d) a polynucleotide which is an allelic variant of SEQ ID NOS:5, 6, 7, or 8;
(e) a polynucleotide which encodes a variant of SEQ ID NOS:1, 2, 3, or 4;
(f) a polynucleotide which hybridizes to any one of the polynucleotides specified in (a)-(e)
(g) a polynucleotide which is a reverse complement of the polynucleotides specified in (a)-(f);
(h) a polynucleotide selected from the group consisting of a polynucleotide which encodes human SNARE YKT6 with exons as depicted in Table 1, a polynucleotide which encodes human liver glucokinase with exons as depicted in Table 3; a polynucleotide which encodes human adipocyte enhancer binding protein with exons as depicted in Table 2 and a polynucleotide which encodes DNA directed 50 kD regulatory subunit (POLD2) with exons as depicted in Table 4 and
(i) containing at least 10 transcription factor binding sites selected from the group consisting of AP1FJ-Q2, AP1-C, AP1-Q2, AP1-Q4, AP4-Q5, AP4-Q6, ARNT-01, CEBP-01, CETS1P54-01, CREL-01, DELTAEF1-01, FREAC7-01, GATA1-02, GATA1-03, GATA1-04, GATA1-06, GATA2-02, GATA3-02, GATA-C, GC-01, GFII-01, HFH2-01, HFH3-01, HFH8-01, IK2-01, LMO2COM-01, LMO2COM-02, LYF1-01, MAX-01, NKX25-01, NMYC-01, S8-01, SOX5-01, SP1-Q6, SAEBP1-01, SRV-02, STAT-01, TATA-01, TCF11-01, USF-01, USF-C and USF-Q6.
2. A nucleic acid construct comprising the polynucleotide of claim 1 .
3. An expression vector comprising the polynucleotide of claim 1 .
4. A recombinant host cell comprising the nucleic acid construct of claim 2 .
5. A recombinant host cell comprising the expression vector of claim 4 .
6. A method for obtaining a polypeptide encoded by a polynucleotide obtainable from human chromosome 7, said polypeptide selected from the group consisting of human SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA directed 50 kD regulatory subunit (POLD2) comprising:
(a) culturing the recombinant host cell of claim 5 under conditions that provide for the expression of said polypeptide and (b) recovering said expressed polypeptide.
7. A method for preparing an antibody specific to a polypeptide selected from the group consisting of human SNARE YKT6, human liver glucokinase, human adipocyte enhancer binding protein and DNA directed 50 kD regulatory subunit (POLD2) comprising:
(a) obtaining a polypeptide according to the method of claim 6;
(b) optionally conjugating said polypeptide to a carrier protein;
(c) immunizing a host animal with said polypeptide or polypeptide-carrier protein conjugate of step (b) with an adjuvant and
(d) obtaining antibody from said immunized host animal.
8. An antisense oligonucleotide or mimetic to an isolated polynucleotide which hybridizes to a non-coding region of SEQ ID NOS:5, 6, 7 or 8, which non-coding region is selected from the group consisting of an intron, a splice junction, a 5′ non-coding region, a transcription factor binding region and a 3′ non-coding region.
9. A method of diagnosing a pathological condition or susceptibility to a pathological condition in a subject comprising:
(a) determining the presence or absence of a mutation in the polynucleotide of claim 1 and
(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.
10. A composition comprising the polynucleotide of claim 1 and a carrier.
11. A composition comprising the antisense oligonucleotide of claim 8 and a carrier.
12. A method for preventing, treating or ameliorating a medical condition, comprising administering to a subject an amount of the composition of claim 10 effective to prevent, treat or ameliorate said medical condition.
13. A method for preventing, treating or ameliorating a medical condition, comprising administering to a subject an amount of the composition of claim 11 effective to prevent, treat or ameliorate said medical condition.
14. A kit comprising the polynucleotide of claim 1 .
15. The kit according to claim 14 , in which the polynucleotide is labeled with a detectable substance.
16. A kit comprising the antisense oligonucleotide or mimetic of claim 8 .
17. The kit according to claim 16 , in which the antisense oligonucleotide is labeled with a detectable substance.
18. An isolated polynucleotide which hybridizes to a transcriptional regulatory region of SEQ ID NOS:5, 6, 7 or 8.
19. A nucleic acid construct comprising the polynucleotide sequence of claim 18 operably linked to a polynucleotide sequence encoding a heterologous polypeptide.
20. An expression vector comprising the nucleic acid construct of claim 19 .
21. A recombinant host cell comprising the nucleic acid construct of claim 19 .
22. A method for expressing a heterologous polypeptide sequence comprising (a) culturing the recombinant host cell of claim 21 under conditions that provide for the expression of said polypeptide and (b) recovering said expressed polypeptide.
Priority Applications (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/957,956 US20030130215A1 (en) | 2000-09-21 | 2001-09-21 | Isolated genomic polynucleotide fragments from chromosome 7 |
| US10/642,946 US7588915B2 (en) | 2000-09-21 | 2003-08-18 | Isolated genomic polynucleotide fragments from chromosome 7 |
| US12/533,130 US8323884B2 (en) | 2000-09-21 | 2009-07-31 | Isolated SNARE YKT6 genomic polynucleotide fragments from chromosome 7 and their uses |
| US12/533,087 US8178662B2 (en) | 2000-09-21 | 2009-07-31 | Isolated AEBP1 genomic polynucleotide fragments from chromosome 7 and their uses |
| US12/533,164 US8313900B2 (en) | 2000-09-21 | 2009-07-31 | Isolated DNA directed 50kD regulatory subunit (POLD2) genomic polynucleotide fragments from chomosome 7 and their uses |
| US12/533,105 US8313899B2 (en) | 2000-09-21 | 2009-07-31 | Isolated snare YKT6 genomic polynucleotide fragments from chomosome 7 and their uses |
| US13/680,178 US8795959B2 (en) | 2000-09-21 | 2012-11-19 | Isolated glucokinase genomic polynucleotide fragments from chromosome 7 |
| US13/680,223 US8822145B2 (en) | 2000-09-21 | 2012-11-19 | Identification of POLD2 sequences |
| US13/680,203 US20130130251A1 (en) | 2000-09-21 | 2012-11-19 | Identification of snare ykt6 sequences |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US23442200P | 2000-09-21 | 2000-09-21 | |
| US09/957,956 US20030130215A1 (en) | 2000-09-21 | 2001-09-21 | Isolated genomic polynucleotide fragments from chromosome 7 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/642,946 Continuation US7588915B2 (en) | 2000-09-21 | 2003-08-18 | Isolated genomic polynucleotide fragments from chromosome 7 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030130215A1 true US20030130215A1 (en) | 2003-07-10 |
Family
ID=22881323
Family Applications (9)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/957,956 Abandoned US20030130215A1 (en) | 2000-09-21 | 2001-09-21 | Isolated genomic polynucleotide fragments from chromosome 7 |
| US10/642,946 Expired - Lifetime US7588915B2 (en) | 2000-09-21 | 2003-08-18 | Isolated genomic polynucleotide fragments from chromosome 7 |
| US12/533,087 Expired - Fee Related US8178662B2 (en) | 2000-09-21 | 2009-07-31 | Isolated AEBP1 genomic polynucleotide fragments from chromosome 7 and their uses |
| US12/533,164 Expired - Fee Related US8313900B2 (en) | 2000-09-21 | 2009-07-31 | Isolated DNA directed 50kD regulatory subunit (POLD2) genomic polynucleotide fragments from chomosome 7 and their uses |
| US12/533,130 Expired - Fee Related US8323884B2 (en) | 2000-09-21 | 2009-07-31 | Isolated SNARE YKT6 genomic polynucleotide fragments from chromosome 7 and their uses |
| US12/533,105 Expired - Fee Related US8313899B2 (en) | 2000-09-21 | 2009-07-31 | Isolated snare YKT6 genomic polynucleotide fragments from chomosome 7 and their uses |
| US13/680,223 Expired - Fee Related US8822145B2 (en) | 2000-09-21 | 2012-11-19 | Identification of POLD2 sequences |
| US13/680,178 Expired - Fee Related US8795959B2 (en) | 2000-09-21 | 2012-11-19 | Isolated glucokinase genomic polynucleotide fragments from chromosome 7 |
| US13/680,203 Abandoned US20130130251A1 (en) | 2000-09-21 | 2012-11-19 | Identification of snare ykt6 sequences |
Family Applications After (8)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/642,946 Expired - Lifetime US7588915B2 (en) | 2000-09-21 | 2003-08-18 | Isolated genomic polynucleotide fragments from chromosome 7 |
| US12/533,087 Expired - Fee Related US8178662B2 (en) | 2000-09-21 | 2009-07-31 | Isolated AEBP1 genomic polynucleotide fragments from chromosome 7 and their uses |
| US12/533,164 Expired - Fee Related US8313900B2 (en) | 2000-09-21 | 2009-07-31 | Isolated DNA directed 50kD regulatory subunit (POLD2) genomic polynucleotide fragments from chomosome 7 and their uses |
| US12/533,130 Expired - Fee Related US8323884B2 (en) | 2000-09-21 | 2009-07-31 | Isolated SNARE YKT6 genomic polynucleotide fragments from chromosome 7 and their uses |
| US12/533,105 Expired - Fee Related US8313899B2 (en) | 2000-09-21 | 2009-07-31 | Isolated snare YKT6 genomic polynucleotide fragments from chomosome 7 and their uses |
| US13/680,223 Expired - Fee Related US8822145B2 (en) | 2000-09-21 | 2012-11-19 | Identification of POLD2 sequences |
| US13/680,178 Expired - Fee Related US8795959B2 (en) | 2000-09-21 | 2012-11-19 | Isolated glucokinase genomic polynucleotide fragments from chromosome 7 |
| US13/680,203 Abandoned US20130130251A1 (en) | 2000-09-21 | 2012-11-19 | Identification of snare ykt6 sequences |
Country Status (3)
| Country | Link |
|---|---|
| US (9) | US20030130215A1 (en) |
| AU (1) | AU2001296274A1 (en) |
| WO (1) | WO2002024741A2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130244903A1 (en) * | 2004-12-01 | 2013-09-19 | The Curators Of The University Of Missouri | Modulators of alpha-synuclein toxicity |
| US9879257B2 (en) | 2005-05-13 | 2018-01-30 | Whitehead Institute For Biomedical Research | Modulators of alpha-synuclein toxicity |
| US9909160B2 (en) | 2007-12-21 | 2018-03-06 | Whitehead Institute For Biomedical Research | Modulators of alpha-synuclein toxicity |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2001296274A1 (en) * | 2000-09-21 | 2002-04-02 | James W. Ryan | Isolated genomic polynucleotide fragments from chromosome 7 |
| CN105950619A (en) * | 2016-04-20 | 2016-09-21 | 刘媛 | shRNA molecule capable of inhibiting expression of human AEBP1 gene |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5541060A (en) | 1992-04-22 | 1996-07-30 | Arch Development Corporation | Detection of glucokinase-linked early-onset non-insulin-dependent diabetes mellitus |
| US5624803A (en) * | 1993-10-14 | 1997-04-29 | The Regents Of The University Of California | In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom |
| AU697269B2 (en) * | 1994-01-27 | 1998-10-01 | Human Genome Sciences, Inc. | Human DNA mismatch repair proteins |
| US5776746A (en) * | 1996-05-01 | 1998-07-07 | Genitope Corporation | Gene amplification methods |
| US6783961B1 (en) * | 1999-02-26 | 2004-08-31 | Genset S.A. | Expressed sequence tags and encoded human proteins |
| US20070015162A1 (en) * | 1999-03-12 | 2007-01-18 | Rosen Craig A | 99 human secreted proteins |
| US20070031842A1 (en) * | 1999-03-12 | 2007-02-08 | Rosen Craig A | 379 human secreted proteins |
| US20070048818A1 (en) * | 1999-03-12 | 2007-03-01 | Human Genome Sciences, Inc. | Human secreted proteins |
| WO2000058467A1 (en) * | 1999-03-26 | 2000-10-05 | Human Genome Sciences, Inc. | 50 human secreted proteins |
| US20030204075A9 (en) * | 1999-08-09 | 2003-10-30 | The Snp Consortium | Identification and mapping of single nucleotide polymorphisms in the human genome |
| US20040018969A1 (en) * | 2000-01-31 | 2004-01-29 | Rosen Craig A. | Nucleic acids, proteins, and antibodies |
| US20020048763A1 (en) * | 2000-02-04 | 2002-04-25 | Penn Sharron Gaynor | Human genome-derived single exon nucleic acid probes useful for gene expression analysis |
| US6812339B1 (en) * | 2000-09-08 | 2004-11-02 | Applera Corporation | Polymorphisms in known genes associated with human disease, methods of detection and uses thereof |
| AU2001296274A1 (en) * | 2000-09-21 | 2002-04-02 | James W. Ryan | Isolated genomic polynucleotide fragments from chromosome 7 |
-
2001
- 2001-09-21 AU AU2001296274A patent/AU2001296274A1/en not_active Abandoned
- 2001-09-21 US US09/957,956 patent/US20030130215A1/en not_active Abandoned
- 2001-09-21 WO PCT/US2001/029454 patent/WO2002024741A2/en active Application Filing
-
2003
- 2003-08-18 US US10/642,946 patent/US7588915B2/en not_active Expired - Lifetime
-
2009
- 2009-07-31 US US12/533,087 patent/US8178662B2/en not_active Expired - Fee Related
- 2009-07-31 US US12/533,164 patent/US8313900B2/en not_active Expired - Fee Related
- 2009-07-31 US US12/533,130 patent/US8323884B2/en not_active Expired - Fee Related
- 2009-07-31 US US12/533,105 patent/US8313899B2/en not_active Expired - Fee Related
-
2012
- 2012-11-19 US US13/680,223 patent/US8822145B2/en not_active Expired - Fee Related
- 2012-11-19 US US13/680,178 patent/US8795959B2/en not_active Expired - Fee Related
- 2012-11-19 US US13/680,203 patent/US20130130251A1/en not_active Abandoned
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130244903A1 (en) * | 2004-12-01 | 2013-09-19 | The Curators Of The University Of Missouri | Modulators of alpha-synuclein toxicity |
| US10526651B2 (en) * | 2004-12-01 | 2020-01-07 | Whitehead Institute For Biomedical Research | Modulators of alpha-synuclein toxicity |
| US9879257B2 (en) | 2005-05-13 | 2018-01-30 | Whitehead Institute For Biomedical Research | Modulators of alpha-synuclein toxicity |
| US9909160B2 (en) | 2007-12-21 | 2018-03-06 | Whitehead Institute For Biomedical Research | Modulators of alpha-synuclein toxicity |
Also Published As
| Publication number | Publication date |
|---|---|
| US8822145B2 (en) | 2014-09-02 |
| US8323884B2 (en) | 2012-12-04 |
| US8178662B2 (en) | 2012-05-15 |
| US20130130252A1 (en) | 2013-05-23 |
| US20050100912A1 (en) | 2005-05-12 |
| US20130130250A1 (en) | 2013-05-23 |
| US7588915B2 (en) | 2009-09-15 |
| US20090324627A1 (en) | 2009-12-31 |
| US20130130251A1 (en) | 2013-05-23 |
| US8795959B2 (en) | 2014-08-05 |
| US8313899B2 (en) | 2012-11-20 |
| US20100081709A1 (en) | 2010-04-01 |
| WO2002024741A3 (en) | 2003-03-27 |
| US20100291556A1 (en) | 2010-11-18 |
| US20090324626A1 (en) | 2009-12-31 |
| AU2001296274A1 (en) | 2002-04-02 |
| WO2002024741A2 (en) | 2002-03-28 |
| US8313900B2 (en) | 2012-11-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8822145B2 (en) | Identification of POLD2 sequences | |
| US8765927B2 (en) | Identification of isolated genomic nucleotide fragments from the p15 region of chromosome 11 encoding human cluster of differentiation antigen 81 and variants thereof | |
| US7985571B1 (en) | Isolated genomic polynucleotide fragments from chromosome 17 that encode human carboxypeptidase D | |
| US8338100B1 (en) | Isolated genomic polynucleotide fragments from chromosome 12 that encode human carboxypeptidase M | |
| US8258273B1 (en) | Isolated genomic polynucleotide fragments from chromosome 10q25.3 that encode human soluble aminopeptidase P | |
| US8053195B1 (en) | Isolated genomic nucleic acid molecules obtainable from chromosome 1p21-p13 that encode human RhoC |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: RYOGEN LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RYAN, JAMES W.;REEL/FRAME:016309/0848 Effective date: 20050503 |