US20030121736A1 - Master cylinder lever for a hydraulic disc brake having a backpack reservoir - Google Patents

Master cylinder lever for a hydraulic disc brake having a backpack reservoir Download PDF

Info

Publication number
US20030121736A1
US20030121736A1 US10/316,452 US31645202A US2003121736A1 US 20030121736 A1 US20030121736 A1 US 20030121736A1 US 31645202 A US31645202 A US 31645202A US 2003121736 A1 US2003121736 A1 US 2003121736A1
Authority
US
United States
Prior art keywords
reservoir
cylinder
port
lever
master cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/316,452
Inventor
Wayne Lumpkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRAM LLC
Original Assignee
Avid LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US34445001P priority Critical
Priority to US41613002P priority
Priority to US41669802P priority
Application filed by Avid LLC filed Critical Avid LLC
Priority to US10/316,452 priority patent/US20030121736A1/en
Assigned to AVID, L.L.C. reassignment AVID, L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUMPKIN, WAYNE R.
Priority claimed from EP04077893.8A external-priority patent/EP1498347B1/en
Priority claimed from EP20020080490 external-priority patent/EP1325863B1/en
Publication of US20030121736A1 publication Critical patent/US20030121736A1/en
Assigned to SRAM CORPORATION reassignment SRAM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVID L.L.C.
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27502119&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030121736(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/08Brake-action initiating means for personal initiation hand actuated
    • B60T7/10Disposition of hand control
    • B60T7/102Disposition of hand control by means of a tilting lever
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/22Master control, e.g. master cylinders characterised by being integral with reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • B62L3/023Brake-actuating mechanisms; Arrangements thereof for control by a hand lever acting on fluid pressure systems

Abstract

A master cylinder for a bicycle hydraulic disc brake includes a cylinder wall defining a cylinder interior and a cylinder exterior. A piston is received within the cylinder interior. A reservoir for hydraulic fluid is defined in part by a portion of the cylinder exterior, the portion of the cylinder exterior protruding into the reservoir. A port through the portion of the cylinder exterior which protrudes into the reservoir provides fluid communication between the reservoir and the cylinder interior. The port is located on the portion of the cylinder exterior which protrudes into the reservoir at a position which prevents air bubbles within the reservoir from entering the port.

Description

    RELATED APPLICATIONS
  • This application claims priority from U.S. Provisional Patent Application Serial Nos. 60/344,450, filed Dec. 28, 2001; 60/416,130, filed Oct. 4, 2002; and 60/416,698, filed Oct. 7, 2002, each entitled “Master Cylinder Lever for Hydraulic Disc Brake”[0001]
  • TECHNICAL FIELD
  • The present invention is directed toward an improved master cylinder lever for a hydraulic disc brake, and more particularly to a reservoir configuration preventing air from entering timing or compensating ports of the master cylinder. [0002]
  • BACKGROUND ART
  • Known master cylinder levers for hydraulic disc brakes are designed for mounting on either a right handlebar or a left handlebar, but not both. Right and left specific master cylinder levers requires manufacturers to have two sets of tooling, which increases manufacturing costs and the complexity of the manufacturing process. In addition, bicycle manufacturers and lever suppliers must order sufficient right and left master cylinder levers to meet their needs and must maintain inventories of both right and left specific levers which increases stocking requirements over what would be required if a single lever could be deployed on the right or left handlebar. [0003]
  • An additional problem with most prior art master cylinder levers is the reservoir for hydraulic fluid can allow bubbles within the reservoir to enter the timing or compensation ports if the master cylinder and associated reservoir attain some undesired orientation. One known solution to the problem of air entering the timing or compensation ports is shown in Buckley, U.S. Pat. No. 6,003,639. Buckley teaches an inner cylindrical body within which a piston is axially aligned. A sidewall of the cylindrical body is surrounded by a bladder to define a fluid reservoir surrounding the cylindrical body. This structure substantially prevents air from entering the timing port or the compensating port regardless of the orientation of the master cylinder assembly, however, the structure shown in Buckley is expensive and difficult to manufacture. [0004]
  • The present invention is intended to overcome one or more of the problems discussed above. [0005]
  • SUMMARY OF THE INVENTION
  • A first aspect of the present invention is a master cylinder for a bicycle hydraulic disc brake. The master cylinder includes a cylinder wall defining a cylinder interior and a cylinder exterior. A piston is received within the cylinder interior. A port resides between the cylinder wall and a reservoir for providing fluid communication between the reservoir and the cylinder interior. A structure is provided within the reservoir for preventing any air bubbles within the hydraulic fluid from entering the port regardless of the orientation of the master cylinder. The reservoir may be defined in part by a portion of the cylinder exterior. The structure for preventing air from entering the port is preferably a protrusion extending into the reservoir, with the port being located on the protrusion. The port is preferably located on an apex of the protrusion. The reservoir may be defined in part by an elastomeric diaphragm. Extensions may be provided adjacent the port to prevent the elastomeric diaphragm from blocking the port. The portion of the cylinder exterior defining part of the reservoir is preferably a convex surface and the port is preferably located at an apex of the convex surface. [0006]
  • A second aspect of the present invention is a hydraulic fluid reservoir for use with a master cylinder. The master cylinder includes a cylinder in fluid communication with the reservoir. The reservoir consists of a first wall and a sidewall extending from the first wall. An elastomeric diaphragm forming a flexible wall is attached to the sidewall opposite the first wall, with the first wall, the sidewall and the flexible wall cooperating to define an interior of the reservoir. A port provides fluid communication between the reservoir interior and the cylinder. The port has a reservoir opening in the reservoir interior located in one of the first wall and the sidewall, with the one of the first wall and the sidewall being configured to extend into the reservoir interior, thereby locating the reservoir opening at a position in the reservoir interior preventing an air bubble within the hydraulic fluid in the reservoir from entering the reservoir port, regardless of the orientation of the reservoir. [0007]
  • The master cylinder lever of the present invention provides a unique “backpack” reservoir which prevents air from entering the cylinder of the master cylinder regardless of the orientation of the master cylinder. Thus, it eliminates the risk of air entering the cylinder and inhibiting brake performance in the event of storing the bicycle in an unintended orientation or an accidental tipping or tumble of the bicycle. In addition, the backpack reservoir facilitates construction of a symmetric lever which may be disposed on either the right or left handlebar of a bicycle without concern for enabling air to enter the cylinder. This has the further advantages of simplifying manufacturing and limiting the stocking requirements of both bicycle manufacturers and wholesale and retail distributors of master cylinder levers.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a first embodiment of a master cylinder lever for a hydraulic disc brake in accordance with the present invention; [0009]
  • FIG. 2 is an exploded view of the backpack reservoir of the master cylinder lever of FIG. 1; [0010]
  • FIG. 3 is a cross-section of the master cylinder lever of FIG. 1 taken along line [0011] 3-3 of FIG. 1;
  • FIG. 4 is an exploded view of the piston train of the master cylinder lever of FIG. 1; [0012]
  • FIG. 5 is an exploded perspective view of a socket receptacle spaced from a lever handle of the master cylinder lever of FIG. 1; [0013]
  • FIG. 6 is an exploded view of the lever handle attachment assembly of the master cylinder lever of FIG. 1; [0014]
  • FIG. 7 is a side elevation view of the master cylinder lever of FIG. 1; [0015]
  • FIG. 8 is a cross-section of the master cylinder lever of FIG. 1 taken along line [0016] 8-8 of FIG. 7, illustrating an adjustable lever pivot assembly;
  • FIG. 9 is an alternate embodiment of the adjustable lever pivot assembly of FIG. 8; [0017]
  • FIG. 10 is a perspective view of a second embodiment of a master cylinder lever for a hydraulic disc brake in accordance with the present invention; [0018]
  • FIG. 11 is an exploded view of the backpack reservoir of the master cylinder lever of FIG. 10; [0019]
  • FIG. 12 is a cross-section of the master cylinder of FIG. 1 taken along line [0020] 12-12 of FIG. 1;
  • FIG. 13 is an exploded view of the piston train of the master cylinder lever of FIG. 1; [0021]
  • FIG. 14 is a perspective view of the push rod and threaded insert of the master cylinder lever of FIG. 10; [0022]
  • FIG. 15 is a side elevation view of the master cylinder lever of FIG. 10; [0023]
  • FIG. 16 is a schematic representation of the geometry of the lever of the present invention; [0024]
  • FIG. 17A is a schematic representation of the geometry of a Brand B lever; [0025]
  • FIG. 17B is a schematic representation of the geometry of a Brand A lever; [0026]
  • FIG. 18 is a schematic representation of the geometry of a Brand C lever; [0027]
  • FIG. 19 is a schematic representation of the geometry of a Brand D lever; [0028]
  • FIG. 20 is a graph of additional force required from a user's finger (%) versus lever travel from an engagement point for several brands of hydraulic levers as compared to the lever of the present invention; [0029]
  • FIG. 21 is a graph of a percentage of power to a lever versus lever travel for the lever of the present invention versus several known levers; [0030]
  • FIG. 22 is a plot of lever travel versus degrees deviation from perpendicular of finger force; [0031]
  • FIG. 23 is a cross-section of an alternate embodiment of the lever of FIG. 12; [0032]
  • FIG. 24 is an exploded view of the lever of FIG. 23; and [0033]
  • FIG. 25 is a cross-section taken along line [0034] 24-24 of FIG. 23.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • A first embodiment of master cylinder lever assembly [0035] 10 is illustrated in a perspective view in FIG. 1. The master cylinder lever assembly consists generally of a cylinder housing 12 having a bar clamp 14 at one end and a lever handle 16 pivotably attached at an opposite end. Also seen in FIG. 1 is a reservoir cover 18 which covers a “backpack” reservoir which will be described in greater detail below. Also visible in FIG. 1 is a contact point adjustment knob 20 which is also described in greater detail below. The master cylinder housing 12 is hydraulically connected to a slave cylinder which operates a hydraulic caliper (not shown) by hydraulic line 22.
  • FIG. 2 is an exploded view of the “backpack” reservoir of the master cylinder lever of FIG. 1. The backpack reservoir consists of a reservoir chamber [0036] 28 defined in a rear facing portion of the master cylinder housing 12. A cylinder wall 30 defining in part the cylinder of the master cylinder housing 12 extends into the reservoir chamber 28 and defines in part a first wall 31. Extending through the cylinder wall between the reservoir chamber 28 and the master cylinder is a timing port 32 and a compensating port 34. A pair of bosses 36 extend axially of the cylinder wall 30 on opposite sides of the timing and compensating port 32, 34. A side wall 37 extends from the first wall. A diaphragm 38 made of an elastomeric material such as silicon rubber is made to overlay the side wall 37 and cover the reservoir chamber 28. Thus, the first wall 31, the side wall 37 and the diaphragm 38 define the reservoir chamber 28. The diaphragm 38 has an expansion protrusion 40 extending therefrom opposite the reservoir chamber. A reservoir frame 42 is configured to receive the periphery of the diaphragm 38 to maintain a tight seal between the diaphragm 38 and the reservoir chamber 28. This seal is promoted and the assembled relationship maintained by four screws 44 received in corner holes of the reservoir frame 42 and diaphragm 38 and threadably engaged with corresponding holes in the master cylinder housing 12. A vanity cover 46 snap fits over the diaphragm and frame to both provide an aesthetic appearance and to protect the diaphragm 38. Locating the timing and compensating ports 32, 34 on the cylinder wall 30 as illustrated in FIG. 2 essentially eliminates the possibility of air entering either of the timing or compensating ports regardless of the position of the master cylinder. As should be apparent to one skilled in the art, this is because air will always rise and the curved surface of the cylinder wall always cause air bubbles to be deflected away from the timing and compensating ports regardless of the position of the master cylinder. While in the preferred embodiment illustrated herein, the cylinder wall 30 is truly cylindrical, it could also have other configurations such as a triangular configuration with the ports located at the apex of the triangle which would have the same affect of preventing air bubbles from collecting in the vicinity of the timing or compensating ports. Any other profile of the cylinder wall or location of the ports on the cylinder wall which prevents collecting of air bubbles in the vicinity of the timing and compensating ports is considered to be within the scope of the invention. The bosses 36 are provided to prevent the diaphragm 38 from covering and inadvertently sealing the compensation or timing ports as hydraulic fluid is drawn into the compensating and timing ports. As would be apparent to those skilled in the art, the bosses 36 could be replaced with similarly positioned posts or the like or-other extensions to perform the same function of keeping the diaphragm spaced from the ports and such other configurations may have an additional advantage of minimizing the potential of air bubbles collecting in the vicinity of the ports. This structure facilitates a single lever being used on either a right or left portion of a handle bar without risk of bubbles entering the hydraulic fluid line.
  • FIG. 3, a cross-section of the master cylinder, illustrates the piston train [0037] 49 operatively associated with the cylinder 50 of the master cylinder housing 12. The cylinder 50 has a first end 51 and a second end 52. FIG. 4 illustrates the piston train 49 in an exploded view and the same reference numbers will be used to identify like elements in FIG. 3 and FIG. 4.
  • The piston train consists of a piston [0038] 54 received in the cylinder 50 having an annular cup or umbrella seal 56 abutting an internal portion of the piston 54. A compression spring 60 biases the piston 54 toward the first or open end of the cylinder 51. An “O” ring 62 forms a lower seal on the piston and is received within an annular recess in the piston. A hex spacer 64 has leading protrusion 66 with an annular detent that is snap fit into a corresponding female receptacle 68 in a trailing end of the piston 54. This snap fit allows for relative rotational movement between the piston and the hex spacer 64. The hex spacer 64 is in turn received in a hex hole 70 of contact point adjustment knob 20. The knob 20 also has a leading externally threaded extension 72 which threadably engages a countersink 74 concentric with and external of the cylinder 50. A male pushrod 76 having an externally threaded shaft 78 at its first end and a ball head 80 at its second end with posts 82 extending in opposite directions therefrom is snap fit received in a slotted socket 84 on an end opposite the protrusion 66 of the hex spacer 64 with the post 82 received in the slots 86, as best seen in FIG. 3. The male pushrod 76 in turn is threadably engaged with a female pushrod 86 having an internally threaded cylinder 88, again best viewed in FIG. 3. The female pushrod also includes a ball head 90 having oppositely extending posts 92. A socket insert 94 has a leading ball socket 96 with opposite slots 98 for snap fit receiving the ball head 90 with the posts 92 received in the corresponding slots 98. The socket insert 94 also includes locking posts 100. Referring to FIG. 5, these locking posts are received within a keyed orifice 102 in the lever handle 16 and then rotated 90° to lock the posts 100 in the annular slot 104. Referring back to FIG. 3, a dust cover 106, which is preferably elastomeric, is engaged in an annular slot 108 of the knob 20 with a nipple end receiving the female pushrod 86 as shown.
  • The basic operation of the master cylinder is well understood by those skilled in the art. Referring to FIG. 3, pivoting the lever handle [0039] 16 upward from a rest position toward the cylinder housing causes the piston train 50 to drive the piston upward within the cylinder. As the piston moves upward in the cylinder the cup or umbrella seal 56 covers the timing port 32 which pressurizes the fluid within the hydraulic line 22 at the second end of the cylinder and which in turn actuates a slave cylinder within a hydraulically coupled brake caliper (not shown). When the lever handle 16 is released, the compression spring 60 biases the piston toward the first end of the cylinder to reassume the position shown in FIG. 3. The distance between the cup seal 56 and the timing port 32 is referred to as the “dead-band.” During the part of lever actuation where the cup seal is between the timing port 32 and the first end of the cylinder, fluid in the reservoir between the seal and the timing port returns to the reservoir chamber 30, perhaps causing expansion of the expansion protrusion 40 of the diaphragm 38. During this part of lever actuation, the second end of the cylinder cannot be pressurized. It is highly desirable to be able to adjust the length of the dead-band in accordance with user preferences. Rotation of the contact point adjustment knob 20 in a first direction allows for the dead-band to be taken up and reduced and rotation in a second direction increases the dead-band. In FIG. 3 a maximum dead-band is shown because the knob is almost fully threaded from the countersink 74. Threading the knob into the countersink causes the piston to move upward, thus reducing the dead-band. Obviously, the hex engagement between the hex spacer 64 and the knob 20 causes the hex spacer to rotate with the knob. However, the snap fit between the protrusion 66 and the female receptacle 68 of the piston prevents the piston from rotating relative to the knob, minimizing impairment of the seals.
  • One highly advantageous aspect of this design is that as the knob is screwed inward in the first direction, the male pushrod rotates axially because of engagement between the posts [0040] 82 and the hex spacer. The threads between the male pushrod 76 and the female pushrod 86 are configured to cause the male pushrod to extend further from the female pushrod as a result of this axial rotation in the first direction. The respective threads of the knob and the pushrods are designed such that the net result is that the lever handle does not move relative to the housing as the knob is turned. This feature has the important advantage of maintaining a preselected start position of the lever resulting reach between the lever and the handlebar as the dead-band of the master cylinder is adjusted.
  • In the event a user wishes to adjust the reach of the lever (that is, the distance between a handle bar and the lever at the rest position), this can be done independently of the dead-band adjustment by pivoting the handle away from the caliper housing to disengage the snap fit between the ball head [0041] 90 and the ball socket 96 of the socket insert 94. Once disengaged, the female pushrod 86 maybe rotated about its axis to extend or retract the female pushrod relative to the male pushrod to adjust the reach as desired. While the current embodiment may allow adjustment in 180° increments, other configurations allowing smaller increments of variation or perhaps event infinite variation of the lever reach are within the possession of those skilled in the art and within the scope of the invention.
  • FIG. 6 is an exploded view of the lever pivot assembly [0042] 110 of the first embodiment of the master cylinder lever of FIG. 1. The lever pivot assembly 110 consists of an axial bore 112 about which the lever handle 16 pivots. A threaded hole 114 perpendicularly intersects the bore 112. A slotted bushing 116 (preferably made of plastic) which is part of a bushing plate 118 extends into each end of the bore 112. A female bolt 120 is received through one slotted bushing while a male bolt 122 is received through the other slotted bushing so that they threadably engage within the bore 112. As perhaps best seen in FIG. 8, the slotted bushings 116 each have annular camming tapers 124 between smaller and larger diameter portions of the bushing. A head of the female bolt 120 similarly has a camming taper which mates with the camming taper 124 of the bushing. Likewise, the male bolt has a cammed surface which mates with a corresponding cammed surface of its corresponding bushing. Referring to FIG. 8, as should be apparent to one skilled in the art, as the male bolt is threaded into the female bolt in the assembled configuration, the cam relationship causes the bushings to expand radially as the bolts are drawn axially together. This causes any “slop” in the pivotal connection between the lever handle and the caliper housing to be taken up. A lock screw 130 is threadably received in the threaded hole 114 and, as illustrated in FIG. 8, can be threadably inserted in the hole to lock the male and female bolts in their select position. As the pivot wears the lock screw 130 can be backed off and the female and male bolts more tightly threadably engaged to pickup any slop.
  • FIG. 9 is an alternate embodiment of the adjustable lever pivot assembly [0043] 110′. This embodiment differs in that the male bolt has a portion having an outer diameter equivalent to the outer diameter of the female bolt illustrated at 132 and the female bolt does not extend as far axially as the embodiment illustrated in FIG. 8. A gap 134 is provided between this enlarged diameter 132 of the male bolt 122′ and the female bolt 120′. In this embodiment, the lock screw 130 directly engages each of the male bolt 122 and the female bolt 120 which may provide more secure locking although it may not provide as much axial adjustment from either end of the lever.
  • FIG. 10 is a second embodiment of a master cylinder lever for a bicycle hydraulic disc brake [0044] 200 of the present invention. The second embodiment of the master cylinder lever assembly 200 consists of a cylinder housing 202 having a bar clamp 204 at one end and lever handle 206 pivotably attached to the housing at an opposite end. A reservoir housing 208 covers a hydraulic fluid reservoir 210 which will be discussed in greater detail below. Also visible in FIG. 10 is a worm knob 212 used to adjust the lever dead-band in a manner that will be discussed in greater detail below. The master cylinder housing 202 is hydraulically connected to a slave cylinder which operates a hydraulic caliper (not shown) by hydraulic line 214.
  • FIG. 11 is an exploded view of a “backpack” reservoir of the master cylinder lever of FIG. 10. The backpack reservoir of FIG. 11 is identical in its configuration to the backpack reservoir of FIG. 2 except it is oriented substantially horizontally within the lever housing whereas the backpack reservoir of the first embodiment of the master cylinder lever of FIG. 1 is oriented vertically. The same reference numbers are used to describe like elements and the detailed description of these elements is provided above with reference to FIG. 2. [0045]
  • FIG. 12 is a cross-section the master cylinder lever assembly of FIG. 10 taken along line [0046] 12-12 of FIG. 10. FIG. 12 illustrates a piston train 220 received within a cylinder 222 defined within the hydraulic cylinder housing 202. The cylinder 222 has a first end 224 and a second end 226. A threaded countersink 225 in the housing 202 abuts the second end 226 of the cylinder 222, coaxial with a longitudinal axis of the cylinder. FIG. 13 illustrates the piston train 220 in an exploded view and the same reference numbers will be used to identify like elements in FIGS. 12 and 13.
  • The piston train [0047] 220 consists of a piston 228 within the cylinder 222. The piston 228 has a first annular cup or umbrella seal 230 near a leading end and a second annular cup or umbrella seal 232 near a trailing end. A push rod 234 has a threaded portion 236 at a first end and a head 238 at a leading second end. A leading portion of the head 238 defines a ball surface which is received in a corresponding cup surface 240 in a trailing end of the piston 220. The threaded portion 236 of the push rod 234 is threadably engaged with the lever handle 206 in a manner that will be discussed in greater detail below. A hex orifice 241 is defined in the second end of the push rod and sized to fit an appropriate Allen wrench. A plurality of radial ribs 242 extend axially from a rear surface of the head 238 opposite the ball surface (see FIG. 14). An externally threaded insert 244 has an externally threaded leading axial portion 246 and a trailing axial portion 248 having radially inclined gear teeth which are best viewed in FIGS. 13 and 14. The threaded insert 244 further has an axial bore 250 having conical side walls. The bore 250 opens at the first end to an annular pocket 252 having axially extending teeth 254 configured to mate with the radial ribs 242 which extend axially from the rear surface of the head 238 (See FIG. 14). Externally threaded insert 424 further includes a rearward facing pocket 256 receiving an elastomeric annular wipe seal 257 having a nipple which forms a seal with the push rod 234.
  • A worm [0048] 258 is received in the housing along an axis transverse an axis of the cylinder. The worm 258 has a threaded shaft 259 and a worm knob 212. The threads 259 of the threaded shaft threadably engage the radially inclined teeth 248 of the externally threaded insert 244. A C-clamp (not shown) or the like secures the worm 258 within the transverse bore in the housing by engaging an annular groove 261 in the distal end of the threaded shaft 259.
  • A coil spring [0049] 262 resides between a second end 226 of the cylinder and a leading end of the piston 228 to bias the piston toward the first end 224. The coil spring also compresses the radial ribs 242 of the push rod head 238 into mated engagement with the axially extending teeth 254 of the threaded insert 244 so the push rod 234 rotates axially as the threaded insert is rotated.
  • The lever handle [0050] 206 may be pivotably attached to the housing by lever pivot assembly described above with reference to FIGS. 6 and 8. Alternatively, a conventional pivot coupling may be used. Spaced from the lever pivot assembly 110, is a bore 264 in the lever along an axis parallel to the axis of the lever pivot assembly and transverse the axis of the cylinder 222. A cross dowel 266 is received in the bore 264. The cross dowel 266 includes a threaded bore 268 transverse the dowel axis. Referring to FIG. 12, this threaded bore 268 threadably receives the threaded portion 236 at the first end of the push rod 234.
  • The basic operation of the master cylinder lever [0051] 200 of FIG. 12 is similar to that of the first embodiment of the master cylinder lever 10 discussed above with reference to FIG. 3. The lever handle 206 is shown at a rest position in FIG. 12. As the lever is pivoted upward toward the bar clamp 204 and toward a fully actuated position, the push rod 234 is driven forward which in turn causes the piston 228 to move toward the second end 226 of the cylinder 222. As the piston 228 moves toward the second end 226 of the cylinder 222 the leading cup or umbrella seal 230 covers the timing port 34 which prevents flow of fluid from the cylinder into the reservoir and causes build up of pressure in the second end of the hydraulic fluid cylinder which in turn pressurizes fluid within the hydraulic fluid line 22 and which in turn actuates a slave cylinder within a hydraulically coupled brake caliper (not shown). When the lever handle 16 is released, the compressing spring 262 biases the piston 228 toward the first end 224 of the cylinder to reassume the position shown in FIG. 12. Pivoting of the push rod 234 about the head 238 by pivoting of the lever handle 206 is accommodated by the conical side walls of the axial base 250.
  • The distance between the cup seal [0052] 230 and the timing port 32 is referred to as the dead-band. As described above with reference to FIG. 3, during the part of lever actuation where the cup seal is between the timing port 32 and the first end of the cylinder, fluid in the reservoir between the seal and the timing port returns to the reservoir 30. During this part of lever actuation, the second end of the cylinder cannot be pressurized. To adjust the length of dead-band, the piston can be advanced in the cylinder by rotating the knob 264 in a first direction which in turn causes rotation of the threaded insert to threadably advance the threaded insert within the threaded countersink 225 along the cylinder axis, thereby advancing the piston toward the second end of the cylinder. Turning of the knob 212 in a second direction reverses the direction of the threaded insert to increase the dead-band. The ball and socket connection between the cup 240 at the trailing end of the piston and the ball at the leading end of the head 238 of the push rod 234 prevents the piston from rotating relative to the threaded insert which helps maintain the integrity of the seals.
  • The second embodiment of the hydraulic cylinder lever of FIG. 12 also includes a structure for compensating for movement of the push rod during dead-band adjustment to maintain the lever [0053] 206 in a select rest position. The threads between the threaded portion 236 of the push rod and the threaded bore 268 of the cross dowel 266 are configured to counteract pivoting of the handle that would otherwise occur about the lever pivot assembly 110 when the push rod 234 is moved by movement of the threaded insert 244. In other words, as the threaded insert 244 is advanced toward the second end of the cylinder, which necessarily causes the advancement of the push rod 234 toward the second end of the cylinder and which would normally cause the lever handle 206 to pivot upward, the threaded engagement between the second end of the push rod and the cross dowel tends to move the lever handle 206 downward in an amount that corresponds to what would be the upward movement so as to maintain the lever handle 206 at a select start position.
  • In the event a user wishes to adjust the reach of the lever, this can be done independently of the dead-band adjustment. Insertion of an Allen wrench into the hex orifice [0054] 242 allows for axial rotation of the push rod 234. However, the worm connection between the threaded insert 244 and the worm 258 prevents rotation of the threaded insert 244 by the push rod 234. Because the threaded insert 244 is relatively fixed against rotation, turning of the push rod 234 causes disengagement between the radially extending ribs 242 of the head 238 and the complimentary axially extending teeth 254 in the externally threaded insert against the bias of the spring 262 and allows for pivotal movement of the lever handle 206 up or down in accordance with user preferences to provide a select reach. The teeth 254 and ribs 242 preferably have inclined, mating surfaces which define ramps facilitating this disengagement against the force of the bias of the spring 262. Disengagement can be aided by pushing axially on the Allen wrench against the spring bias as the push rod 234 is rotated.
  • In a highly preferred embodiment, the axis of the threaded bore in the cross dowel is provided to not intersect with the cross dowel axis. This has the effect of locking the push rod in place relative to the cross dowel when a load is placed on the lever handle [0055] 206 so as to prevent relative rotation between the push rod 234 and the cross dowel 236. This feature thereby prevents inadvertent variation of the lever reach during lever actuation. An off-set of between 0.01-0.04 inches between the axes has been found to be sufficient.
  • FIG. 15 is a side elevation view of a master cylinder lever of FIG. 10. This figure is used to illustrate an embodiment of a lever geometry which has been found to provide significant advantages in lever operation. The bar clamp [0056] 204 is designed to receive a handle bar 280 along a clamp axis 282. The lever handle 206 is pivotably connected by lever pivot assembly 110 about a pivot axis 284. In a highly preferred embodiment, the pivot axis is 39 mm from the clamp axis. The lever handle 206 defines a finger receptacle 286 configured to receive at least one finger of a user. In the embodiment illustrated in FIG. 15, the finger receptacle 286 is configured to receive two fingers of a user and effective finger force point 288 is defined by approximately the center of a typical user's two fingers. For the purpose of this application and the charts and calculations herein, the location of the finger force point is deemed to be 30.0 mm from the end of the lever when based on an estimate of an average user's finger size. A select finger actuation path is defined by arrow 290, and extends from the effective finger force point 288 at an “engagement point” of the lever. As used herein, the “engagement point” means a point along the arc of lever actuation where the pads of a caliper operatively associated with the master cylinder lever begin compressing a disc therebetween. In other words, a point where the lever handle drives the piston train against operative fluid resistance. The select ideal finger actuation path 290 is a design criteria intended to estimate a typical finger path of a user of the brake in typical operating conditions. Based upon observations of users, the select ideal finger actuation path is at an angle θ 90° or greater. In FIG. 15 the angle θ is 96°, a best estimate of a typical average finger path. Actual finger paths may range from 90°-108°, or even greater than 108°. An arc 292 is defined by movement of the effective force point 288 as a lever is actuated between the engagement point position shown in FIG. 15 and a fully actuated position with the effective force point 288 at point 288′ in FIG. 15.
  • In one embodiment of the invention illustrated in FIG. 15, the pivot axis [0057] 284 is preferably spaced from the clamp axis 282 a distance such that a chord between the points 288 and 288′ of the arc 292 substantially corresponds to the select ideal finger actuation path 290. In this manner, a user experiences a mechanical advantage resulting from handle actuation that does not substantially decrease as the handle is pivoted between the at rest position and the fully actuated position. The angle of the chord between the point 288 and 288′ could actually be slightly less than the angle θ, but should be no less than 6° less than the angle θ so as to prevent an unacceptable loss of mechanical advantage.
  • The desired chord defined by the arc between the rest position and the fully actuated position of the effective finger force point is able to meet the criteria of substantially corresponding to an ideal finger actuation path in the range of greater than 96° if the pivot axis [0058] 284 can be brought close enough to the clamp axis 282. In the embodiment illustrated in FIG. 15, this geometry is facilitated by locating the reservoir 208 and the cylinder 222 of the master cylinder lever housing generally to the clamp axis 282, and the pivot 39 mm from the clamp axis. Where the master cylinder is aligned vertically as with the first embodiment illustrated in FIGS. 1-5, it would be very difficult to meet these design criteria because the cylinder and reservoir reside between the pivot axis 284 and the clamp axis 282. This is illustrated in FIG. 7. Here, the arc 292′ defined by pivotal movement of the effective finger force point 288 from the engagement point to the fully actuated position 288′ defines a chord 294′ that forms an angle less than 90° from the clamp axis 282. However, the angle θ of the select ideal finger actuation path is greater than 90°, again preferably greater than 96°. As a result, a user would sustain a significant loss of mechanical advantage when trying to actuate the lever handle 206 along the select ideal finger actuation path 290′.
  • FIGS. [0059] 16-19 illustrate the geometry of a highly preferred embodiment of the present invention as compared to representative hydraulic master cylinder levers on the market in 2002. FIG. 17A is a Brand B lever geometry. FIG. 17B is a Brand A lever geometry. FIG. 18 is a Brand C lever geometry. FIG. 19 is a lever geometry of a Brand D hydraulic brake lever.
  • Beginning with FIG. 16, in a highly preferred embodiment of the present invention, the pivot axis [0060] 284 is 39 mm from the clamp axis 282. For the purpose of this analysis, it is assumed that the engagement point is 50 mm from the clamp axis 282, and is illustrated by the line 300. The application of braking force from the engagement point to the conclusion of the lever movement is assumed to be 10 mm and is represented by the full actuation line 302. Finally, for the purpose of this analysis, the assumed ideal finger actuation pad 290 is an angle θ 96° from the clamp axis. The effective finger force point 288 is 30 mm from the bar end. The arc 304 represents the effective finger force point travel as the lever is actuated. A chord drawn between the engagement line where the effective finger force point is located at the beginning of brake actuation and the point that the full actuation line 302 intersects the arc 304 is at 96°, equal to the ideal finger path angle θ. This provides for a minimal loss of mechanical advantage as the lever is actuated.
  • In FIG. 17A the Brand B lever has a pivot axis [0061] 284 53 mm from the clamp axis 282. Again, assuming an engagement point 300 beginning 50 mm from the clamp axis and a full actuation line 302, 10 mm from the engagement point, it can be observed that the arc 304 of travel of the effective finger force point 208 deviates inwardly from the ideal finger path 290. The same is true in FIG. 17B, where the Brand A lever pivot axis is 50 mm from the clamp axis 282. As will be illustrated in the figures discussed below, this results in an increasing loss of mechanical advantage over the lever stroke.
  • FIGS. 18 and 19 represent the geometry of the Brand C and Brand D hydraulic brake levers respectively. Like numbers are used to identify like elements of these figures. Brand C, with the pivot axis located 63 mm from the clamp axis has a more pronounced deviation of the arc [0062] 304 from the ideal finger path 209 and thus, as will be illustrated below, has even a greater loss of mechanical advantage than the Brand B lever. Finally, the Brand D levers, with a pivot point 65 mm from the clamp axis, produces an even greater loss of mechanical advantage.
  • FIGS. 20 and 21 illustrate the respective mechanical advantage of the lever geometry of the present invention, designated as Avid, and the Brands A-D illustrated schematically above. Referring first to FIG. 20, the geometry of Brands A-D levers each will result in applying an additional amount of force to the lever along the ideal finger path over the course of the lever actuation. With respect to the Avid lever of the present invention, it can be seen that the geometry actually produces an increasing mechanical advantage over the first 5 mm of lever travel and then a slight decrease of mechanical advantage (less than 1%) over the final 5 mm of lever travel. Over the full range of lever travel, a net loss of mechanical advantage is zero. [0063]
  • FIG. 21 is essentially the inverse of FIG. 20. It illustrates that the geometries of the Brand A-D levers result in a loss of power over the actuation stroke. Again, the Avid lever of the present invention actually provides improved power through the first 5 mm with slightly decreasing power over the final 5 mm of travel and no change in the net amount of power applied to the lever between the engagement point and full actuation of the lever. [0064]
  • FIG. 22 illustrates where the loss of power comes from by comparing how far from perpendicular to the clamp axis the finger force is over the lever actuation stroke. For the geometry of the present invention (the Avid lever), the force begins 5 mm off, goes to perpendicular at about the center of the stroke and then returns to 5 mm off at the conclusion of the stroke. For Brands A-D, a significant deviation from perpendicular is present at the beginning of the stoke and increases from there. [0065]
  • As is apparent, the Avid lever geometry provides an increasing range of mechanical advantage over at least a portion of the lever actuation. In its broadest sense, the present invention can be characterized as the selection of a lever geometry having a pivot axis of 50 mm or less that is always equal to or closer to the clamp axis than the engagement point. This geometry produces a lever having an increasing mechanical advantage over at least a portion of the actuation stroke but does not encompass the geometry of the Brand A lever which is believed to be the lever having the pivot axis the closest to the clamp axis known in the art. [0066]
  • FIG. 23 is a cross-section of an alternate embodiment of the drive train of a master cylinder. The piston and cylinder of the embodiment of FIG. 23 is essentially identical to that of the embodiment of FIG. 12, and like reference numbers followed by a prime (′) are used for like elements and described above in detail with respect to FIG. 12. The primary difference in the structures begins to the right of the surface [0067] 240′ in the trailing end of the piston 220, which in FIG. 23 is flat as opposed to a cup surface.
  • The embodiment of FIG. 23 has push rod [0068] 400 having a threaded portion 402 at a first end and head 404 at a second end. The head 404 has a bore receiving a pin 406 transverse the axis of the pushrod 400. The head 404 is received in a socket 408 within a piston coupling 410 having a leading flat surface 412 abutting the cup 240′. Referring to FIG. 24, the piston coupling 410 has axial slots 414 which receive the pins 406 to allow axial movement of the head 404 within the piston coupling 410, but prevent axial rotation of the push rod 400 relative to the piston coupling 410. The threaded portion 402 of the pushrod is threadably engaged with the lever handle 206′ in the same manner discussed above with respect to the embodiment of FIG. 12, including the off-center coupling with the cross-dowel. The piston coupling 410 has an annular flange 416 with sinusoidal florets 418 extending radially therefrom. An externally threaded insert 430 has an externally threaded leading axial portion 432 and a trailing axial portion 434 having radially inclined gear teeth which are best viewed in FIG. 24. Threaded insert 430 further has an axial bore 436 having sinusoidal florets 438 configured to mate with the sinusoidal florets 418 of the piston coupling 410. An elastometric annular wipe seal 440 having a nipple 442 received in an annular groove 444 of the push rod 400 abuts the threaded insert 430.
  • The lever of FIG. 23 also includes a worm [0069] 258′ essentially identical to that of the embodiment discuss above with respect to FIG. 12 and which will not be re-described here. Likewise, the pivot assembly 446 is similar to that described with reference to FIG. 12.
  • The basic operation of the master cylinder of FIG. 23 is identical to that of the master cylinder lever [0070] 200 of FIG. 12 and this description will not be repeated. The embodiment of FIG. 23 shares the features of independent reach adjustment and a dead-band adjustment that compensates for and prevents change of the reach adjustment during dead-band adjustment and is not re-described here. The reach adjustment differs slightly from the embodiment discussed above with respect to FIG. 12. In the embodiment of FIG. 23, insertion of an Allen wrench into a hex socket 448 allows for reach adjustment. Axial rotation of the push rod by an Allen wrench will cause indexed axial rotation of the piston coupling 410 relative to the threaded insert 430. The threaded insert 430 is prevented from axial rotation by the worm 258′. The axial slots 414 allow disengagement and relative movement of the florets and axial rotation of the piston coupling 410 relative to the push rod 400 is prevented by the pins 406 received in the slots 414. In a preferred embodiment, each indexed rotation of the push rod causes a uniform movement of the lever end relative to the clamp axis (e.g., 1 mm). The mating florets are illustrated in FIG. 25 in a cross-section taken along line 25-25 of FIG. 23.
  • The embodiment of FIG. 23 also includes a feature to protect the piston train in the event of an accident causing movement of the lever handle [0071] 206 away from the clamp axis. In such an event, the head 404 of the push rod can axially disengage from the socket 408 of the piston coupling in a direction to the right. Once a user recovers from such a mishap, the lever can be simply returned to its normal rest position which will cause the head 404 to pop back into the socket 408.

Claims (12)

1. A hydraulic fluid reservoir for use with a master cylinder, the master cylinder including a cylinder in fluid communication with the reservoir, the reservoir comprising:
a first wall;
a side wall extending from the first wall;
an elastomeric diaphragm forming a flexible wall attached to the side wall opposite the first wall, the first wall, the side wall and the flexible wall cooperating to define a reservoir interior;
a port providing fluid communication between the reservoir interior and the cylinder, the port having a reservoir opening in the reservoir interior, the reservoir opening being located in one of the first wall and side wall, with the one of the first wall and the side wall being configured to extend into the reservoir interior, thereby locating the reservoir opening at a position in the reservoir interior preventing an air bubble within hydraulic fluid in the reservoir from entering the reservoir port, regardless of the orientation of the master cylinder.
2. A master cylinder for a bicycle hydraulic disc brake comprising:
a cylinder wall defining a cylinder interior and a cylinder exterior;
a piston received within the cylinder interior;
a reservoir for hydraulic fluid;
a port between the reservoir and the cylinder wall providing fluid communication between the reservoir and the cylinder interior; and
means within the reservoir for preventing any air bubbles within the hydraulic fluid from entering the port regardless of the orientation of the master cylinder.
3. The master cylinder for a bicycle hydraulic disc brake of claim 2 further comprising the reservoir being defined in part by a portion of the cylinder exterior.
4. The master cylinder for a bicycle hydraulic disc brake of claim 2 where in the means for preventing air from entering the port comprises a protrusion extending into the reservoir, the port being located on the protrusion.
5. The master cylinder for a bicycle hydraulic disc brake of claim 4 wherein the port is located at an apex of the protrusion.
6. The master cylinder for a bicycle hydraulic disc brake of claim 2 wherein the reservoir comprises an elastomeric diaphragm, the master cylinder further comprising means within the reservoir for preventing the elastomeric diaphragm from blocking the port.
7. The master cylinder for a bicycle hydraulic disc brake of claim 4 wherein the reservoir comprises an elastomeric diaphragm, the master cylinder further comprising an extension adjacent the port configured to prevent the elastomeric diaphragm from blocking the port.
8. The master cylinder for a bicycle hydraulic disc brake of claim 3 wherein the means for preventing air from entering the port comprises the portion of the cylinder exterior defining part of the reservoir extending into the reservoir and the port being located on the portion of the cylinder exterior defining part of the reservoir.
9. The master cylinder for a bicycle hydraulic disc brake of claim 8 wherein the portion of the cylinder exterior defining part of the reservoir is a convex surface and the port is located at an apex of the convex surface.
10. A master cylinder for a bicycle hydraulic disc brake comprising:
a cylinder wall defining a cylinder interior and a cylinder exterior;
a piston received within the cylinder interior;
a reservoir for hydraulic fluid defined in part by a portion of the cylinder exterior, the portion of the cylinder exterior protruding into the reservoir; and
a port through the portion of the cylinder exterior which protrudes into the reservoir providing fluid communication between the reservoir and the cylinder interior, the port being located on the portion of the cylinder exterior which protrudes into the reservoir at a position to prevent air bubbles within the reservoir from entering the port.
11. The master cylinder for a bicycle hydraulic disc brake of claim 10 further comprising an elastomeric diaphragm defining in part the reservoir and an extension adjacent the port configured to prevent the diaphragm from blocking the port.
12. The master cylinder for a bicycle hydraulic disc brake of claim 10 wherein the portion of the cylinder exterior which protrudes into the reservoir is a convex surface and the port is located at an apex of the convex surface.
US10/316,452 2001-12-28 2002-12-10 Master cylinder lever for a hydraulic disc brake having a backpack reservoir Abandoned US20030121736A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US34445001P true 2001-12-28 2001-12-28
US41613002P true 2002-10-04 2002-10-04
US41669802P true 2002-10-07 2002-10-07
US10/316,452 US20030121736A1 (en) 2001-12-28 2002-12-10 Master cylinder lever for a hydraulic disc brake having a backpack reservoir

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US10/316,452 US20030121736A1 (en) 2001-12-28 2002-12-10 Master cylinder lever for a hydraulic disc brake having a backpack reservoir
EP04077893.8A EP1498347B1 (en) 2001-12-28 2002-12-24 Master cylinder lever for a hydraulic disc brake having on the fly dead-band adjustment
EP05076711.0A EP1595781B1 (en) 2001-12-28 2002-12-24 Master cylinder lever for a hydraulic disc brake having on the fly dead-band adjustment
EP20020080490 EP1325863B1 (en) 2001-12-28 2002-12-24 Master cylinder lever for a hydraulic disc brake having on the fly dead-band adjustment
CA 2415101 CA2415101A1 (en) 2001-12-28 2002-12-24 Master cylinder lever for a hydraulic disc brake
EP05076712.8A EP1595782B1 (en) 2001-12-28 2002-12-24 Master cylinder lever for a hydraulic disc brake having on the fly dead-band adjustment
DE2002605573 DE60205573T2 (en) 2001-12-28 2002-12-24 Hydraulic disc brake master cylinder with adjustment device actuatable during travel
US10/966,737 US7178646B2 (en) 2001-12-28 2004-10-15 Master cylinder lever for a hydraulic disc brake having a backpack reservoir
US11/552,458 US7575105B2 (en) 2001-12-28 2006-10-24 Master cylinder lever with independently variable rest position and engagement point
US11/737,509 US7559414B2 (en) 2001-12-28 2007-04-19 Symmetric master cylinder lever for a hydraulic disc brake
US12/022,919 US20080116025A1 (en) 2001-12-28 2008-01-30 Symmetric Master Cylinder Lever for a Hydraulic Disc Brake II
US12/147,259 US8074774B2 (en) 2001-12-28 2008-06-26 Master cylinder lever with variable dead band and variable reach adjustment independent of the dead band adjustment
US12/147,267 US7530435B2 (en) 2001-12-28 2008-06-26 Method and apparatus for adjusting a lever actuated hydraulic disc brake master cylinder
US12/147,272 US7617913B2 (en) 2001-12-28 2008-06-26 Method of varying a rest position and a length of an actuation arc of a lever in a hydraulic disc brake system
US13/324,868 US8464845B2 (en) 2001-12-28 2011-12-13 Master cylinder lever for a bicycle hydraulic disc brake

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/966,737 Continuation US7178646B2 (en) 2001-12-28 2004-10-15 Master cylinder lever for a hydraulic disc brake having a backpack reservoir

Publications (1)

Publication Number Publication Date
US20030121736A1 true US20030121736A1 (en) 2003-07-03

Family

ID=27502119

Family Applications (9)

Application Number Title Priority Date Filing Date
US10/316,452 Abandoned US20030121736A1 (en) 2001-12-28 2002-12-10 Master cylinder lever for a hydraulic disc brake having a backpack reservoir
US10/966,737 Active US7178646B2 (en) 2001-12-28 2004-10-15 Master cylinder lever for a hydraulic disc brake having a backpack reservoir
US11/552,458 Active US7575105B2 (en) 2001-12-28 2006-10-24 Master cylinder lever with independently variable rest position and engagement point
US11/737,509 Active US7559414B2 (en) 2001-12-28 2007-04-19 Symmetric master cylinder lever for a hydraulic disc brake
US12/022,919 Abandoned US20080116025A1 (en) 2001-12-28 2008-01-30 Symmetric Master Cylinder Lever for a Hydraulic Disc Brake II
US12/147,272 Active US7617913B2 (en) 2001-12-28 2008-06-26 Method of varying a rest position and a length of an actuation arc of a lever in a hydraulic disc brake system
US12/147,259 Active 2023-03-04 US8074774B2 (en) 2001-12-28 2008-06-26 Master cylinder lever with variable dead band and variable reach adjustment independent of the dead band adjustment
US12/147,267 Active US7530435B2 (en) 2001-12-28 2008-06-26 Method and apparatus for adjusting a lever actuated hydraulic disc brake master cylinder
US13/324,868 Active US8464845B2 (en) 2001-12-28 2011-12-13 Master cylinder lever for a bicycle hydraulic disc brake

Family Applications After (8)

Application Number Title Priority Date Filing Date
US10/966,737 Active US7178646B2 (en) 2001-12-28 2004-10-15 Master cylinder lever for a hydraulic disc brake having a backpack reservoir
US11/552,458 Active US7575105B2 (en) 2001-12-28 2006-10-24 Master cylinder lever with independently variable rest position and engagement point
US11/737,509 Active US7559414B2 (en) 2001-12-28 2007-04-19 Symmetric master cylinder lever for a hydraulic disc brake
US12/022,919 Abandoned US20080116025A1 (en) 2001-12-28 2008-01-30 Symmetric Master Cylinder Lever for a Hydraulic Disc Brake II
US12/147,272 Active US7617913B2 (en) 2001-12-28 2008-06-26 Method of varying a rest position and a length of an actuation arc of a lever in a hydraulic disc brake system
US12/147,259 Active 2023-03-04 US8074774B2 (en) 2001-12-28 2008-06-26 Master cylinder lever with variable dead band and variable reach adjustment independent of the dead band adjustment
US12/147,267 Active US7530435B2 (en) 2001-12-28 2008-06-26 Method and apparatus for adjusting a lever actuated hydraulic disc brake master cylinder
US13/324,868 Active US8464845B2 (en) 2001-12-28 2011-12-13 Master cylinder lever for a bicycle hydraulic disc brake

Country Status (1)

Country Link
US (9) US20030121736A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199450A1 (en) * 2004-03-09 2005-09-15 Campbell Darren J. Lever assembly and master cylinder
US20060185941A1 (en) * 2005-02-18 2006-08-24 Shimano Inc. Hydraulic disc brake lever assembly
US20060185943A1 (en) * 2005-02-18 2006-08-24 Shimano, Inc. Hydraulic disc brake lever assembly
US20070215416A1 (en) * 2006-03-14 2007-09-20 Jui-Pin Chen Bicycle brake lever
US20080155982A1 (en) * 2006-12-28 2008-07-03 Jones Christopher S Hydraulic Brake Master Cylinder
US20080245632A1 (en) * 2007-04-03 2008-10-09 Shimano Inc. Bicycle hydraulic brake device
US20090229927A1 (en) * 2008-02-29 2009-09-17 Cesare Brioschi Breaking device
US20100064838A1 (en) * 2008-09-18 2010-03-18 Shimano Components (Malaysia) Sdn Bhd Reservoir tank for hydraulic brake lever assembly
US8464845B2 (en) 2001-12-28 2013-06-18 Sram, Llc Master cylinder lever for a bicycle hydraulic disc brake
US20130255239A1 (en) * 2012-03-30 2013-10-03 Shimano Inc. Bicycle hydraulic component operating device
ITPD20120323A1 (en) * 2012-10-31 2014-05-01 Freni Brembo Spa Lever actuating device for brakes and / or clutches, in particular for motorcycles
EP2749485A1 (en) * 2012-12-26 2014-07-02 Shimano Inc. Bicycle control device
US20150266540A1 (en) * 2014-03-24 2015-09-24 Sram, Llc Variable rate assembly for a brake system for bicycle
US20150321725A1 (en) * 2014-05-09 2015-11-12 Shimano Inc. Hydraulic operating device
US20160200392A1 (en) * 2015-01-12 2016-07-14 Sram, Llc Hydraulic Bicycle System
US20160264213A1 (en) * 2015-03-12 2016-09-15 Sram, Llc Bicycle Control Device
CN106132792A (en) * 2014-04-28 2016-11-16 日立汽车系统株式会社 Master cylinder for vehicle
CN107117247A (en) * 2016-02-24 2017-09-01 株式会社岛野 Bicycle hydraulic operation device
US9937978B2 (en) 2016-06-15 2018-04-10 Shimano Inc. Bicycle hydraulic operating device
US20180274562A1 (en) * 2017-03-27 2018-09-27 Sram, Llc Hydraulic bicycle component control device
US10189539B2 (en) 2013-01-18 2019-01-29 Gustav Magenwirth Gmbh & Co. Kg Master cylinder device for a hydraulic disk brake
US20190039685A1 (en) * 2017-08-03 2019-02-07 Shimano Inc. Hydraulic operating device
US10232905B2 (en) 2016-06-15 2019-03-19 Shimano Inc. Bicycle hydraulic operating device
US10442495B2 (en) * 2014-06-20 2019-10-15 Shimano Inc. Bicycle hydraulic operating system
US10668907B2 (en) 2016-06-16 2020-06-02 Shimano Inc. Bicycle hydraulic operating device

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500545B2 (en) * 2005-12-13 2009-03-10 Shimano, Inc. Reservoir apparatus for a bicycle brake lever device
US7412829B2 (en) * 2005-12-13 2008-08-19 Shimano, Inc. Hydraulic apparatus for a bicycle brake lever device
WO2008056379A1 (en) * 2006-11-06 2008-05-15 Freni Brembo S.P.A. A lever device for operating a hydraulic actuator, particularly for motorcycles
ITFI20070018A1 (en) * 2007-01-31 2008-08-01 Formula Srl Hydraulic pump.
US20090120750A1 (en) * 2007-11-09 2009-05-14 Hsin-Tech (Shen Zhen) Co., Ltd Hydraulic brake lever
TWM342334U (en) * 2007-11-12 2008-10-11 Lee Chi Entpr Co Ltd Hydraulic type brake lever
US20090152061A1 (en) * 2007-12-13 2009-06-18 Szu-Fang Tsai Adjustable pumping device for a hydraulic brake device of a bicycle
US20090152063A1 (en) * 2007-12-13 2009-06-18 Szu-Fang Tsai Pumping device for a hydraulic brake of a bicycle
US8267227B2 (en) * 2008-07-22 2012-09-18 Akebono Brake Corporation Lever assembly featuring blind cable assembly
US7832531B2 (en) * 2009-03-06 2010-11-16 Shimano Inc. Bicycle component fixing band
US8177078B2 (en) * 2009-06-03 2012-05-15 Michael Pezzati Eyeglasses retainer for handle bars
DE102009039620A1 (en) * 2009-09-01 2011-03-03 Gustav Magenwirth Gmbh & Co. Kg Encoder device for a closed hydraulic system of handlebar-guided vehicles
US20110100772A1 (en) * 2009-11-05 2011-05-05 Akebono Corporation (North America) Cable end retention clip assembly and method
US9150275B2 (en) * 2009-12-17 2015-10-06 Shimano Inc. Hydraulic connector arrangement
US8201670B2 (en) * 2009-12-17 2012-06-19 Shimano Inc. Bicycle hydraulic brake actuation device
TWI347415B (en) * 2009-12-30 2011-08-21
TWM390914U (en) * 2010-02-12 2010-10-21
US20110290601A1 (en) * 2010-05-27 2011-12-01 Chang Hui Lin Hydraulic Brake
US20130192941A1 (en) * 2010-05-27 2013-08-01 Chang Hui Lin Hydraulic brake
IT1402543B1 (en) * 2010-10-29 2013-09-13 Freni Brembo Spa Together with light source for a motorcycle
TWI409182B (en) * 2010-11-12 2013-09-21
US8943924B2 (en) 2010-11-24 2015-02-03 Hb Performance Systems, Inc. System and method for an adjustable lever assembly
USD641670S1 (en) 2010-11-24 2011-07-19 Hb Performance Systems, Inc. Brake pad
US8893859B2 (en) * 2010-12-10 2014-11-25 Heng Tong Machinery Co., Ltd. Hydraulic brake controller
US20120240715A1 (en) * 2011-03-24 2012-09-27 Tektro Technology Corporation Braking device with hidden hydraulic cylinder
US8967347B2 (en) * 2011-08-26 2015-03-03 Ashima Ltd. Adjustment device for a hydraulic brake system
US9096288B2 (en) * 2012-01-05 2015-08-04 Shimano, Inc. Dual hydraulic controller for bicycle components
US8714322B2 (en) 2012-01-16 2014-05-06 Sram, Llc Hydraulic brake mechanism
US8851249B2 (en) * 2012-08-30 2014-10-07 Tien Hsin Industries Co., Ltd. Hydraulic brake master cylinder
US8888066B2 (en) * 2012-12-18 2014-11-18 Ashima Ltd. Adjustable holder of a hydraulic brake device for a bicycle
US9415831B2 (en) * 2013-06-28 2016-08-16 Shimano Inc. Bicycle hydraulic operating device
EP3038893B1 (en) * 2013-08-27 2019-11-20 Gustav Magenwirth GmbH & Co. KG Master cylinder fitting
US20150143991A1 (en) * 2013-11-27 2015-05-28 Hb Performance Systems, Inc. Master cylinder with recessed piston-rod interface
US10550858B2 (en) * 2014-08-25 2020-02-04 Shimano Inc. Bicycle control device
US9932086B2 (en) * 2014-11-13 2018-04-03 Robert L. Barnett Motorcycle front brake master cylinder assembly
US10625813B2 (en) 2014-11-13 2020-04-21 Robert L. Barnett Motorcycle front brake master cylinder assembly
USD770345S1 (en) * 2015-06-16 2016-11-01 Haldex Brake Products Ab Brake adjuster
USD770344S1 (en) * 2015-06-16 2016-11-01 Haldex Brake Products Ab Brake adjuster
USD770343S1 (en) * 2015-06-16 2016-11-01 Haldex Brake Products Ab Brake adjuster
USD770346S1 (en) * 2015-06-16 2016-11-01 Haldex Brake Products Ab Brake adjuster
US10343744B2 (en) * 2016-05-23 2019-07-09 Shimano Inc. Bicycle operating device
DE102016209955A1 (en) * 2016-06-07 2017-12-07 Shimano Inc. A bicycle hydraulic device having a container
US10183721B2 (en) * 2016-08-10 2019-01-22 Shimano Components (Malaysia) Sdn. Bhd. Bicycle control device
IT201700065297A1 (en) * 2017-06-13 2018-12-13 Campagnolo Srl Hydraulic seal body for bicycle brake systems and hydraulic hose assembly for bicycle brake systems
US10259523B2 (en) * 2017-07-26 2019-04-16 Shimano Inc. Hydraulic operating system
US10300983B2 (en) 2017-08-03 2019-05-28 Shimano Inc. Operating assembly
US10526038B2 (en) * 2017-08-03 2020-01-07 Shimano Inc. Operating device
US10358183B2 (en) * 2017-08-24 2019-07-23 Shimano Inc. Hydraulic operating apparatus
TWI637871B (en) * 2017-09-05 2018-10-11 顏伶恩 Hydraulic braking system and control device thereof
US10494053B2 (en) 2018-01-21 2019-12-03 Shimano Inc. Operating device
CN108528611B (en) * 2018-03-15 2020-09-01 浙江星联电动自行车零件有限公司 Magnetic induction type hydraulic disc brake

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2213947A (en) * 1937-09-27 1940-09-10 Hydraulic Brake Co Fluid pressure braking system
US2952128A (en) * 1957-05-09 1960-09-13 Highland Olaf Sealed pressure-equalizing hydraulic brake reservoir
US2958198A (en) * 1959-10-28 1960-11-01 Gen Motors Corp Hydraulic actuating system
US3348377A (en) * 1958-12-04 1967-10-24 Wagner Electric Corp Pressure generating means
US4004707A (en) * 1976-04-05 1977-01-25 General Motors Corporation Fluid baffle in master cylinder reservoir
US4560049A (en) * 1982-09-28 1985-12-24 Honda Giken Kogyo Kabushiki Kaisha Operation device for clutch master cylinder with means to adjust the play stroke of the clutch lever
US4635442A (en) * 1984-08-29 1987-01-13 Automotive Products Plc Hydraulic master cylinder assembly
US4788821A (en) * 1983-11-28 1988-12-06 Automotive Products, Plc Hydraulic shift for motor vehicle transmission
US6457378B2 (en) * 1999-12-16 2002-10-01 Nissin Kogyo Co., Ltd. Control lever equipment for bar handle vehicle
US6658844B1 (en) * 2002-04-10 2003-12-09 Dethmers Manufacturing Company Plastic master cylinder for hydraulic brake system

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE857901C (en) * 1951-04-08 1952-12-04 Teves Kg Alfred Hydraulic transmitter for motor vehicle brakes, in particular for motorcycles, scooters or the like.
US3802200A (en) 1972-03-27 1974-04-09 Kelsey Hayes Co Plastic master cylinder
GB1536353A (en) 1976-06-26 1978-12-20 Automotive Prod Co Ltd Hydraulic brake actuator
JPS6042436B2 (en) 1978-03-09 1985-09-21 Toshiba Kk
US4388944A (en) 1979-08-30 1983-06-21 Keizo Honma Device for capturing air bubbles from fluids in piping
DE2922399C2 (en) 1979-06-01 1981-08-06 Gustav Magenwirth Gmbh & Co, 7432 Urach, De
US4418534A (en) * 1980-03-18 1983-12-06 Lucas Industries Limited Hydraulic pressure master cylinder
US4391353A (en) * 1981-01-23 1983-07-05 Mathauser William R Hand operated hydraulic bicycle brake
GB2111148B (en) * 1981-06-09 1985-09-18 Nisshin Kogyo Kk Diaphragm assembly
JPH0233542B2 (en) * 1981-09-19 1990-07-27 Honda Motor Co Ltd
DE3216885C2 (en) 1982-05-06 1986-03-13 Gustav Magenwirth Gmbh & Co, 7432 Urach, De
US4615415A (en) * 1983-03-23 1986-10-07 Mathauser William R Hand operated hydraulic bicycle brake
US4626045A (en) 1984-06-07 1986-12-02 Honda Giken Kogyo Kabushiki Kaisha Control unit for antilock brake systems
US4568131A (en) 1984-10-30 1986-02-04 Blomberg Folke Ivar Modulator for hydraulic brakes
JPS621834A (en) 1985-06-27 1987-01-07 Fukuoka Alum Kogyo Kk Manufacture of al-b alloy
JPH0777877B2 (en) 1985-12-06 1995-08-23 本田技研工業株式会社 Adjustable operating lever for vehicle
US4785629A (en) 1987-06-04 1988-11-22 Ennis Iii James F Syringe-dispensed brake fluid for filling and purging master cylinder circuit from slave
KR900008424B1 (en) 1987-06-05 1990-11-20 닛신 고오교오 가부시끼가이샤 Lever system for vehicles
US4878346A (en) 1987-07-24 1989-11-07 Hayes Industrial Brake, Inc. Tab-aligned replaceable cartridge for master cylinder
IT218037Z2 (en) 1988-12-12 1992-03-30 Brembo Spa Position regulator for manual control levers, applied to handlebars
US4921081A (en) * 1988-12-22 1990-05-01 Autra-Bike Co., Inc. Hydraulic brake apparatus for bicycles
JPH0466742B2 (en) 1989-06-27 1992-10-26 Nisshin Kogyo Kk
JPH041034Y2 (en) * 1989-09-13 1992-01-14 Nissin Kogyo Kk
US5287765A (en) 1990-01-04 1994-02-22 Brian Scura Hand actuated cable displacement system
US5207108A (en) * 1991-06-07 1993-05-04 Tassic William P Transducer for sensing tension loading of a conveyor chain
US5205153A (en) 1992-01-23 1993-04-27 Cobe Laboratories, Inc. Method and apparatus for detection of air bubbles in tubing
GB9305838D0 (en) * 1993-03-20 1993-05-05 Automotive Products Plc An operating mechanism for a hydraulic master cylinder
IT232629Y1 (en) * 1993-04-09 2000-01-18 Brembo Spa Adjustment device for operating levers of control pumps
US5620575A (en) 1993-12-27 1997-04-15 Honda Giken Kogyo Kabushiki Kaisha Composite plating apparatus and apparatus for dispersing air bubbles within a composite plating solution
KR0130390Y1 (en) 1995-05-09 1999-02-18 문정환 Apparatus for injecting rigid-liquid
US5632362A (en) 1995-08-15 1997-05-27 Rockshox, Inc. Bicycle disc brake
US5660082A (en) 1995-10-19 1997-08-26 Hsieh; Wen Cheng Adjustable brake control for a bicycle
WO1997027405A1 (en) 1996-01-26 1997-07-31 Sram Corporation Brake actuating system
GB9604170D0 (en) 1996-02-28 1996-05-01 Sharp Simon Hydraulic brakes
JPH09249180A (en) 1996-03-18 1997-09-22 Akebono Brake Ind Co Ltd Operation lever for vehicle with adjuster mechanism
US5813501A (en) 1996-10-18 1998-09-29 Terry, Sr.; Maurice C. Hand operated hydraulic vehicle brake
DE19718612A1 (en) 1997-05-02 1998-11-05 Magenwirth Gmbh Co Gustav Operating unit for hydraulic brakes of two=wheelers and suchlike
IT237821Y1 (en) 1997-07-23 2000-09-29 Crc Ct Ricerche Cagiva S A Pump assembly, front brake fluid reservoir and brake or clutch operating lever of a motorcycle
US5950772A (en) 1997-08-29 1999-09-14 Hayes Brake, Inc. Bicycle brake system having a flexible disk
US6318514B1 (en) * 1997-08-29 2001-11-20 Hayes Brake, Inc. Disc brake system with spring clip pad holders
US6082509A (en) 1998-02-10 2000-07-04 Hayes Brake, Inc. Fluid pressurization system
JPH11324891A (en) 1998-05-11 1999-11-26 Kazuaki Murata Rotation driving device using bubble
US6516682B2 (en) 1998-10-01 2003-02-11 Jay Brake Enterprises Adjustable control lever
DE59915135D1 (en) * 1998-12-09 2010-04-01 Magenwirth Gmbh Co Gustav BRAKE CYLINDER FOR A WHEEL BRAKE
JP3433912B2 (en) 1999-07-19 2003-08-04 本田技研工業株式会社 Control lever adjustment device
JP4357660B2 (en) 1999-08-27 2009-11-04 日信工業株式会社 Master cylinder device for vehicle
US6336960B1 (en) 1999-09-28 2002-01-08 Advanced Micro Devices, Inc. System and method for purging air bubbles from filters
US6502675B1 (en) 2000-01-11 2003-01-07 Frank G. Andrus Integrated handlebar and master cylinder having piston and hydraulic line coaxially aligned with major central axis of handlebar
US6334514B1 (en) * 2000-02-02 2002-01-01 Shimano Inc. Bicycle disc brake
US6349800B1 (en) * 2000-02-07 2002-02-26 Shimano Inc. Bicycle disc brake assembly
EP1160152B1 (en) 2000-06-02 2005-12-07 Freni Brembo S.p.A. Device for adjusting the position of the operating lever of a hydraulic actuator
US6401882B1 (en) 2000-06-30 2002-06-11 Shimano Inc. Heat insulator for disc brake
US6347689B1 (en) 2000-06-30 2002-02-19 Shimano Inc. Roll back seal for disc brake
AU9059301A (en) 2000-08-31 2002-03-13 Millipore Corp Gas vent filter construction incorporating a hollow fiber membrane assembly
JP4374127B2 (en) 2000-08-31 2009-12-02 日信工業株式会社 Bar handle vehicle control lever
US6321784B1 (en) 2000-09-28 2001-11-27 Tony Leng Oil-storing device for a bike saucer-brake
DE60044852D1 (en) * 2000-09-29 2010-09-30 Freni Brembo Spa HYDRAULIC OPERATING DEVICE FOR STEERING RAIL VEHICLES
DE20018705U1 (en) 2000-11-02 2000-12-28 Magenwirth Gmbh Co Gustav Control valve for actuating the brake or clutch of a vehicle with a handlebar
US6370877B1 (en) * 2001-01-30 2002-04-16 Chang Hui Lin Brake handle device for hydraulic brake assembly
US6527303B2 (en) 2001-06-04 2003-03-04 Shimano Inc. Hydraulic hose assembly for bicycle
US6804961B2 (en) * 2001-12-28 2004-10-19 Sram Corporation Master cylinder lever for a hydraulic disk brake having on the fly dead-band adjustment
US7204350B2 (en) * 2001-12-28 2007-04-17 Sram Corporation Master cylinder lever for a hydraulic disc brake having favorable handle pivot geometry
US20030121736A1 (en) * 2001-12-28 2003-07-03 Avid, L.L.C. Master cylinder lever for a hydraulic disc brake having a backpack reservoir
ITFI20030044A1 (en) * 2003-02-20 2004-08-21 Formula Srl Device for controlling brakes in cycles and the like
ITFI20030241A1 (en) * 2003-09-15 2005-03-16 Formula Srl Device for the control of hydraulic brakes in cycles,
ITFI20030242A1 (en) * 2003-09-15 2005-03-16 Formula Srl Device for the control of hydraulic brakes in cycles,
US6883647B1 (en) * 2003-09-16 2005-04-26 Chun Te Wen Hydraulic brake lever for a bicycle
US20060070483A1 (en) * 2004-10-05 2006-04-06 Dimsey James J Brake and clutch lever height adjusters
US7308791B2 (en) * 2005-02-18 2007-12-18 Shimano Inc. Hydraulic disc brake lever assembly
DE202005003033U1 (en) * 2005-02-23 2005-04-28 Fte Automotive Gmbh & Co. Kg Hand lever fitting for handlebar-controlled vehicles, especially motorcycles
USD522422S1 (en) 2005-03-07 2006-06-06 Hayes Disc Brake, Llc Master cylinder
US7757821B2 (en) * 2006-06-09 2010-07-20 Shimano Inc. Bicycle hydraulic brake actuation device
US7487638B2 (en) * 2006-06-09 2009-02-10 Shimano Inc. Bicycle hydraulic brake accentuate device
USD570272S1 (en) * 2006-12-27 2008-06-03 Hayes Bicycle Group, Inc. Master cylinder
US7942250B2 (en) * 2007-04-03 2011-05-17 Shimano Inc. Bicycle hydraulic brake device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2213947A (en) * 1937-09-27 1940-09-10 Hydraulic Brake Co Fluid pressure braking system
US2952128A (en) * 1957-05-09 1960-09-13 Highland Olaf Sealed pressure-equalizing hydraulic brake reservoir
US3348377A (en) * 1958-12-04 1967-10-24 Wagner Electric Corp Pressure generating means
US2958198A (en) * 1959-10-28 1960-11-01 Gen Motors Corp Hydraulic actuating system
US4004707A (en) * 1976-04-05 1977-01-25 General Motors Corporation Fluid baffle in master cylinder reservoir
US4560049A (en) * 1982-09-28 1985-12-24 Honda Giken Kogyo Kabushiki Kaisha Operation device for clutch master cylinder with means to adjust the play stroke of the clutch lever
US4788821A (en) * 1983-11-28 1988-12-06 Automotive Products, Plc Hydraulic shift for motor vehicle transmission
US4635442A (en) * 1984-08-29 1987-01-13 Automotive Products Plc Hydraulic master cylinder assembly
US6457378B2 (en) * 1999-12-16 2002-10-01 Nissin Kogyo Co., Ltd. Control lever equipment for bar handle vehicle
US6658844B1 (en) * 2002-04-10 2003-12-09 Dethmers Manufacturing Company Plastic master cylinder for hydraulic brake system

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8464845B2 (en) 2001-12-28 2013-06-18 Sram, Llc Master cylinder lever for a bicycle hydraulic disc brake
US20050199450A1 (en) * 2004-03-09 2005-09-15 Campbell Darren J. Lever assembly and master cylinder
US20080011566A1 (en) * 2004-03-09 2008-01-17 Campbell Darren J Method of bleeding a braking system
US7546909B2 (en) * 2004-03-09 2009-06-16 Hayes Bicycle Group, Inc. Lever assembly and master cylinder
US20060185941A1 (en) * 2005-02-18 2006-08-24 Shimano Inc. Hydraulic disc brake lever assembly
US7654366B2 (en) 2005-02-18 2010-02-02 Shimano Inc. Hydraulic disc brake lever assembly
US20070209360A1 (en) * 2005-02-18 2007-09-13 Shimano Inc. Hydraulic disc brake lever assembly
US20060185943A1 (en) * 2005-02-18 2006-08-24 Shimano, Inc. Hydraulic disc brake lever assembly
US7308791B2 (en) 2005-02-18 2007-12-18 Shimano Inc. Hydraulic disc brake lever assembly
US20060185360A1 (en) * 2005-02-18 2006-08-24 Shimano Inc. Hydraulic disc brake lever assembly
US7377367B2 (en) 2005-02-18 2008-05-27 Shimano Inc. Hydraulic disc brake lever assembly
US7389642B2 (en) 2005-02-18 2008-06-24 Shimano Inc. Hydraulic disc brake lever assembly
EP1733959A2 (en) 2005-06-17 2006-12-20 Shimano Inc. Hydraulic brake lever assembly
EP1870328A3 (en) * 2005-06-17 2008-07-09 Shimano Inc. Hydraulic disc brake lever assembly
EP1870327A3 (en) * 2005-06-17 2008-07-16 Shimano Inc. Hydraulic disc brake lever assembly
EP1870326A3 (en) * 2005-06-17 2008-09-03 Shimano Inc. Hydraulic disc brake lever assembly
EP1733959A3 (en) * 2005-06-17 2007-06-13 Shimano Inc. Hydraulic brake lever assembly
US7497309B2 (en) * 2006-03-14 2009-03-03 Jui-Pin Chen Bicycle brake lever
US20070215416A1 (en) * 2006-03-14 2007-09-20 Jui-Pin Chen Bicycle brake lever
US20080155982A1 (en) * 2006-12-28 2008-07-03 Jones Christopher S Hydraulic Brake Master Cylinder
US7942250B2 (en) 2007-04-03 2011-05-17 Shimano Inc. Bicycle hydraulic brake device
US20080245632A1 (en) * 2007-04-03 2008-10-09 Shimano Inc. Bicycle hydraulic brake device
US20090229927A1 (en) * 2008-02-29 2009-09-17 Cesare Brioschi Breaking device
EP2096025A3 (en) * 2008-02-29 2010-04-14 Sunstar Engineering Pte. Ltd Braking device
US8281903B2 (en) 2008-02-29 2012-10-09 Sunstar Engineering Pte. Ltd. Breaking device
US20100064838A1 (en) * 2008-09-18 2010-03-18 Shimano Components (Malaysia) Sdn Bhd Reservoir tank for hydraulic brake lever assembly
US8146716B2 (en) 2008-09-18 2012-04-03 Shimano Inc. Reservoir tank for hydraulic brake lever assembly
US20130255239A1 (en) * 2012-03-30 2013-10-03 Shimano Inc. Bicycle hydraulic component operating device
CN103359246A (en) * 2012-03-30 2013-10-23 株式会社岛野 Bicycle hydraulic component operating device
US9321505B2 (en) * 2012-03-30 2016-04-26 Shimano Inc. Bicycle hydraulic component operating device
WO2014068518A1 (en) * 2012-10-31 2014-05-08 Freni Brembo S.P.A. Actuation device for a hydraulic actuator
ITPD20120323A1 (en) * 2012-10-31 2014-05-01 Freni Brembo Spa Lever actuating device for brakes and / or clutches, in particular for motorcycles
CN103895801A (en) * 2012-12-26 2014-07-02 株式会社岛野 Bicycle Control Device
CN103895801B (en) * 2012-12-26 2020-09-15 株式会社岛野 Bicycle control device
US9873483B2 (en) 2012-12-26 2018-01-23 Shimano Inc. Bicycle control device
EP2749485A1 (en) * 2012-12-26 2014-07-02 Shimano Inc. Bicycle control device
US10189539B2 (en) 2013-01-18 2019-01-29 Gustav Magenwirth Gmbh & Co. Kg Master cylinder device for a hydraulic disk brake
US9290232B2 (en) * 2014-03-24 2016-03-22 Sram, Llc Variable rate assembly for a brake system for bicycle
US20150266540A1 (en) * 2014-03-24 2015-09-24 Sram, Llc Variable rate assembly for a brake system for bicycle
TWI582005B (en) * 2014-03-24 2017-05-11 速聯有限責任公司 Variable rate assembly for a brake system for bicycle
CN106132792A (en) * 2014-04-28 2016-11-16 日立汽车系统株式会社 Master cylinder for vehicle
US20150321725A1 (en) * 2014-05-09 2015-11-12 Shimano Inc. Hydraulic operating device
CN105083452A (en) * 2014-05-09 2015-11-25 株式会社岛野 Hydraulic operating device
TWI613119B (en) * 2014-05-09 2018-02-01 島野股份有限公司 Hydraulic operating device
US9643682B2 (en) * 2014-05-09 2017-05-09 Shimano Inc. Hydraulic operating device
US10442495B2 (en) * 2014-06-20 2019-10-15 Shimano Inc. Bicycle hydraulic operating system
US20160200392A1 (en) * 2015-01-12 2016-07-14 Sram, Llc Hydraulic Bicycle System
US9827968B2 (en) * 2015-01-12 2017-11-28 Sram, Llc Hydraulic bicycle system
US10407043B2 (en) 2015-01-12 2019-09-10 Sram, Llc Hydraulic bicycle system
TWI687336B (en) * 2015-03-12 2020-03-11 美商速聯有限責任公司 Bicycle control device
US10183723B2 (en) * 2015-03-12 2019-01-22 Sram, Llc Bicycle control device
US20160264213A1 (en) * 2015-03-12 2016-09-15 Sram, Llc Bicycle Control Device
CN107117247A (en) * 2016-02-24 2017-09-01 株式会社岛野 Bicycle hydraulic operation device
US9937978B2 (en) 2016-06-15 2018-04-10 Shimano Inc. Bicycle hydraulic operating device
US10232905B2 (en) 2016-06-15 2019-03-19 Shimano Inc. Bicycle hydraulic operating device
US10668907B2 (en) 2016-06-16 2020-06-02 Shimano Inc. Bicycle hydraulic operating device
US20180274562A1 (en) * 2017-03-27 2018-09-27 Sram, Llc Hydraulic bicycle component control device
TWI687340B (en) * 2017-03-27 2020-03-11 美商速聯有限責任公司 Hydraulic bicycle component control device
US10611433B2 (en) * 2017-03-27 2020-04-07 Sram, Llc Hydraulic bicycle component control device
CN111137381A (en) * 2017-03-27 2020-05-12 什拉姆有限责任公司 Hydraulic bicycle component control device
CN108657326A (en) * 2017-03-27 2018-10-16 什拉姆有限责任公司 hydraulic bicycle component control device
US20190039685A1 (en) * 2017-08-03 2019-02-07 Shimano Inc. Hydraulic operating device

Also Published As

Publication number Publication date
US20070187191A1 (en) 2007-08-16
US20070051575A1 (en) 2007-03-08
US20050061590A1 (en) 2005-03-24
US8464845B2 (en) 2013-06-18
US7530435B2 (en) 2009-05-12
US7617913B2 (en) 2009-11-17
US7575105B2 (en) 2009-08-18
US20080116025A1 (en) 2008-05-22
US20080271446A1 (en) 2008-11-06
US20080257658A1 (en) 2008-10-23
US8074774B2 (en) 2011-12-13
US20090000878A1 (en) 2009-01-01
US7559414B2 (en) 2009-07-14
US20120096851A1 (en) 2012-04-26
US7178646B2 (en) 2007-02-20

Similar Documents

Publication Publication Date Title
TWI574868B (en) Hydraulic brake mechanism
US10513308B2 (en) Brake control apparatus
US7137492B2 (en) Apparatus for controlling hydraulic brakes in bicycles, motorbicycles and the like
EP1007404B1 (en) Bicycle brake system
US5419221A (en) Indexable head ratchet wrench
EP1346909B1 (en) Bicycle brake device with a rotation restrictor for a connecting joint
US5289745A (en) Socket wrench extension with lock
US5509328A (en) Adjustable upright tube of a bicycle handlebar
JP2758267B2 (en) Quick-acting coupler
EP1524945B1 (en) Bone anchoring device with spherical articulation
DE102008018237B4 (en) Master cylinder lever for a hydraulic brake with dead zone adjustment mechanism
US8347979B2 (en) Motor assembly for pneumatic tool
US5964129A (en) Ratchet wrench with a direction control ratchet member
US9731788B2 (en) Bicycle component fixing structure
US8075065B2 (en) Quick-tightening system for cycle with tightening torque control
US20040093969A1 (en) Linear actuator
EP1514791B1 (en) Apparatus for controlling hydraulic brakes in bicycles, motorbicycles and the like
JP3953951B2 (en) Cutting tool assembly
CA2246420C (en) Actuator that adjusts to side loads automatically by pivoting internally
US5943924A (en) Integral multi-sized socket tool
TWI294387B (en) Hydraulic disc brake lever assembly
EP1977966B1 (en) Bicycle hydraulic brake device
EP0024491B1 (en) Pivot joint and window stay including such a pivot joint
US7487708B2 (en) Fluid pressure cylinder
US6971825B2 (en) Milling tool holder with differential screw

Legal Events

Date Code Title Description
AS Assignment

Owner name: AVID, L.L.C., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUMPKIN, WAYNE R.;REEL/FRAME:013569/0921

Effective date: 20021203

AS Assignment

Owner name: SRAM CORPORATION, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVID L.L.C.;REEL/FRAME:014491/0358

Effective date: 20040308

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION