US20030109034A1 - Method for tissue culture in vitro - Google Patents
Method for tissue culture in vitro Download PDFInfo
- Publication number
- US20030109034A1 US20030109034A1 US10/214,587 US21458702A US2003109034A1 US 20030109034 A1 US20030109034 A1 US 20030109034A1 US 21458702 A US21458702 A US 21458702A US 2003109034 A1 US2003109034 A1 US 2003109034A1
- Authority
- US
- United States
- Prior art keywords
- tissue
- porous chamber
- vitro
- porous
- culture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0655—Chondrocytes; Cartilage
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0062—General methods for three-dimensional culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
- C12N2533/40—Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers
Definitions
- the present invention relates to a method for tissue culture in vitro, more particularly, a method that places tissue blocks gathered into the hollow cavity of a porous bioresorbable chamber, and then, by providing nutrients, the tissue blocks are to grow three-dimensionally toward the surrounding pores of the porous scaffold, thus new tissue is to be proliferated.
- tissue engineering the biomedical material and culture technique for tissue cells are already combined to form a new field of research called tissue engineering. It is to be expected in the near future that, through the regeneration technology in the field of tissue engineering, the damaged tissue or organs can be repaired in vitro, or new tissue or organs can be produced in vitro to replace the damaged portions, thus the health of patients is recovered, and lives prolonged.
- tissue engineering technology Based upon the contents in the tissue engineering technology, a small portions of healthy tissue, either from patients or donors, are needed, so that tissue cells can be cultured and proliferated in vitro, and seeded into a bioresorable porous scaffolds; thus, with the three-dimensional framework of said scaffolds, the tissue cells are to adhere thereto and grow thereon. Later on the tissue cells in time grow and form three-dimensional tissue blocks, which then are implanted back to the areas needed repair.
- a block of tissue contains specific cells, and the three-dimensional extracellular matrix (ECM) is to cover the areas between cells.
- ECM extracellular matrix
- the three-dimensional culture of the cartilage tissue with the scaffold being agarose gel can sustain the original cell forms and functions in tissue and the differentiated and transformed cartilage cells cultured two-dimensionally are able to be recovered to the original cartilage cell forms under the three-dimensional culture with the scaffold being agarose gel.
- various materials are developed, e.g., collagen or poly (glycolic co-Lactic) acid (PLGA), as well as various structures, e.g., fiber-mesh or porous artificial scaffolds.
- the most serious drawback for the aforementioned technology is that, when tissue cells are cultured in large quantity in the two-dimensional culture dish, the phenomenon of dedifferentiation, due to the process of culturing the tissue with three-dimensional alignment in a two-dimensional space, is to occur on those proliferated cells, thus the original forms and functions of cells are to be lost.
- the seeding of cells is also a problem difficult to overcome.
- the pore diameters on the porous scaffolds should be larger than the diameters of the cells to provide cells with enough space to be developed into tissue, thus when cells are seeded in the porous scaffold, cells are to overflow out of the chamber for it is difficult to keep cells inside the scaffold.
- first is the static seeding method, with the characteristics described as follows. At first, the density of cells cultured is adjusted higher than 10 6 cells/ml, and then, taking advantage of the water-containing nature of the porous scaffold, seeding cells are to be contained in the scaffold. After cells have all attached to the scaffold, culture medium is added to the culture process.
- Such method can know exactly how many the quantities of cells being seeded into the scaffold are, and high quantity of cells can be seeded into the scaffold. Nevertheless, the distribution of cells is still to be influenced by gravitational force, causing disproportional distribution between the upper layer and the lower layer of cells. Moreover, to prevent cells from overflowing, the volume of the culture medium mixed with cells is to be considerably limited, therefore the adhesion effect and the surviving rate shall both be taken into consideration.
- Another method is the dynamic seeding method of cells, with the characteristics described as follows. The spinner flask is used for spinning the water flow and thus cells are to be attached to the scaffold, a method that can obtain better adhesion rate of cells and better distribution of cells than that of the static seeding method.
- the drawbacks of the dynamic seeding method are as follows.
- the number of cells needed is higher, with the exact number of cells attached to the scaffold being difficult to evaluate; also cells are seeded from the periphery, thus the density of cells in the periphery shall still be higher than that of cells in the interior.
- a layer of hindrance is formed to prevent cells in the interior from exchanging nutrients, thus causing apparent disproportional proliferation between cells in the interior and those in the periphery of the scaffold.
- the main object of the present invention is to provide a novel and effective method to culture tissue in vitro, so as to avoid drawbacks like the phenomenon of dedifferentiation during the two-dimensional tissue culture in vitro, or disproportional growth of tissue cells in both the interior and the periphery of the scaffold.
- the method for tissue culture in vitro comprises steps as follows: providing a porous chamber having hollow cavity; digesting partially the tissue blocks via enzyme; seeding the partially enzyme-digested tissue blocks and the cells obtained after digestion into the hollow cavity of the porous chamber; placing the porous chamber containing the tissue blocks and the cells in the culture medium to conduct the tissue culture process.
- the other object of the present invention is to provide a porous chamber comprising a main body; at least one hollow cavity, which is/are located in the interior of the main body with an aperture; and an upper cover, used for covering the aperture of the hollow cavity.
- the upper cover is made of the same porous material as that of the main body.
- the shape of the porous chamber (the main body) can be altered depending on actual needs, e.g., the shape of a cylinder, a cube or any other kinds of shape.
- the porous chamber is made of absorbable polymer material, including polyglycolic acid (PGA), polylactic acid (PLA), poly (glycolic co-Lactic) acid (PLGA), polyanhydrides, polycapralactone, polydioxanone and polyorthoester, wherein the better material for the porous chamber is PLGA.
- the porous chamber is characterized in that at least one hollow cavity is included in the porous chamber for the purpose of containing the tissue blocks seeded inside.
- the diameters of the tissue blocks seeded are larger than the pore diameters of the scaffold in the periphery of the hollow cavities in the chamber, so as to prevent the tissue blocks from overflowing.
- the method for tissue culture in vitro of the present invention is to partially digest the tissue blocks via enzyme, and then seed the tissue blocks into the hollow cavity of the porous chamber, thus enabling the tissue to grow three-dimensionally inside-out toward the surrounding pores, and proliferating new tissue with the original form of the tissue, a method that cultures tissue needed in vitro by using the smallest quantity of tissue within the shortest period of time.
- FIG. 1 shows the flowchart of the method for tissue culture in vitro of the present invention
- FIG. 2 shows the structural view of the porous chamber having hollow cavity of the present invention
- FIG. 3 shows the growing condition of the tissue in the porous chamber having hollow cavity of the present invention
- FIG. 4 shows a flowchart regarding the method for tissue culture in vitro of experiment group in the embodiment of the present invention
- FIG. 5 shows a flowchart regarding the method for tissue culture in vitro of control group in the embodiment of the present invention
- FIG. 6(A) shows a photograph regarding the growing condition of tissue and cells in the periphery of the stuffed cartilage tissue in the hollow cavity two weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention
- FIG. 6(B) shows a photograph regarding the growing condition of tissue and cells in the porous scaffold in the periphery of the hollow cavity of the chamber two weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention
- FIG. 7(A) shows a photograph (40 times magnification) regarding the growing condition of tissue and cells in the periphery of the stuffed cartilage tissue in the hollow cavity and in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention
- FIG. 7(B) shows a photograph (200 times magnification) regarding the growing condition of tissue and cells in the periphery of the stuffed cartilage tissue in the hollow cavity and in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention
- FIG. 8(A) shows a photograph (40 times magnification) regarding the growing condition of tissue and cells in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the control group in the embodiment of the present invention
- FIG. 8(B) shows a photograph (200 times magnification) regarding the growing condition of tissue and cells in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the control group in the embodiment of the present invention.
- FIG. 9 shows a diagram of the quantified result on the cross-section areas of the cartilage tissue growing into the porous chamber made of PLGA in both the experiment group and the control group of the present invention.
- the main object of the present invention is to provide a method for tissue culture in vitro, mainly comprising steps as follows: providing a porous chamber having hollow cavity; digesting partially the tissue blocks via enzyme; seeding the partially enzyme-digested tissue blocks and the tissue cells obtained after digestion into the hollow cavity of the chamber; placing the porous chamber containing the tissue block and the tissue cells in the culture medium to conduct the tissue culture process.
- the porous chamber 10 of the present invention comprises a main body 1 ; at least one hollow cavity 2 which, containing an aperture 5 , is located in the interior of the main body 1 ; and an upper cover 6 used for covering the aperture 5 of the hollow cavity 2 .
- the method of the present invention is to directly collect tissues, and after cutting tissue into pieces and digesting the surface cells thereof via enzyme, the tissue blocks are to be seeded into the hollow cavity 2 of the porous chamber 10 , with the periphery thereof being made of porous material; after which the cover 6 is used for covering the aperture 5 of the hollow cavity 2 to prevent the tissue blocks from overflowing.
- the sizes of the tissue fragments being cut can be controlled through sieving, thus the sizes of all the fragments are to be larger than the apertures of the scaffold in the periphery of the hollow cavity 2 of the porous chamber 10 .
- the tissue blocks When the tissue blocks are stuffed into the hollow cavity 2 of the porous chamber 10 , the tissue blocks shall be confined inside the interior of the chamber 10 without overflowing, for the apertures of the peripheral scaffold are smaller than the sizes of the tissue blocks. Therefore, as shown in FIG. 3, the interior of the porous chamber 10 (which is the hollow cavity 2 ) shall contain enzyme-digested high-density cell groups and tissue blocks, and during the process of culture, because the cell density in the interior of the porous chamber 10 is very high, the tissue cells are to grow along the peripheral porous scaffold where the cell density is lower, expand and grow along the original tissue blocks structure to proliferate the new tissue 4 ′ three-dimensionally inside-out toward the apertures 3 of the peripheral porous scaffold.
- tissue needed can be cultured in vitro by using the smallest quantity of tissue within the shortest period of time.
- the tissue blocks 4 can be of any kind of animal tissue, e.g., cartilage tissue or bone tissue.
- the diameters of the tissue blocks 4 are to be from 500 to 1000 ⁇ m.
- the shapes of the porous chamber 10 can be altered depending on actual needs, e.g., cylinder, cube or any other kinds of shape.
- the porous chamber 10 is made of absorbable polymer material, including polyglycolic acid (PGA), polylactic acid (PLA), poly (glycolic co-Lactic) acid (PLGA), polyanhydrides, polycapralactone, polydioxanone and polyorthoester, wherein the better material for the porous chamber is PLGA.
- the upper cover 6 is made of the material identical to that of the main body 1 .
- the range of the pore diameters of the porous chamber 10 is from 50 to 500 ⁇ m.
- the dissoluble polymer material chosen in this embodiment is the PLGA polymer prepared through ring opening polymerization (the molecular weight of polymer is approximately 200,000). By grinding the block-shaped PLGA polymer material by the grinder, the polymer particles with diameters ranging from 177 to 250 ⁇ m are to be obtained after sieving through the sieve having 60 to 80 meshes.
- the water-soluble material chosen to add in the scaffold for creating the porous structure is sodium chloride particles with the diameters of approximately 250 ⁇ m; acetone is chosen to be the organic solvent used for dissolving polymer particles.
- the PLGA polymer particles and the sodium chloride particles are to be well-proportionally mixed through way of spinning, following which the PLGA polymer particles and the sodium chloride particles are to be poured into a round-shaped filtering flask having 7 mm diameter with the lower end thereof connected to an exhaust device and then tightly compressed; at this time the organic solvent acetone is to be poured into the mixture of particles and the particles are dipped in acetone.
- the exhaust valve is to be turned on to produce a negative pressure downward to extract superfluous solvent out, and enable the dissolved polymer particles to adhere to one another, after which the deionized water is poured in on top of the filter and at the same time the exhaust valve is turned on to bring a large quantity of water flow through the material, the polymer particles are fixed and solidified, and the sodium chloride particles in the interior are washed out by water.
- the solidified polymer particles are to be taken out from the filter to be placed into a large beaker containing deionized water; while under normal room temperature, water shall be changed every six hours; also the solidified polymer particles are to be immersed and washed by water for a day by way of spinning, thus the remaining solvent and salt particles are to be washed out, following which the solidified polymer particles are to be heated and dried in the 50° C. vacuum oven for a day, then the porous scaffold with 90 vol % porosity rate is to be obtained having the pore diameters from 150 to 350 ⁇ m and pores connected with one another.
- the porous chamber 10 with hollow cavity 2 prepared in the embodiment is in the shape of a cylinder with 7 mm diameter and 9 mm height cut by scalpels, and a hollow cavity with 3 mm diameter and 6 mm height is scooped in the interior of the scaffold, then a cylindrical cork with 3 mm diameter and 3 mm height is cut (the upper cover 6 shown in FIG. 2), so as to seal the hollow cavity 2 when stuffed with tissue blocks inside.
- the porous chamber 10 is to be immersed in the 75% alcohol for 6 hours for sterilization, and then the alcohol is to be replaced by a large quantity of sterile phosphate buffered saline (PBS) solution.
- PBS sterile phosphate buffered saline
- cartilage tissue is obtained from femur 12 of a mouse 11 two to four days after birth using micro-device, with the skins and periosteum on the surface thereof being discarded, and then femur 12 is to be dipped into DMEM without adding fetal calf serum (FCS); afterwards the femur 12 is to be taken out at laminar flow to be placed in a 15 ml centrifuge tube for washing by adding 10 ml of PBS solution, a process that is to be repeated twice.
- FCS fetal calf serum
- the femur 12 is to be poured into a 10 cm culture-dish, and then the joint cartilage is to be cut into pieces with a pair of autoclaved tissue scissors, with the sizes of the tissue blocks 4 being controlled with the range between 400 and 800 ⁇ m by using sieve having 20 to 40 meshes.
- Fragments of the tissue blocks 4 after being cut are to be collected into the 15 ml centrifuge tube, and the PBS solution is poured in for the purpose of washing, a process that is to be repeated three times.
- the fragments of the cartilage tissue blocks 4 are to be rid of the PBS solution, and 5 ml of the collagenase (1 mg/ml PBS solution) is added; afterwards they are to be placed in an incubator with 37° C.
- the identical culture method is used for the control group also, with the cartilage from the identical portion (femur 12 ) being used, and with the identical method of stripping the cartilage and cutting into pieces, after which the pieces are to be placed in the culture-dish 8 , and then dipped in 5 ml of protease (1 mg/ml PBS solution) and hyaluronidase, and the culture-dish 8 is then to be placed in an incubator with 37° C. for 24 hours, so as to digest all the cartilage cells.
- protease (1 mg/ml PBS solution
- hyaluronidase hyaluronidase
- cartilage with volume of 1 ml contains approximately 1.5 ⁇ 10 7 cartilage cells, thus, for the volume of the hollow cavity 2 of the porous chamber 10 being 0.02 ml, the number of cartilage cells needed to add is 3 ⁇ 10 5 in the control group.
- the number of cells is calculated by using cell counting plate, after which cells are to be added into the hollow cavity 2 of the porous chamber 10 (the volume of the added cell solution is 200 ⁇ l); to prevent cells from overflowing, the upper cover 6 is to be used to cover thereon, and then the porous chamber 10 is to be placed in the culture-dish 8 , which is then to be placed in a moisturized incubator with 37° C. for 6 hours to enable cells to adhere thereon.
- the porous chamber 10 containing tissue cells are to be placed in the spinning flask 7 containing cell culture medium, as the final step shown in FIG. 4 and FIG. 5.
- the cell culture medium is of a DMEM culture medium containing 10% wt of FCS; with the nutrients for each chamber being 3 ml per day, the used culture medium is to be regularly replaced with fresh culture medium according to culture time, with the culture environment being an incubator with 37° C. containing 5% of CO 2 .
- the porous chamber 10 is to be taken out from the incubator at different culture time to be washed by using the PBS solution, and then to be dipped in the PBS solution containing 4% of formalin to fix the test specimen, which is then to be cut first by way of paraffin embedding slide, and then dyed by way of hematoxylin-eosin stain, so as to observe the result of the cartilage tissue growth.
- FIG. 6(A) and FIG. 6(B) after two weeks of using the culture method of the experiment group, it is to be observed that there can be found newly proliferated cartilage tissue 9 in pores surrounding the hollow cavity of the porous chamber, which grow inside-out directly from the periphery of the cartilage blocks seeded toward the peripheral pores, as shown in FIG. 6(A); also pores from other portions of the chamber, it is to be observed, are filled with cells proliferating inside-out from the middle, as shown in FIG. 6(B).
- FIG. 7(B) show the result after four weeks of culture, after which plenty of newly proliferated cartilage tissue 9 can be found not only in pores surrounding the hollow cavity, but also in pores from other portions, as shown in FIG. 7(A), and, with higher degree of magnification, plenty of cartilage cell lacunae can be found in the cartilage tissue, as shown in FIG. 7(B), wherein the cartilage cells have already begun to proliferate and grow, thus forming the homologous cells, manifesting that the cartilage formed is of very active proliferated cartilage tissue, and numerous flat chondroblasts, surrounding the periphery of such a cartilage tissue, shall continue to expand the proliferation process.
- FIG. 8(A) and FIG. 8(B) both show the culture result by way of the control group, wherein, after culturing for four weeks, pores of the chamber with hollow cavity made of PLGA are full of cells, as shown in FIG. 8(A); to observe with higher magnification, it is found that the form of the proliferated cells is still the spindle-shaped fiber cartilage cells without forming the cartilage tissue, as shown in FIG. 8(B).
- FIG. 9 shows a diagram of the quantified result on the cross-section areas of the cartilage tissue proliferating in the pores on the periphery of the porous chamber in both the experiment group and the control group by using the micro-tissue image software. It is found, from the result shown in FIG. 9, that approximately 26% of the pore area can be filled by the cartilage tissue cultured with the method of the present invention, a huge difference comparing to the result of the control group, thus manifesting that numerous newly proliferated cartilage tissue can be cultured in vitro within a short period of time according to the culture method of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Rheumatology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The method for tissue culture in vitro of the present invention is to partially digest the tissue blocks via enzyme, and then seed the partially digested tissue blocks into the hollow cavity of the porous chamber, wherein tissue grow three-dimensionally inside-out toward the surrounding pores of the porous chamber, thus new tissue is proliferated directly with the original tissue form, a method that cultures tissue needed in vitro by using the smallest quantity of tissue within the shortest period of time.
Description
- 1. Field of the Invention
- The present invention relates to a method for tissue culture in vitro, more particularly, a method that places tissue blocks gathered into the hollow cavity of a porous bioresorbable chamber, and then, by providing nutrients, the tissue blocks are to grow three-dimensionally toward the surrounding pores of the porous scaffold, thus new tissue is to be proliferated.
- 2. Description of the Prior Arts
- When human tissue is destructed or organs are destructed beyond repair due to accidents, aging or diseases, patients are often forced to experience limb dysfunctions or life-threatening crises, situations that may further lead to tremendous burden and loss for families and societies. Therefore, researchers indefatigably endeavor to seek appropriate tissue or organs for repair and replacement. In recent years with the advancement of biotechnology, the biomedical material and culture technique for tissue cells are already combined to form a new field of research called tissue engineering. It is to be expected in the near future that, through the regeneration technology in the field of tissue engineering, the damaged tissue or organs can be repaired in vitro, or new tissue or organs can be produced in vitro to replace the damaged portions, thus the health of patients is recovered, and lives prolonged. Based upon the contents in the tissue engineering technology, a small portions of healthy tissue, either from patients or donors, are needed, so that tissue cells can be cultured and proliferated in vitro, and seeded into a bioresorable porous scaffolds; thus, with the three-dimensional framework of said scaffolds, the tissue cells are to adhere thereto and grow thereon. Later on the tissue cells in time grow and form three-dimensional tissue blocks, which then are implanted back to the areas needed repair. In accordance with histology, a block of tissue contains specific cells, and the three-dimensional extracellular matrix (ECM) is to cover the areas between cells. The ECM not only sustains the framework of cells, but also presents the specific functions of the tissue. Take the cartilage tissue culture for example, for the three-dimensional culture of the cartilage tissue in vitro, it is proven that the three-dimensional culture of the cartilage tissue with the scaffold being agarose gel can sustain the original cell forms and functions in tissue and the differentiated and transformed cartilage cells cultured two-dimensionally are able to be recovered to the original cartilage cell forms under the three-dimensional culture with the scaffold being agarose gel. For simulating the framework of ECM, various materials are developed, e.g., collagen or poly (glycolic co-Lactic) acid (PLGA), as well as various structures, e.g., fiber-mesh or porous artificial scaffolds. However, the most serious drawback for the aforementioned technology is that, when tissue cells are cultured in large quantity in the two-dimensional culture dish, the phenomenon of dedifferentiation, due to the process of culturing the tissue with three-dimensional alignment in a two-dimensional space, is to occur on those proliferated cells, thus the original forms and functions of cells are to be lost.
- Furthermore, the seeding of cells is also a problem difficult to overcome. The pore diameters on the porous scaffolds should be larger than the diameters of the cells to provide cells with enough space to be developed into tissue, thus when cells are seeded in the porous scaffold, cells are to overflow out of the chamber for it is difficult to keep cells inside the scaffold. In order to solve the problem, there are two methods available: first is the static seeding method, with the characteristics described as follows. At first, the density of cells cultured is adjusted higher than 106 cells/ml, and then, taking advantage of the water-containing nature of the porous scaffold, seeding cells are to be contained in the scaffold. After cells have all attached to the scaffold, culture medium is added to the culture process. Such method can know exactly how many the quantities of cells being seeded into the scaffold are, and high quantity of cells can be seeded into the scaffold. Nevertheless, the distribution of cells is still to be influenced by gravitational force, causing disproportional distribution between the upper layer and the lower layer of cells. Moreover, to prevent cells from overflowing, the volume of the culture medium mixed with cells is to be considerably limited, therefore the adhesion effect and the surviving rate shall both be taken into consideration. Another method is the dynamic seeding method of cells, with the characteristics described as follows. The spinner flask is used for spinning the water flow and thus cells are to be attached to the scaffold, a method that can obtain better adhesion rate of cells and better distribution of cells than that of the static seeding method. However, the drawbacks of the dynamic seeding method are as follows. The number of cells needed is higher, with the exact number of cells attached to the scaffold being difficult to evaluate; also cells are seeded from the periphery, thus the density of cells in the periphery shall still be higher than that of cells in the interior. As a result, because cells in-the periphery are having higher growth rate, a layer of hindrance is formed to prevent cells in the interior from exchanging nutrients, thus causing apparent disproportional proliferation between cells in the interior and those in the periphery of the scaffold.
- For improving the drawbacks of the prior arts, the main object of the present invention is to provide a novel and effective method to culture tissue in vitro, so as to avoid drawbacks like the phenomenon of dedifferentiation during the two-dimensional tissue culture in vitro, or disproportional growth of tissue cells in both the interior and the periphery of the scaffold.
- The method for tissue culture in vitro comprises steps as follows: providing a porous chamber having hollow cavity; digesting partially the tissue blocks via enzyme; seeding the partially enzyme-digested tissue blocks and the cells obtained after digestion into the hollow cavity of the porous chamber; placing the porous chamber containing the tissue blocks and the cells in the culture medium to conduct the tissue culture process. The other object of the present invention is to provide a porous chamber comprising a main body; at least one hollow cavity, which is/are located in the interior of the main body with an aperture; and an upper cover, used for covering the aperture of the hollow cavity. The upper cover is made of the same porous material as that of the main body.
- The shape of the porous chamber (the main body) can be altered depending on actual needs, e.g., the shape of a cylinder, a cube or any other kinds of shape. The porous chamber is made of absorbable polymer material, including polyglycolic acid (PGA), polylactic acid (PLA), poly (glycolic co-Lactic) acid (PLGA), polyanhydrides, polycapralactone, polydioxanone and polyorthoester, wherein the better material for the porous chamber is PLGA. The porous chamber is characterized in that at least one hollow cavity is included in the porous chamber for the purpose of containing the tissue blocks seeded inside. The diameters of the tissue blocks seeded are larger than the pore diameters of the scaffold in the periphery of the hollow cavities in the chamber, so as to prevent the tissue blocks from overflowing. The method for tissue culture in vitro of the present invention is to partially digest the tissue blocks via enzyme, and then seed the tissue blocks into the hollow cavity of the porous chamber, thus enabling the tissue to grow three-dimensionally inside-out toward the surrounding pores, and proliferating new tissue with the original form of the tissue, a method that cultures tissue needed in vitro by using the smallest quantity of tissue within the shortest period of time.
- These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims and accompanying drawings that are provided only for further elaboration without limiting or restricting the present invention, where:
- FIG. 1 shows the flowchart of the method for tissue culture in vitro of the present invention;
- FIG. 2 shows the structural view of the porous chamber having hollow cavity of the present invention;
- FIG. 3 shows the growing condition of the tissue in the porous chamber having hollow cavity of the present invention;
- FIG. 4 shows a flowchart regarding the method for tissue culture in vitro of experiment group in the embodiment of the present invention;
- FIG. 5 shows a flowchart regarding the method for tissue culture in vitro of control group in the embodiment of the present invention;
- FIG. 6(A) shows a photograph regarding the growing condition of tissue and cells in the periphery of the stuffed cartilage tissue in the hollow cavity two weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention;
- FIG. 6(B) shows a photograph regarding the growing condition of tissue and cells in the porous scaffold in the periphery of the hollow cavity of the chamber two weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention;
- FIG. 7(A) shows a photograph (40 times magnification) regarding the growing condition of tissue and cells in the periphery of the stuffed cartilage tissue in the hollow cavity and in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention;
- FIG. 7(B) shows a photograph (200 times magnification) regarding the growing condition of tissue and cells in the periphery of the stuffed cartilage tissue in the hollow cavity and in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the experiment group in the embodiment of the present invention;
- FIG. 8(A) shows a photograph (40 times magnification) regarding the growing condition of tissue and cells in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the control group in the embodiment of the present invention;
- FIG. 8(B) shows a photograph (200 times magnification) regarding the growing condition of tissue and cells in the porous scaffold in the periphery of the hollow cavity of the chamber four weeks after culturing the cartilage tissue of the control group in the embodiment of the present invention; and
- FIG. 9 shows a diagram of the quantified result on the cross-section areas of the cartilage tissue growing into the porous chamber made of PLGA in both the experiment group and the control group of the present invention.
- Please first refer to FIG. 1. The main object of the present invention is to provide a method for tissue culture in vitro, mainly comprising steps as follows: providing a porous chamber having hollow cavity; digesting partially the tissue blocks via enzyme; seeding the partially enzyme-digested tissue blocks and the tissue cells obtained after digestion into the hollow cavity of the chamber; placing the porous chamber containing the tissue block and the tissue cells in the culture medium to conduct the tissue culture process. As shown in FIG. 2, the
porous chamber 10 of the present invention comprises a main body 1; at least onehollow cavity 2 which, containing anaperture 5, is located in the interior of the main body 1; and anupper cover 6 used for covering theaperture 5 of thehollow cavity 2. The method of the present invention is to directly collect tissues, and after cutting tissue into pieces and digesting the surface cells thereof via enzyme, the tissue blocks are to be seeded into thehollow cavity 2 of theporous chamber 10, with the periphery thereof being made of porous material; after which thecover 6 is used for covering theaperture 5 of thehollow cavity 2 to prevent the tissue blocks from overflowing. The sizes of the tissue fragments being cut can be controlled through sieving, thus the sizes of all the fragments are to be larger than the apertures of the scaffold in the periphery of thehollow cavity 2 of theporous chamber 10. When the tissue blocks are stuffed into thehollow cavity 2 of theporous chamber 10, the tissue blocks shall be confined inside the interior of thechamber 10 without overflowing, for the apertures of the peripheral scaffold are smaller than the sizes of the tissue blocks. Therefore, as shown in FIG. 3, the interior of the porous chamber 10 (which is the hollow cavity 2) shall contain enzyme-digested high-density cell groups and tissue blocks, and during the process of culture, because the cell density in the interior of theporous chamber 10 is very high, the tissue cells are to grow along the peripheral porous scaffold where the cell density is lower, expand and grow along the original tissue blocks structure to proliferate thenew tissue 4′ three-dimensionally inside-out toward theapertures 3 of the peripheral porous scaffold. Such a culture method is entirely like the tissue culture in vitro and is used by the way that new tissues are cultured directly from the original tissue forms, thus solving the problem emerged out of the conventional culture method regarding the phenomenon of dedifferentiation by two-dimensional culture; and also, by using the culture method of the present invention, tissue needed can be cultured in vitro by using the smallest quantity of tissue within the shortest period of time. Thetissue blocks 4 can be of any kind of animal tissue, e.g., cartilage tissue or bone tissue. The diameters of thetissue blocks 4 are to be from 500 to 1000 μm. The shapes of theporous chamber 10 can be altered depending on actual needs, e.g., cylinder, cube or any other kinds of shape. Theporous chamber 10 is made of absorbable polymer material, including polyglycolic acid (PGA), polylactic acid (PLA), poly (glycolic co-Lactic) acid (PLGA), polyanhydrides, polycapralactone, polydioxanone and polyorthoester, wherein the better material for the porous chamber is PLGA. Theupper cover 6 is made of the material identical to that of the main body 1. The range of the pore diameters of theporous chamber 10 is from 50 to 500 μm. The culture method of the present invention shall be further elaborated through the embodiments as follows. - Embodiments
- The method for cartilage tissue culture in vitro:
- 1. Preparing the Biologically Absorbable
Porous Chamber 10 HavingHollow Cavity 2 - The dissoluble polymer material chosen in this embodiment is the PLGA polymer prepared through ring opening polymerization (the molecular weight of polymer is approximately 200,000). By grinding the block-shaped PLGA polymer material by the grinder, the polymer particles with diameters ranging from 177 to 250 μm are to be obtained after sieving through the sieve having 60 to 80 meshes. The water-soluble material chosen to add in the scaffold for creating the porous structure is sodium chloride particles with the diameters of approximately 250 μm; acetone is chosen to be the organic solvent used for dissolving polymer particles. The PLGA polymer particles and the sodium chloride particles, based on the weight ratio of 10/90, are to be well-proportionally mixed through way of spinning, following which the PLGA polymer particles and the sodium chloride particles are to be poured into a round-shaped filtering flask having7 mm diameter with the lower end thereof connected to an exhaust device and then tightly compressed; at this time the organic solvent acetone is to be poured into the mixture of particles and the particles are dipped in acetone. And then the exhaust valve is to be turned on to produce a negative pressure downward to extract superfluous solvent out, and enable the dissolved polymer particles to adhere to one another, after which the deionized water is poured in on top of the filter and at the same time the exhaust valve is turned on to bring a large quantity of water flow through the material, the polymer particles are fixed and solidified, and the sodium chloride particles in the interior are washed out by water. Then the solidified polymer particles are to be taken out from the filter to be placed into a large beaker containing deionized water; while under normal room temperature, water shall be changed every six hours; also the solidified polymer particles are to be immersed and washed by water for a day by way of spinning, thus the remaining solvent and salt particles are to be washed out, following which the solidified polymer particles are to be heated and dried in the 50° C. vacuum oven for a day, then the porous scaffold with 90 vol % porosity rate is to be obtained having the pore diameters from 150 to 350 μm and pores connected with one another. The
porous chamber 10 withhollow cavity 2 prepared in the embodiment is in the shape of a cylinder with 7 mm diameter and 9 mm height cut by scalpels, and a hollow cavity with 3 mm diameter and 6 mm height is scooped in the interior of the scaffold, then a cylindrical cork with 3 mm diameter and 3 mm height is cut (theupper cover 6 shown in FIG. 2), so as to seal thehollow cavity 2 when stuffed with tissue blocks inside. After completing the preparation of theporous chamber 10, theporous chamber 10 is to be immersed in the 75% alcohol for 6 hours for sterilization, and then the alcohol is to be replaced by a large quantity of sterile phosphate buffered saline (PBS) solution. - 2. The Processing of the Experiment Group
- First, as shown in FIG. 4, cartilage tissue is obtained from
femur 12 of amouse 11 two to four days after birth using micro-device, with the skins and periosteum on the surface thereof being discarded, and thenfemur 12 is to be dipped into DMEM without adding fetal calf serum (FCS); afterwards thefemur 12 is to be taken out at laminar flow to be placed in a 15 ml centrifuge tube for washing by adding 10 ml of PBS solution, a process that is to be repeated twice. After washing, thefemur 12 is to be poured into a 10 cm culture-dish, and then the joint cartilage is to be cut into pieces with a pair of autoclaved tissue scissors, with the sizes of the tissue blocks 4 being controlled with the range between 400 and 800 μm by using sieve having 20 to 40 meshes. Fragments of the tissue blocks 4 after being cut are to be collected into the 15 ml centrifuge tube, and the PBS solution is poured in for the purpose of washing, a process that is to be repeated three times. After washing, the fragments of the cartilage tissue blocks 4 are to be rid of the PBS solution, and 5 ml of the collagenase (1 mg/ml PBS solution) is added; afterwards they are to be placed in an incubator with 37° C. for two hours, so as to digest the cartilage cells on the surface. After digesting the cartilage, they are to be placed in the centrifuge machine with the rotating speed of 1500 r.p.m. for 5 minutes of centrifuge, so as to isolate the cartilage blocks. Afterwards, cells being washed twice with the PBS and centrifuged twice, so as to get rid of the remaining protease. The washed-cartilage blocks and cells are then to be stuffed into thehollow cavity 2 of theporous chamber 10, with theupper cover 6 covering thereon to prevent the cartilage blocks from overflowing. - 3. The Processing of the Control Group
- First, as shown in FIG. 5, the identical culture method is used for the control group also, with the cartilage from the identical portion (femur12) being used, and with the identical method of stripping the cartilage and cutting into pieces, after which the pieces are to be placed in the culture-
dish 8, and then dipped in 5 ml of protease (1 mg/ml PBS solution) and hyaluronidase, and the culture-dish 8 is then to be placed in an incubator with 37° C. for 24 hours, so as to digest all the cartilage cells. Based on previous research, cartilage with volume of 1 ml contains approximately 1.5×107 cartilage cells, thus, for the volume of thehollow cavity 2 of theporous chamber 10 being 0.02 ml, the number of cartilage cells needed to add is 3×105 in the control group. After centrifuging the cells needed to add, the number of cells is calculated by using cell counting plate, after which cells are to be added into thehollow cavity 2 of the porous chamber 10 (the volume of the added cell solution is 200 μl); to prevent cells from overflowing, theupper cover 6 is to be used to cover thereon, and then theporous chamber 10 is to be placed in the culture-dish 8, which is then to be placed in a moisturized incubator with 37° C. for 6 hours to enable cells to adhere thereon. - 4. The Joint Processing of the Experiment Group and the Control Group
- After the tissue cells of both the experiment group and the control group have been added into the
porous chamber 10, theporous chamber 10 containing tissue cells are to be placed in the spinning flask 7 containing cell culture medium, as the final step shown in FIG. 4 and FIG. 5. The cell culture medium is of a DMEM culture medium containing 10% wt of FCS; with the nutrients for each chamber being 3 ml per day, the used culture medium is to be regularly replaced with fresh culture medium according to culture time, with the culture environment being an incubator with 37° C. containing 5% of CO2. During the process of culture, theporous chamber 10 is to be taken out from the incubator at different culture time to be washed by using the PBS solution, and then to be dipped in the PBS solution containing 4% of formalin to fix the test specimen, which is then to be cut first by way of paraffin embedding slide, and then dyed by way of hematoxylin-eosin stain, so as to observe the result of the cartilage tissue growth. - 5. Result
- As shown in FIG. 6(A) and FIG. 6(B), after two weeks of using the culture method of the experiment group, it is to be observed that there can be found newly proliferated
cartilage tissue 9 in pores surrounding the hollow cavity of the porous chamber, which grow inside-out directly from the periphery of the cartilage blocks seeded toward the peripheral pores, as shown in FIG. 6(A); also pores from other portions of the chamber, it is to be observed, are filled with cells proliferating inside-out from the middle, as shown in FIG. 6(B). FIG. 7(A) and FIG. 7(B) show the result after four weeks of culture, after which plenty of newly proliferatedcartilage tissue 9 can be found not only in pores surrounding the hollow cavity, but also in pores from other portions, as shown in FIG. 7(A), and, with higher degree of magnification, plenty of cartilage cell lacunae can be found in the cartilage tissue, as shown in FIG. 7(B), wherein the cartilage cells have already begun to proliferate and grow, thus forming the homologous cells, manifesting that the cartilage formed is of very active proliferated cartilage tissue, and numerous flat chondroblasts, surrounding the periphery of such a cartilage tissue, shall continue to expand the proliferation process. - FIG. 8(A) and FIG. 8(B) both show the culture result by way of the control group, wherein, after culturing for four weeks, pores of the chamber with hollow cavity made of PLGA are full of cells, as shown in FIG. 8(A); to observe with higher magnification, it is found that the form of the proliferated cells is still the spindle-shaped fiber cartilage cells without forming the cartilage tissue, as shown in FIG. 8(B).
- FIG. 9 shows a diagram of the quantified result on the cross-section areas of the cartilage tissue proliferating in the pores on the periphery of the porous chamber in both the experiment group and the control group by using the micro-tissue image software. It is found, from the result shown in FIG. 9, that approximately 26% of the pore area can be filled by the cartilage tissue cultured with the method of the present invention, a huge difference comparing to the result of the control group, thus manifesting that numerous newly proliferated cartilage tissue can be cultured in vitro within a short period of time according to the culture method of the present invention.
- Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, those skilled in the art can easily understand that all kinds of alterations and changes can be made within the spirit and scope of the appended claims. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiments contained herein.
Claims (17)
1. A method for tissue culture in vitro, comprising steps as follows: providing a porous chamber with hollow cavity; digesting partially the tissue blocks via enzyme;
seeding partially enzyme-digested tissue blocks and the tissue cells obtained after digestion in said hollow cavity of said porous chamber; and
placing said porous chamber containing said tissue blocks and said tissue cells in the culture medium to conduct the culture process.
2. A method for tissue culture in vitro as in claim 1 , wherein said porous chamber is characterized in that said porous chamber contains at least one hollow cavity for the purpose of placing said tissue blocks.
3. A method for tissue culture in vitro as in claim 1 , wherein the diameters of said tissue blocks are larger than the pore diameters of the scaffold in the periphery of said hollow cavity of said porous chamber.
4. A method for tissue culture in vitro as in claim 1 , wherein the diameters of said tissue blocks are from 500 to 1000 μm.
5. A method for tissue culture in vitro as in claim 1 , wherein the shapes of said porous chamber can be cylindrical, cube or any other kinds of shape.
6. A method for tissue culture in vitro as in claim 1 , wherein the range for the pore diameters of said porous chamber is from 50 to 500 μm.
7. A method for tissue culture in vitro as in claim 1 , wherein said porous chamber is made of biologically absorbable polymer material chosen from groups as follows: polyglycolic acid (PGA), polylactic acid (PLA), poly (glycolic co-Lactic) acid (PLGA), polyanhydrides, polycapralactone, polydioxanone and polyorthoester.
8. A method for tissue culture in vitro as in claim 7 , wherein the better material for said porous chamber is poly (glycolic co-Lactic) acid (PLGA).
9. A method for tissue culture in vitro as in claim 1 , wherein said tissue blocks can be of any animal tissue, e.g., cartilage tissue.
10. A method for tissue culture in vitro as in claim 1 , wherein said enzyme can be collagenase, or any other enzymes whereby tissue block cells can be digested.
11. A method for tissue culture in vitro as in claim 1 , wherein said culture medium is the one containing fetal calf serum.
12. A porous chamber, comprising:
a main body;
at least one hollow cavity having an aperture, located in the interior of said main body; and
an upper cover, used for covering said aperture of said hollow cavity.
13. A porous chamber as in claim 12 , wherein the shape of said main body can be cylindrical, cube or any other kinds of shape.
14. A porous chamber as in claim 12 , wherein the range for the pore diameters of said porous chamber is from 50 to 500 μm.
15. A porous chamber as in claim 12 , wherein said porous chamber is made of biologically absorbable polymer material which is chosen from groups as follows: polyglycolic acid (PGA), polylactic acid (PLA), poly (glycolic co-Lactic) acid (PLGA), polyanhydrides, polycapralactone, polydioxanone and polyorthoester.
16. A porous chamber as in claim 15 , wherein the better material for said porous chamber is poly (glycolic co-Lactic) acid (PLGA).
17. A porous chamber as in claim 12 , wherein said upper cover is made of porous material identical to that of said main body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/808,117 US7767445B2 (en) | 2001-12-10 | 2007-06-06 | Porous chamber for tissue culture in vivo |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW090130491A TWI222997B (en) | 2001-12-10 | 2001-12-10 | Method for tissue culture in vitro |
TW90130491 | 2001-12-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/808,117 Continuation US7767445B2 (en) | 2001-12-10 | 2007-06-06 | Porous chamber for tissue culture in vivo |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030109034A1 true US20030109034A1 (en) | 2003-06-12 |
Family
ID=21679893
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/214,587 Abandoned US20030109034A1 (en) | 2001-12-10 | 2002-08-09 | Method for tissue culture in vitro |
US11/808,117 Expired - Lifetime US7767445B2 (en) | 2001-12-10 | 2007-06-06 | Porous chamber for tissue culture in vivo |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/808,117 Expired - Lifetime US7767445B2 (en) | 2001-12-10 | 2007-06-06 | Porous chamber for tissue culture in vivo |
Country Status (2)
Country | Link |
---|---|
US (2) | US20030109034A1 (en) |
TW (1) | TWI222997B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070156238A1 (en) * | 2005-12-29 | 2007-07-05 | Industrial Technology Research Institute | Multi-layered matrix, method of tissue repair using the same, and multi-layered implant prepared thereof |
CN106075580A (en) * | 2016-06-08 | 2016-11-09 | 西安交通大学 | A kind of method of external structure growth plate cartilage |
WO2017040122A1 (en) * | 2015-08-28 | 2017-03-09 | Slmp, Llc | Synthetic tissue controls and synthetic tissue microarray controls |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20052267A1 (en) * | 2005-11-28 | 2007-05-29 | Bticino Spa | VIDEO-DOOR PHONE STATION WITH MULTIMEDIA FUNCTIONS |
TWI393775B (en) * | 2008-07-30 | 2013-04-21 | Univ Nat Taiwan | Cell culture device |
MX2012002440A (en) * | 2009-08-28 | 2012-06-19 | Sernova Corp | Methods and devices for cellular transplantation. |
KR101341572B1 (en) | 2012-07-19 | 2013-12-13 | 서울대학교산학협력단 | 3-dimensional cell culture instrument using hollow tube and 3-dimensional cell culture method using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5686091A (en) * | 1994-03-28 | 1997-11-11 | The Johns Hopkins University School Of Medicine | Biodegradable foams for cell transplantation |
US5795591A (en) * | 1991-10-10 | 1998-08-18 | Alza Corporation | Osmotic drug delivery devices with hydrophobic wall materials |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5863531A (en) * | 1986-04-18 | 1999-01-26 | Advanced Tissue Sciences, Inc. | In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework |
EP2075015B1 (en) * | 1997-07-03 | 2015-03-11 | Massachusetts Institute of Technology | Tissue-engineered constructs |
-
2001
- 2001-12-10 TW TW090130491A patent/TWI222997B/en not_active IP Right Cessation
-
2002
- 2002-08-09 US US10/214,587 patent/US20030109034A1/en not_active Abandoned
-
2007
- 2007-06-06 US US11/808,117 patent/US7767445B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5795591A (en) * | 1991-10-10 | 1998-08-18 | Alza Corporation | Osmotic drug delivery devices with hydrophobic wall materials |
US5686091A (en) * | 1994-03-28 | 1997-11-11 | The Johns Hopkins University School Of Medicine | Biodegradable foams for cell transplantation |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070156238A1 (en) * | 2005-12-29 | 2007-07-05 | Industrial Technology Research Institute | Multi-layered matrix, method of tissue repair using the same, and multi-layered implant prepared thereof |
US20090210057A1 (en) * | 2005-12-29 | 2009-08-20 | Chun-Jan Liao | Multi-layered implant prepared by a method of tissue repair using a multi-layered matrix |
US20090208578A1 (en) * | 2005-12-29 | 2009-08-20 | Chun-Jan Liao | Method of tissue repair using a multi-layered matrix |
US8183041B2 (en) | 2005-12-29 | 2012-05-22 | Industrial Technology Research Institute | Method of tissue repair using a multi-layered matrix |
US8183042B2 (en) | 2005-12-29 | 2012-05-22 | Industrial Technology Research Institute | Multi-layered implant prepared by a method of tissue repair using a multi-layered matrix |
WO2017040122A1 (en) * | 2015-08-28 | 2017-03-09 | Slmp, Llc | Synthetic tissue controls and synthetic tissue microarray controls |
US10329623B2 (en) | 2015-08-28 | 2019-06-25 | Slmp, Llc | Synthetic tissue controls and synthetic tissue microarray controls |
CN106075580A (en) * | 2016-06-08 | 2016-11-09 | 西安交通大学 | A kind of method of external structure growth plate cartilage |
Also Published As
Publication number | Publication date |
---|---|
US7767445B2 (en) | 2010-08-03 |
US20080026455A1 (en) | 2008-01-31 |
TWI222997B (en) | 2004-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7767445B2 (en) | Porous chamber for tissue culture in vivo | |
Raimondi et al. | Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment | |
Yin et al. | Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro | |
US6875442B2 (en) | Process for growing tissue in a biocompatible macroporous polymer scaffold and products therefrom | |
KR100664772B1 (en) | Biodegradable polymer scaffold | |
US6884621B2 (en) | Method and carrier for culturing multi-layer tissue in vitro | |
Shangkai et al. | Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration | |
WO2021125529A1 (en) | Cell culture scaffold and preparation method therefor | |
KR20040017842A (en) | Tissue regenerating base material, implanting material and method of producing the same | |
ES2367655T3 (en) | SEEDING CELLS ON POROUS SUPPORTS. | |
US20130259838A1 (en) | Cultured cartilage tissue material | |
CN101808672B (en) | New stem cell lines, their application and culture methods | |
JP5876934B2 (en) | Tissue regeneration construct and method for producing tissue regeneration construct | |
CN115804758A (en) | Method for preparing porous stem cell microcarrier, porous stem cell microcarrier prepared by method and application | |
CN111849865B (en) | Method for culturing small intestine organoid in 3D porous polylactic acid matrix | |
CN114848895A (en) | 3D printing titanium alloy porous support loaded double-factor shell-core microsphere slow release system | |
CN106039420A (en) | Fibrous protein material for cartilage and subchondral bone integral restoration and preparation method thereof | |
CN100532543C (en) | Culture method of external tissue and its porous carrier | |
CN1201825C (en) | Preparation method of artificial endometrium | |
Kokorev et al. | Development and differentiation of mesenchymal bone marrow cells in porous permeable titanium nickelide implants in vitro and in vivo | |
CN109876187B (en) | Tissue engineering cartilage repairing scaffold using globular protein as pore-forming agent and preparation method thereof | |
CN118320183A (en) | Method for enriching stem cells in scaffold material and application of method | |
CN118064272A (en) | Microfluidic chip and method for three-dimensional co-culture of motor and sensory nerve cells | |
CN118420932A (en) | Porous hydrogel microsphere and preparation method and application thereof | |
CN117561087A (en) | Three-dimensional human body implant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIAO, CHUN-JEN;LIN, YU-JU;CHEN, CHIN-FU;AND OTHERS;REEL/FRAME:013179/0385 Effective date: 20020109 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |