US20030064388A1 - Oligonucleotides for detecting bacteria and detection process - Google Patents

Oligonucleotides for detecting bacteria and detection process Download PDF

Info

Publication number
US20030064388A1
US20030064388A1 US10/138,381 US13838102A US2003064388A1 US 20030064388 A1 US20030064388 A1 US 20030064388A1 US 13838102 A US13838102 A US 13838102A US 2003064388 A1 US2003064388 A1 US 2003064388A1
Authority
US
United States
Prior art keywords
oligonucleotide
seq
gene
complementary
primers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/138,381
Inventor
Tomoko Nakayama
Jun Tada
Shigeru Fukushima
Tetsuo Ohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6030277A external-priority patent/JPH07236500A/en
Priority claimed from JP06048174A external-priority patent/JP3141976B2/en
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to US10/138,381 priority Critical patent/US20030064388A1/en
Publication of US20030064388A1 publication Critical patent/US20030064388A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to detection of pathogenic bacteria in samples (e.g., clinical isolates and food specimens) for the purposes of diagnoses, screenings, quarantine inspections, and clinical tests. Specifically, it relates to detection of pathogens associated with bacterial food poisoning and bacterial diarrhea. More specifically, it relates to detection of enteropathogenic bacteria including Shigella species, Salmonella species, enterohemorrhagic Escherichia coli or Verocytotoxin-producing Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Clostridlum perfringens.
  • enteropathogenic bacteria including Shigella species, Salmonella species, enterohemorrhagic Escherichia coli or Verocytotoxin-producing Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Clostridlum perfringens.
  • EHEC enterohemorrhagic Escherichia coli
  • VTEC Verocytotoxin-producing Escherichia coli
  • EHEC or VTEC has been found to cause hemolytic uremic syndrome in children, as well as food poisoning symptoms, typically hemorrhagic colitis, and stress has recently been placed on detection of this bacterium in clinical tests.
  • specimens are patient stools, food, or water samples (drinking water, river water, etc.) collected from the environment surrounding the patient.
  • EHEC VTEC
  • specimens are patient vomits or stools, food the patient ate, samples wiped out from the environment surrounding the patient, or the like. Before Staphylococcus aureus is detected and identified in these specimens, it is necessary to perform bacterial culture, isolation culture and then pure culture and confirmation culture.
  • Vibrio cholerae specimens are patient stools or food, or water samples (drinking water, river water, sea water, etc.) or benthos samples collected from the environment surrounding the patient. In detecting and identifying Vibrio cholerae in these specimens, it is necessary to perform a series of procedures from primary enrichment culture, secondary enrichment culture, and isolation culture to an agglutination reaction test with anti- V. cholerae 01 serum and confirmation culture.
  • specimens are obtained mainly from patient stools and food.
  • the specimens are subjected to enrichment culture and isolation culture under anaerobic conditions. With several colonies of the bacteria, tests for biochemical properties are conducted.
  • each culture step takes 18-24 hours, totalling 3-4 days; rapid detection is difficult.
  • Other available methods include the reversed passive latex agglutination using a specific antibody to the Shiga toxin, the EIA method using a specific antibody to the 140 MDal plasmid product associated with the pathogenicity of Shigella species and enteroinvasive Escherishia coli [Kenichiro Ito et al., Japanese Journal of Bacteriology 41, 414 (1986)] and the DNA probe method for detecting the ipaB gene, the ipac gene, or the ipaD gene (U.S. patent application Ser. No. 888194).
  • each culture step takes 18-24 hours, totalling as many as 3-4 days.
  • the currently representative serotype of EHEC (VTEC) is 0157:H7, but no diagnostic antiserum has been commercially available for identification of this serotype, so that the diagnostic antiserum has to be prepared by the investigator.
  • each culture step takes 18-24 hours, totalling as many as about 4 days when combined with the time required for the subsequent testings.
  • various properties such as aerobic growth, VP reactivity, nitrate reduction, Tween 80 hydrolyzability, hyaluronidase activity and sugar decomposition, should be examined, but this process is troublesome, tedious and expensive.
  • the most reliable method for identifying the causative bacterium for food poisoning and diarrhea is to test the isolated strain for exotoxin (toxic shock syndrome toxin -1, hereinafter simply referred to as TSST-1) production.
  • TSST-1 toxic shock syndrome toxin -1
  • each culture step takes 18-24 hours, totalling as many as about 4 days.
  • various properties such as oxidase test positivity, indole test positivity, motility, and lysine decarboxylation test positivity should be examined. These tests are troublesome, tedious and expensive, and the results obtained are difficult to assess in some cases.
  • enterotoxin cholera toxin; CT
  • the gist of the present invention relates to:
  • a synthetic oligonucleotide of 10 to 30 bases which is complementary to a nucleotide sequence of a gene selected from the group consisting of the Shiga toxin gene of Shigella species, the ipaH gene of Shigella species and enteroinvasive Escherishia coli (hereinafter simply referred to as EIEC), the invE gene of Shigella species and EIEC, the araC gene of Salmonella species, the Verocytotoxin-1 gene of EHEC or VTEC, the Verocytotoxin-2 gene of EHEC or VTEC, the toxic shock syndrome toxin gene of Staphylococcus aureus , the ctx gene of Vibrio cholerae , and the enterotoxin gene of Clostridium perfringens;
  • a synthetic oligonucleotide comprising a nucleotide sequence complementary to the synthetic oligonucleotide of 1);
  • a method for detecting a bacterial strain selected from the group consisting of Shigella species, EIEC, Salmonella species, EHEC, VTEC, Staphylococcus aureus, Vibrio cholerae and Clostridium perfringens comprising:
  • a kit for detection of a bacterial strain comprising at least a pair of primers selected from the group consisting of oligonucleotides of 1) and 2), a thermostable DNA polymerase, and dNTP solutions.
  • the present invention provides a highly selective and highly sensitive method for rapid detection of Shigella species having the Shiga toxin gene, the ipaH gene and the invE gene, EIEC having the ipah gene and the invE gene, Salmonella species having the araC gene, EHEC having the VT1 gene and the VT2 gene, Staphylococcus aureus having the TSST-1 gene, Vibrio cholerae having the ctx gene, and Clostridium perfringens having the enterotoxin gene.
  • FIG. 1 is the pattern of the electrophoresis of the amplified DNA fragments on an agarose gel to evaluate the sensitivity of the detection method of the present invention for the TSST-1 gene of Staphylococcus aureus , wherein numerals 1 to 9 refer to the number of DNA copies used in the polymerase chain reaction (hereinafter simply referred to as PCR): 1 means 10 7 copies; 2 , 10 6 copies; 3 , 10 5 copies; 4 , 10 4 copies; 5 , 10 3 copies; 6 , 10 2 copies; 7 , 10 copies; 8 , 1 copy; and 9 , no DNA.
  • PCR polymerase chain reaction
  • FIG. 2 is the pattern of the agarose gel electrophoresis of the nucleotide fragments amplified by PCR to evaluate the specificity of the detection method of the present invention for the ctx gene of Vibrio cholerae , wherein M indicates the molecular weight marker and lanes 1-13 indicate the template DNA solutions containing heat extract of the following strains:
  • Lanes 1 to 3 Vibrio cholerae (El Tor—Ogawa type, the ctx gene positive strain)
  • Lanes 4 to 6 Vibrio cholerae (El Tor—Inaba type, the ctx gene positive strain)
  • Lane 7 Vibrio cholerae (Classical—Ogawa type, the ctx gene positive strain)
  • Lane 8 Vibrio cholerae (Classical—Inaba type, the ctx gene positive strain)
  • Lanes 9 to 10 Vibrio cholerae (non-01, the ctx gene positive strain)
  • Lane 11 Vibrio cholerae (El Tor—Ogawa type, the ctx gene negative strain)
  • Lane 12 Vibrio cholerae (El Tor—Inaba type, the ctx gene negative strain)
  • Lane 13 Enterotoxigenic Escherichia coli (Thermolabile enterotoxin gene positive strain).
  • FIG. 3 is the electrophoretic pattern of the agarose gel electrophoresis for the nucleotide fragments amplified by PCR to detect the enterotoxin gene of Clostridium perfringens , the upper part being the results obtained with Oligonucleotide SEQ ID NO: 28+Oligonucleotide SEQ ID NO: 33; the lower part being the results obtained with Oligonucleotide SEQ ID NO: 29+Oligonucleotide SEQ ID NO: 33, wherein M indicates the molecular weight marker and lanes 1-13 indicate the template DNA derived from heat extracts of the following strains: Lane 1, ATCC 12925; Lane 2, ATCC 12924; Lane 3, ATCC 12922; Lane 4, ATCC 12920; Lane 5, ATCC 12916; Lane 6, ATCC 12915; Lane 7, ATCC 12918; Lane 8, ATCC 12919; Lane 9, ATCC 12921; Lane 10, JCM 1296; Lane 11, JCM 1416; Lane 12, JCM 13
  • FIG. 4 shows the results of a Southern blot hybridization test to confirm if the nucleotide sequence of amplified DNA with the primers of the present invention is a part of the enterotoxin gene sequences of Clostridium perfringens, the upper part being the results obtained with Oligonucleotide SEQ ID NO: 28+Oligonucleotide SEQ ID NO: 33; the lower part being the results obtained with Oligonucleotide SEQ ID NO: 29+Oligonucleotide SEQ ID NO: 33, wherein M indicates the molecular weight marker and lanes 1-13 indicate the template DNA solutions derived from heat extracts of the following strains: Lane 1, ATCC 12925; Lane 2, ATCC 12924; Lane 3, ATCC 12922; Lane 4, ATCC 12920; Lane 5, ATCC 12916; Lane 6, ATCC 12915; Lane 7, ATCC 12918; Lane 8, ATCC 12919; Lane 9, ATCC 12921; Lane 10, JCM 1296; Lane 11,
  • An oligonucleotide of the present invention is a synthetic oligonucleotide which complementarily and selectively hybridizes to a gene specific to a pathogenic bacterial strain such as Shigella species, EIEC, Salmonella species, EHEC or VTEC, Staphylococcus aureus, Vibrio cholerae , and Clostridium perfringens.
  • a pathogenic bacterial strain such as Shigella species, EIEC, Salmonella species, EHEC or VTEC, Staphylococcus aureus, Vibrio cholerae , and Clostridium perfringens.
  • the oligonucleotides are used as primers in the PCR to amplify a DNA sequence of a target gene specific to the pathogenic bacteria to be detected.
  • any combination of two oligonucleotides of the present invention may optionally be employed without particular limitation as long as a DNA sequence of 50 to 2000 bases, preferably of 100 to 1000 bases, can be amplified.
  • the preferred combination of oligonucleotides are described in detail in the following preferred embodiments.
  • T may be replaced with U without impairing the advantageous effect of the oligonucleotide.
  • Shigella species Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnel
  • EIEC Shiga toxin gene specific to Shigella species
  • the ipaH gene specific to Shigella species and EIEC, or the invE gene specific to Shigella species and EIEC is selected as the target gene.
  • two oligonucleotides one comprising at least 10 consecutive bases of the following oligonucleotide SEQ ID No. 1 and the other comprising at least 10 consecutive bases of the following oligonucleotide SEQ ID NO: 2, are selected in the present invention:
  • two oligonucleotides one comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 3 and the other comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 4 are selected in the present invention:
  • two oligonucleotides one comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 5 and the other comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 6 are selected in the present invention:
  • the araC gene is targeted.
  • any one of the following oligonucleotide combinations is preferably selected in the present invention:
  • the Verocytotoxin-1 (VT1) gene or the Verocytotoxin-2 (VT2) gene is targeted.
  • two oligonucleotides one comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 12 and the other comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 13, are preferably selected in the present invention:
  • two oligonucleotides are preferably selected in the present invention:
  • any one of the following oligonucleotide combinations is preferably selected in the present invention:
  • the TSST-1 gene is targeted.
  • any one of the following oligonucleotide combination is preferably selected in the present invention:
  • the ctx gene is targeted.
  • any one of the following oligonucleotide combinations is preferably selected in the present invention:
  • the enterotoxin gene is targeted.
  • any one of the following oligonucleotide combinations is preferably selected in the present invention:
  • a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 27 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 32; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 28 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 33; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 29 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 33; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 30 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 34; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 31 and the other comprises at least 10
  • two oligonucleotide primers that flank a specific region of a target gene are synthesized.
  • the Shiga toxin gene of Shigella species, the ipaH and invE genes of Shigella species and EIEC the araC gene of Salmonella species
  • the VT1 and VT2 genes of EHEC or VTEC the TSST-1 gene of Staphylococcus aureus
  • the ctx gene of Vibrio cholerae the enterotoxin gene of Clostridium perfringens
  • one of the oligonucleotide primers selectively hybridizes to the (+)-strand of a target gene DNA, and the other hybridizes to the ( ⁇ )-strand of the DNA. Then, both the oligonucleotides serve as primers of template dependent DNA polymerization respectively.
  • single strand DNAs formed by heat denaturation of double strand DNAs in specimens are used as templates.
  • the duplexes resulting from the DNA polymerization reaction are then denatured to separate the primer extension products from the templates.
  • the primer extension products themselves serve as the templates for the next DNA polymerization reaction.
  • the cycle of denaturation, primer annealing in which a primer hybridizes with a template DNA and a primer extension reaction is repeated until the region of the target gene is amplified enough for its detection.
  • Specimens applicable to the PCR in the present invention may include clinical samples such as stool, urine, blood, tissue homogenate, and food samples.
  • a specimen for PCR should be pre-treated to release the nucleic acid components from the bacterial cells present therein. Since PCR can be carried out with only several to several tens of nucleic acid molecules, a test solution containing an adequate amount of nucleic acid can be prepared simply by treating a specimen with a bacteriolytic enzyme, a surfactant or an alkali for a short time.
  • Oligonucleotides used as primers in the present invention may be either synthetic or natural, and in view of selectivity, detection sensitivity and reproducibility, they are not less than 10 bases in length, preferably not less than 15 bases. It is not necessary to label the primers for detection.
  • the region to be amplified in a target gene i.e., the Shiga toxin gene of Shigella species, the ipah gene and the invE gene of EIEC, the VT1 gene and the VT2 gene of EHEC or VTEC, the arac gene of Salmonella species, the TSST-1 gene of Staphylococcus aureus , and the ctx gene of Vibrio cholerae , and the enterotoxin gene of Clostridium perfringens ) is 50 to 2000 bases in length, preferably 100 to 1000 bases.
  • a target gene i.e., the Shiga toxin gene of Shigella species, the ipah gene and the invE gene of EIEC, the VT1 gene and the VT2 gene of EHEC or VTEC, the arac gene of Salmonella species, the TSST-1 gene of Staphylococcus aureus , and the ctx gene of Vibrio cholera
  • thermostable DNA polymerase In PCR, a thermostable DNA polymerase is used.
  • the origins from which the enzyme is derived are not particularly limited as long as the enzyme maintains its activity at a temperature of from 90 to 95° C.
  • the denaturation is carried out at a temperature of from 90 to 95° C., the primer annealing from 37 to 65° C., and the polymerization reaction from 50 to 75° C.
  • the cycle of denaturation, primer annealing and polymerization is repeated for 20 to 42 cycles.
  • the presence or absence, and the length of the amplified nucleotide fragment can be detected by subjecting the reaction solution to agarose gel electrophoresis after the completion of PCR. Other types of electrophoresis and chromatography can also be used for the detection.
  • One of the oligonucleotide primers may be used as a probe to detect the amplified nucleotide sequence.
  • the detection of a nucleotide sequence of a target gene in a specimen means that the bacterial strain having the gene is present in the specimen.
  • the 42 strains of Shigella dysenteriae listed in Table 1 are obtained from patients or other sources. Each strain is inoculated to LB medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride), and subjected to overnight shaking culture at 37° C. under aerobic conditions. Each culture broth is diluted 10 folds with 10 mM Tris-HCl buffer, pH 7.5 (hereinafter referred to as TE buffer), and heated at 95° C. for 10 minutes, followed by centrifugation; the supernatants are used as specimen solutions.
  • TE buffer 10 mM Tris-HCl buffer, pH 7.5
  • the above-described oligonucleotides SEQ ID NO: 1 and SEQ ID NO: 2 are selected based upon the known base sequence of the Shiga toxin gene [Takao, T. et al., Microb. Pathog., 5:357-369 (1988)], and chemically synthesized by the ⁇ -cyanoethylphosphoamidite method using a Cyclone Plus DNA synthesizer (produced by MilliGen/Bioresearch).
  • the synthesized oligonucleotides are purified by high performance liquid chromatography using a C18 reversed-phase column.
  • the Shiga toxin gene is regarded as identical to the VT1 gene of EHEC or VTEC, with difference only in several bases [Takao, T. et al., Microb. Pathog., 5:357-369 (1988)].
  • 10 ⁇ reaction buffer 500 mM KCl, 100 mM Tris-HCl, pH 8.3, 15 mM MgCl 2 , 0.1% (w/v) gelatin.
  • dNTP solution A mixture of dATP, dCTP, dGTP and dTTP, each having a final concentration of 1.25 mM.
  • Primers (1) and (2) Aqueous solution of the above-described chemically synthesized purified products (concentration, 3.75 OD/ml).
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 1+Oligonucleotide SEQ ID NO: 2
  • Thermostable DNA polymerase Taq DNA polymerase (5 unit/ml; produced by Perkin Elmer Cetus).
  • the agarose gel used has a gel concentration of 3% (w/v) and contains ethidium bromide (0.5 ⁇ l/ml). Electrophoresis is performed at the constant voltage of 100 V for 30 minutes. Operation procedures and other conditions described by Maniatis et al.[Molecular Cloning, 2nd edition (1989)] are used. In addition to the reaction mixture, molecular weight markers are also electrophoresed concurrently. The length of the nucleotide fragment is calculated by comparing the relative mobilities.
  • a commercially available RPLA kit for detection of Escherichia coli Verocytotoxin (produced by DENKA SEIKEN) is purchased. Specimens are prepared and tested according to the instruction manual attached.
  • the base sequence of the Shiga toxin gene of Shigella dysenteriae has already been determined. Therefore, the length of the nucleotide amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 1 and SEQ ID NO: 2 of the present invention are used in combination, a nucleotide sequence of 349 bases (or a nucleotide duplex of 349 base pairs) is amplified.
  • PCR using the primers of the present invention are capable of accurately amplifying the Shiga toxin gene and that Shigella dysenteriae having the Shiga toxin gene can be detected with high accuracy by using the oligonucleotides of the present invention.
  • TABLE 1 No Strains RPLA PCR 01 S. dysenteriae TUMD 1 ⁇ ⁇ 02 S. dysenteriae TUMD 2 ⁇ ⁇ 03 S. dysenteriae TUMD 3 ⁇ ⁇ 04 S. dysenteriae TUMD 4 ⁇ ⁇ 05 S. dysenteriae TUMD 5 ⁇ ⁇ 06 S. dysenteriae TUMD 6 ⁇ ⁇ 07 S. dysenteriae MARABLA ⁇ ⁇ 08 S.
  • Each strain listed in Table 2 is inoculated to an appropriate enrichment medium, and subjected to overnight culture at 37° C. under aerobic or anaerobic conditions ( Clostridium perfringens, Campylobacter jejuni, Campylobacter coli, Bacteroides flagilis, Bacteroides vulgatus, Lactobacillus acidophilus, and Bifidobacterium adolescentis are cultured under anaerobic conditions, while Neisseria gonorrhoeae and Neisseria meningitidis are cultured in the presence of 3-10% CO 2 ).
  • Bacterial cells are centrifugally recovered from 0.5 ml of each culture broth, and once washed with TE buffer.
  • an N-acetylmuraminidase solution in 50 mM phosphate buffer, pH 7.5, and an achromopeptidase solution in the same buffer are added to final concentrations of 50 ⁇ g/ml and 1 mg/ml, respectively, followed by incubation at 37° C. for 10 minutes to lyse the cells.
  • a 1:1 phenol/chloroform mixture, saturated with TE buffer is added to the lysate, followed by vigorous stirring. After centrifugation, the supernatant is recovered, and treated with ethanol to precipitate the nucleic acids. The resulting precipitate is dissolved in 1 ml of TE buffer; this solution is used as a specimen.
  • Human placenta DNA at a concentration of 1 ⁇ g/ml, is subjected to PCR in the same manner as above.
  • Table 2 shows the results of the test using the combination of the primers of the present invention. This combination of primers does not amplify DNAs other than those of Shiga toxin-producing Shigella dysenteriae and Verocytotoxin-1-producing Escherishia coli. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with DNAs of the bacteria having the Shiga toxin gene.
  • the agarose gel electrophoresis used in the above examples of the present invention can differentiate nucleotide fragments from one another which are different in length by 5-10 bases (base pairs) for nucleotide fragments of not more than 100 bases (base pairs), and by 10-20 bases (base pairs) for nucleotide fragments of 100-500 bases (base pairs).
  • the use of other gel material such as acrylamide makes it possible to improve the precision in measuring the length of nucleotide fragment.
  • the reliability of the selective detection of the target gene in the present invention can further be increased.
  • oligonucleotides SEQ ID NO: 3 and SEQ ID NO: 4 are selected based upon the known base sequence of the ipaH gene [Hartman, A. B., et al., J. Bacteriol., 172, 1905-1915(1990); Venkatesan, M. M., et al., Mol. Microbiol., 5, 2435-2446 (1991)]. These oligonucleotides are chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 3+Oligonucleotide SEQ ID NO: 4
  • a colony hybridization test is carried out using an oligonucleotide probe specific to the ipaH gene according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)].
  • the base sequence of the ipaH gene of Shigella species and EIEC has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 3 and SEQ ID NO: 4 of the present invention are used in combination, a nucleotide fragment of 242 bases (or a nucleotide duplex of 242 base pairs) should be amplified.
  • flexneri TUMD 10 + + 046 S. flexneri TUMD 11 + + 047 S. flexneri TUMD 12 + + 048 S. flexneri TUMD 13 + + 049 S. flexneri TUMD 14 + + 050 S. flexneri TUMD 15 + + +
  • Table 4 shows the results of the test using the combination of primers of the present invention. This combination of primers does not amplify any DNAs other than those of Shigella species and EIEC. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with DNAs of the bacteria having the ipaH gene.
  • oligonucleotides SEQ ID NO: 5 and SEQ ID NO: 6 are selected based upon the known base sequence of the invE gene [Watanabe, H., et al., J. Bacteriol., 172, 619-629(1990)]. These oligonucleotides are chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 5+Oligonucleotide SEQ ID NO: 6
  • a colony hybridization test is carried out using an oligonucleotide probe specific to invE gene according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)].
  • the base sequence of the invE gene of Shigella species and EIEC has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, the oligonucleotides SEQ ID NO: 5 and SEQ ID NO: 6 of the present invention are used in combination, a nucleotide fragment of 293 bases (or a nucleotide duplex of 293 base pairs) should be amplified.
  • flexneri TUMD 8 ⁇ ⁇ 044 S. flexneri TUMD 9 + + 045 S. flexneri TUMD10 ⁇ ⁇ 046 S. flexneri TUMD11 ⁇ ⁇ 047 S. flexneri TUMD12 + + 048 S. flexneri TUMD13 + + 049 S. flexneri TUMD14 ⁇ ⁇ 050 S. flexneri TUMD15 + + +
  • flexneri TUMD26 ⁇ ⁇ 062 S. flexneri TUMD27 ⁇ ⁇ 063 S. flexneri TUMD28 ⁇ ⁇ 064 S. flexneri TUMD29 ⁇ ⁇ 065 S. flexneri TUMD30 + + 066 S. flexneri TUMD31 ⁇ ⁇ 067 S. flexneri TUMD32 ⁇ ⁇ 068 S. flexneri TUMD33 ⁇ ⁇ 069 S. flexneri TUMD34 ⁇ ⁇ 070 S. flexneri TUMD35 + + 071 S. flexneri TUMD36 + + 072 S. flexneri TUMD38 ⁇ ⁇ 073 S.
  • flexneri TUMD39 + + 074 S. flexneri TUMD40 ⁇ ⁇ 075 S. flexneri TUMD41 + + 076 S. flexneri TUMD42 + + 077 S. flexneri TUMD43 + + 078 S. flexneri TUMD44 + + 079 S. flexneri TUMD45 + + 080 S. flexneri TUMD46 ⁇ ⁇ 081 S. flexneri TUMD47 + + 082 S. flexneri TUMD48 ⁇ ⁇ 083 S. flexneri TUMD49 + + 084 S. flexneri TUMD50 ⁇ ⁇ 085 S. flexneri TUMD51 ⁇ ⁇ 086 S.
  • flexneri AQ-7400 ⁇ ⁇ 135 S. flexneri AQ-7402 ⁇ ⁇ 136 S. flexneri AQ-7407 ⁇ ⁇ 137 S. flexneri AQ-7408 ⁇ ⁇ 138 S. flexneri AQ-7411 + + 139 S. flexneri AQ-7416 + + 140 S. flexneri AQ-7417 + + 141 S. flexneri AQ-7418 + + 142 S. flexneri AQ-7423 + + 143 S. flexneri AQ-7424 ⁇ ⁇ 144 S. flexneri AQ-7426 + + 145 S. flexneri AQ-7427 + + + 146 S.
  • sonnei TUMD76 ⁇ ⁇ 262 S. sonnei TUMD77 ⁇ ⁇ 263 S. sonnei TUMD78 + + 264 S. sonnei TUMD79 ⁇ ⁇ 265 S. sonnei TUMD80 ⁇ ⁇ 266 S. sonnei TUMD81 + + 267 S. sonnei TUMD82 ⁇ ⁇ 268 S. sonnei TUMD83 ⁇ ⁇ 269 S. sonnei TUMD84 ⁇ ⁇ 270 S. sonnei TUMD85 ⁇ ⁇ 271 S. sonnei TUMD86 ⁇ ⁇ 272 S. sonnei TUMD87 ⁇ ⁇ 273 S.
  • sonnei TUMD88 ⁇ ⁇ 274 S. sonnei TUMD89 ⁇ ⁇ 275 S. sonnei TUMD90 + + 276 S. sonnei TUMD91 ⁇ ⁇ 277 S. sonnei TUMD92 + + 278 S. sonnei TUMD93 + + 279 S. sonnei TUMD94 + + 280 S. sonnei TUMD95 ⁇ ⁇ 281 S. sonnei TUMD96 ⁇ ⁇ 282 S. sonnei TUMD97 ⁇ ⁇ 283 S. sonnei TUMD98 ⁇ ⁇ 284 S. sonnei TUMD99 ⁇ ⁇ 285 S.
  • sonnei TUMD100 ⁇ ⁇ 286 S. sonnei TUMD101 ⁇ ⁇ 287 S. sonnei TUMD102 + + 288 S. sonnei TUMD103 + + 289 S. sonnei TUMD104 + + 290 S. sonnei TUMD105 + + 291 S. sonnei TUMD106 ⁇ ⁇ 292 S. sonnei TUMD107 + + 293 S. sonnei TUMD108 ⁇ ⁇ 294 S. sonnei TUMD109 + + 295 S. sonnei TUMD110 ⁇ ⁇ 296 S. sonnei TUMD111 + + 297 S. sonnei TUMD112 ⁇ ⁇ 298 S. sonnei TUMD113 + + 299 S. sonnei TUMD114 + + 200 S. sonnei TUMD115 ⁇ ⁇ ⁇ 286 S. sonnei TUMD101 ⁇ ⁇ 287
  • Table 6 shows the results of the test using the combination of primers of the present invention. This combination of primers does not amplify any DNAs of pathogenic bacteria other than Shigella species and EIEC. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with DNAs of the bacteria having the invE gene.
  • Each strain is inoculated to an appropriate medium, and subjected to overnight culture at 37° C. under aerobic conditions.
  • Each culture broth is diluted with TE buffer, and heated at 95° C. for 10 minutes, followed by centrifugation. The supernatants are used as specimens.
  • the above-described oligonucleotides SEQ ID NO: 7 to SEQ ID NO: 1l are selected based upon the known base sequence of the arac gene [Horwitz, A. H., et al., Gene 14, 309-319(1981); Clarke, P., et al., Gene 18, 157-163(1982); Lee, J. -H., et al., Gene 46, 113-121 (1986)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 7+Oligonucleotide SEQ ID NO: 8;
  • the base sequence of the araC gene of Salmonella typhimurium has already been determined. This base sequence is thought to be common to all Salmonella species.
  • the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when oligonucleotides SEQ ID NO: 7 and SEQ ID NO: 8 of the present invention are used in combination, a nucleotide fragment of 361 bases (or a nucleotide duplex of 361 base pairs) is amplified.
  • the combination of SEQ ID NO: 9 and SEQ ID NO: 10, and that of SEQ ID NO: 11 and SEQ ID NO: 8 amplify nucleotide fragment of 493 bases and that of 334 bases, respectively.
  • Tables 7-1 to 7-6 shows the results of the detection of the arac gene in Salmonella species. As obvious from Tables 7-1 to 7-6, the arac gene of Salmonella species are detected with high accuracy by using the oligonucleotide primers of the present invention.
  • Clostridium perfringens, Campylobacter jejuni, Campylobacter coli, Bacteroides fragilis, Bacteroides vulgatus, Lactobacillus acidophilus and Bifidobacterium adolescentis are cultured at 37° C. under anaeorbic conditions, while Neisseria gonorrhoeae and Neisseria meningitidis are cultured in the presence of 3-10% CO 2 .
  • Tables 8-1 to 8-3 shows the results of the test using the combinations of the primers of the present invention. These combinations of primers do not amplify any DNAs of bacterial strains other than Salmonella species or DNAs of human placenta. It is of particular importance that the combinations of the primers of the present invention do not amplify any DNAs of Citrobacter species which are closely akin to and hardly differentiated from Salmonella species. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of Salmonella species, with high reliability.
  • VTEC Detection of EHEC (VTEC) having the VT1 Gene
  • Example 2 The same procedure as used in Example 1 is followed except that 320 strains of EHEC (VTEC) strains.
  • VTEC EHEC
  • oligonucleotides SEQ ID NO: 12 and SEQ ID NO: 13 are selected based upon the known base sequence of the VT1 gene [Takao T., et al., Microb. Pathog., 5, 357-369(1988)]. These oligonucleotides are chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 12+Oligonucleotide SEQ ID NO: 13
  • a colony hybridization test is carried out using an oligonucleotide probe specific to the VT1 gene and that specific to the VT2 gene according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)].
  • the base sequence of the VT1 gene of EHEC(VTEC) has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 12 and SEQ ID NO: 13 of the present invention are used in combination, a nucleotide fragment of 349 bases (or a nucleotide duplex of 349 base pairs) should be amplified.
  • strains listed in Table 10 are treated in the same manner as in Experiment 2 of Example 1.
  • the following strains are cultured under anaerobic conditions: Clostridium perfringens, Campylobacter jejuni, Bacteroides fragills, Bacteroides vulgatus and Lactobacillus acidophilus.
  • Table 10 shows the results from the test using the combinations of primers of the present invention. Although the combinations of primers do not amplify DNAs of any other strains than EHEC(VTEC) except for a certain type of Shigella species ( Shigella dysenteriae type I).
  • VTEC Detection of EHEC (VTEC) having the VT2 Gene
  • oligonucleotides SEQ ID NO: 14 and SEQ ID NO: 15 are selected based upon the known base sequence of the VT2 gene [Jackson, M. P., et al., FEMS Microbio. Lett., 44, 109-114(1987)]. These oligonucleotides are chemically synthesized by the same method as in Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 14+Oligonucleotide SEQ ID NO: 15
  • the base sequence of the VT2 gene of EHEC(VTEC) has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when oligonucleotides SEQ ID NO: 14 and SEQ ID NO: 15 of the present invention are used in combination, a nucleotide fragment of 404 bases (or a nucleotide duplex of 404 base pairs) should be amplified.
  • Table 10 shows the results of the test using the combinations of primers of the present invention. All the combinations of primers in Table 10 do not amplify the DNAs of pathogenic bacteria other than EHEC (VTEC). It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of the bacteria having the VT2 gene.
  • VTEC EHEC
  • VT2vha, VT2vhb or VT2vp1 As primers for amplifying the VT1 gene, the VT2 gene or a variant gene of VT2 (VT2vha, VT2vhb or VT2vp1), the above-described oligonucleotides SEQ ID NO: 16, SEQ ID NO: 17 and SEQ ID NO: 18 are selected. These oligonucleotides are chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 16+Oligonucleotide SEQ ID NO: 18;
  • the base sequences of the VT1 gene, the VT2 gene, the VT2vha gene, the VT2vhb gene and the VT2vp1 gene of EHEC(VTEC) have already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 16 and SEQ ID NO: 18 of the present invention are used in combination, a nucleotide fragment of 495 bases (or a nucleotide duplex of 495 base pairs) should be amplified.
  • PCR using the combination of primers accurately amplifies the target region in the VT1 gene, the VT2 gene, the VT2vha gene, the VT2vhb gene or the VT2vp1 gene, and that some bacterial strains in the specimen have any one of these genes.
  • the results obtained from the agarose gel electrophoresis and from the colony hybridization test with 320 test strains are given in Table 12.
  • PCR using the primers of the present invention amplifies only DNA of the strains which give the positive result for the VT1 gene or the VT2 gene, showing no amplification of the DNA of the strains negative for these genes.
  • PCR using the primers of the present invention is capable of accurately amplifying the VT1 gene or the VT2 gene (including its variant genes) and that EHEC(VTEC) having the VT1 gene or the VT2 gene or the both can be detected with high accuracy by using the oligonucleotides of the present invention.
  • EHEC(VTEC) having the VT1 gene or the VT2 gene or the both can be detected with high accuracy by using the oligonucleotides of the present invention.
  • Table 10 shows the results from the test using the combinations of the primers of the present invention. PCR using the combinations of the primers does not amplify DNAs of any other strains than EHEC (VTEC) except for the DNA of a certain type of Shigella species ( Shigella dysenteriae type I).
  • a total of 343 strains of Staphylococcus aureus are used. These strains are derived from food poisoning cases and the environment, and isolated from sources such as diarrheal stool, vomit and food. Each strain is inoculated to a brain heart infusion medium (manufactured by BBL Co., Ltd.), and subjected to overnight shaking culture at 37° C. under aerobic conditions. Each culture broth is diluted 10 folds with TE buffer, and heated at 95° C. for 5 minutes, followed by centrifugation at 5000 rpm for 1 minute; the supernatants are used as specimens.
  • the above-described oligonucleotides SEQ ID NO: 19 to SEQ ID NO: 22 are selected based upon the known base sequences of the TSST-1 gene of Staphylococcus aureus [Blomster-Hautamaa et al., J. Biol. chem., 26, 15783-15786 (1986)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • 10 ⁇ reaction buffer 500 mM KCl, 100 mM Tris-HCl, pH 8.3, 15 mM MgCl 2 , 0.1% (w/v) gelatin.
  • dNTP solution A mixture of dATP, dCTP, dGTP and dTTP, each having a final concentration of 1.25 mM.
  • Primers Aqueous solution of the above-described chemically synthesized purified oligonucleotides (concentration, 3.75 OD/ml) is prepared. Any one of the following oligonucleotide combinations is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 20+oligonucleotide SEQ ID NO: 21
  • Thermostable DNA polymerase Taq DNA polymerase (5 unit/ml; produced by Perkin Elmer Cetus).
  • TST-RPLA “SEIKEN” produced by DENKA SEIKEN A commercially available RPLA kit for detection of TSST-1 of Staphylococcus aureus (TST-RPLA “SEIKEN” produced by DENKA SEIKEN) is purchased. Specimens are prepared and tested according to the instruction manual attached except that the preparation of specimens is partially modified in order for the test strains to produce sufficient amount of its enterotoxin. That is, the brain heart infusion is changed to the one produced by BBL Co., Ltd.
  • Table 13 shows the comparison of the results of the PCR method of the present invention with the results of the TST-RPLA which are conventionally used.
  • the data indicates that the detection method of the present invention can detect the TSST-1 gene of Staphylococcus aureus with a sensitivity comparable to or higher than the conventional TST-RPLA method.
  • the data in Table 13 show that 17 of the 18 PCR positive strains are also positive by RPLA, and that 325 strains are negative by both PCR and RPLA. That is, except one strain which is positive by PCR and negative by RPLA, the same results are obtained by PCR and by RPLA.
  • FIG. 1 shows the results of the sensitivity test for the PCR primers of the present invention by electrophoresis.
  • numerals 1 to 9 indicate the number of DNA copies used in the PCR reaction: 1 indicates 10 7 copies; 2 , 10 6 copies; 3 , 10 5 copies; 4 , 10 4 copies; 5 , 10 3 copies; 6 , 10 2 copies; 7 , 10 copies; 8 , 1 copy; and 9 , absence of DNA. From this figure, it is obvious that only 10 copies of DNA can be detected by the method of the present invention.
  • Table 14 shows the results of the test using the primers of the present invention. PCR using the primers does not amplify any DNAs of other strains including those causative for food poisoning. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNA of Staphylococcus aureus having the TSST-1 gene. The similar results are obtained with the other combinations of the primers of the present invention which are not listed in Table 14.
  • Example 2 The same procedure as used in Example 1 is followed except that 622 strains of Vibrio cholerae are used. These strains are isolated from patients with cholera, marine products (shrimp, snapping turtle), water collected from river, harbor, etc. Serotype, biotype, the numbers of the strains are listed in Table 15. TABLE 15 Type and sources of Vibrio cholerae Sources Enviroment Serotype Biotype Patients Food water Total O1 Ogawa E1 Tor 148 125 71 344 Inaba 16 27 26 69 Ogawa Asia 15 0 0 15 Inaba (classical) 26 0 0 0 26 non O1 — 168 0 0 168 Total 373 152 97 622
  • the above-described oligonucleotides SEQ ID NO: 23 to SEQ ID NO: 26 are selected based upon the known base sequences of the ctx gene of Vibrio cholerae [Lockman, H. and J. B. Kaper: J. Biol. Chem., 258, 13722-13726 (1983)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 23+Oligonucleotide SEQ ID NO: 25;
  • agarose gel electrophoresis is carried out by the same procedure as in Example 1.
  • a colony hybridization test is carried out using an polynucleotide probe specific to the ctx gene [Kaper, J. B., J. G. Morris, Jr., and N. Nishibuchi (1988), DNA probes for pathogenic Vibrio species, 65-77. In F. C. Tenover (ed.), DNA probes for infectious diseases. CRC Press, Inc., Boca Raton, Fla.] according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)].
  • the base sequences of the ctx gene of Vibrio cholerae have already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 23 and SEQ ID NO: 25 of the present invention are used in combination, a nucleotide fragment of 169 bases (or a nucleotide duplex of 169 base pairs) should be amplified. The combination of SEQ ID NO: 24 and SEQ ID NO: 26 should amplify a nucleotide fragment of 307 bases (or a nucleotide duplex of 307 base pairs).
  • PCR using the combination of primers accurately amplifies the target region in the ctx gene, and that the bacterial strain in the specimen has the ctx gene.
  • the results obtained from the agarose gel electrophoresis and from the colony hybridization test with 662 test strains are given in Table 16.
  • PCR using the primers of the present invention amplifies only DNAs of the strains which give a result positive for the ctx gene in the colony hybridization test, showing no amplification of the DNA of the ctx gene negative strains.
  • PCR using the primers of the present invention is capable of accurately amplifying the ctx gene and that Vibrio cholerae having the ctx gene can be detected with high accuracy by using the oligonucleotides of the present invention.
  • Table 16 shows the result obtained with oligonucleotides SEQ ID NO: 24 and SEQ ID NO: 26. The combination of SEQ ID NO: 23 and SEQ ID NO: 25 also gives a similar result. TABLE 16 Accuracy of primer combination of SEQ ID NO: 24 and SEQ ID NO: 26. Results of colony hybridization test ctx gene positive ctx gene negative Results positive 412 0 of PCR negative 0 210
  • FIG. 2 shows that PCR using the combinations of the primers of the present invention can accurately detect the ctx gene irrespective of the source, serological type and biological type of the strains.
  • Heat extracts of the following strains are used as the template DNA solutions:
  • Lanes 1 to 3 Vibrio cholerae (El Tor—Ogawa type, the ctx gene positive strain)
  • Lanes 4 to 6 Vibrio cholerae (El Tor—Inaba type, the ctx gene positive strain)
  • Lane 7 Vibrio cholerae (Classical—Ogawa type, the ctx gene positive strain)
  • Lane 8 Vibrio cholerae (Classical—Inaba type, the ctx gene positive strain)
  • Lanes 9 to 10 Vibrio cholerae (non-01, the ctx gene positive strain)
  • Lane 11 Vibrio cholerae (El Tor—Ogawa type, the ctx gene negative strain)
  • Lane 12 Vibrio cholerae (El Tor—Inaba type, the ctx gene negative strain)
  • Lane 13 Enterotoxigenic Escherichia Coli (Thermolabile enterotoxin gene positive strain)
  • Table 17 shows the results of the test using a combination of primers of the present invention. PCR using the primers does not amplify DNAs of any other pathogenic strains tested. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of Vibrio cholerae having the ctx gene. Similar results are obtained also for the other combination of primers of the present invention which is not listed in Table 17. TABLE 17 Reactivity with DNA of bacteria other than Vibrio cholerae No S t r a i n s +/ ⁇ * 1 Bacillus cereus ATCC 14579 ⁇ 2 B.
  • the strains of Clostridium perfringens used are 11 strains isolated from patients, and provided by institutes where each strain is stored. Each strain is inoculated to GAM broth (manufactured by Nissui Pharmaceutical Co., Ltd.) and subjected to overnight shaking culture at 37° C. under anaerobic conditions. Each culture broth is diluted 10 folds with 10 mM Tris-HCl buffer, pH 7.5, and heated at 95° C. for 10 minutes, followed by centrifugation to use the supernatant as a specimen.
  • the above-described oligonucleotides SEQ ID NO: 27 to SEQ ID NO: 35 are selected based upon the known base sequences of the enterotoxin gene of Clostridium perfringens [Maruke van Damme-Jongsten, Antonie van Leeuwenhoek, 56, 181-190(1989)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used:
  • Primer (1)+primer (2) Oligonucleotide SEQ ID NO: 27+Oligonucleotide SEQ ID NO: 32;
  • agarose gel electrophoresis is carried out by the same procedure as in Example 1.
  • FIG. 3 shows a part of the electrophoretic results.
  • the upper part of the figure shows the results with Oligonucleotide SEQ ID NO: 28+Oligonucleotide SEQ ID NO: 33; and the lower part, the results with Oligonucleotide SEQ ID NO: 29+Oligonucleotide SEQ ID NO: 33.
  • M indicates the molecular weight marker
  • lanes 1 to 13 respectively indicate ATCC 12925(lane 1), ATCC 12924(lane 2), ATCC 12922(lane 3), ATCC 12920(lane 4), ATCC 12916(lane 5), ATCC 12915(lane 6), ATCC 12918(lane 7), ATCC 12919(lane 8), ATCC 12921(lane 9), JCM 1296(lane 10), JCM 1416(lane 11), JCM 1382(lane 12), and TE (negative control, lane 13).
  • a southern blot hybridization test is carried out using an oligonucleotide probe specific to the enterotoxin gene of Clostridium perfringens according to the method described by Tada et al. [Tada, J. et al. Mol. Cell. Probe., 6, 477 (1992)].
  • a commercially available RPLA kit for detection of Clostridium perfringens enterotoxin (PET-RPLA “SEIKEN” produced by DENKA SEIKEN) is purchased. Specimens are prepared and tested according to the instruction manual attached.
  • the base sequences of the enterotoxin gene of Clostridium perfringens have already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 27 and SEQ ID NO: 32 of the present invention are used in combination, a nucleotide fragment of 473 bases (or a nucleotide duplex of 473 base pairs) should be amplified.
  • FIG. 4 corresponds to FIG. 3.
  • M indicates the molecular weight marker
  • lanes 1 to 13 respectively indicate ATCC 12925(lane 1), ATCC 12924(lane 2), ATCC 12922(lane 3), ATCC 12920(lane 4), ATCC 12916(lane 5), ATCC 12915(lane 6), ATCC 12918(lane 7), ATCC 12919(lane 8), ATCC 12921(lane 9), JCM 1296(lane 10), JCM 1416(lane 11), JCM 1382(lane 12), and TE (negative control, lane 13).
  • Tables 19 and 20 show the results of the test using some of the combinations of primers of the present invention. All the combinations of the primers listed in the tables do not show any amplification of DNAs of other strains including pathogenic strains in PCR. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the enterotoxin gene of Clostridium perfringens. TABLE 19 Combination of primers and length of amplified DNA (No. of b.
  • the agarose gel electrophoresis used in the above examples of the present invention can differentiate nucleotide fragments from one another which are different in length by 5-10 bases (base pairs) for nucleotide fragments of not more than 100 bases (base pairs), and by 10-20 bases (base pairs) for nucleotide fragments of 100-500 bases (base pairs).
  • the use of other gel material such as acrylamide makes it possible to improve the precision in measuring the length of nucleotide fragment.
  • the reliability of the selective detection of the target gene in the present invention can further be increased.

Abstract

A synthetic oligonucleotide which is complementary to a nucleotide sequence of a gene selected from the group consisting of the Shiga toxin gene of Shigella species, the ipaH gene of Shigella species and EIEC, the invE gene of Shigella species and EIEC, the araC gene of Salmonella species, the Verocytotoxin-1 gene of EHEC or VTEC, the Verocytotoxin-2 gene of EHEC or VTEC, the toxic shock syndrome toxin-1 gene of Staphylococcus aureus, the ctx gene of Vibrio cholerae, and the enterotoxin gene of Clostridium perfringens; a method for detecting a bacterial strain by amplifying a region of the above gene by PCR using the above oligonucleotides as primers and detecting the amplified region; and a kit for the detection of the bacterial strain.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to detection of pathogenic bacteria in samples (e.g., clinical isolates and food specimens) for the purposes of diagnoses, screenings, quarantine inspections, and clinical tests. Specifically, it relates to detection of pathogens associated with bacterial food poisoning and bacterial diarrhea. More specifically, it relates to detection of enteropathogenic bacteria including Shigella species, Salmonella species, enterohemorrhagic [0002] Escherichia coli or Verocytotoxin-producing Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Clostridlum perfringens.
  • 2. Discussion of the Related Art [0003]
  • Detection of pathogenic bacteria such as Shigella species, Salmonella species, enterohemorrhagic [0004] Escherichia coli (hereinafter simply referred to as EHEC) or Verocytotoxin-producing Escherichia coli (hereinafter simply referred to as VTEC), Staphylococcus aureus, Vibrio cholerae, and Clostridium perfringens is an important task in the field of medicine and public hygiene, and various methods have been used.
  • Conventionally, detection of a pathogenic bacterial strain involves isolation of several pathogenic bacterial colonies and identification of the species of the bacteria by serological or biochemical method. [0005]
  • In the case of Shigella species, this has been achieved by culturing and isolating the target bacterium from specimens of patient stools, food, or the like, using a medium, such as DHL agar or MacConkey's agar, and then further culturing the bacterium using a medium such as TSI agar or LIM agar for the purpose of identification. [0006]
  • In the case of Salmonella species, culture is conducted for isolation of the bacteria from specimens of patient stools or vomits, food or wiping samples, etc., followed by inoculation to TSI agar, SIM medium, VP-MR medium and lysine decarboxylation test medium and subsequent overnight culture at 37° C., to confirm Salmonella species, and the serotype is determined using a commercially available set of antisera against O and H antigens, [0007]
  • EHEC or VTEC has been found to cause hemolytic uremic syndrome in children, as well as food poisoning symptoms, typically hemorrhagic colitis, and stress has recently been placed on detection of this bacterium in clinical tests. In the case of detecting EHEC or VTEC, specimens are patient stools, food, or water samples (drinking water, river water, etc.) collected from the environment surrounding the patient. In detecting EHEC (VTEC) in these specimens, it is necessary to perform a series of procedures from direct isolation culture, a primary confirmation culture test, and a secondary confirmation culture test to an agglutination test with an antiserum. [0008]
  • In the case of [0009] Staphylococcus aureus, specimens are patient vomits or stools, food the patient ate, samples wiped out from the environment surrounding the patient, or the like. Before Staphylococcus aureus is detected and identified in these specimens, it is necessary to perform bacterial culture, isolation culture and then pure culture and confirmation culture.
  • In the case of [0010] Vibrio cholerae, specimens are patient stools or food, or water samples (drinking water, river water, sea water, etc.) or benthos samples collected from the environment surrounding the patient. In detecting and identifying Vibrio cholerae in these specimens, it is necessary to perform a series of procedures from primary enrichment culture, secondary enrichment culture, and isolation culture to an agglutination reaction test with anti-V. cholerae 01 serum and confirmation culture.
  • In the case of [0011] Clostridium perfringens, specimens are obtained mainly from patient stools and food. For detection and identification, the specimens are subjected to enrichment culture and isolation culture under anaerobic conditions. With several colonies of the bacteria, tests for biochemical properties are conducted.
  • Any identification process mentioned above usually takes several days, and hampers rapid diagnoses of infectious diseases. [0012]
  • Specifically, in the case of Shigella species, each culture step takes 18-24 hours, totalling 3-4 days; rapid detection is difficult. Other available methods include the reversed passive latex agglutination using a specific antibody to the Shiga toxin, the EIA method using a specific antibody to the 140 MDal plasmid product associated with the pathogenicity of Shigella species and enteroinvasive [0013] Escherishia coli [Kenichiro Ito et al., Japanese Journal of Bacteriology 41, 414 (1986)] and the DNA probe method for detecting the ipaB gene, the ipac gene, or the ipaD gene (U.S. patent application Ser. No. 888194).
  • However, these testing methods require complicated troublesome procedures in preparing reagents and specimens, and take much time. [0014]
  • In the case of Salmonella species, 2-3 days are taken for bacterial isolation and identification of the bacteria from specimens. In addition, Salmonella tests are difficult to conduct in ordinary laboratories, because as many as 100 antisera and much experience are required to achieve complete serum typing of Salmonella species, which involve a large number of serum types. Also, each culture step and serotyping test take 3-4 days; rapidity is poor. Moreover, confirmation culture and serotyping are expensive and involve troublesome operation. [0015]
  • In the case of EHEC (VTEC), each culture step takes 18-24 hours, totalling as many as 3-4 days. The currently representative serotype of EHEC (VTEC) is 0157:H7, but no diagnostic antiserum has been commercially available for identification of this serotype, so that the diagnostic antiserum has to be prepared by the investigator. In addition, it is often difficult to identify the causative bacterium solely on the basis of serum typing in EHEC (VTEC), because the serum type and the pathogenicity do not always agree with each other. Therefore, the conventional testing method for EHEC (VTEC) lacks rapidity and simplicity, and is not suitable for practical application. [0016]
  • In the case of [0017] Staphylococcus aureus, each culture step takes 18-24 hours, totalling as many as about 4 days when combined with the time required for the subsequent testings. Also, in the biochemical test in culture for identification, various properties, such as aerobic growth, VP reactivity, nitrate reduction, Tween 80 hydrolyzability, hyaluronidase activity and sugar decomposition, should be examined, but this process is troublesome, tedious and expensive. The most reliable method for identifying the causative bacterium for food poisoning and diarrhea is to test the isolated strain for exotoxin (toxic shock syndrome toxin -1, hereinafter simply referred to as TSST-1) production. However, even when a commercially available convenient reagent kit is used, 18-20 hours will be taken to obtain the results; rapidity is poor.
  • In the case of [0018] Vibrio cholerae, each culture step takes 18-24 hours, totalling as many as about 4 days. In the biochemical test concerning confirmation culture, various properties, such as oxidase test positivity, indole test positivity, motility, and lysine decarboxylation test positivity should be examined. These tests are troublesome, tedious and expensive, and the results obtained are difficult to assess in some cases. Moreover, in the case of Vibrio cholerae, it is essential to test the isolated strain for enterotoxin (cholera toxin; CT) production to take an administrative measure for pest control. However, even when a commercially available convenient reagent kit is used, 18-20 hours will be taken to obtain the results; rapidity is poor and practical applicability is low.
  • In the case of Welch's bacillus([0019] Clostridium perfringens), the detection requires considerably long time: each culture step takes 18-48 hours, totalling 5-6 days. In addition, since Clostridium perfringens strains are widely distributed in the nature, only the detection of the bacterial strain from specimens is not enough to determine the strain as the causative agent for food poisoning. Further tests are required, including detection of the enterotoxin in patient stool, assay of the isolated strain for enterotoxin production, serotype determination, and bacterial count for suspected food.
  • These procedures consume much time and labor, and lack rapidity and simplicity. [0020]
  • In recent years, the DNA probing or hybridization using oligonucleotides has been tried. However, when hybridization is performed on a membrane or on other supports using a probe of a labeled oligonucleotide, followed by detection of the probe, sensitivity of the assays depends on numbers of organisms available for detection. Therefore it is difficult to achieve a high detection sensitivity and selectivity in this test without the above-described pretreatment of the separation culture. [0021]
  • SUMMARY OF THE INVENTION
  • It is object of the present invention to provide synthetic oligonucleotides used as primers for PCR to amplify certain regions of the genes specific to the above various pathogenic microorganisums. [0022]
  • It is another object of the present invention to provide a simple, rapid and highly sensitive process for detecting the above various pathogenic microorganisms for quarantine inspection, clinical laboratory examination and food inspection, wherein a region of a gene specific to the bacterial strain to be detected is amplified by the PCR technique using synthetic oligonucleotide primers. [0023]
  • It is still another object of the present invention to provide a kit for detection of the above various bacterial strains, comprising at least a pair of primers, a thermostable DNA polymerase, and dNTP solutions. [0024]
  • The gist of the present invention relates to: [0025]
  • 1) A synthetic oligonucleotide of 10 to 30 bases which is complementary to a nucleotide sequence of a gene selected from the group consisting of the Shiga toxin gene of Shigella species, the ipaH gene of Shigella species and enteroinvasive [0026] Escherishia coli (hereinafter simply referred to as EIEC), the invE gene of Shigella species and EIEC, the araC gene of Salmonella species, the Verocytotoxin-1 gene of EHEC or VTEC, the Verocytotoxin-2 gene of EHEC or VTEC, the toxic shock syndrome toxin gene of Staphylococcus aureus, the ctx gene of Vibrio cholerae, and the enterotoxin gene of Clostridium perfringens;
  • 2) A synthetic oligonucleotide comprising a nucleotide sequence complementary to the synthetic oligonucleotide of 1); [0027]
  • 3) A method for detecting a bacterial strain selected from the group consisting of Shigella species, EIEC, Salmonella species, EHEC, VTEC, [0028] Staphylococcus aureus, Vibrio cholerae and Clostridium perfringens, wherein the method comprises:
  • (1) hybridizing one primer to a single-stranded target DNA as a template DNA present in a specimen and carrying out a primer extension reaction to give a primer extension product, [0029]
  • (2) denaturing the resulting DNA duplex to separate the primer extension product from the template DNA; the primer extension product functioning as the other template DNA for the other primer, [0030]
  • (3) repeating a cycle of simultaneous primer extension reaction with the two primers, separation of the primer extension products from the templates, and hybridization of primers to amplify a region of the target DNA, in the steps from (1) to (3), the primers being selected from the group consisting of oligonucleotides of 1) and 2), [0031]
  • (4) detecting the amplified nucleotide sequence to determine whether a suspected bacterial strain is present in the specimen; and [0032]
  • 4) A kit for detection of a bacterial strain, comprising at least a pair of primers selected from the group consisting of oligonucleotides of 1) and 2), a thermostable DNA polymerase, and dNTP solutions. [0033]
  • The present invention provides a highly selective and highly sensitive method for rapid detection of Shigella species having the Shiga toxin gene, the ipaH gene and the invE gene, EIEC having the ipah gene and the invE gene, Salmonella species having the araC gene, EHEC having the VT1 gene and the VT2 gene, [0034] Staphylococcus aureus having the TSST-1 gene, Vibrio cholerae having the ctx gene, and Clostridium perfringens having the enterotoxin gene.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitative of the present invention. [0035]
  • FIG. 1 is the pattern of the electrophoresis of the amplified DNA fragments on an agarose gel to evaluate the sensitivity of the detection method of the present invention for the TSST-1 gene of [0036] Staphylococcus aureus, wherein numerals 1 to 9 refer to the number of DNA copies used in the polymerase chain reaction (hereinafter simply referred to as PCR): 1 means 107 copies; 2, 106 copies; 3, 105 copies; 4, 104 copies; 5, 103 copies; 6, 102 copies; 7, 10 copies; 8, 1 copy; and 9, no DNA.
  • FIG. 2 is the pattern of the agarose gel electrophoresis of the nucleotide fragments amplified by PCR to evaluate the specificity of the detection method of the present invention for the ctx gene of [0037] Vibrio cholerae, wherein M indicates the molecular weight marker and lanes 1-13 indicate the template DNA solutions containing heat extract of the following strains:
  • [0038] Lanes 1 to 3: Vibrio cholerae (El Tor—Ogawa type, the ctx gene positive strain)
  • [0039] Lanes 4 to 6: Vibrio cholerae (El Tor—Inaba type, the ctx gene positive strain)
  • Lane 7: [0040] Vibrio cholerae (Classical—Ogawa type, the ctx gene positive strain)
  • Lane 8: [0041] Vibrio cholerae (Classical—Inaba type, the ctx gene positive strain)
  • [0042] Lanes 9 to 10: Vibrio cholerae (non-01, the ctx gene positive strain)
  • Lane 11: [0043] Vibrio cholerae (El Tor—Ogawa type, the ctx gene negative strain)
  • Lane 12: [0044] Vibrio cholerae (El Tor—Inaba type, the ctx gene negative strain)
  • Lane 13: Enterotoxigenic [0045] Escherichia coli(Thermolabile enterotoxin gene positive strain).
  • FIG. 3 is the electrophoretic pattern of the agarose gel electrophoresis for the nucleotide fragments amplified by PCR to detect the enterotoxin gene of [0046] Clostridium perfringens, the upper part being the results obtained with Oligonucleotide SEQ ID NO: 28+Oligonucleotide SEQ ID NO: 33; the lower part being the results obtained with Oligonucleotide SEQ ID NO: 29+Oligonucleotide SEQ ID NO: 33, wherein M indicates the molecular weight marker and lanes 1-13 indicate the template DNA derived from heat extracts of the following strains: Lane 1, ATCC 12925; Lane 2, ATCC 12924; Lane 3, ATCC 12922; Lane 4, ATCC 12920; Lane 5, ATCC 12916; Lane 6, ATCC 12915; Lane 7, ATCC 12918; Lane 8, ATCC 12919; Lane 9, ATCC 12921; Lane 10, JCM 1296; Lane 11, JCM 1416; Lane 12, JCM 1382; and Lane 13, negative control.
  • FIG. 4 shows the results of a Southern blot hybridization test to confirm if the nucleotide sequence of amplified DNA with the primers of the present invention is a part of the enterotoxin gene sequences of [0047] Clostridium perfringens, the upper part being the results obtained with Oligonucleotide SEQ ID NO: 28+Oligonucleotide SEQ ID NO: 33; the lower part being the results obtained with Oligonucleotide SEQ ID NO: 29+Oligonucleotide SEQ ID NO: 33, wherein M indicates the molecular weight marker and lanes 1-13 indicate the template DNA solutions derived from heat extracts of the following strains: Lane 1, ATCC 12925; Lane 2, ATCC 12924; Lane 3, ATCC 12922; Lane 4, ATCC 12920; Lane 5, ATCC 12916; Lane 6, ATCC 12915; Lane 7, ATCC 12918; Lane 8, ATCC 12919; Lane 9, ATCC 12921; Lane 10, JCM 1296; Lane 11, JCM 1416; Lane 12, JCM 1382; and Lane 13, negative control.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Oligonucleotides [0048]
  • An oligonucleotide of the present invention is a synthetic oligonucleotide which complementarily and selectively hybridizes to a gene specific to a pathogenic bacterial strain such as Shigella species, EIEC, Salmonella species, EHEC or VTEC, [0049] Staphylococcus aureus, Vibrio cholerae, and Clostridium perfringens. In the bacterial detection of the present invention, the oligonucleotides are used as primers in the PCR to amplify a DNA sequence of a target gene specific to the pathogenic bacteria to be detected. For this purpose, any combination of two oligonucleotides of the present invention may optionally be employed without particular limitation as long as a DNA sequence of 50 to 2000 bases, preferably of 100 to 1000 bases, can be amplified. The preferred combination of oligonucleotides are described in detail in the following preferred embodiments.
  • In the oligonucleotides mentioned below, T may be replaced with U without impairing the advantageous effect of the oligonucleotide. [0050]
  • Preferred [0051] Embodiment 1
  • For the detection of Shigella species ([0052] Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnel) and EIEC, the Shiga toxin gene specific to Shigella species, the ipaH gene specific to Shigella species and EIEC, or the invE gene specific to Shigella species and EIEC is selected as the target gene.
  • When the Shiga toxin gene is targeted, two oligonucleotides, one comprising at least 10 consecutive bases of the following oligonucleotide SEQ ID No. 1 and the other comprising at least 10 consecutive bases of the following oligonucleotide SEQ ID NO: 2, are selected in the present invention: [0053]
  • (5′)-CAACACTGGATGATCTCAG-(3′) (SEQ ID NO: 1) [0054]
  • (5′)-CCCCCTCAACTGCTAATA-(3′) (SEQ ID NO: 2) [0055]
  • When the ipaH gene is targeted, two oligonucleotides, one comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 3 and the other comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 4 are selected in the present invention: [0056]
  • (5′)-TGTATCACAGATATGGCATGC-(3′) (SEQ ID NO: 3) [0057]
  • (5′)-TCCGGAGATTGTTCCATGTG-(3′) (SEQ ID NO: 4) [0058]
  • When the invE gene is targeted, two oligonucleotides, one comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 5 and the other comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 6 are selected in the present invention: [0059]
  • (5′)-CAAGATTTAACCTTCGTCAACC-(3′) (SEQ ID NO: 5) [0060]
  • (5′)-AGTTCTCGGATGCTATGCTC-(3′) (SEQ ID NO: 6) [0061]
  • Preferred [0062] Embodiment 2
  • For the detection of Salmonella species, the araC gene is targeted. [0063]
  • For this purpose, any one of the following oligonucleotide combinations is preferably selected in the present invention: [0064]
  • a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 7 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 8; a combitnation in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 9 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 10; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 11 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 8: [0065]
  • (5′)-CGCGGAGAGGGCGTCATT-(3′) (SEQ ID NO: 7) [0066]
  • (5′)-GCAACGACTCATTAATTACCG-(3′) (SEQ ID NO: 8) [0067]
  • (5′)-ATCTGGTCGCCGGGCTGA-(3′) (SEQ ID NO: 9) [0068]
  • (5′)-GCATCGCGCACACGGCTA-(3′) (SEQ ID NO: 10) [0069]
  • (5′)-GGCGAGCAGTTTGTCTGTC-(3′) (SEQ ID NO: 11) [0070]
  • Preferred [0071] Embodiment 3
  • For the detection of EHEC or VTEC strains, the Verocytotoxin-1 (VT1) gene or the Verocytotoxin-2 (VT2) gene is targeted. [0072]
  • In order to detect bacteria which have only the VT1 gene, two oligonucleotides, one comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 12 and the other comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 13, are preferably selected in the present invention: [0073]
  • (5′)-CAACACTGGATGATCTCAG-(3′) (SEQ ID NO: 12) [0074]
  • (5′)-CCCCCTCAACTGCTAATA-(3′) (SEQ ID NO: 13) [0075]
  • In order to detect bacteria which have only the VT2 gene or its variant genes (VT2vha, VT2vhb and VT2vp1), two oligonucleotides, one comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 14 and the other comprising at least 10 consecutive bases of oligonucleotide SEQ ID NO: 15, are preferably selected in the present invention: [0076]
  • (5′l)-ATCAGTCGTCACTCACTGGT-(31) (SEQ ID NO: 14) [0077]
  • (5′)-CCAGTTATCTGACATTCTG-(3′) (SEQ ID NO: 15) [0078]
  • In order to detect bacteria which have both the VT1 gene and the VT2 gene (including the VT2vha, VT2vhb and VT2vp1 genes), any one of the following oligonucleotide combinations is preferably selected in the present invention: [0079]
  • a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 16 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 18; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 17 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 18: [0080]
  • (5′)-AGTTTACGTTAGACTTTTCGAC-(3′) (SEQ ID NO: 16) [0081]
  • (5′)-CGGACAGTAGTTATACCAC-(3′) (SEQ ID NO: 17) [0082]
  • (5′)-CTGCTGTCACAGTGACAAA-(3′) (SEQ ID NO: 18) [0083]
  • Preferred [0084] Embodiment 4
  • For the detection of [0085] Staphylococcus aureus, the TSST-1 gene is targeted.
  • For this purpose, any one of the following oligonucleotide combination is preferably selected in the present invention: [0086]
  • a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 20 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 21; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 19 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 22; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 20 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 22: [0087]
  • (5′)-CCTTTAAAAGTTAAGGTTCATG-(3′) (SEQ ID NO: 19) [0088]
  • (5′)-GGCCAAAGTTCGATAAAAAAC-(3′) (SEQ ID NO: 20) [0089]
  • (5′)-ATTTATAGGTGGTTTTTCAGTAT-(3′) (SEQ ID NO: 21) [0090]
  • (5′)-CTGCTTCTATAGTTTTTATTTCA-(3′) (SEQ ID NO: 22) [0091]
  • Preferred [0092] Embodiment 5
  • For the detection of [0093] Vibrio cholerae, the ctx gene is targeted.
  • For this purpose, any one of the following oligonucleotide combinations is preferably selected in the present invention: [0094]
  • a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 23 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 25; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 24 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 26: [0095]
  • (5′)-TGATGAAATAAAGCAGTCAGGT-(3′) (SEQ ID NO: 23) [0096]
  • (5′)-ACAGAGTGAGTACTTTGACC-(3′) (SEQ ID NO: 24) [0097]
  • (5′)-GGCACTTCTCAAACTAATTGAG-(3′) (SEQ ID NO: 25) [0098]
  • (5′)-ATACCATCCATATATTTGGGAG-(3′) (SEQ ID NO: 26) [0099]
  • Preferred [0100] Embodiment 6
  • For the detection of [0101] Clostridium perfringens, the enterotoxin gene is targeted.
  • For this purpose, any one of the following oligonucleotide combinations is preferably selected in the present invention:[0102]
  • a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 27 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 32; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 28 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 33; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 29 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 33; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 30 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 34; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 31 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 35: [0103]
  • (5′)-TCTGAGGATTTAAAAACACC-(3′) (SEQ ID NO: 27) [0104]
  • (5′)-ACCCTCAGTAGGTTCAAGTC-(3′) (SEQ ID NO: 28) [0105]
  • (5′)-ATGAAACAGGTACCTTTAGCC-(3′) (SEQ ID NO: 29) [0106]
  • (5′)-GGTAATATCTCTGATGATGGAT-(3′) (SEQ ID NO: 30) [0107]
  • (5′)-TAACTCATACCCTTGGACTC-(3′) (SEQ ID NO: 31) [0108]
  • (5′)-GAACCTTGATCAATATTTCC-(3′) (SEQ ID NO: 32) [0109]
  • (5′)-GTAGCAGCAGCTAAATCAAGG-(3′) (SEQ ID NO: 33) [0110]
  • (5′)-AGTCCAAGGGTATGAGTTAG-(3′) (SEQ ID NO: 34) [0111]
  • (5′)-CCATCACCTAAGGACTGTTC-(3′) (SEQ ID NO: 35) [0112]
  • Amplification of Gene Sequence by PCR [0113]
  • For amplification of a region of a target gene in the present invention, the PCR developed by Saiki et al. [Science 230, 1350 (1985)] is employed. [0114]
  • Specifically, two oligonucleotide primers that flank a specific region of a target gene (in the present invention, the Shiga toxin gene of Shigella species, the ipaH and invE genes of Shigella species and EIEC, the araC gene of Salmonella species, the VT1 and VT2 genes of EHEC or VTEC, the TSST-1 gene of [0115] Staphylococcus aureus, the ctx gene of Vibrio cholerae and the enterotoxin gene of Clostridium perfringens) are synthesized.
  • In PCR, one of the oligonucleotide primers selectively hybridizes to the (+)-strand of a target gene DNA, and the other hybridizes to the (−)-strand of the DNA. Then, both the oligonucleotides serve as primers of template dependent DNA polymerization respectively. In the present invention, single strand DNAs formed by heat denaturation of double strand DNAs in specimens are used as templates. The duplexes resulting from the DNA polymerization reaction are then denatured to separate the primer extension products from the templates. Then, the primer extension products themselves serve as the templates for the next DNA polymerization reaction. The cycle of denaturation, primer annealing in which a primer hybridizes with a template DNA and a primer extension reaction is repeated until the region of the target gene is amplified enough for its detection. [0116]
  • Specimens applicable to the PCR in the present invention may include clinical samples such as stool, urine, blood, tissue homogenate, and food samples. A specimen for PCR should be pre-treated to release the nucleic acid components from the bacterial cells present therein. Since PCR can be carried out with only several to several tens of nucleic acid molecules, a test solution containing an adequate amount of nucleic acid can be prepared simply by treating a specimen with a bacteriolytic enzyme, a surfactant or an alkali for a short time. [0117]
  • Oligonucleotides used as primers in the present invention may be either synthetic or natural, and in view of selectivity, detection sensitivity and reproducibility, they are not less than 10 bases in length, preferably not less than 15 bases. It is not necessary to label the primers for detection. [0118]
  • The region to be amplified in a target gene (i.e., the Shiga toxin gene of Shigella species, the ipah gene and the invE gene of EIEC, the VT1 gene and the VT2 gene of EHEC or VTEC, the arac gene of Salmonella species, the TSST-1 gene of [0119] Staphylococcus aureus, and the ctx gene of Vibrio cholerae, and the enterotoxin gene of Clostridium perfringens) is 50 to 2000 bases in length, preferably 100 to 1000 bases.
  • In PCR, a thermostable DNA polymerase is used. The origins from which the enzyme is derived are not particularly limited as long as the enzyme maintains its activity at a temperature of from 90 to 95° C. The denaturation is carried out at a temperature of from 90 to 95° C., the primer annealing from 37 to 65° C., and the polymerization reaction from 50 to 75° C. The cycle of denaturation, primer annealing and polymerization is repeated for 20 to 42 cycles. [0120]
  • The presence or absence, and the length of the amplified nucleotide fragment can be detected by subjecting the reaction solution to agarose gel electrophoresis after the completion of PCR. Other types of electrophoresis and chromatography can also be used for the detection. One of the oligonucleotide primers may be used as a probe to detect the amplified nucleotide sequence. [0121]
  • The detection of a nucleotide sequence of a target gene in a specimen means that the bacterial strain having the gene is present in the specimen. [0122]
  • The invention will now be described in more detail by the following examples, but it should be noted that the invention is not limited to these examples. [0123]
  • EXAMPLES Example 1 Detection of Shigella Species having the Shiga Toxin Gene
  • [Experiment 1][0124]
  • Preparation of Specimens [0125]
  • The 42 strains of [0126] Shigella dysenteriae listed in Table 1 are obtained from patients or other sources. Each strain is inoculated to LB medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride), and subjected to overnight shaking culture at 37° C. under aerobic conditions. Each culture broth is diluted 10 folds with 10 mM Tris-HCl buffer, pH 7.5 (hereinafter referred to as TE buffer), and heated at 95° C. for 10 minutes, followed by centrifugation; the supernatants are used as specimen solutions.
  • Synthesis of Primers [0127]
  • As primers for amplifying the Shiga toxin gene of [0128] Shigella dysenteriae, the above-described oligonucleotides SEQ ID NO: 1 and SEQ ID NO: 2 are selected based upon the known base sequence of the Shiga toxin gene [Takao, T. et al., Microb. Pathog., 5:357-369 (1988)], and chemically synthesized by the β-cyanoethylphosphoamidite method using a Cyclone Plus DNA synthesizer (produced by MilliGen/Bioresearch). The synthesized oligonucleotides are purified by high performance liquid chromatography using a C18 reversed-phase column.
  • The Shiga toxin gene is regarded as identical to the VT1 gene of EHEC or VTEC, with difference only in several bases [Takao, T. et al., Microb. Pathog., 5:357-369 (1988)]. [0129]
  • PCR [0130]
  • To 3 μl of the above-described specimen solution, 17.05 μl of sterile distilled water, 3 μl of 10×reaction buffer, 4.8 μl of dNTP solution, 1.0 μl of primer (1), 1.0 μl of primer (2), and 0.15 μl of a thermostable DNA polymerase are added to prepare 30 μl of a reaction mixture. This reaction mixture is overlaid with 50 μl of mineral oil (produced by SIGMA). The contents of the solutions used and the primers (1) and (2) are as follows: [0131]
  • 10×reaction buffer: 500 mM KCl, 100 mM Tris-HCl, pH 8.3, 15 mM MgCl[0132] 2, 0.1% (w/v) gelatin.
  • dNTP solution: A mixture of dATP, dCTP, dGTP and dTTP, each having a final concentration of 1.25 mM. [0133]
  • Primers (1) and (2): Aqueous solution of the above-described chemically synthesized purified products (concentration, 3.75 OD/ml). [0134]
  • Primers: The above-described chemically synthesized and purified products are used in combination as follows:[0135]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 1+Oligonucleotide SEQ ID NO: 2 [0136]
  • Thermostable DNA polymerase: Taq DNA polymerase (5 unit/ml; produced by Perkin Elmer Cetus). [0137]
  • The reaction conditions are as follows:[0138]
  • Thermal denaturation: 94° C. for 1 minute. [0139]
  • Annealing: 55° C. for 1 minute. [0140]
  • Polymerization: 72° C. for 1 minute.[0141]
  • The cycle of thermal denaturation, primer annealing and polymerization (5.7 minutes) is repeated for 35 cycles (entire time, about 3 hours). This procedure is performed using a DNA thermal cycler (produced by Perkin Elmer Cetus) in which the above reaction conditions are programmed. [0142]
  • Detection [0143]
  • Agarose Gel Electrophoresis [0144]
  • To detect the amplified nucleotide fragment in the reaction mixture, agarose gel electrophoresis is conducted as mentioned below. [0145]
  • The agarose gel used has a gel concentration of 3% (w/v) and contains ethidium bromide (0.5 μl/ml). Electrophoresis is performed at the constant voltage of 100 V for 30 minutes. Operation procedures and other conditions described by Maniatis et al.[Molecular Cloning, 2nd edition (1989)] are used. In addition to the reaction mixture, molecular weight markers are also electrophoresed concurrently. The length of the nucleotide fragment is calculated by comparing the relative mobilities. [0146]
  • Reversed Passive Latex Agglutination (RPLA) Test [0147]
  • A commercially available RPLA kit for detection of [0148] Escherichia coli Verocytotoxin (produced by DENKA SEIKEN) is purchased. Specimens are prepared and tested according to the instruction manual attached.
  • Results [0149]
  • The base sequence of the Shiga toxin gene of [0150] Shigella dysenteriae has already been determined. Therefore, the length of the nucleotide amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 1 and SEQ ID NO: 2 of the present invention are used in combination, a nucleotide sequence of 349 bases (or a nucleotide duplex of 349 base pairs) is amplified. When this estimation accords with the length of the amplified nucleotide fragment, it is judged that PCR using the combination of primers accurately amplify the target region of the Shiga toxin gene, and that the bacterial strain in the specimen has the Shiga toxin gene. The results obtained from the agarose gel electrophoresis with 34 test strains are given in Table 1. PCR using the primers of the present invention amplifies only the DNA of the strains which give positive results in the RPLA, showing no amplification of DNAs of Shiga toxin negative strains. This indicates that PCR using the primers of the present invention are capable of accurately amplifying the Shiga toxin gene and that Shigella dysenteriae having the Shiga toxin gene can be detected with high accuracy by using the oligonucleotides of the present invention.
    TABLE 1
    No Strains RPLA PCR
    01 S. dysenteriae TUMD 1
    02 S. dysenteriae TUMD 2
    03 S. dysenteriae TUMD 3
    04 S. dysenteriae TUMD 4
    05 S. dysenteriae TUMD 5
    06 S. dysenteriae TUMD 6
    07 S. dysenteriae MARABLA
    08 S. dysenteriae AQ7003 + +
    09 S. dysenteriae AQ7004 + +
    10 S. dysenteriae AQ7018
    11 S. dysenteriae AQ7029
    12 S. dysenteriae AQ7030
    13 S. dysenteriae AQ7061
    14 S. dysenteriae AQ7125
    15 S. dysenteriae AQ7131
    16 S. dysenteriae AQ7151
    17 S. dysenteriae AQ7164
    18 S. dysenteriae AQ7166
    19 S. dysenteriae AQ7234
    20 S. dysenteriae AQ7302
    21 S. dysenteriae AQ7350
    22 S. dysenteriae AQ7370
    23 S. dysenteriae AQ7403
    24 S. dysenteriae AA-22021 + +
    25 S. dysenteriae AA-22184 + +
    26 S. dysenteriae AA-22192 + +
    27 S. dysenteriae AA-22555 + +
    28 S. dysenteriae AA-21933 + +
    29 S. dysenteriae AA-22496 + +
    30 S. dysenteriae AA-22224 + +
    31 S. dysenteriae AA-22542 + +
    32 S. dysenteriae AA-22616 + +
    33 S. dysenteriae AA-22239 + +
    34 S. dysenteriae AA-22538 + +
    35 S. dysenteriae ATCC9361 + +
    36 S. dysenteriae ATCC9753
    37 S. dysenteriae ATCC9764
    38 S. dysenteriae ATCC11456a + +
    39 S. dysenteriae ATCC13313 + +
    40 S. dysenteriae ATCC23351 + +
    41 S. dysenteriae ATCC29027
    42 S. dysenteriae ATCC29028
  • [Experiment 2][0151]
  • To determine whether the results obtained in [0152] Experiment 1 are specific to the Shiga toxin gene, the DNAs of clinically important pathogenic bacteria other than Shigella dysenteriae are examined with the primers of the present invention. The same procedure as used in Experiment 1 is followed, except for the method of preparation of specimens.
  • Preparation of Specimens [0153]
  • Each strain listed in Table 2 is inoculated to an appropriate enrichment medium, and subjected to overnight culture at 37° C. under aerobic or anaerobic conditions ([0154] Clostridium perfringens, Campylobacter jejuni, Campylobacter coli, Bacteroides flagilis, Bacteroides vulgatus, Lactobacillus acidophilus, and Bifidobacterium adolescentis are cultured under anaerobic conditions, while Neisseria gonorrhoeae and Neisseria meningitidis are cultured in the presence of 3-10% CO2). Bacterial cells are centrifugally recovered from 0.5 ml of each culture broth, and once washed with TE buffer. To these bacterial cells, an N-acetylmuraminidase solution in 50 mM phosphate buffer, pH 7.5, and an achromopeptidase solution in the same buffer are added to final concentrations of 50 μg/ml and 1 mg/ml, respectively, followed by incubation at 37° C. for 10 minutes to lyse the cells. A 1:1 phenol/chloroform mixture, saturated with TE buffer, is added to the lysate, followed by vigorous stirring. After centrifugation, the supernatant is recovered, and treated with ethanol to precipitate the nucleic acids. The resulting precipitate is dissolved in 1 ml of TE buffer; this solution is used as a specimen. Also, Human placenta DNA, at a concentration of 1 μg/ml, is subjected to PCR in the same manner as above.
  • Results [0155]
  • Table 2 shows the results of the test using the combination of the primers of the present invention. This combination of primers does not amplify DNAs other than those of Shiga toxin-producing [0156] Shigella dysenteriae and Verocytotoxin-1-producing Escherishia coli. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with DNAs of the bacteria having the Shiga toxin gene.
  • The agarose gel electrophoresis used in the above examples of the present invention can differentiate nucleotide fragments from one another which are different in length by 5-10 bases (base pairs) for nucleotide fragments of not more than 100 bases (base pairs), and by 10-20 bases (base pairs) for nucleotide fragments of 100-500 bases (base pairs). In addition, the use of other gel material such as acrylamide makes it possible to improve the precision in measuring the length of nucleotide fragment. Thus, the reliability of the selective detection of the target gene in the present invention can further be increased. [0157]
    TABLE 2
    No Strains PCR
    01 Bacillus cereus ATCC14579
    02 Bacillus Subtills JCM1465
    03 Staphylococcus aureus JCM2413
    04 Staphylococcus epidermidis JCM2414
    05 Salmonella typhimurium IFO12529
    06 Salmonella enteritidis IFO3163
    07 Clostridium perfringens ATCC12917
    08 Vibrio cholerae ATCC25872
    09 Vibrio cholerae type Ogawa ATCC9458
    10 Vibrio cholerae type Inaba ATCC9459
    11 Vibrio fluvialis JCM3752
    12 Campylobacter jejuni JCM2013
    13 Campylobacter coli JCM2529
    14 Escherichia coil JCM1649
    15 Yersinia enterocolitica ATCC9610
    16 Shigella flexneri ATCC29903
    17 Shigella sonnei ATCC29930
    18 Bacteroides flagilis ATCC23745
    19 Bacteroides vulgatus JCM5826
    20 Enterococcus faecalis JCM5803
    21 Klebsiella pneumoniae JCM1662
    22 Proteus vulgaris JCM1668
    23 Citrobacter freundii ATCC33128
    24 Streptococcus pyogenes ATCC12344
    25 Streptococcus pneumoniae ATCC33400
    26 Elaemophilis influenzae ATCC33391
    27 Proteus mirabilis ATCC29906
    28 Neisseria meningitidis ATCC13077
    29 Neisseria gonorrhoeae ATCC19424
    30 Listeria monocytogenes ATCC15313
    31 Lactobacillus acidophilus JCM1132
    32 Bifidobacterium adolescentis JCM1275
    33 Fusobacterium nucleatum ATCC25586
    34 Propionibacterium acnes ATCC6919
    35 Veillonella atypica ATCC17744
    36 Pseudomonas aeruginosa IFO12689
    37 Corynebacterium diphtheriae JCM1310
    38 Peptostreptococcus anaerobius ATCC27337
    39 Human placental DNA
  • Example 2 Detection of Shigella Species and EIEC both Having the ipaH Gene
  • [Experiment 1][0158]
  • Preparation of Specimens [0159]
  • The same procedure as used in Example 1 is followed except that 341 strains of Shigella species and EIEC listed in Tables 3-1 to 3-7 are used. [0160]
  • Synthesis of Primers [0161]
  • As primers for amplifying the ipaH gene of Shigella species and EIEC strains, the above-described oligonucleotides SEQ ID NO: 3 and SEQ ID NO: 4 are selected based upon the known base sequence of the ipaH gene [Hartman, A. B., et al., J. Bacteriol., 172, 1905-1915(1990); Venkatesan, M. M., et al., Mol. Microbiol., 5, 2435-2446 (1991)]. These oligonucleotides are chemically synthesized by the same method as in [0162] Experiment 1 of Example 1.
  • PCR [0163]
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used:[0164]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 3+Oligonucleotide SEQ ID NO: 4[0165]
  • Detection [0166]
  • Agarose Gel Electrophoresis [0167]
  • The same procedure as in Example 1 is followed. [0168]
  • Colony Hybridization Test [0169]
  • A colony hybridization test is carried out using an oligonucleotide probe specific to the ipaH gene according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)]. [0170]
  • Results [0171]
  • The base sequence of the ipaH gene of Shigella species and EIEC has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 3 and SEQ ID NO: 4 of the present invention are used in combination, a nucleotide fragment of 242 bases (or a nucleotide duplex of 242 base pairs) should be amplified. When this estimation accords with the length of the amplified nucleotide fragment, it is judged that PCR using the combination of primers accurately amplify the target region in the ipaH gene, and that the bacterial strain in the specimen has the ipaH gene. The results obtained from the agarose gel electrophoresis with 341 test strains are given in Tables 3-1 to 3-7. PCR using the primers of the present invention amplifies only the DNA of the strains which give the ipaH positive results in the colony hybridization test, showing no amplification of the DNAs of ipaH negative strains. This indicates that PCR using the primers of the present invention is capable of accurately amplifying the ipaH gene and that Shigella species and EIEC both having the ipaH gene can be detected with high accuracy by using the oligonucleotides of the present invention. [0172]
    TABLE 3-1
    No Strains CH test* Primer 3 + 4**
    001 S. dysenteriae TUMD 1 + +
    002 S. dysenteriae TUMD 2 + +
    003 S. dysenteriae TUMD 3 + +
    004 S. dysenteriae TUMD 4 + +
    005 S. dysenteriae TUMD 5 + +
    006 S. dysenteriae TUMD 6 + +
    007 S. dysenteriae MARABIA
    008 S. dysenteriae AQ-7003 + +
    009 S. dysenteriae AQ-7004 + +
    010 S. dysenteriae AQ-7018 + +
    011 S. dysenteriae AQ-7029 + +
    012 S. dysenteriae AQ-7030 + +
    013 S. dysenteriae AQ-7061 + +
    014 S. dysenteriae AQ-7125 + +
    015 S. dysenteriae AQ-7131 + +
    016 S. dysenteriae AQ-7151 + +
    017 S. dysenteriae AQ-7164 + +
    018 S. dysenteriae AQ-7166 + +
    019 S. dysenteriae AQ-7234 + +
    020 S. dysenteriae AQ-7302 + +
    021 S. dysenteriae AQ-7350 + +
    022 S. dysenteriae AQ-7370 + +
    023 S. dysenteriae AQ-7403 + +
    024 S. dysenteriae AA-22021 + +
    025 S. dysenteriae AA-22184 + +
    026 S. dysenteriae AA-22192 +
    027 S. dysenteriae AA-22555 +
    028 S. dysenteriae AA-21933 + +
    029 S. dysenteriae AA-22496 + +
    030 S. dysenteriae AA-22224 + +
    031 S. dysenteriae AA-22542 + +
    032 S. dysenteriae AA-22616 +
    033 S. dysenteriae AA-22239 + +
    034 S. dysenteriae AA-22538 + +
    035 S. dysenteriae ATCC9361 + +
    036 S. dysenteriae ATCC9753 + +
    037 S. dysenteriae ATCC11456a + +
    038 S. dysenteriae ATCC13313 + +
    039 S. dysenteriae ATCC23351 + +
    040 S. dysenteriae ATCC29027 + +
    041 S. dysenteriae ATCC29028 + +
    042 S. flexneri TUMD 7 + +
    043 S. flexneri TUMD 8 + +
    044 S. flexneri TUMD 9 + +
    045 S. flexneri TUMD 10 + +
    046 S. flexneri TUMD 11 + +
    047 S. flexneri TUMD 12 + +
    048 S. flexneri TUMD 13 + +
    049 S. flexneri TUMD 14 + +
    050 S. flexneri TUMD 15 + +
  • [0173]
    TABLE 3-2
    No Strains CH test* Primer 3 + 4**
    051 S. flexneri TUMD 16 + +
    052 S. flexneri TUMD 17 + +
    053 S. flexneri TUMD 18 + +
    054 S. flexneri TUMD 19 + +
    055 S. flexneri TUMD 20 + +
    056 S. flexneri TUMD 21 + +
    057 S. flexneri TUMD 22 + +
    058 S. flexneri TUMD 23 + +
    059 S. flexneri TUMD 24 + +
    060 S. flexneri TUMD 25 + +
    061 S. flexneri TUMD 26 + +
    062 S. flexneri TUMD 27 + +
    063 S. flexneri TUMD 28 + +
    064 S. flexneri TUMD 29 + +
    065 S. flexneri TUMD 30 + +
    066 S. flexneri TUMD 31 + +
    067 S. flexneri TUMD 32 + +
    068 S. flexneri TUMD 33 + +
    069 S. flexneri TUMD 34 + +
    070 S. flexneri TUMD 35 + +
    071 S. flexneri TUMD 36 + +
    072 S. flexneri TUMD 38 + +
    073 S. flexneri TUMD 39 + +
    074 S. flexneri TUMD 40 + +
    075 S. flexneri TUMD 41 + +
    076 S. flexneri TUMD 42 + +
    077 S. flexneri TUMD 43 + +
    078 S. flexneri TUMD 44 + +
    079 S. flexneri TUMD 45 + +
    080 S. flexneri TUMD 46 + +
    081 S. flexneri TUMD 47 + +
    082 S. flexneri TUMD 48 + +
    083 S. flexneri TUMD 49 + +
    084 S. flexneri TUMD 50 + +
    085 S. flexneri TUMD 51 + +
    086 S. flexneri TUMD 52 + +
    087 S. flexneri TUMD 53 + +
    088 S. flexneri TUMD 54 + +
    089 S. flexneri TUMD 55 + +
    090 S. flexneri TUMD 56 + +
    091 S. flexneri TUMD 57 + +
    092 S. flexneri TUMD 58 + +
    093 S. flexneri TUMD 59 + +
    094 S. flexneri TUMD 60 + +
    095 S. flexneri TUMD 61 + +
    096 S. flexneri Maramba 89-77 + +
    097 S. flexneri Maramba 89-95 + +
    098 S. flexneri Maramba 89-109a + +
    099 S. flexneri Maramba 89-119 + +
    100 S. flexneri Maramba 89-155 + +
  • [0174]
    TABLE 3-3
    No Strains CH test* Primer 3 + 4**
    101 S. flexneri Maramba 89-164 + +
    102 S. flexneri Maramba 89-150 + +
    103 S. flexneri AA-22175 + +
    104 S. flexneri AA-22371 + +
    105 S. flexneri AA-22266 + +
    106 S. flexneri AA-22636 + +
    107 S. flexneri AA-22187 + +
    108 S. flexneri AA-22170 + +
    109 S. flexneri AA-22367 + +
    110 S. flexneri AA-22316 + +
    111 S. flexneri AA-22265 + +
    112 S. flexneri AA-22296 + +
    113 S. flexneri AA-22312 + +
    114 S. flexneri AA-22246 + +
    115 S. flexneri AA-21981 + +
    116 S. flexneri AA-22097 + +
    117 S. flexneri AQ-7347 + +
    118 S. flexneri AQ-7348 + +
    119 S. flexneri AQ-7351 + +
    120 S. flexneri AQ-7360 + +
    121 S. flexneri AQ-7367 + +
    122 S. flexneri AQ-7372 + +
    123 S. flexneri AQ-7378 + +
    124 S. flexneri AQ-7379 + +
    125 S. flexneri AQ-7380 + +
    126 S. flexneri AQ-7385 + +
    127 S. flexneri AQ-7386 + +
    128 S. flexneri AQ-7390 + +
    129 S. flexneri AQ-7391 + +
    130 S. flexneri AQ-7393 + +
    131 S. flexneri AQ-7394 + +
    132 S. flexneri AQ-7398 + +
    133 S. flexneri AQ-7399 + +
    134 S. flexneri AQ-7400 + +
    135 S. flexneri AQ-7402 + +
    136 S. flexneri AQ-7407 + +
    137 S. flexneri AQ-7408 + +
    138 S. flexneri AQ-7411 + +
    139 S. flexneri AQ-7416 + +
    140 S. flexneri AQ-7417 + +
    141 S. flexneri AQ-7418 + +
    142 S. flexneri AQ-7423 + +
    143 S. flexneri AQ-7424 + +
    144 S. flexneri AQ-7426 + +
    145 S. flexneri AQ-7427 + +
    146 S. flexneri Manila 89-164 +
    147 S. flexneri Manila 89-177 + +
    148 S. flexneri Manila 89-209 + +
    149 S. flexneri Manila 89-210 + +
    150 S. flexneri Manila 89-229 + +
  • [0175]
    TABLE 3-4
    No Strains CH test* Primer 3 + 4**
    151 S. flexneri Manila 89-230
    152 S. flexneri Manila 89-231 + +
    153 S. flexneri Manila 89-232 + +
    154 S. flexneri Manila 89-233 + +
    155 S. flexneri Manila 89-273 + +
    156 S. flexneri Manila 89-328 + +
    157 S. flexneri Manila 89-333 + +
    158 S. flexneri Manila 89-365 + +
    159 S. flexneri Manila 89-274 + +
    160 S. flexneri Manila 89-436 + +
    161 S. flexneri Manila 89-438 + +
    162 S. flexneri Manila 89-443 + +
    163 S. flexneri Manila 89-444 + +
    164 S. flexneri Manila 89-450 + +
    165 S. flexneri Manila 89-480 + +
    166 S. flexneri Manila 89-483 + +
    167 S. flexneri Manila 89-486 + +
    168 S. flexneri Manila 89-498 + +
    169 S. flexneri Manila 89-499
    170 S. flexneri Manila 89-503 + +
    171 S. flexneri Manila 89-509 + +
    172 S. flexneri Manila 89-532 + +
    173 S. flexneri Manila 89-539
    174 S. boydii TUMD 62 + +
    175 S. boydii TUMD 63 + +
    176 S. boydii TUMD 64 + +
    177 S. boydii TUMD 65 + +
    178 S. boydii TUMD 66 + +
    179 S. boydii TUMD 67 + +
    180 S. boydii TUMD 68 + +
    181 S. boydii AQ-7019 + +
    182 S. boydii AQ-7020 + +
    183 S. boydii AQ-7026 + +
    184 S. boydii AQ-7032 + +
    185 S. boydii AQ-7039 + +
    186 S. boydii AQ-7042 + +
    187 S. boydii AQ-7062 + +
    188 S. boydii AQ-7076 + +
    189 S. boydii AQ-7098 + +
    190 S. boydii AQ-7157 + +
    191 S. boydii AQ-7193 + +
    192 S. boydii AQ-7206 + +
    193 S. boydii AQ-7213 + +
    194 S. boydii AQ-7218 + +
    195 S. boydii AQ-7238 + +
    196 S. boydii AQ-7267 + +
    187 S. boydii AQ-7268 + +
    198 S. boydii AQ-7307 + +
    199 S. boydii AQ-7313 + +
    200 S. boydii AQ-7314 + +
  • [0176]
    TABLE 3-5
    No Strains CH test* Primer 3 + 4**
    201 S. boydii AQ-7324
    202 S. boydii AQ-7349 + +
    203 S. boydii AQ-7354 + +
    204 S. boydii AQ-7356 + +
    205 S. boydii AQ-7357 + +
    206 S. boydii AQ-7368 + +
    207 S. boydii AQ-7373 + +
    208 S. boydii AQ-7376 + +
    209 S. boydii AQ-7405 + +
    210 S. boydii AA-22562 + +
    211 S. boydii AA-22241
    212 S. boydii AA-22610
    213 S. boydii AA-20255 + +
    214 S. boydii AA-20211 + +
    215 S. boydii AA-21713 + +
    216 S. boydii AA-17405
    217 S. boydii AA-22804 + +
    218 S. boydii AQ-7297 + +
    219 S. sonnei AQ-7366 + +
    220 S. sonnei AQ-7369 + +
    221 S. sonnei AQ-7371 + +
    222 S. sonnei AQ-7374 + +
    223 S. sonnei AQ-7375 + +
    224 S. sonnei AQ-7377 + +
    225 S. sonnei AQ-7381 + +
    226 S. sonnei AQ-7382 + +
    227 S. sonnei AQ-7383 + +
    228 S. sonnei AQ-7384 + +
    229 S. sonnei AQ-7387 + +
    230 S. sonnei AQ-7388 + +
    231 S. sonnei AQ-7389 + +
    232 S. sonnei AQ-7392 + +
    233 S. sonnei AQ-7395 + +
    234 S. sonnei AQ-7396 + +
    235 S. sonnei AQ-7397 + +
    236 S. sonnei AQ-7401 + +
    237 S. sonnei AQ-7406 + +
    238 S. sonnei AQ-7409 + +
    239 S. sonnei AQ-7410 + +
    240 S. sonnei AQ-7412 + +
    241 S. sonnei AQ-7413 + +
    242 S. sonnei AQ-7414 + +
    243 S. sonnei AQ-7415 + +
    244 S. sonnei AQ-7419 + +
    245 S. sonnei AQ-7420 + +
    246 S. sonnei AQ-7421 + +
    247 S. sonnei AQ-7422 + +
    248 S. sonnei AQ-7425 + +
    249 S. sonnei AA-22634 + +
    250 S. sonnei AA-22677 + +
  • [0177]
    TABLE 3-6
    No Strains CH test* Primer 3 + 4**
    251 S. sonnei AA-18306 + +
    252 S. sonnei AA-22067 + +
    253 S. sonnei AA-22870 + +
    254 S. sonnei TUMD 69 + +
    255 S. sonnei TUMD 70 + +
    256 S. sonnei TUMD 71 + +
    257 S. sonnei TUMD 72 + +
    258 S. sonnei TUMD 73 + +
    259 S. sonnei TUMD 74 + +
    260 S. sonnei TUMD 75 + +
    261 S. sonnei TUMD 76 + +
    262 S. sonnei TUMD 77 + +
    263 S. sonnei TUMD 78 + +
    264 S. sonnei TUMD 79 + +
    265 S. sonnei TUMD 80 + +
    266 S. sonnei TUMD 81 + +
    267 S. sonnei TUMD 82 + +
    268 S. sonnei TUMD 83 + +
    269 S. sonnei TUMD 84 + +
    270 S. sonnei TUMD 85 + +
    271 S. sonnei TUMD 86 + +
    272 S. sonnei TUMD 87 + +
    273 S. sonnei TUMD 88 + +
    274 S. sonnei TUMD 89 + +
    275 S. sonnei TUMD 90 + +
    276 S. sonnei TUMD 91 + +
    277 S. sonnei TUMD 92 +
    228 S. sonnei TUMD 93 + +
    279 S. sonnei TUMD 94 + +
    280 S. sonnei TUMD 95 + +
    281 S. sonnei TUMD 96 + +
    282 S. sonnei TUMD 97 + +
    283 S. sonnei TUMD 98 + +
    284 S. sonnei TUMD 99 + +
    285 S. sonnei TUMD 100 + +
    286 S. sonnei TUMD 101 + +
    287 S. sonnei TUMD 102 + +
    288 S. sonnei TUMD 103 + +
    289 S. sonnei TUMD 104 + +
    290 S. sonnei TUMD 105 + +
    291 S. sonnei TUMD 106 + +
    292 S. sonnei TUMD 107 + +
    293 S. sonnei TUMD 108 + +
    294 S. sonnei TUMD 109 + +
    295 S. sonnei TUMD 110 + +
    296 S. sonnei TUMD 111 + +
    297 S. sonnei TUMD 112 + +
    298 S. sonnei TUMD 113 + +
    299 S. sonnei TUMD 114 + +
    200 S. sonnei TUMD 115 + +
  • [0178]
    TABLE 3-7
    No Strains CH test* Primer 3 + 4**
    301 S. sonnei TUMD 116 + +
    302 S. sonnei TUMD 117 + +
    303 S. sonnei TUMD 118 + +
    304 S. sonnei TUMD 119 + +
    305 S. sonnei TUMD 120 + +
    306 S. sonnei TUMD 121 + +
    307 S. sonnei TUMD 122 + +
    308 S. sonnei TUMD 123 + +
    309 S. sonnei TUMD 124 + +
    310 S. sonnei TUMD 125 + +
    311 S. sonnei TUMD 126 + +
    312 S. sonnei TUMD 127 + +
    313 S. sonnei TUMD 128 + +
    314 S. sonnei Maramba 89-154 + +
    315 S. sonnei Maramba 89-161 + +
    316 S. sonnei Manila 89-342 + +
    317 S. sonnei Manila 89-445 + +
    318 E. coli DMR 6 + +
    319 E. coli DMR 78 + +
    320 E. coli DMR 79 + +
    321 E. coli AQ8001 + +
    322 E. coli AQ8003 + +
    323 E. coli AQ8004 + +
    324 E. coli AQ8008 + +
    325 E. coli AQ8010 + +
    326 E. coli AQ8011 + +
    327 E. coli AQ8012 + +
    328 E. coli AQ8013 + +
    329 E. coli AQ8016 + +
    330 E. coli AQ8019 + +
    331 E. coli AQ8022 + +
    332 E. coli AQ8024 + +
    333 E. coli AQ8025 + +
    334 E. coli AQ8027 + +
    335 E. coli AQ8028 + +
    336 E. coli AQ8029 + +
    337 E. coli AQ8031 + +
    338 E. coli AQ8033
    339 E. coli AQ8036
    340 E. coli AQ8044 + +
    341 E. coli PE660 + +
  • [Experiment 2][0179]
  • To determine whether the results obtained in [0180] Experiment 1 are specific to the ipaH gene, the DNAs of clinically important pathogenic bacteria other than Shigella species and EIEC are examined with the primers of the present invention. The same procedure as used in Experiment 1 is followed, except for the procedure of preparation of specimens.
  • Preparation of Specimens [0181]
  • Each strain listed in Table 4 is treated in the same manner as in [0182] Experiment 2 of Example 1.
  • Results [0183]
  • Table 4 shows the results of the test using the combination of primers of the present invention. This combination of primers does not amplify any DNAs other than those of Shigella species and EIEC. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with DNAs of the bacteria having the ipaH gene. [0184]
    TABLE 4
    No Strains PCR
    01 Bacillus cereus ATCC14579
    02 Bacillus Subtillis JCM1465
    03 Staphylococcus aureus JCM2413
    04 Staphylococcus epidermidis JCM2414
    05 Salmonella typhimurium IFO12529
    06 Salmonella enteritidis IFO3163
    07 Clostridium perfringens ATCC12917
    08 Vibrio cholerae ATCC25872
    09 Vibrio cholerae type Ogawa ATCC9458
    10 Vibrio cholerae type Inaba ATCC9459
    11 Vibrio fluvialis JCM3752
    12 Campylobacter jejuni JCM2013
    13 Campylobacter coli JCM2529
    14 Escherichia coli JCM1649
    15 Yersinia enterocolitica ATCC9610
    16 Corynebacterium diphtheriae JCM13
    17 Peptostreptococcus anaerobius ATCC23745
    18 Bacteroides flagilis ATCC23745
    19 Bacteroides vulgatus JCM5826
    20 Enterococcus faecalis JCM5803
    21 Klebsiella pneumoniae JCM1662
    22 Proteus vulgaris JCM1668
    23 Citrobacter freundii ATCC33128
    24 Streptococcus pyogenes ATCC12344
    25 Streptococcus pneumoniae ATCC33400
    26 Elaemophilis influenzae ATCC33391
    27 Proteus mirabilis ATCC29906
    28 Neisseria meningitidis ATCC13077
    29 Neisseria gonorrhoeae ATCC19424
    30 Listeria monocytogenes ATCC15313
    31 Lactobacillus acidophilus JCM1132
    32 Bifidobacterium adolescentis JCM1275
    33 Fusobacterium nucleatum ATCC25586
    34 Propionibacterium acnes ATCC6919
    35 Veillonella atypica ATCC17744
    36 Pseudomonas aeruginosa IFO12689
    37 Human placental DNA
  • Example 3 Detection of Shigella Species and EIEC Having the invE Gene
  • [Experiment 1][0185]
  • Preparation of Specimens [0186]
  • The same procedure as used in Example 1 is followed except that 341 strains of Shigella species and EIEC listed in Tables 3-1 to 3-7 are used. [0187]
  • Synthesis of Primers [0188]
  • As primers for amplifying the invE gene of Shigella species and EIEC, the above-described oligonucleotides SEQ ID NO: 5 and SEQ ID NO: 6 are selected based upon the known base sequence of the invE gene [Watanabe, H., et al., J. Bacteriol., 172, 619-629(1990)]. These oligonucleotides are chemically synthesized by the same method as in [0189] Experiment 1 of Example 1.
  • PCR [0190]
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used: [0191]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 5+Oligonucleotide SEQ ID NO: 6[0192]
  • Detection [0193]
  • Agarose Gel Electrophoresis [0194]
  • The same procedure as in Example 1 is followed. [0195]
  • Colony Hybridization Test [0196]
  • A colony hybridization test is carried out using an oligonucleotide probe specific to invE gene according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)]. [0197]
  • Results [0198]
  • The base sequence of the invE gene of Shigella species and EIEC has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, the oligonucleotides SEQ ID NO: 5 and SEQ ID NO: 6 of the present invention are used in combination, a nucleotide fragment of 293 bases (or a nucleotide duplex of 293 base pairs) should be amplified. When this estimation accords with the length of the amplified nucleotide sequence, it is judged that the combination of primers accurately amplifies the target region in the invE gene, and that the bacterial strain in the specimen has the invE gene. The results obtained from the agarose gel electrophoresis with 341 test strains are given in Tables 5-1 to 5-7. PCR using the primers of the present invention amplifies only the DNA of the strains which give the invE positive results in the colony hybridization test, showing no amplification of DNAs of invE negative strains. This indicates that PCR using the primers of the present invention is capable of accurately amplifying the invE gene and that Shigella species and EIEC both having the invE gene can be detected with high accuracy by using the oligonucleotides of the present invention. [0199]
    TABLE 5 - 1
    CH Primer
    No Strains test* 5 + 6**
    001 S. dysenteriae TUMD 1
    002 S. dysenteriae TUMD 2
    003 S. dysenteriae TUMD 3
    004 S. dysenteriae TUMD 4 + +
    005 S. dysenteriae TUMD 5
    006 S. dysenteriae TUMD 6
    007 S. dysenteriae MARABIA
    008 S. dysenteriae AQ-7003
    009 S. dysenteriae AQ-7004 + +
    010 S. dysenteriae AQ-7018
    011 S. dysenteriae AQ-7029
    012 S. dysenteriae AQ-7030 + +
    013 S. dysenteriae AQ-7061
    014 S. dysenteriae AQ-7125 + +
    015 S. dysenteriae AQ-7131
    016 S. dysenteriae AQ-7151
    017 S. dysenteriae AQ-7164 + +
    018 S. dysenteriae AQ-7166 + +
    019 S. dysenteriae AQ-7234 + +
    020 S. dysenteriae AQ-7302
    021 S. dysenteriae AQ-7350 + +
    022 S. dysenteriae AQ-7370 + +
    023 S. dysenteriae AQ-7403 + +
    024 S. dysenteriae AA-22021 + +
    025 S. dysenteriae AA-22184
    026 S. dysenteriae AA-22192
    027 S. dysenteriae AA-22555 + +
    028 S. dysenteriae AA-21933 + +
    029 S. dysenteriae AA-22496 + +
    030 S. dysenteriae AA-22224
    031 S. dysenteriae AA-22542 + +
    032 S. dysenteriae AA-22616
    033 S. dysenteriae AA-22239 + +
    034 S. dysenteriae AA-22538 + +
    035 S. dysenteriae ATCC9361 + +
    036 S. dysenteriae ATCC9753 + +
    037 S. dysenteriae ATCC11456a + +
    038 S. dysenteriae ATCC13313 + +
    039 S. dysenteriae ATCC23351 + +
    040 S. dysenteriae ATCC29027 + +
    041 S. dysenteriae ATCC29028 + +
    042 S. flexneri TUMD 7
    043 S. flexneri TUMD 8
    044 S. flexneri TUMD 9 + +
    045 S. flexneri TUMD10
    046 S. flexneri TUMD11
    047 S. flexneri TUMD12 + +
    048 S. flexneri TUMD13 + +
    049 S. flexneri TUMD14
    050 S. flexneri TUMD15 + +
  • [0200]
    TABLE 5 - 2
    CH Primer
    No Strains test* 5 + 6**
    051 S. flexneri TUMD16
    052 S. flexneri TUMD17
    053 S. flexneri TUMD18
    054 S. flexneri TUMD19 + +
    055 S. flexneri TUMD20
    056 S. flexneri TUMD21
    057 S. flexneri TUMD22
    058 S. flexneri TUMD23
    059 S. flexneri TUMD24 + +
    060 S. flexneri TUMD25
    061 S. flexneri TUMD26
    062 S. flexneri TUMD27
    063 S. flexneri TUMD28
    064 S. flexneri TUMD29
    065 S. flexneri TUMD30 + +
    066 S. flexneri TUMD31
    067 S. flexneri TUMD32
    068 S. flexneri TUMD33
    069 S. flexneri TUMD34
    070 S. flexneri TUMD35 + +
    071 S. flexneri TUMD36 + +
    072 S. flexneri TUMD38
    073 S. flexneri TUMD39 + +
    074 S. flexneri TUMD40
    075 S. flexneri TUMD41 + +
    076 S. flexneri TUMD42 + +
    077 S. flexneri TUMD43 + +
    078 S. flexneri TUMD44 + +
    079 S. flexneri TUMD45 + +
    080 S. flexneri TUMD46
    081 S. flexneri TUMD47 + +
    082 S. flexneri TUMD48
    083 S. flexneri TUMD49 + +
    084 S. flexneri TUMD50
    085 S. flexneri TUMD51
    086 S. flexneri TUMD52 + +
    087 S. flexneri TUMD53
    088 S. flexneri TUMD54
    089 S. flexneri TUMD55
    090 S. flexneri TUMD56
    091 S. flexneri TUMD57
    092 S. flexneri TUMD58
    093 S. flexneri TUMD59
    094 S. flexneri TUMD60
    095 S. flexneri TUMD61
    096 S. flexneri Maramba 89-77
    097 S. flexneri Maramba 89-95 + +
    098 S. flexneri Maramba 89-109a
    099 S. flexneri Maramba 89-119
    100 S. flexneri Maramba 89-155
  • [0201]
    TABLE 5 - 3
    CH Primer
    No Strains test* 5 + 6**
    101 S. flexneri Maramba 89-164
    102 S. flexneri Maramba 89-150 + +
    103 S. flexneri AA-22175
    104 S. flexneri AA-22371
    105 S. flexneri AA-22266 + +
    106 S. flexneri AA-22636 + +
    107 S. flexneri AA-22187
    108 S. flexneri AA-22170 + +
    109 S. flexneri AA-22367 + +
    110 S. flexneri AA-22316
    111 S. flexneri AA-22265 + +
    112 S. flexneri AA-22296
    113 S. flexneri AA-22312 + +
    114 S. flexneri AA-22246
    115 S. flexneri AA-21981
    116 S. flexneri AA-22097
    117 S. flexneri AQ-7347 + +
    118 S. flexneri AQ-7348 + +
    119 S. flexneri AQ-7351
    120 S. flexneri AQ-7360 + +
    121 S. flexneri AQ-7367 + +
    122 S. flexneri AQ-7372 + +
    123 S. flexneri AQ-7378
    124 S. flexneri AQ-7379
    125 S. flexneri AQ-7380
    126 S. flexneri AQ-7385 + +
    127 S. flexneri AQ-7386
    128 S. flexneri AQ-7390
    129 S. flexneri AQ-7391 + +
    130 S. flexneri AQ-7393
    131 S. flexneri AQ-7394
    132 S. flexneri AQ-7398
    133 S. flexneri AQ-7399
    134 S. flexneri AQ-7400
    135 S. flexneri AQ-7402
    136 S. flexneri AQ-7407
    137 S. flexneri AQ-7408
    138 S. flexneri AQ-7411 + +
    139 S. flexneri AQ-7416 + +
    140 S. flexneri AQ-7417 + +
    141 S. flexneri AQ-7418 + +
    142 S. flexneri AQ-7423 + +
    143 S. flexneri AQ-7424
    144 S. flexneri AQ-7426 + +
    145 S. flexneri AQ-7427 + +
    146 S. flexneri Manila 89-164
    147 S. flexneri Manila 89-177
    148 S. flexneri Manila 89-209
    149 S. flexneri Manila 89-210 + +
    150 S. flexneri Manila 89-229 + +
  • [0202]
    TABLE 5 - 4
    CH Primer
    No Strains test* 5 + 6**
    151 S. flexneri Manila 89-230
    152 S. flexneri Manila 89-231 + +
    153 S. flexneri Manila 89-232 + +
    154 S. flexneri Manila 89-233
    155 S. flexneri Manila 89-273 + +
    156 S. flexneri Manila 89-328 + +
    157 S. flexneri Manila 89-333 + +
    158 S. flexneri Manila 89-365 + +
    159 S. flexneri Manila 89-274
    160 S. flexneri Manila 89-436
    161 S. flexneri Manila 89-438 + +
    162 S. flexneri Manila 89-443 + +
    163 S. flexneri Manila 89-444 + +
    164 S. flexneri Manila 89-450 + +
    165 S. flexneri Manila 89-480 + +
    166 S. flexneri Manila 89-483
    167 S. flexneri Manila 89-486
    168 S. flexneri Manila 89-498
    169 S. flexneri Manila 89-499
    170 S. flexneri Manila 89-503
    171 S. flexneri Manila 89-509
    172 S. flexneri Manila 89-532
    173 S. flexneri Manila 89-539
    174 S. boydii TUMD62
    175 S. boydii TUMD63 + +
    176 S. boydii TUMD64 + +
    177 S. boydii TUMD65
    178 S. boydii TUMD66 + +
    179 S. boydii TUMD67
    180 S. boydii TUMD68
    181 S. boydii AQ-7019
    182 S. boydii AQ-7020
    183 S. boydii AQ-7026
    184 S. boydii AQ-7032 + +
    185 S. boydii AQ-7039 + +
    186 S. boydii AQ-7042 + +
    187 S. boydii AQ-7062 + +
    188 S. boydii AQ-7076
    189 S. boydii AQ-7098 + +
    190 S. boydii AQ-7157 + +
    191 S. boydii AQ-7193
    192 S. boydii AQ-7206
    193 S. boydii AQ-7213 + +
    194 S. boydii AQ-7218 + +
    195 S. boydii AQ-7238 + +
    196 S. boydii AQ-7267
    197 S. boydii AQ-7268 + +
    198 S. boydii AQ-7307 + +
    199 S. boydii AQ-7313
    200 S. boydii AQ-7314
  • [0203]
    TABLE 5 - 5
    CH Primer
    No Strains test* 5 + 6**
    201 S. boydii AQ-7324
    202 S. boydii AQ-7349 + +
    203 S. boydii AQ-7354
    204 S. boydii AQ-7356
    205 S. boydii AQ-7357 + +
    206 S. boydii AQ-7368 + +
    207 S. boydii AQ-7373 + +
    208 S. boydii AQ-7376
    209 S. boydii AQ-7405 + +
    210 S. boydii AA-22562 + +
    211 S. boydii AA-22241
    212 S. boydii AA-22610
    213 S. boydii AA-20255 + +
    214 S. boydii AA-20211 + +
    215 S. boydii AA-21713
    216 S. boydii AA-17405
    217 S. boydii AA-22804
    218 S. boydii AQ-7297 + +
    219 S. sonnei AQ-7366
    220 S. sonnei AQ-7369 + +
    221 S. sonnei AQ-7371
    222 S. sonnei AQ-7374
    223 S. sonnei AQ-7375 + +
    224 S. sonnei AQ-7377 + +
    225 S. sonnei AQ-7381
    226 S. sonnei AQ-7382
    227 S. sonnei AQ-7383
    228 S. sonnei AQ-7384
    229 S. sonnei AQ-7387
    230 S. sonnei AQ-7388 + +
    231 S. sonnei AQ-7389 + +
    232 S. sonnei AQ-7392 + +
    233 S. sonnei AQ-7395
    234 S. sonnei AQ-7396
    235 S. sonnei AQ-7397 + +
    236 S. sonnei AQ-7401 + +
    237 S. sonnei AQ-7406 + +
    238 S. sonnei AQ-7409
    239 S. sonnei AQ-7410
    240 S. sonnei AQ-7412
    241 S. sonnei AQ-7413 + +
    242 S. sonnei AQ-7414
    243 S. sonnei AQ-7415
    244 S. sonnei AQ-7419 + +
    245 S. sonnei AQ-7420
    246 S. sonnei AQ-7421 + +
    247 S. sonnei AQ-7422 + +
    248 S. sonnei AQ-7425
    249 S. sonnei AA-22634 + +
    250 S. sonnei AA-22677 + +
  • [0204]
    TABLE 5 - 6
    CH Primer
    No Strains test* 5 + 6**
    251 S. sonnei AA-18306
    252 S. sonnei AA-22067
    253 S. sonnei AA-22870
    254 S. sonnei TUMD69 + +
    255 S. sonnei TUMD70
    256 S. sonnei TUMD71
    257 S. sonnei TUMD72
    258 S. sonnei TUMD73 + +
    259 S. sonnei TUMD74
    260 S. sonnei TUMD75 + +
    261 S. sonnei TUMD76
    262 S. sonnei TUMD77
    263 S. sonnei TUMD78 + +
    264 S. sonnei TUMD79
    265 S. sonnei TUMD80
    266 S. sonnei TUMD81 + +
    267 S. sonnei TUMD82
    268 S. sonnei TUMD83
    269 S. sonnei TUMD84
    270 S. sonnei TUMD85
    271 S. sonnei TUMD86
    272 S. sonnei TUMD87
    273 S. sonnei TUMD88
    274 S. sonnei TUMD89
    275 S. sonnei TUMD90 + +
    276 S. sonnei TUMD91
    277 S. sonnei TUMD92 + +
    278 S. sonnei TUMD93 + +
    279 S. sonnei TUMD94 + +
    280 S. sonnei TUMD95
    281 S. sonnei TUMD96
    282 S. sonnei TUMD97
    283 S. sonnei TUMD98
    284 S. sonnei TUMD99
    285 S. sonnei TUMD100
    286 S. sonnei TUMD101
    287 S. sonnei TUMD102 + +
    288 S. sonnei TUMD103 + +
    289 S. sonnei TUMD104 + +
    290 S. sonnei TUMD105 + +
    291 S. sonnei TUMD106
    292 S. sonnei TUMD107 + +
    293 S. sonnei TUMD108
    294 S. sonnei TUMD109 + +
    295 S. sonnei TUMD110
    296 S. sonnei TUMD111 + +
    297 S. sonnei TUMD112
    298 S. sonnei TUMD113 + +
    299 S. sonnei TUMD114 + +
    200 S. sonnei TUMD115
  • [0205]
    TABLE 5 - 7
    CH Primer
    No Strains test* 5 + 6**
    301 S. sonnei TUMD116
    302 S. sonnei TUMD117
    303 S. sonnei TUMD118 + +
    304 S. sonnei TUMD119 + +
    305 S. sonnei TUMD120 + +
    306 S. sonnei TUMD121
    307 S. sonnei TUMD122
    308 S. sonnei TUMD123 + +
    309 S. sonnei TUMD124 + +
    310 S. sonnei TUMD125
    311 S. sonnei TUMD126 + +
    312 S. sonnei TUMD127
    313 S. sonnei TUMD128
    314 S. sonnei Maramba 89-154 + +
    315 S. sonnei Maramba 89-161
    316 S. sonnei Manila 89-342
    317 S. sonnei Manila 89-445 + +
    318 E. coli DMR 6 + +
    319 E. coli DMR78 + +
    320 E. coli DMR79
    321 E. coli AQ8001
    322 E. coli AQ8003 + +
    323 E. coli AQ8004
    324 E. coli AQ8008 + +
    325 E. coli AQ8010 + +
    326 E. coli AQ8011 + +
    327 E. coli AQ8012 + +
    328 E. coli AQ8013
    329 E. coli AQ8016 + +
    330 E. coli AQ8019 + +
    331 E. coli AQ8022 + +
    332 E. coli AQ8024
    333 E. coli AQ8025 + +
    334 E. coli AQ8027
    335 E. coli AQ8028 + +
    336 E. coli AQ8029 + +
    337 E. coli AQ8031 + +
    338 E. coli AQ8033
    339 E. coli AQ8036
    340 E. coli AQ8044 + +
    341 E. coli PE660 + +
  • [Experiment 2][0206]
  • To determine whether the results obtained in [0207] Experiment 1 are specific to the invE gene, DNAs of clinically important pathogenic bacteria other than Shigella species and EIEC are examined with the primers of the present invention. The same procedure as used in Experiment 1 is followed, except for the procedure of preparation of specimens.
  • Preparation of Specimens [0208]
  • Each strain listed in Table 6 is treated in the same manner as in [0209] Experiment 2 of Example 1.
  • Results [0210]
  • Table 6 shows the results of the test using the combination of primers of the present invention. This combination of primers does not amplify any DNAs of pathogenic bacteria other than Shigella species and EIEC. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with DNAs of the bacteria having the invE gene. [0211]
    TABLE 6
    No Strains PCR
    01 Bacillus cereus ATCC14579
    02 Bacillus Subtilis JCM1465
    03 Staphylococcus aureus JCM2413
    04 Staphylococcus epidermidis JCM2414
    05 Salmonella typhimurium IF012529
    06 Salmonella enteritidis IF03163
    07 Clostridium perfringens ATCC12917
    08 Vibrio cholerae ATCC25872
    09 Vibrio cholerae type Ogawa ATCC9458
    10 Vibrio cholerae type Inaba ATCC9459
    11 Vibrio fluvialis JCM3752
    12 Campylobacter jejuni JCM2013
    13 Campylobacter coli JCM2529
    14 Escherichia coli JCM1649
    15 Yersinia enterocolitica ATCC9610
    16 Corynebacterium diphtheriae JCM13
    17 Peptostreptococcus anaerobius ATCC273
    18 Bacteroides flagilis ATCC23745
    19 Bacteroides vulgatus JCM5826
    20 Enterococcus faecalis JCM5803
    21 Klebsiella pneumoniae JCM1662
    22 Proteus vulgaris JCM1668
    23 Citrobacter freundii ATCC33128
    24 Streptococcus pyogenes ATCC12344
    25 Streptococcus pneumoniae ATCC33400
    26 Elaemophilis influenzae ATCC33391
    27 Proteus mirabilis ATCC29906
    28 Neisseria meningitidis ATCC13077
    29 Neisseria gonorthoeae ATCC19424
    30 Listeria monocytogenes ATCC15313
    31 Lactobacillus acidophilus JCM1132
    32 Bifidobacterium adolescentis JCM1275
    33 Fusobacterium nucleatum ATCC25586
    34 Propionibacterium acnes ATCC6919
    35 Veillonella atypica ATCC17744
    36 Pseudomonas aeruginosa IF012689
    37 Human placental DNA
  • Example 4 Detection of Salmonella Species having the araC Gene
  • [Experiment 1][0212]
  • Preparation of Specimens [0213]
  • As listed in Tables 7-1 to 7-6, the 133 various Salmonella species isolated from the patients and food samples are used. The details are as follows: 67 strains of [0214] Salmonella typhimurium, 1 of Salmonella havana, 2 of Salmonella oranienburg, 3 of Salmonella london, 3 of Salmonella senftenberg, 4 of Salmonella blockley, 3 of Salmonella agona, 4 of Salmonella infantis, 14 of Salmonella litchfield, 6 of Salmonella enteritidis, 13 of Salmonella thompson, 6 of Samonella paratyphi B, 2 of Salmonella Montevideo, 1 of Salmonella gallinarum, 1 of Salmonella choleraesuis, 1 of Salmonella derby, 1 of Salmonella give and 1 of Salmonella Heidelberg. Each strain is inoculated to an appropriate medium, and subjected to overnight culture at 37° C. under aerobic conditions. Each culture broth is diluted with TE buffer, and heated at 95° C. for 10 minutes, followed by centrifugation. The supernatants are used as specimens.
  • Synthesis of Primers [0215]
  • As primers for amplifying the araC gene of [0216] Salmonella typhimurium, the above-described oligonucleotides SEQ ID NO: 7 to SEQ ID NO: 1l are selected based upon the known base sequence of the arac gene [Horwitz, A. H., et al., Gene 14, 309-319(1981); Clarke, P., et al., Gene 18, 157-163(1982); Lee, J. -H., et al., Gene 46, 113-121 (1986)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR [0217]
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used:[0218]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 7+Oligonucleotide SEQ ID NO: 8; [0219]
  • Oligonucleotide SEQ ID NO: 9+Oligonucleotide SEQ ID NO: 10; and [0220]
  • Oligonucleotide SEQ ID NO: 11+Oligonucleotide SEQ ID NO: 8. [0221]
  • Detection [0222]
  • Agarose Gel Electrophoresis [0223]
  • The same procedure as in Example 1 is followed. [0224]
  • Results [0225]
  • The base sequence of the araC gene of [0226] Salmonella typhimurium has already been determined. This base sequence is thought to be common to all Salmonella species. The length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when oligonucleotides SEQ ID NO: 7 and SEQ ID NO: 8 of the present invention are used in combination, a nucleotide fragment of 361 bases (or a nucleotide duplex of 361 base pairs) is amplified. Similarly, the combination of SEQ ID NO: 9 and SEQ ID NO: 10, and that of SEQ ID NO: 11 and SEQ ID NO: 8 amplify nucleotide fragment of 493 bases and that of 334 bases, respectively. When these estimations accord with the length of the amplified nucleotide fragments, it is judged that PCR using the combination of primers accurately amplifies the target region in the araC gene, and that the bacterial strain in the specimen has the arac gene. Tables 7-1 to 7-6 shows the results of the detection of the arac gene in Salmonella species. As obvious from Tables 7-1 to 7-6, the arac gene of Salmonella species are detected with high accuracy by using the oligonucleotide primers of the present invention.
    TABLE 7 - 1
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    001 Salmonella typhimurium 56-1 + + +
    002 Salmonella typhimurium 56-2 + + +
    003 Salmonella typhimurium 56-3 + + +
    004 Salmonella typhimurium 56-4 + + +
    005 Salmonella typhimurium 56-5 + + +
    006 Salmonella typhimurium 56-6 + + +
    007 Salmonella typhimurium 56-7 + + +
    008 Salmonella typhimurium 56-11 + + +
    009 Salmonella typhimurium 56-12 + + +
    010 Salmonella typhimurium 56-13 + + +
    011 Salmonella typhimurium 56-17 + + +
    012 Salmonella typhimurium 56-18 + + +
    013 Salmonella typhimurium 56-19 + + +
    014 Salmonella typhimurium 56-20 + + +
    015 Salmonella typhimurium 56-21 + + +
    016 Salmonella typhimurium 56-22 + + +
    017 Salmonella typhimurium 56-23 + + +
    018 Salmonella typhimurium 56-25 + + +
    019 Salmonella typhimurium 56-26 + + +
    020 Salmonella typhimurium 56-27 + + +
    021 Salmonella typhimurium 56-30 + + +
    022 Salmonella typhimurium 56-31 + + +
    023 Salmonella typhimurium 56-32 + + +
    024 Salmonella typhimurium 57-3 + + +
    025 Salmonella typhimurium 57-4 + + +
  • [0227]
    TABLE 7 - 2
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    026 Salmonella typhimurium 57-5 + + +
    027 Salmonella typhimurium 57-6 + + +
    028 Salmonella typhimurium 57-7 + + +
    029 Salmonella typhimurium 57-9 + + +
    030 Salmonella typhimurium 57-10 + + +
    031 Salmonella typhimurium 57-11 + + +
    032 Salmonella typhimurium 57-19 + + +
    033 Salmonella typhimurium 57-20 + + +
    034 Salmonella typhimurium 59-26 + + +
    035 Salmonella typhimurium 59-27 + + +
    036 Salmonella typhimurium 59-28 + + +
    037 Salmonella typhimurium 59-54 + + +
    038 Salmonella typhimurium 59-55 + + +
    039 Salmonella typhimurium 59-56 + + +
    040 Salmonella typhimurium 59-57 + + +
    041 Salmonella typhimurium 59-58 + + +
    042 Salmonella typhimurium 60-5 + + +
    043 Salmonella typhimurium 60-6 + + +
    044 Salmonella typhimurium 60-7 + + +
    045 Salmonella typhimurium 60-13 + + +
    046 Salmonella typhimurium 61-1 + + +
    047 Salmonella typhimurium 61-16 + + +
    048 Salmonella typhimurium 62-1 + + +
    049 Salmonella typhimurium 62-2 + + +
    050 Salmonella typhimurium 62-3 + + +
  • [0228]
    TABLE 7 - 3
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    051 Salmonella 62-4 + + +
    typhimurium
    052 Salmonella 62-5 + + +
    typhimurium
    053 Salmonella 62-6 + + +
    typhimurium
    054 Salmonella 63-6 + + +
    typhimurium
    055 Salmonella 63-7 + + +
    typhimurium
    056 Salmonella 63-8 + + +
    typhimurium
    057 Salmonella 63-9 + + +
    typhimurium
    058 Salmonella 89-1 + + +
    typhimurium
    059 Salmonella 89-2 + + +
    typhimurium
    060 Salmonella IFO12529 + + +
    typhimurium
    061 Salmonella IFO13245 + + +
    typhimurium
    062 Salmonella IFO14193 + + +
    typhimurium
    063 Salmonella IFO14194 + + +
    typhimurium
    064 Salmonella IFO14209 + + +
    typhimurium
    065 Salmonella IFO14210 + + +
    typhimurium
    066 Salmonella IFO14211 + + +
    typhimurium
    067 Salmonella IFO14212 + + +
    typhimurium
    068 Salmonella litchfield 56-8 + + +
    069 Salmonella litchfield 59-25 + + +
    070 Salmonella litchfield 53-22 + + +
    071 Salmonella litchfield 53-23 + + +
    072 Salmonella litchfield 53-24 + + +
    073 Salmonella litchfield 54-5 + + +
    074 Salmonella litchfield 54-6 + + +
    075 Salmonella litchfield 55-3 + + +
  • [0229]
    TABLE 7 - 4
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    076 Salmonella 55-4 + + +
    litchfield
    077 Salmonella 55-6 + + +
    litchfield
    078 Salmonella 55-7 + + +
    litchfield
    079 Salmonella 55-8 + + +
    litchfield
    080 Salmonella 55-12 + + +
    litchfield
    081 Salmonella 55-13 + + +
    litchfield
    082 Salmonella 61-2 + + +
    thompson
    083 Salmonella 61-3 + + +
    thompson
    084 Salmonella 61-4 + + +
    thompson
    085 Salmonella 61-17 + + +
    thompson
    086 Salmonella 61-18 + + +
    thompson
    087 Salmonella 52-3 + + +
    thompson
    088 Salmonella 52-4 + + +
    thompson
    089 Salmonella 53-5 + + +
    thompson
    090 Salmonella 53-6 + + +
    thompson
    091 Salmonella 53-7 + + +
    thompson
    092 Salmonella 53-20 + + +
    thompson
    093 Salmonella 53-21 + + +
    thompson
    094 Salmonella NIAH1230 + + +
    thompson
    095 Salmonella 59-36 + + +
    enteritidis
    096 Salmonella 59-37 + + +
    enteritidis
    097 Salmonella 59-38 + + +
    enteritidis
    098 Salmonella 53-1 + + +
    enteritidis
    099 Salmonella 53-2 + + +
    enteritidis
    100 Salmonella IFO3313 + + +
    enteritidis
  • [0230]
    TABLE 7 - 5
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    101 Salmonella 61-19 + + +
    paratyphi B
    102 Salmonella 61-20 + + +
    paratyphi B
    103 Salmonella 61-21 + + +
    paratyphi B
    104 Salmonella 63-1 + + +
    paratyphi B
    105 Salmonella 63-2 + + +
    paratyphi B
    106 Salmonella 63-3 + + +
    paratyphi B
    107 Salmonella 58-55 + + +
    blockley
    108 Salmonella 58-56 + + +
    blockley
    109 Salmonella 58-57 + + +
    blockley
    110 Salmonella NIAH1197 + + +
    blockley
    111 Salmonella 59-20 + + +
    infantis
    112 Salmonella 59-21 + + +
    infantis
    113 Salmonella 59-22 + + +
    infantis
    114 Salmonella NIAH1218 + + +
    infantis
    115 Salmonella agona 59-1 + + +
    116 Salmonella agona 59-2 + + +
    117 Salmonella agona 59-3 + + +
    118 Salmonella 58-7 + + +
    london
    119 Salmonella 58-8 + + +
    london
    120 Salmonella 58-9 + + +
    london
    121 Salmonella 58-27 + + +
    senftenberg
    122 Salmonella 58-28 + + +
    senftenberg
    123 Salmonella 58-29 + + +
    senftenberg
    124 Salmonella 57-1 + + +
    oranienburg
    125 Salmonella 57-2 + + +
    oranienburg
  • [0231]
    TABLE 7 - 6
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    126 Salmonella 54-4 + + +
    montevideo
    127 Salmonella NIAH1221 + + +
    montevideo
    128 Salmonella IFO3163 + + +
    gallinarum
    129 Salmonella NIAH1198 + + +
    choleraesuis
    130 Salmonella derby NIAH1199 + + +
    131 Salmonella give NIAH1214 + + +
    132 Salmonella 56-44 + + +
    havana
    133 Salmonella NIAH1216 + + +
    heiderberg
  • [Experiment 2][0232]
  • To determine whether the results obtained in [0233] Experiment 1 are specific to the araC gene of Salmonella species, DNAs of clinically important diarrheal bacteria other than Salmonella species and other pathogenic bacteria are examined with the primers of the present invention. In particular, differentiation between Salmonella species and Citrobacter species, which has been difficult by conventional methods, is carefully examined.
  • The same procedure as used in [0234] Experiment 1 is followed, except for the procedure of preparation of specimens.
  • Preparation of Specimens [0235]
  • [0236] Clostridium perfringens, Campylobacter jejuni, Campylobacter coli, Bacteroides fragilis, Bacteroides vulgatus, Lactobacillus acidophilus and Bifidobacterium adolescentis are cultured at 37° C. under anaeorbic conditions, while Neisseria gonorrhoeae and Neisseria meningitidis are cultured in the presence of 3-10% CO2.
  • Human placenta DNA, at a concentration of 1 μg/ml, is subjected to PCR in the same manner as above. [0237]
  • Results [0238]
  • Tables 8-1 to 8-3 shows the results of the test using the combinations of the primers of the present invention. These combinations of primers do not amplify any DNAs of bacterial strains other than Salmonella species or DNAs of human placenta. It is of particular importance that the combinations of the primers of the present invention do not amplify any DNAs of Citrobacter species which are closely akin to and hardly differentiated from Salmonella species. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of Salmonella species, with high reliability. [0239]
    TABLE 8 - 1
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    01 Bacillus cereus ATCC14579
    02 Bacillus subtilis JCM1465
    03 Staphylococcus JCM2413
    aureus
    04 Staphylococcus JCM2414
    epidermidis
    05 Clostridium ATCC12917
    perfringens
    06 Vibrio cholerae ATCC25872
    07 Vibrio cholerae ATCC9458
    type Ogawa
    08 Vibrio cholerae ATCC9459
    type Inaba
    09 Vibrio cholerae 61H-151
    10 Vibrio WP-1
    parahaemolyticus
    11 Vibrio fluvialis JCM3752
    12 Campylobacter JCM2013
    jejuni
    13 Campylobacter JCM2529
    coli
    14 Escherichia coli JCM1649
    15 Escherichia coli H10407
    16 Escherichia coli WHO 3
    17 Escherichia coli WHO 47
    18 Escherichia coli T-1
    19 Escherichia coli T-40
    20 Yersinia ATCC9610
    enterocolitica
    21 Shigella dysenteriae ATCC9361
    22 Shigella boydii ATCC9210
    23 Shigella flexneri ATCC11836
    24 Shigella sonnei ATCC9290
    25 Bacteroides flagilis ATCC23745
  • [0240]
    TABLE 8 - 2
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    26 Bacteroides vulgatus JCM5826
    27 Proteus vulgaris JCM1668
    28 Proteus mirabilis ATCC29906
    29 Streptococcus pyogenes ATCC12344
    30 Streptococcus pneumoniae ATCC33400
    31 Heamophilis influenzae ATCC33391
    32 Klebsiella pneumoniae JCM1662
    33 Neisseria gonorrbeae ATCC19424
    34 Neisseria meningitidis ATCC13077
    35 Listeria monocytogenes ATCC15313
    36 Lactobacillus acidophilus JCM1132
    37 Bifidobacterium adolescentis JCM1275
    38 Fusobacterium nucleatum ATCC25586
    39 Propionibacterium acnes ATCC6919
    40 Veillonella atypica ATCC17744
    41 Pseudomonas aeruginosa IFO12689
    42 Corynebacterium diphtheriae JCM1310
    43 Peptostreptococcus anaerobius ATCC27337
    44 Citrobacter freundii ATCC6750
    45 Citrobacter freundii ATCC6879
    46 Citrobacter freundii ATCC8090
    47 Citrobacter freundii ATCC8454
    48 Citrobacter freundii ATCC10053
    49 Citrobacter freundii ATCC10625
    50 Citrobacter freundii ATCC10787
  • [0241]
    TABLE 8 - 3
    Combination of primers*
    No Strains 7 + 8** 9 + 10** 11 + 8**
    51 Citrobacter freundii ATCC11102
    52 Citrobacter freundii ATCC11811
    53 Citrobacter freundii ATCC29063
    54 Citrobacter freundii ATCC29219
    55 Citrobacter freundii ATCC29220
    56 Citrobacter freundii ATCC29221
    57 Citrobacter freundii ATCC29222
    58 Citrobacter freundii ATCC29935
    59 Citrobacter freundii ATCC33128
    60 Citrobacter ATCC25405
    amalonaticus
    64 Citrobacter ATCC25406
    amalonaticus
    64 Citrobacter ATCC25407
    amalonaticus
    65 Citrobacter diversus ATCC27156
    65 Citrobacter diversus ATCC29223
    65 Citrobacter diversus ATCC29224
    66 Citrobacter diversus ATCC29225
    67 Citrobacter diversus ATCC29936
  • Example 5 Detection of EHEC (VTEC) having the VT1 Gene
  • [Experiment 1][0242]
  • Preparation of Specimens [0243]
  • The same procedure as used in Example 1 is followed except that 320 strains of EHEC (VTEC) strains. [0244]
  • Synthesis of primers [0245]
  • As primers for amplifying the VT1 gene of EHEC (VTEC), the above-described oligonucleotides SEQ ID NO: 12 and SEQ ID NO: 13 are selected based upon the known base sequence of the VT1 gene [Takao T., et al., Microb. Pathog., 5, 357-369(1988)]. These oligonucleotides are chemically synthesized by the same method as in [0246] Experiment 1 of Example 1.
  • PCR [0247]
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used: [0248]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 12+Oligonucleotide SEQ ID NO: 13[0249]
  • Detection [0250]
  • Agarose Gel Electrophoresis [0251]
  • The same procedure as in Example 1 is followed. [0252]
  • Colony Hybridization Test [0253]
  • A colony hybridization test is carried out using an oligonucleotide probe specific to the VT1 gene and that specific to the VT2 gene according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)]. [0254]
  • Results [0255]
  • The base sequence of the VT1 gene of EHEC(VTEC) has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 12 and SEQ ID NO: 13 of the present invention are used in combination, a nucleotide fragment of 349 bases (or a nucleotide duplex of 349 base pairs) should be amplified. When this estimation accords with the length of the amplified nucleotide fragment, it is judged that PCR using the combination of primers accurately amplifies the target region in the VT1 gene, and that the bacterial strain in the specimen has the VT1 gene. The results obtained from the agarose gel electrophoresis and from the colony hybridization test for 320 test strains are given in Table 9. Table 9 shows that PCR using the primers of the present invention amplifies only DNAs of the strains which give a positive result for the VT1 gene in the colony hybridization test, and that it does not amplify the DNA of the VT1 negative strains. This indicates that PCR using the primers of the present invention is capable of accurately amplifying the VT1 gene and that EHEC(VTEC) having the VT1 gene can be detected with high accuracy by using the oligonucleotides of the present invention. [0256]
    TABLE 9
    Accuracy of the primers
    Results of colony hybridization test
    Positive Negative
    for both for both
    Positive Positive VT 1 and VT 1 and
    for for VT 2 VT 2
    VT 1 gene VT 2 gene genes genes
    Results Positive 39 0 53 0
    of PCR Negative 0 185 0 43
  • [Experiment 2][0257]
  • To determine whether the results obtained in [0258] Experiment 1 are specific to EHEC (VTEC) having the VT1 gene, the DNAs of clinically important pathogenic bacteria other than EHEC (VTEC) are examined with the primers of the present invention. The same procedure as used in Experiment 1 is followed, except for the procedure of preparation of specimens.
  • Preparation of Specimens [0259]
  • Each strain listed in Table 10 is treated in the same manner as in [0260] Experiment 2 of Example 1. Among strains listed in Table 10, the following strains are cultured under anaerobic conditions: Clostridium perfringens, Campylobacter jejuni, Bacteroides fragills, Bacteroides vulgatus and Lactobacillus acidophilus.
  • Results [0261]
  • Table 10 shows the results from the test using the combinations of primers of the present invention. Although the combinations of primers do not amplify DNAs of any other strains than EHEC(VTEC) except for a certain type of Shigella species ([0262] Shigella dysenteriae type I).
  • It is well known that the differentiation between EHEC (VTEC) and [0263] Shigella dysenteriae is impossible because Shigella dysenteriae has the VT1 gene. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of the bacteria having the VT1 gene.
    TABLE 10
    Reactivity with un-targeted gene
    Combination of primers
    No Strains 12 + 13* 14 + 15* 16 + 18* 17 + 18*
    1 Bacillus cereus ATCC 14579
    2 B. subtilis JCM 1465
    3 Staphylococcus aureus JCM 2413
    4 S. epidermidis JCM 2414
    5 Salmonella typhimurium IFO 12529
    6 S. enteritidis IFO 3163
    7 Clostridium perfringens ATCC 12917
    8 Vibrio fluvialis JCM 3752
    9 Campylobacter jejuni JCM 2013
    10 C. coli JCM 2529
    11 Escherichia coli JCM 1649
    12 Yersinia enterocolitica ATCC 9610
    13 Shigella dysenteriae ATCC 9361 + + +
    14 S. flexneri ATCC 29903
    15 S. sonnei ATCC 29930
    16 Bacteroides fragilis ATCC 23745
    17 B. vulgatus JCM 5826
    18 Enterococcus faecalis JCM 5803
    19 Klebsiella pneumoniae JCM 1662
    20 Proteus vulgaris JCM 1668
    21 Citrobacter freundii ATCC 33128
    22 Streptococcus pyogenes ATCC 12344
    23 S. pneumoniae ATCC 33400
    24 Haemophilus influenzae ATCC 33391
    25 Proteus mirabilis ATCC 29906
    26 Neisseria gonorrhoeae ATCC 19424
    27 N. meningitidis ATCC 13077
    28 Listeria monocytogenes ATCC 15313
    29 Lactobacillus acidophilus JCM 1132
    30 Bifidobacterium adolescentis JCM 1275
    31 Fusobacterium nucleatum ATCC 2558
    32 Propionibacterium acnes ATCC 6919
    33 Veillonella atypica ATCC 17744
    34 Pseudomonas aeruginosa IFO 12689
    35 Corynebacterium diphtheriae JCM 1310
    36 Peptostreptococcus anaerobius ATCC 27337
    37 Vibrio cholerae ATCC 25872
    38 V. cholerae type Ogawa ATCC 9458
    39 V. chalerae type Inaba ATCC 9459
  • Example 6 Detection of EHEC (VTEC) having the VT2 Gene
  • [Experiment 1][0264]
  • Preparation of Specimens [0265]
  • The same procedure as used in [0266] Experiment 1 of Example 5 is followed.
  • Synthesis of Primers [0267]
  • As primers for amplifying the VT2 gene of EHEC (VTEC) strains, the above-described oligonucleotides SEQ ID NO: 14 and SEQ ID NO: 15 are selected based upon the known base sequence of the VT2 gene [Jackson, M. P., et al., FEMS Microbio. Lett., 44, 109-114(1987)]. These oligonucleotides are chemically synthesized by the same method as in Example 1. [0268]
  • PCR [0269]
  • PCR is carried out under the same reaction conditions as in Example 1 except that the following oligonucleotide combination is used:[0270]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 14+Oligonucleotide SEQ ID NO: 15 [0271]
  • Detection [0272]
  • Agarose Gel Electrophoresis [0273]
  • The same procedure as in Example 1 is followed. [0274]
  • Colony Hybridization Test [0275]
  • The same procedure as in [0276] Experiment 1 of Example 5 is followed.
  • Results [0277]
  • The base sequence of the VT2 gene of EHEC(VTEC) has already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when oligonucleotides SEQ ID NO: 14 and SEQ ID NO: 15 of the present invention are used in combination, a nucleotide fragment of 404 bases (or a nucleotide duplex of 404 base pairs) should be amplified. When this estimation accords with the length of the amplified nucleotide fragment, it is judged that PCR using the combination of primers accurately amplifies the target region in the VT2 gene, and that the bacterial strain in the specimen has the VT2 gene. The results obtained from the agarose gel electrophoresis with 320 test strains and from the colony hybridization test are given in Table 11. PCR using the primers of the present invention amplifies only DNAs of the strains which give a result positive for the VT2 gene in the colony hybridization test, showing no amplification of the DNA of the VT2 negative strains. This indicates that PCR using the primers of the present invention is capable of accurately amplifying the VT2 gene and that EHEC(VTEC) having the VT2 gene can be detected with high accuracy by using the oligonucleotides of the present invention. [0278]
    TABLE 11
    Accuracy of the primers
    Results of colony hybridization test
    Positive Negative
    for both for both
    Positive Positive VT 1 and VT 1 and
    for for VT 2 VT 2
    VT 1 gene VT 2 gene genes genes
    Results Positive 0 185 53 0
    of PCR Negative 39 0 0 43
  • [Experiment 2][0279]
  • To determine whether the results obtained in [0280] Experiment 1 are specific to EHEC (VTEC) having the VT2 gene, the DNAs of clinically important pathogenic bacteria other than EHEC (VTEC) are examined with the primers of the present invention. The same procedure as used in Experiment 2 of Example 5 is followed.
  • Results [0281]
  • Table 10 shows the results of the test using the combinations of primers of the present invention. All the combinations of primers in Table 10 do not amplify the DNAs of pathogenic bacteria other than EHEC (VTEC). It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of the bacteria having the VT2 gene. [0282]
  • Example 7 Detection of EHEC (VTEC) having the VT1 Gene, the VT2 Gene or a Variant Gene of the VT2 Gene
  • [Experiment 1][0283]
  • Preparation of Specimens [0284]
  • The same procedure as used in [0285] Experiment 1 of Example 1 is followed.
  • Synthesis of Primers [0286]
  • As primers for amplifying the VT1 gene, the VT2 gene or a variant gene of VT2 (VT2vha, VT2vhb or VT2vp1), the above-described oligonucleotides SEQ ID NO: 16, SEQ ID NO: 17 and SEQ ID NO: 18 are selected. These oligonucleotides are chemically synthesized by the same method as in [0287] Experiment 1 of Example 1.
  • PCR [0288]
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used:[0289]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 16+Oligonucleotide SEQ ID NO: 18; and [0290]
  • Oligonucleotide SEQ ID NO: 17+Oligonucleotide SEQ ID NO: 18.[0291]
  • Detection [0292]
  • Agarose Gel Electrophoresis [0293]
  • The same procedure as in [0294] Experiment 1 of Example 1 is followed.
  • Colony Hybridization Test [0295]
  • The same procedures as in [0296] Experiment 1 of Example 1 are followed.
  • Results [0297]
  • The base sequences of the VT1 gene, the VT2 gene, the VT2vha gene, the VT2vhb gene and the VT2vp1 gene of EHEC(VTEC) have already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 16 and SEQ ID NO: 18 of the present invention are used in combination, a nucleotide fragment of 495 bases (or a nucleotide duplex of 495 base pairs) should be amplified. When this estimation accords with the length of the amplified nucleotide fragment, it is judged that PCR using the combination of primers accurately amplifies the target region in the VT1 gene, the VT2 gene, the VT2vha gene, the VT2vhb gene or the VT2vp1 gene, and that some bacterial strains in the specimen have any one of these genes. The results obtained from the agarose gel electrophoresis and from the colony hybridization test with 320 test strains are given in Table 12. PCR using the primers of the present invention amplifies only DNA of the strains which give the positive result for the VT1 gene or the VT2 gene, showing no amplification of the DNA of the strains negative for these genes. This indicates that PCR using the primers of the present invention is capable of accurately amplifying the VT1 gene or the VT2 gene (including its variant genes) and that EHEC(VTEC) having the VT1 gene or the VT2 gene or the both can be detected with high accuracy by using the oligonucleotides of the present invention. [0298]
    TABLE 12
    Accuracy of the primers
    Results of colony
    hybridization test
    Positive Negative for
    for VT1 or both VT1 and
    VT2 gene VT2 genes
    Results Combina- 16 + 18* Positive 277 0
    of PCR tion Negative 0 43
    of primers 17 + 18* Positive 277 0
    Negative 0 43
  • [Experiment 2][0299]
  • To determine whether the results obtained in [0300] Experiment 1 are specific to EHEC (VTEC) having the VT1 gene or the VT2 gene, DNAs of clinically important pathogenic bacteria other than EHEC (VTEC) are examined with the primers of the present invention. The same procedure as used in Experiment 2 of Example 5 is followed.
  • Results [0301]
  • Table 10 shows the results from the test using the combinations of the primers of the present invention. PCR using the combinations of the primers does not amplify DNAs of any other strains than EHEC (VTEC) except for the DNA of a certain type of Shigella species ([0302] Shigella dysenteriae type I).
  • It is well known that differentiation between EHEC (VTEC) and [0303] Shigella dysenteriae is impossible only by detecting the VT1 gene because not only EHEC (VTEC) but also Shigella dysenteriae has the VT1 gene. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of the bacteria having the VT1 gene or the VT2 gene.
  • Example 8 Detection of Staphylococcus aureus having the TSST-1 Gene
  • [Experiment 1][0304]
  • Preparation of Specimens [0305]
  • A total of 343 strains of [0306] Staphylococcus aureus are used. These strains are derived from food poisoning cases and the environment, and isolated from sources such as diarrheal stool, vomit and food. Each strain is inoculated to a brain heart infusion medium (manufactured by BBL Co., Ltd.), and subjected to overnight shaking culture at 37° C. under aerobic conditions. Each culture broth is diluted 10 folds with TE buffer, and heated at 95° C. for 5 minutes, followed by centrifugation at 5000 rpm for 1 minute; the supernatants are used as specimens.
  • Synthesis of Primers [0307]
  • As primers for amplifying the TSST-1 gene of [0308] Staphylococcus aureus, the above-described oligonucleotides SEQ ID NO: 19 to SEQ ID NO: 22 are selected based upon the known base sequences of the TSST-1 gene of Staphylococcus aureus [Blomster-Hautamaa et al., J. Biol. chem., 26, 15783-15786 (1986)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR [0309]
  • To 3 μl of the above-described specimen solution, 16.05 μl of sterile distilled water, 3 μl of 10×reaction buffer, 4.8 μl of dNTP solution, 1.0 μl of primer (1), 1.0 μl of primer (2), and 0.15 μl of a thermostable DNA polymerase are added to prepare 30 μl of a reaction mixture. This reaction mixture is overlaid with 50 μl of mineral oil (produced by SIGMA). The contents of the solutions used and the primers (1) and (2) are as follows: [0310]
  • 10×reaction buffer: 500 mM KCl, 100 mM Tris-HCl, pH 8.3, 15 mM MgCl[0311] 2, 0.1% (w/v) gelatin.
  • dNTP solution: A mixture of dATP, dCTP, dGTP and dTTP, each having a final concentration of 1.25 mM. [0312]
  • Primers: Aqueous solution of the above-described chemically synthesized purified oligonucleotides (concentration, 3.75 OD/ml) is prepared. Any one of the following oligonucleotide combinations is used:[0313]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 20+oligonucleotide SEQ ID NO: 21 [0314]
  • Oligonucleotide SEQ ID NO: 19+Oligonucleotide SEQ ID NO: 22 and [0315]
  • Oligonucleotide SEQ ID NO: 20+Oligonucleotide SEQ ID NO: 22 [0316]
  • Thermostable DNA polymerase: Taq DNA polymerase (5 unit/ml; produced by Perkin Elmer Cetus). [0317]
  • The reaction conditions are as follows: [0318]
  • Thermal denaturation: 94° C. for 1 minute. [0319]
  • Annealing: 55° C. for 1 minute. [0320]
  • Polymerization: 72° C. for 1 minute. [0321]
  • The cycle of thermal denaturation, primer annealing and polymerization (5.7 minutes) is repeated for 35 cycles (entire time, about 3 hours). This procedure is performed using a DNA thermal cycler (produced by Perkin Elmer Cetus) in which the above reaction conditions are programmed. [0322]
  • Detection [0323]
  • Agarose Gel Electrophoresis [0324]
  • The same procedure as in Example 1 is followed. [0325]
  • Reversed Passive Latex Agglutination (RPLA) Test [0326]
  • A commercially available RPLA kit for detection of TSST-1 of [0327] Staphylococcus aureus (TST-RPLA “SEIKEN” produced by DENKA SEIKEN) is purchased. Specimens are prepared and tested according to the instruction manual attached except that the preparation of specimens is partially modified in order for the test strains to produce sufficient amount of its enterotoxin. That is, the brain heart infusion is changed to the one produced by BBL Co., Ltd.
  • Results [0328]
  • Table 13 shows the comparison of the results of the PCR method of the present invention with the results of the TST-RPLA which are conventionally used. The data indicates that the detection method of the present invention can detect the TSST-1 gene of [0329] Staphylococcus aureus with a sensitivity comparable to or higher than the conventional TST-RPLA method. The data in Table 13 show that 17 of the 18 PCR positive strains are also positive by RPLA, and that 325 strains are negative by both PCR and RPLA. That is, except one strain which is positive by PCR and negative by RPLA, the same results are obtained by PCR and by RPLA. The strain, for which the result by PCR and that by RPLA disaccord with each other, is tested by the Southern blot hybridization, and is confirmed to be positive for the TSST-1 gene.
    TABLE 13
    Comparison of PCR and TST-RPLA
    PCR positive PCR negative
    TST-RPLA positive 17 0
    TST-RPLA negative 1 325
  • FIG. 1 shows the results of the sensitivity test for the PCR primers of the present invention by electrophoresis. In the figure, [0330] numerals 1 to 9 indicate the number of DNA copies used in the PCR reaction: 1 indicates 107 copies; 2, 106 copies; 3, 105 copies; 4, 10 4 copies; 5, 103 copies; 6, 102 copies; 7, 10 copies; 8, 1 copy; and 9, absence of DNA. From this figure, it is obvious that only 10 copies of DNA can be detected by the method of the present invention.
  • [Experiment 2][0331]
  • To determine whether the results obtained in [0332] Experiment 1 are specific to Staphylococcus aureus having the TSST-1 gene, DNAs of other clinically important pathogenic bacteria are examined with the primers of the present invention. The same procedure as used in Experiment 1 is followed, except for the method of preparation of specimens.
  • Preparation of Specimens [0333]
  • Each strain listed in Table 14 is treated in the same manner as in [0334] Experiment 2 of Example 5.
  • Results [0335]
  • Table 14 shows the results of the test using the primers of the present invention. PCR using the primers does not amplify any DNAs of other strains including those causative for food poisoning. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNA of [0336] Staphylococcus aureus having the TSST-1 gene. The similar results are obtained with the other combinations of the primers of the present invention which are not listed in Table 14.
    TABLE 14
    Combination of primers
    No Strains 20 + 21* 19 + 22* 20 + 22*
    1 Bacillus cereus ATCC 14579
    2 Bacillus subtilis JCM 1455
    3 Staphylococcus aureus JCM 2413
    4 Staphylococcus epidermidis JCM 2414
    5 Salmonella typhimurium IFO 12529
    6 Salmonella enteritidis IFO 3163
    7 Clostridium perfringens ATCC 12917
    8 Vibrio cholerae ATCC 25872
    9 Vibrio cholerae type Ogawa ATCC 9458
    10 Vibrio cholerae type Inaba ATCC 8459
    11 Vibrio fluvialis JCM 3752
    12 Campylobacter jejuni JCM 2013
    13 Campylobacter coli JCM 2529
    14 Eschericia coli JCM 1548
    15 Yersinia enterocolitica ATCC 5610
    16 Shigella dysenteriae ATCC 3361
    17 Shigella flexneri ATCC 29903
    18 Shigella sonnei ATCC 29930
    19 Bacteroides fragilis ATCC 23745
    20 Bacteroides vulgatus JCM 5826
    21 Enterococcus faecalis JCM 5803
    22 Klebsiella pneumoniae JCM 1662
    23 Protaus vulgaris JCM 1688
    24 Citrobacter freundii ATCC 33128
    25 Streptococcus pyogenes ATCC 12344
    26 Streptococcus pneumoniae ATCC 33400
    27 Haemophilus influenzae ATCC 33391
    28 Proteus mirabilis ATCC 29906
    29 Neisseria gonorrhoeae ATCC 19424
    30 Neisseria meningitidis ATCC 13077
    31 Listeria monocytogenes ATCC 15313
    32 Lactobacillus acidophilus JCM 1132
    33 Bifidobacterium adolescentis JCM 1275
    34 Fusobacterium nucleatum ATCC 25585
    35 Propionibacierium acnes ATCC 5918
    36 Veillonella atypica ATCC 17744
    37 Pseudomonas aeruginosa IFO 12689
    38 Corynebacterium diphtheriae JCM 1310
    39 Peptostreptococcus anaerobius ATCC 27337
  • Example 9 Detection of Vibrio cholerae having the ctx Gene
  • [Experiment 1][0337]
  • Preparation of Specimens [0338]
  • The same procedure as used in Example 1 is followed except that 622 strains of [0339] Vibrio cholerae are used. These strains are isolated from patients with cholera, marine products (shrimp, snapping turtle), water collected from river, harbor, etc. Serotype, biotype, the numbers of the strains are listed in Table 15.
    TABLE 15
    Type and sources of Vibrio cholerae
    Sources
    Enviroment
    Serotype Biotype Patients Food water Total
    O1 Ogawa E1 Tor 148 125 71 344
    Inaba  16  27 26  69
    Ogawa Asia  15  0  0  15
    Inaba (classical)  26  0  0  26
    non O1   — 168  0  0 168
    Total 373 152 97 622
  • Synthesis of Primers [0340]
  • As primers for amplifying the ctx gene of [0341] Vibrio cholerae, the above-described oligonucleotides SEQ ID NO: 23 to SEQ ID NO: 26 are selected based upon the known base sequences of the ctx gene of Vibrio cholerae [Lockman, H. and J. B. Kaper: J. Biol. Chem., 258, 13722-13726 (1983)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR [0342]
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used:[0343]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 23+Oligonucleotide SEQ ID NO: 25; and [0344]
  • Oligonucleotide SEQ ID NO: 24+Oligonucleotide SEQ ID NO: 26. [0345]
  • Detection [0346]
  • Agarose Gel Electrophoresis [0347]
  • To detect the amplified nucleotide fragments in the reaction solution, agarose gel electrophoresis is carried out by the same procedure as in Example 1. [0348]
  • Colony Hybridization Test [0349]
  • A colony hybridization test is carried out using an polynucleotide probe specific to the ctx gene [Kaper, J. B., J. G. Morris, Jr., and N. Nishibuchi (1988), DNA probes for pathogenic Vibrio species, 65-77. In F. C. Tenover (ed.), DNA probes for infectious diseases. CRC Press, Inc., Boca Raton, Fla.] according to the procedure described by Grunstein [Grunstein, M. and Hogness, D., Proc. Natl. Acad. Sci., 72, 3961(1975)]. [0350]
  • Results [0351]
  • The base sequences of the ctx gene of [0352] Vibrio cholerae have already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 23 and SEQ ID NO: 25 of the present invention are used in combination, a nucleotide fragment of 169 bases (or a nucleotide duplex of 169 base pairs) should be amplified. The combination of SEQ ID NO: 24 and SEQ ID NO: 26 should amplify a nucleotide fragment of 307 bases (or a nucleotide duplex of 307 base pairs). When the estimated length of nucleotide accords with the length of the amplified nucleotide fragments, it is judged that PCR using the combination of primers accurately amplifies the target region in the ctx gene, and that the bacterial strain in the specimen has the ctx gene. The results obtained from the agarose gel electrophoresis and from the colony hybridization test with 662 test strains are given in Table 16. PCR using the primers of the present invention amplifies only DNAs of the strains which give a result positive for the ctx gene in the colony hybridization test, showing no amplification of the DNA of the ctx gene negative strains. This indicates that PCR using the primers of the present invention is capable of accurately amplifying the ctx gene and that Vibrio cholerae having the ctx gene can be detected with high accuracy by using the oligonucleotides of the present invention. Table 16 shows the result obtained with oligonucleotides SEQ ID NO: 24 and SEQ ID NO: 26. The combination of SEQ ID NO: 23 and SEQ ID NO: 25 also gives a similar result.
    TABLE 16
    Accuracy of primer combination of SEQ ID NO: 24 and
    SEQ ID NO: 26.
    Results of colony hybridization test
    ctx gene positive ctx gene negative
    Results positive 412 0
    of PCR negative 0 210
  • FIG. 2 shows that PCR using the combinations of the primers of the present invention can accurately detect the ctx gene irrespective of the source, serological type and biological type of the strains. Heat extracts of the following strains are used as the template DNA solutions:[0353]
  • [0354] Lanes 1 to 3: Vibrio cholerae (El Tor—Ogawa type, the ctx gene positive strain)
  • [0355] Lanes 4 to 6: Vibrio cholerae (El Tor—Inaba type, the ctx gene positive strain)
  • Lane 7: [0356] Vibrio cholerae (Classical—Ogawa type, the ctx gene positive strain)
  • Lane 8: [0357] Vibrio cholerae (Classical—Inaba type, the ctx gene positive strain)
  • [0358] Lanes 9 to 10: Vibrio cholerae (non-01, the ctx gene positive strain)
  • Lane 11: [0359] Vibrio cholerae (El Tor—Ogawa type, the ctx gene negative strain)
  • Lane 12: [0360] Vibrio cholerae (El Tor—Inaba type, the ctx gene negative strain)
  • Lane 13: Enterotoxigenic [0361] Escherichia Coli (Thermolabile enterotoxin gene positive strain)
  • [Experiment 2][0362]
  • To determine whether the results obtained in [0363] Experiment 1 are specific to Vibrio cholerae having the ctx gene, the genes of other clinically important pathogenic bacteria are examined with the method of the present invention. The same procedure as used in Experiment 1 is followed, except for the method of preparation of specimens.
  • Preparation of Specimens [0364]
  • Each strain listed in Table 17 is treated in the same manner as in [0365] Experiment 2 of Example 5.
  • Results [0366]
  • Table 17 shows the results of the test using a combination of primers of the present invention. PCR using the primers does not amplify DNAs of any other pathogenic strains tested. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the DNAs of [0367] Vibrio cholerae having the ctx gene. Similar results are obtained also for the other combination of primers of the present invention which is not listed in Table 17.
    TABLE 17
    Reactivity with DNA of bacteria other than
    Vibrio cholerae
    No S t r a i n s +/−*
    1 Bacillus cereus ATCC 14579
    2 B. subtilis JCM 1465
    3 Staphylococcus aureus JCM 2413
    4 S. epidermidis JCM 2414
    5 Salmonella typhimurium IFO 12529
    6 S. enteritidis IFO 3163
    7 Clostridium perfringens ATCC 12917
    8 Vibrio fluvialis JCM 3752
    9 Campylobacter jejuni JCM 2013
    10 C. coli JCM 2529
    11 Escherichia coli JCM 1649
    12 Yersinia enterocolitica ATCC 9610
    13 Shigella dysenteriae ATCC 9361
    14 S. flexneri ATCC 29903
    15 S. sonnei ATCC 29930
    16 Bacteroides fragilis ATCC 23745
    17 B. vulgatus JCM 5826
    18 Enterococcus faecalis JCM 5803
    19 Klebsiella pneumoniae JCM 1662
    20 Proteus vulgaris JCM 1668
    21 Citrobacter freundii ATCC 33128
    22 Streptococcus pyogenes ATCC 12344
    23 S. pneumoniae ATCC 33400
    24 Haemophilus influenzae ATCC 33391
    25 Proteus mirabilis ATCC 29906
    26 Neisseria gonorrhoeae ATCC 19424
    27 N. meningitidis ATCC 13077
    28 Listeria monocytogenes ATCC 15313
    29 Lactobacillus acidophilus JCM 1132
    30 Bifidobacterium adolescentis JCM 1275
    31 Fusobacterium nucleatum ATCC 2558
    32 Propionibacterium acnes ATCC 6919
    33 Veillonella atypica ATCC 17744
    34 Pseudomonas aeruginosa IFO 12689
    35 Corynebacterium diphtheriae JCM 1310
    36 Peptostreptococcus anaerobius ATCC 27337
    37 Human placental DNA
  • Example 10 Detection of Clostridium perfringens having the Enterotoxin Gene
  • [Experiment 1][0368]
  • Preparation of Specimens [0369]
  • The strains of [0370] Clostridium perfringens used are 11 strains isolated from patients, and provided by institutes where each strain is stored. Each strain is inoculated to GAM broth (manufactured by Nissui Pharmaceutical Co., Ltd.) and subjected to overnight shaking culture at 37° C. under anaerobic conditions. Each culture broth is diluted 10 folds with 10 mM Tris-HCl buffer, pH 7.5, and heated at 95° C. for 10 minutes, followed by centrifugation to use the supernatant as a specimen.
  • Synthesis of Primers [0371]
  • As primers for amplifying the enterotoxin gene of [0372] Clostridium perfringens, the above-described oligonucleotides SEQ ID NO: 27 to SEQ ID NO: 35 are selected based upon the known base sequences of the enterotoxin gene of Clostridium perfringens [Maruke van Damme-Jongsten, Antonie van Leeuwenhoek, 56, 181-190(1989)], and chemically synthesized by the same method as in Experiment 1 of Example 1.
  • PCR [0373]
  • PCR is carried out under the same reaction conditions as in Example 1 except that any one of the following oligonucleotide combinations is used: [0374]
  • Primer (1)+primer (2)=Oligonucleotide SEQ ID NO: 27+Oligonucleotide SEQ ID NO: 32; [0375]
  • Oligonucleotide SEQ,ID NO: 28+Oligonucleotide SEQ ID NO: 33; [0376]
  • Oligonucleotide SEQ ID NO: 29+Oligonucleotide SEQ ID NO: 33; [0377]
  • Oligonucleotide SEQ ID NO: 30+Oligonucleotide SEQ ID NO: 34; and [0378]
  • Oligonucleotide SEQ ID NO: 31+Oligonucleotide SEQ ID NO: 35. [0379]
  • Detection [0380]
  • Agarose Gel Electrophoresis [0381]
  • To detect the amplified nucleotide fragments in the reaction solution, agarose gel electrophoresis is carried out by the same procedure as in Example 1. [0382]
  • FIG. 3 shows a part of the electrophoretic results. The upper part of the figure shows the results with Oligonucleotide SEQ ID NO: 28+Oligonucleotide SEQ ID NO: 33; and the lower part, the results with Oligonucleotide SEQ ID NO: 29+Oligonucleotide SEQ ID NO: 33. In the figure, M indicates the molecular weight marker; and [0383] lanes 1 to 13 respectively indicate ATCC 12925(lane 1), ATCC 12924(lane 2), ATCC 12922(lane 3), ATCC 12920(lane 4), ATCC 12916(lane 5), ATCC 12915(lane 6), ATCC 12918(lane 7), ATCC 12919(lane 8), ATCC 12921(lane 9), JCM 1296(lane 10), JCM 1416(lane 11), JCM 1382(lane 12), and TE (negative control, lane 13).
  • Southern Blot Hybridization Test [0384]
  • A southern blot hybridization test is carried out using an oligonucleotide probe specific to the enterotoxin gene of [0385] Clostridium perfringens according to the method described by Tada et al. [Tada, J. et al. Mol. Cell. Probe., 6, 477 (1992)].
  • Reversed Passive Latex Agglutination (RPLA) Test [0386]
  • A commercially available RPLA kit for detection of [0387] Clostridium perfringens enterotoxin (PET-RPLA “SEIKEN” produced by DENKA SEIKEN) is purchased. Specimens are prepared and tested according to the instruction manual attached.
  • Results [0388]
  • The base sequences of the enterotoxin gene of [0389] Clostridium perfringens have already been determined. Therefore, the length of the nucleotide fragments amplified by PCR using the oligonucleotides of the present invention as primers can easily be estimated. Specifically, when the oligonucleotides SEQ ID NO: 27 and SEQ ID NO: 32 of the present invention are used in combination, a nucleotide fragment of 473 bases (or a nucleotide duplex of 473 base pairs) should be amplified. When the estimated length accords with the length of the amplified nucleotide fragment, it is judged that PCR using the combination of the primers accurately amplifies the target region in the enterotoxin gene, and that the bacterial strain in the specimen has the enterotoxin gene. The results obtained from the agarose gel electrophoresis and from the RPLA test with the 11 test strains are given in Table 18.
    TABLE 18
    Combination of primers and length of amplified
    DNA (No. of b. p.)*
    Results 27 + 32** 28 + 33** 29 + 33** 30 + 34** 31 + 35**
    Strains of RPLA 473 456 421 267 156
    01 Clostridium perfringens ATCC 12915   +*** + + + + +
    02 Clostridium perfringens ATCC 12916 + + + + + +
    03 Clostridium perfringens ATCC 12917 + + + + + +
    04 Clostridium perfringens ATCC 12918 + + + + + +
    05 Clostridium perfringens ATCC 12919
    06 Clostridium perfringens ATCC 12920 + + + + + +
    07 Clostridium perfringens ATCC 12921
    08 Clostridium perfringens ATCC 12922 + + + + + +
    09 Clostridium perfringens ATCC 12924 + + + + + +
    10 Clostridium perfringens ATCC 12925 + + + + + +
    11 Clostridium perfringens JCM 3816
  • In the Southern blot hybridization test, it is confirmed that the nucleotide fragments amplified with a combination of the primers of the present invention is a part of the enterotoxin gene sequences. The results are shown in FIG. 4. FIG. 4 corresponds to FIG. 3. In the figure, M indicates the molecular weight marker; and [0390] lanes 1 to 13 respectively indicate ATCC 12925(lane 1), ATCC 12924(lane 2), ATCC 12922(lane 3), ATCC 12920(lane 4), ATCC 12916(lane 5), ATCC 12915(lane 6), ATCC 12918(lane 7), ATCC 12919(lane 8), ATCC 12921(lane 9), JCM 1296(lane 10), JCM 1416(lane 11), JCM 1382(lane 12), and TE (negative control, lane 13).
  • These results indicate that PCR using the primers of the present invention is capable of accurately amplifying the enterotoxin gene in PCR and that [0391] Clostridium perfringens having the enterotoxin gene can be detected with high accuracy by using the oligonucleotides of the present invention.
  • [Experiment 2][0392]
  • To determine whether the results obtained in [0393] Experiment 1 are specific to Clostridium perfringens having the enterotoxin gene, the reactivity of the primers of the present invention with the DNAs of other Clostridium species and other clinically important pathogenic bacteria is examined. The same procedure as used in Experiment 1 is followed, except for the method of preparation of specimens.
  • Preparation of Specimens [0394]
  • Each strain listed in Tables 19 and 20 is treated in the same manner as in [0395] Experiment 2 of Example 5.
  • Results [0396]
  • Tables 19 and 20 show the results of the test using some of the combinations of primers of the present invention. All the combinations of the primers listed in the tables do not show any amplification of DNAs of other strains including pathogenic strains in PCR. It can therefore be concluded that the oligonucleotide primers of the present invention selectively react with the enterotoxin gene of [0397] Clostridium perfringens.
    TABLE 19
    Combination of primers and length of amplified
    DNA (No. of b. p.)*
    27 + 32** 28 + 33** 29 + 33** 30 + 34** 31 ± 35**
    Strains 473 456 421 267 156
    01 Clostridium absonum ATCC 27555
    02 Clostridium barati JCM 1382
    03 Clostridium bifermentans ATCC 638
    04 Clostridium butyricum JCM 1391
    05 Clostridium difficile JCM 1296
    06 Clostridium fallax JCM 1398
    07 Clostridium histolyticum JCM 1403
    08 Clostridium novyi JCM 1406
    09 Clostridium sordellii JCM 3814
    10 Clostridium sphenoides JCM 1415
    11 Clostridium spiroforme JCM 1432
    12 Clostridium sporogenes JCM 1416
    13 Clostridium tertiium JCM 6289
  • [0398]
    TABLE 20
    Combination of primers and length of amplified
    DNA (No. of b. p.)*
    27 + 32** 28 + 33** 29 + 33** 30 + 34** 31 + 35**
    Strains 473 456 421 267 156
    01 Vibrio cholerae ATCC 25872
    02 Vibrio cholerae type Ogawa ATCC 9458
    03 Vibrio cholerae type Inaba ATCC 9459
    04 Vibrio fluvialis JCM 3752
    05 Vibrio metschnikovii ATCC 7708
    06 Vibrio mimicus ATCC 33653
    07 Bacillus cereus ATCC 14579
    08 Bacillus subtilis JCM 1465
    09 Staphylococcus aureus JCM 2413
    10 Staphylococcus epidermidis JCM 2414
    11 Salmonella typhimurium IFO 12529
    12 Salmonella enteritidis IFO 3163
    13 Campylobacter jejuni JCM 2013
    14 Campylobacter coli JCM 2529
    15 Escherichia coli JCM 1649
    16 Yersinia enterocolitica ATCC 9610
    17 Shigella dysenteriae ATCC 9361
    18 Shigella flexneri ATCC 29903
    19 Shigella sonnei ATCC 29930
    20 Bacteroides fragilis ATCC 23745
    21 Bacteroides vulgatus JCM 5826
    22 Enterococcus faecalis JCM 5803
    23 Klebsiella pneumoniae JCM 1662
    24 Proteus mirabilis ATCC 29906
    25 Proteus vulgaris JCM 1668
    26 Citrobacter freundii ATCC 33128
    27 Streptococcus pyogenes ATCC 12344
    28 Streptococcus pneumoniae ATCC 33400
    29 Haemophilus influenzae ATCC 33391
    30 Neisseria gonorrhoeae ATCC 19424
    31 Neisseria meningitidis ATCC 13077
    32 Listeria monocytogenes ATCC 15313
    33 Lactobacillus acidophilus JCM 1132
    34 Bifidobacterium adolescentis JCM 1275
    35 Fusobacterium nucleatum ATCC 25586
    36 Propionibacterium acnes ATCC 6919
    37 Veillonella atypica ATCC 17744
    38 Pseudomonas aeruginosa IFO 12689
    39 Corynebacterium diphtheriae JCM 1310
    40 Peptostreptococcus anaerobius ATCC 27337
  • The agarose gel electrophoresis used in the above examples of the present invention can differentiate nucleotide fragments from one another which are different in length by 5-10 bases (base pairs) for nucleotide fragments of not more than 100 bases (base pairs), and by 10-20 bases (base pairs) for nucleotide fragments of 100-500 bases (base pairs). In addition, the use of other gel material such as acrylamide makes it possible to improve the precision in measuring the length of nucleotide fragment. Thus, the reliability of the selective detection of the target gene in the present invention can further be increased. [0399]
  • While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. [0400]
  • 0
    SEQUENCE LISTING
    <160> NUMBER OF SEQ ID NOS: 35
    <210> SEQ ID NO 1
    <211> LENGTH: 19
    <212> TYPE: DNA
    <213> ORGANISM: Shigella dysenteriae
    <400> SEQUENCE: 1
    caacactgga tgatctcag 19
    <210> SEQ ID NO 2
    <211> LENGTH: 18
    <212> TYPE: DNA
    <213> ORGANISM: Shigella dysenteriae
    <400> SEQUENCE: 2
    ccccctcaac tgctaata 18
    <210> SEQ ID NO 3
    <211> LENGTH: 21
    <212> TYPE: DNA
    <213> ORGANISM: Shigella dysenteriae, Shigella flexneri, Shigella
    boydii, Shigella sonnei
    <400> SEQUENCE: 3
    tgtatcacag atatggcatg c 21
    <210> SEQ ID NO 4
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Shigella dysenteriae, Shigella flexneri, Shigella
    boydii, Shigella sonnei
    <400> SEQUENCE: 4
    tccggagatt gttccatgtg 20
    <210> SEQ ID NO 5
    <211> LENGTH: 22
    <212> TYPE: DNA
    <213> ORGANISM: Shigella dysenteriae, Shigella flexneri, Shigella
    boydii, Shigella sonnei
    <400> SEQUENCE: 5
    caagatttaa ccttcgtcaa cc 22
    <210> SEQ ID NO 6
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Shigella dysenteriae, Shigella flexneri, Shigella
    boydii, Shigella sonnei
    <400> SEQUENCE: 6
    agttctcgga tgctatgctc 20
    <210> SEQ ID NO 7
    <211> LENGTH: 18
    <212> TYPE: DNA
    <213> ORGANISM: Salmonella spp.
    <400> SEQUENCE: 7
    cgcggagagg gcgtcatt 18
    <210> SEQ ID NO 8
    <211> LENGTH: 21
    <212> TYPE: DNA
    <213> ORGANISM: Salmonella spp.
    <400> SEQUENCE: 8
    gcaacgactc attaattacc g 21
    <210> SEQ ID NO 9
    <211> LENGTH: 18
    <212> TYPE: DNA
    <213> ORGANISM: Salmonella spp.
    <400> SEQUENCE: 9
    atctggtcgc cgggctga 18
    <210> SEQ ID NO 10
    <211> LENGTH: 18
    <212> TYPE: DNA
    <213> ORGANISM: Salmonella spp.
    <400> SEQUENCE: 10
    gcatcgcgca cacggcta 18
    <210> SEQ ID NO 11
    <211> LENGTH: 19
    <212> TYPE: DNA
    <213> ORGANISM: Salmonella spp.
    <400> SEQUENCE: 11
    ggcgagcagt ttgtctgtc 19
    <210> SEQ ID NO 12
    <211> LENGTH: 19
    <212> TYPE: DNA
    <213> ORGANISM: Escherichia coli
    <400> SEQUENCE: 12
    caacactgga tgatctcag 19
    <210> SEQ ID NO 13
    <211> LENGTH: 18
    <212> TYPE: DNA
    <213> ORGANISM: Escherichia coli
    <400> SEQUENCE: 13
    ccccctcaac tgctaata 18
    <210> SEQ ID NO 14
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Escherichia coli
    <400> SEQUENCE: 14
    atcagtcgtc actcactggt 20
    <210> SEQ ID NO 15
    <211> LENGTH: 19
    <212> TYPE: DNA
    <213> ORGANISM: Escherichia coli
    <400> SEQUENCE: 15
    ccagttatct gacattctg 19
    <210> SEQ ID NO 16
    <211> LENGTH: 22
    <212> TYPE: DNA
    <213> ORGANISM: Escherichia coli
    <400> SEQUENCE: 16
    agtttacgtt agacttttcg ac 22
    <210> SEQ ID NO 17
    <211> LENGTH: 19
    <212> TYPE: DNA
    <213> ORGANISM: Escherichia coli
    <400> SEQUENCE: 17
    cggacagtag ttataccac 19
    <210> SEQ ID NO 18
    <211> LENGTH: 19
    <212> TYPE: DNA
    <213> ORGANISM: Escherichia coli
    <400> SEQUENCE: 18
    ctgctgtcac agtgacaaa 19
    <210> SEQ ID NO 19
    <211> LENGTH: 22
    <212> TYPE: DNA
    <213> ORGANISM: Staphylococcus aureus
    <400> SEQUENCE: 19
    cctttaaaag ttaaggttca tg 22
    <210> SEQ ID NO 20
    <211> LENGTH: 21
    <212> TYPE: DNA
    <213> ORGANISM: Staphylococcus aureus
    <400> SEQUENCE: 20
    ggccaaagtt cgataaaaaa c 21
    <210> SEQ ID NO 21
    <211> LENGTH: 23
    <212> TYPE: DNA
    <213> ORGANISM: Staphylococcus aureus
    <400> SEQUENCE: 21
    atttataggt ggtttttcag tat 23
    <210> SEQ ID NO 22
    <211> LENGTH: 23
    <212> TYPE: DNA
    <213> ORGANISM: Staphylococcus aureus
    <400> SEQUENCE: 22
    ctgcttctat agtttttatt tca 23
    <210> SEQ ID NO 23
    <211> LENGTH: 22
    <212> TYPE: DNA
    <213> ORGANISM: Vibrio cholerae
    <400> SEQUENCE: 23
    tgatgaaata aagcagtcag gt 22
    <210> SEQ ID NO 24
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Vibrio cholerae
    <400> SEQUENCE: 24
    acagagtgag tactttgacc 20
    <210> SEQ ID NO 25
    <211> LENGTH: 22
    <212> TYPE: DNA
    <213> ORGANISM: Vibrio cholerae
    <400> SEQUENCE: 25
    ggcacttctc aaactaattg ag 22
    <210> SEQ ID NO 26
    <211> LENGTH: 22
    <212> TYPE: DNA
    <213> ORGANISM: Vibrio cholerae
    <400> SEQUENCE: 26
    ataccatcca tatatttggg ag 22
    <210> SEQ ID NO 27
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 27
    tctgaggatt taaaaacacc 20
    <210> SEQ ID NO 28
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 28
    accctcagta ggttcaagtc 20
    <210> SEQ ID NO 29
    <211> LENGTH: 21
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 29
    atgaaacagg tacctttagc c 21
    <210> SEQ ID NO 30
    <211> LENGTH: 22
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 30
    ggtaatatct ctgatgatgg at 22
    <210> SEQ ID NO 31
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 31
    taactcatac ccttggactc 20
    <210> SEQ ID NO 32
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 32
    gaaccttgat caatatttcc 20
    <210> SEQ ID NO 33
    <211> LENGTH: 21
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 33
    gtagcagcag ctaaatcaag g 21
    <210> SEQ ID NO 34
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 34
    agtccaaggg tatgagttag 20
    <210> SEQ ID NO 35
    <211> LENGTH: 20
    <212> TYPE: DNA
    <213> ORGANISM: Clostridium perfringens
    <400> SEQUENCE: 35
    ccatcaccta aggactgttc 20

Claims (32)

What is claimed is:
1. A synthetic oligonucleotide of 10 to 30 bases which is complementary to a nucleotide sequence of a gene selected from the group consisting of the Shiga toxin gene of Shigella species, the ipaH gene of Shigella species and EIEC, the invE gene of Shigella species and EIEC, the arcC gene of Salmonella species, the toxic shock syndrome toxin-1 gene of Staphylococcus aureaus, the ctx gene of Vibrio cholerae, and the enterotoxin gene of Clostridium perfringens.
2. A synthetic oligonucleotide comprising a nucleotide sequence complementary to the synthetic oligonucleotide of claim 1.
3. A method for detecting a bacterial strain selected from the group consisting of Shigella species, EIEC, Salmonella species,Staphylococcus aureus, vibrio cholerae, and Clostridium perfringens, wherein the method comprises
(1) hybridizing one primer to a single-stranded target DNA as a template DNA present in a specimen and carrying out a primer extension reaction to give a primer extension product;
(2) denaturing the resulting DNA duplex to separate the primer extension product from the template DNA, the primer extension product functioning as the other template DNA for the other primer;
(3) repeating a cycle of simultaneous primer extension reaction with the two primers, separation of the primer extension products from the templates, and hybridization of primers to amplify a region of the target DNA, in the steps from (1) to (3) said primers being selected from the group consisting of oligonucleotides of claim 1 and a synthetic oligonucleotide comprising a nucleotide sequence complementary to the synthetic oligonucleotide; and
(4) detecting the amplified nucleotide sequence to determine whether a suspected bacterial strain is present in the specimen.
4. A kit for detection of a bacterial strain comprising at least a pair of primers selected from the group consisting of oligonucleotides of claims 1, and synthetic oligonucleotides comprising sequences complementary to the oligonucleotides of claim 1, a thermostable DNA polymerase, and dNTP solutions.
5. The synthetic oligonucleotide according to claim 1, wherein said gene is the Shiga toxin gene of Shigella dysenteriae type 1, and wherein the synthetic oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 1 or oligonucleotide SEQ ID NO: 2.
6. The synthetic oligonucleotide according to claim 2, wherein said nucleotide sequence is complementary to a synthetic oligonucleotide of 10 to 30 bases which in turn is complementary to a nucleotide sequence of a Shiga toxin gene of Shigella dysenteriae type 1, and wherein the synthetic oligonucleotide comprises bases complementary to at least 10 consecutive bases of oligonucleotide SEQ ID NO: 1 or oligonucleotide SEQ ID NO: 2.
7. The synthetic oligonucleotide according to claim 1, wherein said gene is the ipaH gene of Shigella species and EIEC, and wherein the synthetic oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 3 or oligonucleotide SEQ ID NO: 4.
8. The synthetic oligonucleotide according to claim 2, wherein said nucleotide sequence is complementary to a synthetic oligonucleotide of 10 to 30 bases which in turn is complementary to a nucleotide sequence of an ipaH gene of Shigella species and EIEC, and wherein the synthetic oligonucleotide comprises bases complementary to at least 10 consecutive bases of oligonucleotide SEQ ID NO: 3 or oligonucleotide SEQ ID NO: 4.
9. The synthetic oligonucleotide according to claim 1, wherein said gene is the invE gene of Shigella species and EIEC, and wherein the synthetic oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 5 or oligonucleotide SEQ ID NO: 6.
10. The synthetic oligonucleotide according to claim 2, wherein said nucleotide sequence is complementary to a synthetic oligonucleotide of 10 to 30 bases which in turn is complementary to a nucleotide sequence of an invE gene of Shigella species and EIEC, and wherein the synthetic oligonucleotide comprises bases complementary to at least 10 consecutive bases of oligonucleotide SEQ ID NO: 5 or oligonucleotide SEQ ID NO: 6.
11. The method according to claim 3, wherein said target DNA is a gene of Shigella species and EIEC and said primers are selected from the group consisting of oligonucleotides of claims 5 to 10.
12. The kit according to claim 4, wherein said pair of primers are selected from the group consisting of oligonucleotides of claims 5 to 10 for detection of Shigella species and EIEC.
13. The synthetic oligonucleotide according to claim 1, wherein said gene is the araC gene of Salmonella species, and wherein the synthetic oligonucleotide comprises at least 10 consecutive bases of the oligonucleotide selected from the group consisting of oligonucleotide SEQ ID NO: 7, oligonucleotide SEQ ID NO: 8, oligonucleotide SEQ ID NO: 9, oligonucleotide SEQ ID NO: 10, and oligonucleotide SEQ ID NO: 11.
14. The synthetic oligonucleotide according to claim 2, wherein said nucleotide sequence is complementary to the synthetic oligonucleotide of claim 13.
15. The method according to claim 3, wherein said target DNA is a gene of a Salmonella species and said primers are selected from the group consisting of oligonucleotides comprising at least 10 consecutive bases of the oligonucleotide of SEQ ID NO: 7, the oligonucleotide of SEQ ID NO: 8, the oligonucleotide of SEQ ID NO: 9, the oligonucleotide SEQ ID NO: 10, the oligonucleotide of SEQ ID NO: 11, the oligonucleotide complementary to SEQ ID NO: 7, the oligonucleotide complementary to SEQ ID NO: 8, the oligonucleotide complementary to SEQ ID NO: 9, the oligonucleotide complementary to SEQ ID NO: 10 and the oligonucleotide complementary to SEQ ID NO: 11.
16. The method according to claim 15, wherein said two primers are selected from the following oligonucleotide combinations: a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 7 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 8; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 9 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 10; and a combination in which one comprises at least 10 consecutive bases of Oligonucleotide SEQ ID NO: 11 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 8.
17. The kit according to claim 4, wherein said pair of primers is selected from the group consisting of oligonucleotides comprising at least 10 consecutive bases of the oligonucleotide of SEQ ID NO: 7, the oligonucleotide of SEQ ID NO: 8, the oligonucleotide of SEQ ID NO: 9, the oligonucleotide SEQ ID NO: 10, the oligonucleotide of SEQ ID NO: 11, the oligonucleotide complementary to SEQ ID NO: 7, the oligonucleotide complementary to SEQ ID NO: 8, the oligonucleotide complementary to SEQ ID NO: 9, the oligonucleotide complementary to SEQ ID NO: 10 and the oligonucleotide complementary to SEQ ID NO: 11.
18. The synthetic oligonucleotide according to claim 1, wherein said gene is the toxic shock syndrome toxin-1 gene of Staphylococcus aureus, and wherein the synthetic oligonucleotide comprises at least 10 consecutive bases of the oligonucleotide selected from the group consisting of oligonucleotide SEQ ID NO: 19, oligonucleotide SEQ ID NO: 20, oligonucleotide SEQ ID NO: 21, and Oligonucleotide SEQ ID NO: 22.
19. The synthetic oligonucleotide according to claim 2, wherein said nucleotide sequence is complementary to the synthetic oligonucleotide of claim 18.
20. The method according to claim 3, wherein said target DNA is a gene of Staphylococcus aureus and said primers are selected from the group consisting of oligonucleotides of claims 18 and 19.
21. The method according to claim 20, wherein said two primers are selected from the following oligonucleotide combinations: a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 20 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 21; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 19 and the other comprises at least TO consecutive bases of oligonucleotide SEQ ID NO: 22; and a combination in which one comprises at least 10 consecutive bases of Oligonucleotide SEQ ID NO: 20 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 22.
22. The kit according to claim 4, wherein said pair of primers are selected from the group consisting of oligonucleotides of claims 18 and 19 for detection of Staphylococcus aureus.
23. The synthetic oligonucleotide according to claim 1, wherein said gene is the cholera toxin gene of Vibrio cholerae, and wherein the synthetic oligonucleotide comprises at least 10 consecutive bases of the oligonucleotide selected from the group consisting of oligonucleotide SEQ ID NO: 23, oligonucleotide SEQ ID NO: 24, oligonucleotide SEQ ID NO: 25, and oligonucleotide SEQ ID NO: 26.
24. The synthetic oligonucleotide according to claim 2, wherein said nucleotide sequence is complementary to the synthetic oligonucleotide of claim 23.
25. The method according to claim 3, wherein said target DNA is a gene of Vibrio cholerae and said primers are selected from the group consisting of oligonucleotides of claims 23 and 24.
26. The method according to claim 25, wherein said two primers are selected from the following oligonucleotide combinations: a combination in which one oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 23 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 25; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 24 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 26.
27. The kit according to claim 4, wherein said pair of primers are selected from the group consisting of oligonucleotides of claims 23 and 24 for detection of Vibrio cholerae.
28. The synthetic oligonucleotide according to claim 1, wherein said gene is the enterotoxin gene of Clostridium perfringens, and wherein the synthetic oligonucleotide comprises at least 10 consecutive bases of the oligonucleotide selected from the group consisting of oligonucleotide SEQ ID NO: 27, oligonucleotide SEQ ID NO: 28, oligonucleotide SEQ ID NO: 29, oligonucleotide SEQ ID NO: 30, oligonucleotide SEQ ID NO: 31, oligonucleotide SEQ ID NO: 32, oligonucleotide SEQ ID NO: 33, oligonucleotide SEQ ID NO: 34, and oligonucleotide SEQ ID NO: 35.
29. The synthetic oligonucleotide according to claim 2, wherein said nucleotide sequence is complementary to the synthetic oligonucleotide of claim 28.
30. The method according to claim 3, wherein said target DNA is a gene of Clostridium perfringens and said primers are selected from the group consisting of oligonucleotides comprising at least 10 consecutive bases of the oligonucleotide of SEQ ID NO: 27, the oligonucleotide of SEQ ID NO: 28, the oligonucleotide of SEQ ID NO: 29, the oligonculeotide SEQ ID NO: 30, the oligonucleotide of SEQ ID NO: 31, the oligonucleotide of SEQ ID NO: 32, the oligonucleotide of SEQ ID NO: 33, the oligonucleotide of SEQ ID NO: 34, the oliogonucleotide of SEQ ID NO: 35, the oligonucleotide complementary to SEQ ID NO: 27, the oligonucleotide complementary to SEQ ID NO: 28, the oligonucleotide complementary to SEQ ID NO: 29, the oligonucleotide complementary to SEQ ID NO: 30 and the oligonucleotide complementary to SEQ ID NO: 31, the oligonucleotide complementary to SEQ ID NO: 32, the oligonucleotide complementary to SEQ ID NO: 33, the oligonucleotide complementary to SEQ ID NO: 34 and the oligonucleotide complementary to SEQ ID NO: 35.
31. The method according to claim 30, wherein said two primers are selected from the following oligonucleotide combinations: a combination in which one. oligonucleotide comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 27 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 32; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 28 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 33; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 29 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 33; a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 30 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 34; and a combination in which one comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 31 and the other comprises at least 10 consecutive bases of oligonucleotide SEQ ID NO: 35.
32. The kit according to claim 4, wherein said pair of primers are selected from the group consisting of oligonucleotides of claims 28 and 29 for detection of Clostridium perfringens.
US10/138,381 1994-02-28 2002-05-06 Oligonucleotides for detecting bacteria and detection process Abandoned US20030064388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/138,381 US20030064388A1 (en) 1994-02-28 2002-05-06 Oligonucleotides for detecting bacteria and detection process

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP6030277A JPH07236500A (en) 1994-02-28 1994-02-28 Oligonucleotide for detection of microorganism of genus salmonella and detection method using the oligonucleotide
JP6-30277 1994-02-28
JP6-48174 1994-03-18
JP06048174A JP3141976B2 (en) 1994-02-28 1994-03-18 Oligonucleotides for detection of Shigella and detection methods using them
US08/328,710 US5795717A (en) 1994-02-28 1994-10-25 Oligonucleotides for detecting bacteria and detection process
US08/968,046 US6218110B1 (en) 1994-02-28 1997-11-12 Oligonucleotides for detecting verotoxin-producing E. coli and detection process
US61468100A 2000-07-12 2000-07-12
US10/138,381 US20030064388A1 (en) 1994-02-28 2002-05-06 Oligonucleotides for detecting bacteria and detection process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US61468100A Division 1994-02-28 2000-07-12

Publications (1)

Publication Number Publication Date
US20030064388A1 true US20030064388A1 (en) 2003-04-03

Family

ID=26368604

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/328,710 Expired - Lifetime US5795717A (en) 1994-02-28 1994-10-25 Oligonucleotides for detecting bacteria and detection process
US08/968,046 Expired - Lifetime US6218110B1 (en) 1994-02-28 1997-11-12 Oligonucleotides for detecting verotoxin-producing E. coli and detection process
US10/138,381 Abandoned US20030064388A1 (en) 1994-02-28 2002-05-06 Oligonucleotides for detecting bacteria and detection process

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/328,710 Expired - Lifetime US5795717A (en) 1994-02-28 1994-10-25 Oligonucleotides for detecting bacteria and detection process
US08/968,046 Expired - Lifetime US6218110B1 (en) 1994-02-28 1997-11-12 Oligonucleotides for detecting verotoxin-producing E. coli and detection process

Country Status (3)

Country Link
US (3) US5795717A (en)
EP (2) EP1036846A3 (en)
DE (1) DE69433201T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070019504A1 (en) * 2003-04-15 2007-01-25 Martin Howlid Active steering for marine seismic sources
US20090081663A1 (en) * 2007-04-19 2009-03-26 Molecular Detection Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
EP2271767A1 (en) * 2008-04-03 2011-01-12 HudsonAlpha Institute For Biotechnology Amplicon rescue multiplex polymerase chain reaction for amplificaton of multiple targets
US20110256541A1 (en) * 2007-03-23 2011-10-20 Ecker David J Compositions for use in identification of bacteria

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036846A3 (en) * 1994-02-28 2000-10-18 Shimadzu Corporation Oligonucleotides for detecting bacteria and detection process
FR2760749B1 (en) * 1997-03-14 1999-04-30 Veterinaires Et Alimentaires C OLIGONUCLEOTIDES DERIVED FROM VERTSOXIN-PRODUCING E. coli VTS GENES, AND USES THEREOF
WO1998048046A2 (en) * 1997-04-22 1998-10-29 Bavarian Nordic Research Institute A/S Taqmantm-pcr for the detection of pathogenic e. coli strains
DE19731292A1 (en) * 1997-07-21 1999-01-28 Biotecon Ges Fuer Biotechnologische Entwicklung & Consulting Mbh Nucleic Acid Molecule, Kit, and Use
JPH11332599A (en) * 1998-05-29 1999-12-07 Shimadzu Corp Oligonucleotide for detecting enterohemorrhagic escherichia colt and detection using the same
DE69937053T2 (en) 1998-06-29 2008-05-29 The Procter & Gamble Company, Cincinnati DISPOSABLE CARE PRODUCT WITH A REACTIVE SYSTEM
US6162605A (en) * 1999-04-12 2000-12-19 Becton Dickinson And Company Amplification and detection of shiga-like toxin I producing organisms
US6060252A (en) * 1999-04-12 2000-05-09 Becton Dickinson And Company Amplification and detection of shigella spp. and enteroinvasive strains of Escherichia coli
US6878517B1 (en) * 1999-12-15 2005-04-12 Congra Grocery Products Company Multispecies food testing and characterization organoleptic properties
US6436055B1 (en) * 2000-03-02 2002-08-20 The Procter & Gamble Company Device having diarrhea diagnostic panel
US7101668B2 (en) 2000-04-18 2006-09-05 National University Of Singapore Molecular markers
DE10123183A1 (en) * 2000-05-18 2001-11-22 Becton Dickinson Co Primer for strand-displacement primer extension, useful e.g. for detecting pathogenic bacteria, comprises two target-specific regions, flanking a non-binding region
GB0012233D0 (en) * 2000-05-19 2000-07-12 Devgen Nv Vector constructs
US7135173B2 (en) * 2000-07-13 2006-11-14 Idaho Research Foundation, Inc. Antiviral activity of Shiga toxin
US6541013B1 (en) 2000-07-13 2003-04-01 Idaho Research Foundation, Inc. Methods and compositions for suppressing bovine leukemia virus with a Shiga toxin polypeptide
US6911308B2 (en) 2001-01-05 2005-06-28 Exact Sciences Corporation Methods for detecting, grading or monitoring an H. pylori infection
GB0114672D0 (en) * 2001-06-15 2001-08-08 Orthogenics As Pharmaceutical formulations and methods of medical treatment
MXPA03012075A (en) * 2001-06-22 2005-07-01 Marshfield Clinic Methods and oligonucleotides for the detection of $i(salmonella) sp., $i(e. coli) o157:h7, and $i(listeria monocytogenes ).
US6696254B2 (en) * 2001-11-21 2004-02-24 Kimberly-Clark Worldwide, Inc. Detection and identification of enteric bacteria
WO2003062464A2 (en) * 2002-01-23 2003-07-31 Her Majesty, The Queen In Right Of Canada, As Represented By The Minister Of Health Major virulence factor detection and verocytotoxin type 2 subtype from clinical e. coli isolates using a one-step multiplex pcr
US20030215814A1 (en) * 2002-05-17 2003-11-20 Cockerill Franklin R. Detection of Shiga toxin- or Shiga-like toxin-producing organisms
US20060240442A1 (en) * 2005-04-20 2006-10-26 Vevea Dirk N Methods and oligonucleotides for the detection of Salmonella SP., E coli 0157:H7, and Listeria monocytogenes
US20060246463A1 (en) * 2005-04-20 2006-11-02 Vevea Dirk N Methods and oligonucleotides for the detection of Salmonella SP., E coli 0157:H7, and Listeria monocytogenes
EP2252702B1 (en) * 2008-02-08 2014-01-29 Mayo Foundation for Medical Education and Research Detection of clostridium difficile
WO2012073053A1 (en) 2010-11-30 2012-06-07 Diagon Kft. Procedure for nucleic acid-based molecular diagnostic determination of bacterial germ counts and kit for this purpose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5795717A (en) * 1994-02-28 1998-08-18 Shimadzu Corporation Oligonucleotides for detecting bacteria and detection process

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638759B2 (en) * 1988-07-29 1994-05-25 株式会社島津製作所 DNA probe used for Salmonella test and method for detecting Salmonella using the same
DE69032778T2 (en) * 1989-07-18 1999-07-29 Shimadzu Corp Process for examining food poisoning caused by microorganisms and reagent therefor
JPH0789959B2 (en) * 1989-07-18 1995-10-04 株式会社島津製作所 Oligonucleotide for detecting C. perfringens and detection method using the same
JPH03262500A (en) * 1990-03-14 1991-11-22 Nippon Shoji Kk Inspection of dysentery bacillus and/or intestinally intruding colibacillus and primer suitable for same inspection
JPH0499488A (en) * 1990-08-20 1992-03-31 Unitika Ltd Primer for amplification of gene
JP2905945B2 (en) * 1991-03-26 1999-06-14 塩野義製薬株式会社 Vero toxin gene type detection method and primer used therefor
JP2905944B2 (en) * 1991-03-26 1999-06-14 塩野義製薬株式会社 Method for detecting Vero toxin gene and primer used therefor
JPH0549477A (en) * 1991-08-05 1993-03-02 Wakunaga Pharmaceut Co Ltd Detection of bacteria of the genus staphylococcus
JPH05276996A (en) * 1992-04-01 1993-10-26 Toyobo Co Ltd Oligonucleotide for detecting microorganism capable of producing vibrio cholerae toxin, method for detecting microorganism capable of producing vibrio cholerae toxin and reagent kit for detection
JP2715851B2 (en) * 1992-09-30 1998-02-18 株式会社島津製作所 Nucleic acid detection method
JP2993314B2 (en) * 1993-04-26 1999-12-20 株式会社島津製作所 Oligonucleotides for detection of Staphylococcus aureus and detection methods using them
JP2775663B2 (en) * 1993-06-15 1998-07-16 株式会社島津製作所 Oligonucleotides for bacterial detection and detection methods using them
JP3134907B2 (en) * 1993-06-15 2001-02-13 株式会社島津製作所 Oligonucleotide for detecting Vibrio cholerae and detection method using the same
JPH099488A (en) * 1995-06-15 1997-01-10 Meidensha Corp Frequency relay device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683195B1 (en) * 1986-01-30 1990-11-27 Cetus Corp
US5795717A (en) * 1994-02-28 1998-08-18 Shimadzu Corporation Oligonucleotides for detecting bacteria and detection process
US6218110B1 (en) * 1994-02-28 2001-04-17 Shimadzu Corporation Oligonucleotides for detecting verotoxin-producing E. coli and detection process

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070019504A1 (en) * 2003-04-15 2007-01-25 Martin Howlid Active steering for marine seismic sources
US20110256541A1 (en) * 2007-03-23 2011-10-20 Ecker David J Compositions for use in identification of bacteria
US20090081663A1 (en) * 2007-04-19 2009-03-26 Molecular Detection Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US20110151466A1 (en) * 2007-04-19 2011-06-23 Molecular Detection, Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US8017337B2 (en) 2007-04-19 2011-09-13 Molecular Detection, Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US8362228B2 (en) 2007-04-19 2013-01-29 Molecular Detection, Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US8512954B2 (en) 2007-04-19 2013-08-20 Molecular Detection Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US8557524B2 (en) 2007-04-19 2013-10-15 Molecular Detection Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US8557974B2 (en) 2007-04-19 2013-10-15 Molecular Detection Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US9074260B2 (en) 2007-04-19 2015-07-07 Molecular Detection Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
EP2271767A1 (en) * 2008-04-03 2011-01-12 HudsonAlpha Institute For Biotechnology Amplicon rescue multiplex polymerase chain reaction for amplificaton of multiple targets
EP2271767A4 (en) * 2008-04-03 2011-08-24 Hudsonalpha Inst For Biotechnology Amplicon rescue multiplex polymerase chain reaction for amplificaton of multiple targets

Also Published As

Publication number Publication date
EP0669399B1 (en) 2003-10-01
US6218110B1 (en) 2001-04-17
EP1036846A2 (en) 2000-09-20
EP0669399A3 (en) 1996-05-22
DE69433201D1 (en) 2003-11-06
EP0669399A2 (en) 1995-08-30
DE69433201T2 (en) 2004-07-29
US5795717A (en) 1998-08-18
EP1036846A3 (en) 2000-10-18

Similar Documents

Publication Publication Date Title
US6218110B1 (en) Oligonucleotides for detecting verotoxin-producing E. coli and detection process
Tornieporth et al. Differentiation of pathogenic Escherichia coli strains in Brazilian children by PCR
Pollard et al. Rapid and specific detection of verotoxin genes in Escherichia coli by the polymerase chain reaction
Wang et al. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157: H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR
Chiu et al. Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay
Harnett et al. Detection of pathogenic Yersinia enterocolitica using the multiplex polymerase chain reaction
Van Damme-Jongsten et al. Synthetic DNA probes for detection of enterotoxigenic Clostridium perfringens strains isolated from outbreaks of food poisoning
McIngvale et al. Optimization of reverse transcriptase PCR to detect viable Shiga-toxin-producing Escherichia coli
US5468852A (en) Oligonucleotides for detecting bacteria
NZ337506A (en) Detection and differentiation of pathogenic enterobacteria in a sample by providing specific, labelled oligonucleotides probes and optimised primer pairs for amplification using PCR
US5652102A (en) Assay for enterohemorrhagic Escherichia coli 0157:H7 by the polymerase chain reaction
US5529910A (en) Method for testing causative microorganisms of food poisioning and reagents therefor
Grant et al. Glutamate decarboxylase genes as a prescreening marker for detection of pathogenic Escherichia coli groups
Fach et al. Comparison of different PCR tests for detecting Shiga toxin-producing Escherichia coli O157 and development of an ELISA-PCR assay for specific identification of the bacteria
JP5884108B2 (en) Batch detection method for food poisoning bacteria by multiplex shuttle PCR
JP2792462B2 (en) Oligonucleotides for detection of Salmonella spp. And detection methods using the same
Rich et al. Identification of human enterovirulent Escherichia coli strains by multiplex PCR
JP2775663B2 (en) Oligonucleotides for bacterial detection and detection methods using them
JP2001095576A (en) Method for detecting intestinal hemorrhagic strain of escherichia coli
US20050130155A1 (en) Primers for the detection and identification of bacterial indicator groups and virulene factors
Pierard* Infections with verotoxin-producing Escherichia coli
JP3141976B2 (en) Oligonucleotides for detection of Shigella and detection methods using them
JP2885081B2 (en) Oligonucleotide for detecting enterotoxin-producing C. perfringens and detection method using the same
JP3331977B2 (en) Oligonucleotides for detection of Shigella and detection methods using them
JPH04293486A (en) Oligonucleotide for detecting bacterium and detecting method using same nucleotide

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION