US20030058717A1 - Word-line deficiency detection method for semiconductor memory device - Google Patents

Word-line deficiency detection method for semiconductor memory device Download PDF

Info

Publication number
US20030058717A1
US20030058717A1 US10/288,461 US28846102A US2003058717A1 US 20030058717 A1 US20030058717 A1 US 20030058717A1 US 28846102 A US28846102 A US 28846102A US 2003058717 A1 US2003058717 A1 US 2003058717A1
Authority
US
United States
Prior art keywords
word lines
voltage
word
semiconductor memory
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/288,461
Other versions
US6839293B2 (en
Inventor
Satoru Kawamoto
Motoki Mizutani
Shinji Nagai
Yoshiharu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/288,461 priority Critical patent/US6839293B2/en
Publication of US20030058717A1 publication Critical patent/US20030058717A1/en
Application granted granted Critical
Publication of US6839293B2 publication Critical patent/US6839293B2/en
Assigned to FUJITSU MICROELECTRONICS LIMITED reassignment FUJITSU MICROELECTRONICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJITSU LIMITED
Assigned to FUJITSU SEMICONDUCTOR LIMITED reassignment FUJITSU SEMICONDUCTOR LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FUJITSU MICROELECTRONICS LIMITED
Assigned to SOCIONEXT INC. reassignment SOCIONEXT INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJITSU SEMICONDUCTOR LIMITED
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/025Detection or location of defective auxiliary circuits, e.g. defective refresh counters in signal lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0403Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals during or with feedback to manufacture

Definitions

  • the present invention relates to a semiconductor memory device, and more particularly, to a semiconductor memory device having a burn-in test capability.
  • DRAM Dynamic Random Access Memory
  • DRAMs having an electrical deficiency, such as disconnection are likely to be produced.
  • a burn-in test is conducted on DRAMs before shipment. In the burn-in test, a voltage higher than the normal operational voltage is applied to elements in memory cells and lines over a predetermined time.
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 6-60697 discloses a first prior art semiconductor memory device.
  • the semiconductor memory device includes a row address selector connected to a memory cell array, a changeover circuit connected to the row address selector, a test mode detector connected to the changeover circuit and a refresh address generator connected to the changeover circuit.
  • the refresh address generator supplies a refresh address signal to the changeover circuit.
  • the test mode detector sends a burn-in-test-mode detection signal to the changeover circuit.
  • the changeover circuit sends an address select signal to the row address selector.
  • the burn-in-test-mode detection signal becomes active so that the changeover circuit supplies the row address selector with an address select signal to select all the word lines at a time.
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 9-17199 discloses a second prior art semiconductor memory device.
  • the stress voltage is simultaneously supplied to all the word lines via transistors, which are connected to a plurality of word lines, in a burn-in test.
  • each word line has a relatively long length of, for example, about 1000 ⁇ m. If a word line has a conductive failure, such as disconnection, the stress voltage is not applied to the word line over the entire length. Therefore, the burn-in tests according to the first and second prior art devices are relatively unreliable.
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 5-67399 discloses a third prior art semiconductor memory device.
  • the stress voltage is supplied to a measuring terminal from an external unit.
  • the semiconductor memory device detects whether the stress voltage is supplied to the internal circuits.
  • the supply voltage is supplied to the measuring terminal.
  • the semiconductor memory device detects whether the operational voltage is supplied to the internal circuits.
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 9-147599 discloses a fourth prior art semiconductor memory device.
  • the semiconductor memory device includes a burn-in circuit, which executes a burn-in test, an address key circuit, which supplies the burn-in circuit with a mode signal to instruct the execution of the burn-in test, and a burn-in-mode detector, which is connected to both the address key circuit and the burn-in circuit.
  • the burn-in-mode detector detects whether the semiconductor memory device is in burn-in mode based on the mode signal and the input level of an external terminal signal.
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 5-282898 discloses a fifth prior art semiconductor memory device.
  • the individual word lines of the semiconductor memory device are connected to the gates of MOS transistors.
  • the current that flows between the drain and source of each transistor and the drain current that is originated from the ON action of the transistor are detected by a test terminal. This makes it possible to detect whether each word line is short-circuited with the power supply.
  • the transistors in the fifth prior art device are connected in a wired-OR fashion. When all the word lines are selected at a time in a burn-in test mode, therefore, the drain current simultaneously flows in a plurality of transistors. It is not therefore detected whether all the word lines have been selected properly.
  • each transistor As each transistor is turned on when the potential of each word line is equal to or higher than the source potential of that transistor by a predetermined value (threshold value), it is not detected whether the stress voltage has been applied to each word line. If the stress voltage applied to each word line is predictable based on the ON resistance of each transistor, it is not possible to estimate the ON resistance of each transistor when a plurality of transistors are selected at a time. Because the number of those word lines to which the stress voltage has not been applied adequately is not detected, it is not possible to determine whether the chip can be saved by the redundancy operation.
  • a predetermined value threshold value
  • the reliabilities of the conventional burn-in tests are insufficient.
  • the wafer test process of semiconductor memory devices are carried out in the following fabrication process.
  • a DC check on each chip on a wafer is performed first in step S 1 .
  • the DC check sorts out defective chips with a large short-circuit current by detecting the short-circuit current with a supply voltage supplied to each chip.
  • step S 2 a simple function check is performed on each chip on the wafer. The simple function check roughly checks the operation of the internal circuits of each chip.
  • step S 3 a wafer burn-in test is conducted. Then, a DC check in step S 4 and redundancy setting in step S 5 are carried out.
  • step S 6 a full function check is executed to check whether all the memory cells operate normally by performing a write operation and read operation on all the memory cells.
  • step S 7 In the case of manufacturing packaged devices, dicing (step S 7 ), assembly (step S 8 ) and a simple check (step S 9 ) are executed.
  • step S 10 To supplement the reliability of the wafer burn-in test in step S 3 , an additional burn-in test is conducted in step S 10 through a normal operation of selecting the word lines one after another and applying the stress voltage to the selected word line. Then, a full function check is performed again (step S 11 ) after which an assembled product will be shipped.
  • step S 12 In the case of shipping device chips, an additional burn-in test is conducted on a wafer through the normal operation in step S 12 after step S 6 . Dicing is carried out after a DC check in step S 13 and a simple check in step S 14 , and device chips will then be shipped.
  • step S 10 and S 12 The additional burn-in tests (steps S 10 and S 12 ) for improving the reliability of the burn-in test make the test time longer and the cost for the test higher.
  • the present invention provides a semiconductor memory device having a plurality of word lines.
  • the memory device includes a detection circuit, which is connected to the plurality of word lines.
  • the detection circuit detects whether a stress voltage for a burn-in test has been applied to all of the word lines along their entire lengths.
  • the present invention also provides a method of detecting a deficiency in a plurality of word lines for a semiconductor memory device having a plurality of memory cells connected to intersections of the plurality of word lines and bit lines.
  • the method includes performing a write operation on associated memory cells by applying a stress voltage to a selected one of the word lines and by applying a write voltage higher than a normal write voltage to the bit lines, and detecting whether there is a deficiency in the plurality of word lines by reading cell information based on the write operation from individual memory cells by applying the stress voltage to the word lines again.
  • the present invention further provides a method of fabricating a semiconductor memory device.
  • the method includes detecting whether a stress voltage has been normally applied to all word lines over their entire lengths in a wafer burn-in test in a wafer test step, and producing a packaging device and a chip device having shipping specifications based on the result of the detection.
  • the present invention further provides a semiconductor device including a semiconductor memory device having a plurality of word lines.
  • the semiconductor memory device has a detection circuit, which is connected to the plurality of word lines, for detecting whether a stress voltage for a burn-in test has been applied to all of the word lines over their entire lengths.
  • FIG. 1 is a flowchart illustrating the fabrication process of a conventional memory device
  • FIG. 2 is a schematic block diagram of a semiconductor memory device according to a first embodiment of the invention.
  • FIG. 3 is a schematic circuit diagram of a semiconductor memory device according to a second embodiment of the invention.
  • FIG. 4 is a schematic diagram of a latch circuit as another example of a comparator
  • FIG. 5 is a circuit diagram showing a test mode circuit connected to an inverter circuit
  • FIG. 6 is a circuit diagram showing a ROM and a ROM read circuit connected to an inverter circuit
  • FIG. 7 is a schematic circuit diagram of a semiconductor memory device according to a third embodiment of the invention.
  • FIG. 8 is a schematic circuit diagram of a semiconductor memory device according to a fourth embodiment of the invention.
  • FIG. 9 is a flowchart illustrating the fabrication process of semiconductor memory devices according to the first to fourth embodiments of the invention.
  • a semiconductor memory device 100 includes a voltage detection circuit VC, word lines WL and a redundancy word line RWL.
  • the word lines WL and the redundancy word line RWL are connected to the voltage detection circuit VC.
  • Corresponding word drivers 3 are connected to the word lines WL and the redundancy word line RWL.
  • a stress voltage Vst is applied to the word lines WL and the redundancy word line RWL.
  • the voltage detection circuit VC detects whether the stress voltage Vst has been applied to each word line WL over the entire length.
  • the semiconductor memory device (DRAM) 200 includes a row decoder 1 , a redundancy decoder 2 , which is adjacent to the row decoder 1 , global word lines GWL 0 -GWLi, which are connected to the row decoder 1 , a redundancy global word line RGWL 0 , which is connected to the redundancy decoder 2 , a stress-voltage determining circuit 8 , which is connected to the global word lines GWL 0 -GWLi and the redundancy global word line RGWL 0 , and a stress determination control circuit 9 , which is connected to the stress-voltage determining circuit 8 .
  • An address signal Add and a first wafer burn-in signal WBIX are supplied to the row decoder 1 .
  • the first wafer burn-in signal WBIX is also supplied to the redundancy decoder 2 .
  • the first wafer burn-in signal WBIX is supplied to the row decoder 1 at an L level.
  • the first wafer burn-in signal WBIX is supplied to the row decoder 1 at an H level.
  • the row decoder 1 selects one of the global word lines GWL 0 -GWLi in accordance with the address signal Add. In the wafer burn-in test mode, the row decoder 1 selects all the global word lines GWL 0 -GWLi in accordance with the first wafer burn-in signal WBIX.
  • a redundancy determining circuit (not shown) supplies a redundancy determination signal RW to the redundancy decoder 2 .
  • the redundancy decoder 2 selects the redundancy global word line RGWL 0 according to the redundancy determination signal RW.
  • the redundancy decoder 2 selects the redundancy global word line RGWL 0 according to the L-level first wafer burn-in signal WBIX. That is, all the global word lines GWL 0 -GWLi and the redundancy global word line RGWL 0 are selected in the wafer burn-in test mode.
  • the global word line GWL 0 is connected to a pair of word lines WL 0 and WL 1 via word drivers 3 a 0 and 3 b 0 .
  • the global word line GWLi is connected to a pair of word lines WLn ⁇ 1 and WLn via word drivers 3 ai and 3 bi.
  • the redundancy global word line RGWL 0 is connected to a pair of redundancy word lines RWL 0 and RWL 1 via word drivers 3 ar 0 and 3 br 0 .
  • An operational voltage Vpp is supplied to a driver selection circuit 4 via a P channel MOS (PMOS) transistor (first transistor) Tr 1 .
  • the stress voltage Vst for a burn-in test is supplied to the driver selection circuit 4 via a PMOS transistor (second transistor) Tr 2 .
  • the operational voltage Vpp is supplied to the word lines in the normal operation mode.
  • the external supply voltage is 3.3 V, for example, it is preferred that the operational voltage Vpp be 4.0 V and the stress voltage Vst be about 4.5 V.
  • the driver selection circuit 4 supplies a drive voltage px 0 to the individual word drivers 3 a 0 , 3 ai and 3 ar 0 and supplies a drive voltage px 1 to the individual word drivers 3 b 0 , 3 bi and 3 br 0 .
  • the first wafer burn-in signal WBIX is supplied via an inverter circuit 5 a to the gate of the first transistor Tr 1 , and is directly supplied to the gate of the second transistor Tr 2 .
  • the operational voltage Vpp is supplied to the driver selection circuit 4 in the normal operation mode and the stress voltage Vst is supplied to the driver selection circuit 4 in the wafer burn-in test mode.
  • the row decoder 1 sends a driver select signal DS to the driver selection circuit 4 .
  • the driver selection circuit 4 supplies the drive voltage from the operational voltage Vpp to the word drivers 3 a 0 , 3 ai and 3 ar 0 or the word drivers 3 b 0 , 3 bi and 3 br 0 .
  • the driver selection circuit 4 supplies the drive voltage originated from the stress voltage Vst to all the word drivers 3 a 0 , 3 ai, 3 ar 0 , 3 b 0 , 3 bi and 3 br 0 .
  • Each of the word lines WL 0 -WLn and the redundancy word lines RWL 0 and RWL 1 is connected to a plurality of memory cells MC.
  • a bit line (not shown) is connected to each memory cell MC.
  • word switches 6 a 0 , 6 ai, 6 ar 0 , 6 b 0 , 6 bi and 6 br 0 are respectively connected to the distal ends of the word lines WL 0 -WLn, RWL 0 and RWL 1 .
  • the word switches 6 a 0 and 6 b 0 are connected to the distal ends of the respective word lines WL 0 and WL 1 .
  • the word switches 6 ai and 6 bi are connected to the distal ends of the respective word lines WLn ⁇ 1 and WLn.
  • the word switches 6 ar 0 and 6 br 0 are connected to the distal ends of the respective redundancy word lines RWL 0 and RWL 1 .
  • a pair of word-line connection switches 7 a 0 and 7 b 0 are connected to the distal ends and proximal ends of the respective word lines WL 0 and WL 1 .
  • a pair of word-line connection switches 7 ai and 7 bi are connected to the distal ends and proximal ends of the respective word lines WLn ⁇ 1 and WLn.
  • a pair of word-line connection switches 7 ar 0 and 7 br 0 are connected to the distal ends and proximal ends of the respective redundancy word lines RWL 0 and RWL 1 .
  • Each of the word-line connection switches 7 a 0 , 7 b 0 , 7 ai, 7 bi, 7 ar 0 and 7 br 0 is a PMOS transistor.
  • the first wafer burn-in signal WBIX is supplied to the gate of each word-line connection switches 7 a 0 , 7 b 0 , 7 ai, 7 bi, 7 ar 0 or 7 br 0 .
  • the word-line connection switches 7 a 0 , 7 b 0 , 7 ai, 7 bi, 7 ar 0 and 7 br 0 are turned on, thereby allowing all the word line pairs to have the same potential.
  • the word switches 6 a 0 , 6 ai, 6 ar 0 , 6 b 0 , 6 bi and 6 br 0 are connected in series.
  • the word switches 6 a 0 , 6 ai, 6 ar 0 , 6 b 0 , 6 bi and 6 br 0 and the word-line connection switches 7 a 0 , 7 b 0 , 7 ai, 7 bi, 7 ar 0 and 7 br 0 constitute the stress-voltage determining circuit 8 .
  • the stress determination control circuit 9 is connected to the input terminal of the stress-voltage determining circuit 8 or an input node N 1 .
  • the stress determination control circuit 9 includes NMOS transistors Tr 3 and Tr 4 and an inverter circuit 5 b.
  • the drains of the NMOS transistors Tr 3 and Tr 4 are connected to the input node N 1 .
  • the source of the NMOS transistor Tr 3 is connected to a voltage supply Vss.
  • the source of the NMOS transistor Tr 4 is supplied with a first reference voltage Vref 1 .
  • the gate of the NMOS transistor Tr 4 is supplied with a second wafer burn-in signal WBIZ.
  • Vref 1 Vst ⁇ Vth.
  • the output terminal of the stress-voltage determining circuit 8 or an output node N 2 is connected to the positive input terminal of a comparator 10 .
  • a second reference voltage Vref 2 is supplied to the negative input terminal of the comparator 10 .
  • the second reference voltage Vref 2 is lower than the stress voltage Vst by 1 ⁇ 2 of the threshold value Vth and is given by the following equation.
  • Vref 2 Vst ⁇ Vth/ 2
  • the second reference voltage Vref 2 is 4.0 V.
  • the output signal of the comparator 10 has an H level.
  • the output signal of the comparator 10 has an L level.
  • the output signal of the comparator 10 is inverted by an inverter circuit 5 d and the inverted signal is supplied to a burn-in tester device from an external terminal as an output signal OUT.
  • the first wafer burn-in signal WBIX is supplied to the comparator 10 via an inverter circuit 5 c. In the wafer burn-in test mode, therefore, the comparator 10 is enabled by the H-level output signal supplied from the inverter circuit 5 c.
  • a preset circuit 11 which operates on the same potential as the stress potential, is connected to the output node N 2 .
  • the preset circuit 11 is supplied with an L-level one-shot pulse signal, or preset signal PR, at the time the burn-in test is initiated.
  • the preset circuit 11 resets the voltage at the output node N 2 to the level of the stress voltage Vst (4.5 V) in accordance with the preset signal PR.
  • the preset circuit 11 includes an inverter circuit 11 a, the threshold value of which is set to approximately 4.0 V. With the preset signal PR having an H level, the preset circuit 11 functions as a latch circuit to latch the potential at the output node N 2 to the level of the stress voltage Vst or the level of the supply voltage Vss.
  • the L-level first wafer burn-in signal WBIX, the H-level second wafer burn-in signal WBIZ and the stress voltage Vst are supplied to the semiconductor memory device 200 .
  • the first transistor Tr 1 is turned off and the second transistor Tr 2 is turned on, causing the stress voltage Vst to be applied to the driver selection circuit 4 .
  • the driver selection circuit 4 supplies the drive voltages px 0 and Px 1 corresponding to the stress voltage Vst to all the word drivers 3 a 0 , 3 ai, 3 ar 0 , 3 b 0 , 3 bi and 3 br 0 .
  • the row decoder 1 selects all the global word lines GWL 0 -GWLi.
  • the stress voltage Vst is applied to all the word lines WL 0 -WLn and redundancy word lines RWL 0 and RWL 1 .
  • the word-line connection switches 7 a 0 , 7 b 0 , 7 ai, 7 bi, 7 ar 0 and 7 br 0 are turned on by the L-level first wafer burn-in signal WBIX.
  • the NMOS transistor Tr 4 is turned on and the NMOS transistor Tr 3 is turned off, thereby supplying the first reference voltage Vref 1 to the input node N 1 .
  • the preset circuit 11 charges the output node N 2 to the level of the stress voltage Vst.
  • the H-level output signal of the inverter circuit 5 c enables the comparator 10 .
  • the stress voltage Vst is applied to the word lines WL 0 -WLn and redundancy word lines RWL 0 and RWL 1 , thus turning on all the word switches 6 a 0 , 6 ai, 6 ar 0 , 6 b 0 , 6 bi and 6 br 0 . Consequently, the voltage at the output node N 2 falls from the preset level (stress voltage Vst) to the first reference voltage Vrefl lower than the second reference voltage Vref 2 . As a result, the output signal of the comparator 10 is inverted to the L level from the H level.
  • the burn-in tester device confirms that the stress voltage Vst is properly applied to all the word lines WL 0 -WLn and redundancy word lines RWL 0 and RWL 1 .
  • At least one of the word switches 6 a 0 , 6 ai, 6 ar 0 , 6 b 0 , 6 bi and 6 br 0 is turned off and the output node N 2 is kept at the level of the stress voltage Vst in the following cases:
  • the burn-in tester device When detecting the L-level output signal OUT, the burn-in tester device recognizes that there is a word line to which the stress voltage Vst is not applied properly. In this case, the chip is deficient.
  • the stress voltage Vst is also applied to the deficient word line via the word-line connection switches 7 a 0 , 7 b 0 , 7 ai, 7 bi, 7 ar 0 and 7 br 0 and the word switch that is connected to the deficient word line is turned on.
  • the chip is saved by replacing the global word line that corresponds to the deficient word line with the redundancy global word line, so that the chip is not considered to be defective. This is based on the premise that the probability of a deficiency occurring in one of two word lines that are connected to the global word line over a plurality of global word lines is extremely low.
  • the H-level first wafer burn-in signal WBIX and the L-level second wafer burn-in signal WBIZ are supplied.
  • the row decoder 1 selects one global word line or redundancy global word line.
  • the first transistor Tr 1 is turned on to supply the operational voltage Vpp to the driver selection circuit 4 .
  • the driver selection circuit 4 supplies the drive voltages px 0 and px 1 (operational voltage Vpp and supply voltage Vss) to the individual word drivers 3 a 0 , 3 ai, 3 ar 0 , 3 b 0 , 3 bi and 3 br 0 .
  • the comparator 10 is disabled by the L-level output signal supplied from the inverter circuit 5 c.
  • the NMOS transistor Tr 4 is turned off and the NMOS transistor Tr 3 is turned on so that the voltage at the input node N 1 is set to the level of the supply voltage Vss. All of the word-line connection switches 7 a 0 , 7 b 0 , 7 ai, 7 bi, 7 ar 0 and 7 br 0 are turned off.
  • one of the word lines WL 0 -WLn or one of redundancy word lines RWL 0 and RWL 1 is selected based on the address signal Add.
  • Cell information is written in or read from those in the memory cells MC connected to the selected word line which are selected by the column decoder.
  • the semiconductor memory device 200 of the second embodiment has the following advantages.
  • the burn-in tester device detects the H-level output signal OUT, it detects that the stress voltage Vst is adequately applied to the word lines WL 0 -WLn and redundancy word lines RWL 0 and RWL 1 .
  • the semiconductor memory device 200 of the second embodiment may be modified as follows.
  • a latch circuit 12 shown in FIG. 4 may be used in place of the comparator 10 .
  • the latch circuit 12 includes a first NAND gate 13 a and a second NAND gate 13 b.
  • the two input terminals of the first NAND gate 13 a are respectively connected to the inverter circuit 5 c and the output node N 2 .
  • the first input terminal of the second NAND gate 13 b is connected to the output terminal of the first NAND gate 13 a.
  • the second input terminal of the second NAND gate 13 b is supplied with the preset signal PR.
  • the output terminal of the second NAND gate 13 b is connected to the output node N 2 .
  • the threshold value of the first NAND gate 13 a is approximately 4.0 V, and the voltage of the H-level output signal of the second NAND gate 13 b has the level of the stress voltage Vst.
  • the output node N 2 is preset to the stress voltage Vst by the preset signal PR and the inverter circuit 5 c outputs an H-level signal. Accordingly, the first NAND gate 13 a outputs the L-level output signal OUT. The first and second NAND gates 13 a and 13 b latch the L-level output signal OUT.
  • a test mode circuit 14 which is enabled by a test mode signal TM supplied to in the burn-in test mode may be connected to the inverter circuit 5 d.
  • the test mode circuit 14 sends the output signal OUT of the inverter circuit 5 d to an external terminal 15 in response to the test mode signal TM.
  • the test mode circuit 14 is disabled so that the external terminal 15 is used as an input/output terminal for an arbitrary signal.
  • the output signal OUT of the inverter circuit Sd is sent out from the external terminal 15 .
  • a programmable ROM 16 and a ROM read circuit 17 may be connected to the inverter circuit 5 d.
  • the output signal OUT of the inverter circuit 5 d is written in the ROM 16 .
  • the ROM read circuit 17 reads data of the output signal written in the ROM 16 and sends out the data from the external terminal 15 .
  • a semiconductor memory device 300 according to the third embodiment of the invention will be described below referring to FIG. 7.
  • the third embodiment differs from the second embodiment in the stress-voltage determining circuit 8 .
  • the stress-voltage determining circuit 8 includes plural pairs of word-line connection switches 18 a and 18 b configured by PMOS transistors and a plurality of word switches 19 configured by NMOS transistors. Each pair of word-line connection switches 18 a and 18 b are connected to the distal ends of each associated pair of word lines that are-controlled by a common global word line. Each word switch 19 has its gate connected to a node between the associated pair of wordline connection switches 18 a and 18 b.
  • the first wafer burn-in signal WBIX is supplied to the gates of the word-line connection switches 18 a and 18 b.
  • the word-line connection switches 18 a and 18 b are turned on based on the L-level first wafer burn-in signal WBIX. In this case, when the stress voltage Vst is applied to one of the word line pair, the word switch 19 is turned on.
  • the semiconductor memory device 300 of the-third embodiment has fewer word switches 19 , thus making the stress-voltage determining circuit 8 smaller.
  • a semiconductor memory device 400 according to a fourth embodiment of the invention will now be discussed below referring to FIG. 8.
  • the semiconductor memory device 400 of the fourth embodiment detects whether the stress voltage has been properly applied to the word lines in the wafer burn-in test mode by using a dummy cell group provided in the memory cell array.
  • the dummy cell group is connected to a pair of bit lines provided at the peripheral portion of the memory cell array in order to protect normal cells against, for example, external noise. In the normal operation mode, the dummy cell group is not accessed.
  • a normal memory cell group 20 which performs a normal write operation and a normal read operation
  • a dummy cell group 21 which is located adjacent to the normal memory cell group 20 and is connected to the word lines WL 0 -WLn and redundancy word lines.
  • dummy cells DMC in the dummy cell group 21 are connected to the word lines WL 0 -WLn and each dummy cell DMC is connected to associated dummy bit lines DBLZ and DBLX.
  • Sense amplifiers 22 are connected between the dummy bit lines DBLZ and DBLX and between normal bit lines BLZ and BLX. Each sense amplifier 22 reads cell information from the dummy cells DMC or the normal memory cells MC.
  • Vst Before the stress voltage Vst is supplied to the word lines WL 0 -WLn and redundancy word lines RWL, a voltage that is given by Vst ⁇ 2Vth where Vth is the threshold voltage value of a cell transistor T is supplied to an opposing electrode 23 of a cell capacitor C in each dummy cell DMC in order to protect the dummy cell DMC.
  • Vth is the threshold voltage value of a cell transistor T
  • Vst the threshold voltage value of a cell transistor T
  • a voltage of 3.5 V (Vst ⁇ Vth) is applied to, for example, the bit line BLZ and the stress voltage Vst is applied to one of the word lines WL 0 -WLn and redundancy word lines RWL. If the stress voltage Vst is supplied to the selected word line over the entire length, the cell transistor T of the dummy cell DMC is turned on. Accordingly, the cell capacitor C of the dummy cell DMC is charged to 3.5 V and “1” is written as cell information.
  • the voltages on the dummy bit lines DBLZ and DBLX of the dummy cell group 21 are reset to 2.5 V (Vst ⁇ 2Vth), then the stress voltage Vst is applied again to the word line to which the stress voltage Vst has been applied previously.
  • cell information is read from the target dummy cell DMC onto the dummy bit lines DBLZ and DBLX, thereby producing a slight potential difference between the dummy bit lines DBLZ and DBLX.
  • the sense amplifier 22 amplifies the potential difference and outputs cell information.
  • a detection circuit 402 detects that the stress voltage Vst has properly been applied to the selected word line.
  • the detection circuit 402 detects that the stress voltage Vst has not properly been applied to the selected word line.
  • all the word lines may be selected simultaneously so that cell information is simultaneously written in all the dummy cells DMC.
  • This operation makes it possible to detect whether there is any deficiency in the word lines and shortens the time required to write cell information in the dummy cells DMC.
  • the sense amplifiers 22 and the dummy bit line pair (DBLZ and DBLX) are controlled to be disabled when the semiconductor memory device is in the normal operation.
  • step S 21 In the wafer testing process, a DC check in step S 21 and a simple function check in step S 22 are performed as in the prior art.
  • step S 23 a wafer burn-in testing process is executed.
  • the wafer burn-in testing process according to each of the first to third embodiments, it is detected with a high reliability whether the stress voltage has been applied to the word lines.
  • the fourth embodiment it is detected first whether the stress voltage has properly been applied to all the word lines and then the wafer burn-in test is conducted. This makes the burn-in test highly reliable.
  • steps S 24 and S 25 a DC check and redundancy setting are carried out as in the prior art.
  • step S 26 a full function check is executed to perform a write operation and read operation on all the memory cells and to check whether all the memory cells are operating normally. After dicing in step S 27 , chips will be shipped.
  • steps S 10 to S 14 in the prior art are omitted. This shortens the testing time and reduces the cost for the test.

Abstract

A semiconductor memory device having a burn-in test capability. The semiconductor memory device includes a detection circuit, which is connected to the plurality of word lines. The detection circuit detects whether a stress voltage for a burn-in test has been applied to all of the word lines along their entire lengths in the burn-in test.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a semiconductor memory device, and more particularly, to a semiconductor memory device having a burn-in test capability. [0001]
  • Because recent semiconductor memory devices, such as a DRAM (Dynamic Random Access Memory), are designed by extremely detailed design rules, DRAMs having an electrical deficiency, such as disconnection, are likely to be produced. To eliminate defects, a burn-in test is conducted on DRAMs before shipment. In the burn-in test, a voltage higher than the normal operational voltage is applied to elements in memory cells and lines over a predetermined time. [0002]
  • Since the conventional burn-in test performs a function operation to sequentially access the individual word lines after packaging, the burn-in test takes time. As the rate of shipping unpackaged chips as products increases, the burn-in test now takes place in the wafer test process. [0003]
  • In the normal operation of a DRAM, a single word line and a column are selected. Cell information is read from or written in those memory cells that are connected to the selected word line and column. In the burn-in test that is made in the wafer test process, a stress voltage is applied to selected plural word lines and bit lines for a predetermined time. This shortens the burn-in test time. [0004]
  • The publications that will be discussed below disclose semiconductor memory devices equipped with a burn-in test capability for selecting a plurality of word lines. [0005]
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 6-60697 discloses a first prior art semiconductor memory device. The semiconductor memory device includes a row address selector connected to a memory cell array, a changeover circuit connected to the row address selector, a test mode detector connected to the changeover circuit and a refresh address generator connected to the changeover circuit. The refresh address generator supplies a refresh address signal to the changeover circuit. The test mode detector sends a burn-in-test-mode detection signal to the changeover circuit. In accordance with the level of the burn-in-test-mode detection signal, the changeover circuit sends an address select signal to the row address selector. At the time of a burn-in test, the burn-in-test-mode detection signal becomes active so that the changeover circuit supplies the row address selector with an address select signal to select all the word lines at a time. [0006]
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 9-17199 discloses a second prior art semiconductor memory device. In this semiconductor memory device, the stress voltage is simultaneously supplied to all the word lines via transistors, which are connected to a plurality of word lines, in a burn-in test. [0007]
  • According to the first and second prior art devices, however, it is not detected whether the stress voltage has actually been applied to the word lines in the burn-in test. Since a plurality of memory cells are connected to each word line, each word line has a relatively long length of, for example, about 1000 μm. If a word line has a conductive failure, such as disconnection, the stress voltage is not applied to the word line over the entire length. Therefore, the burn-in tests according to the first and second prior art devices are relatively unreliable. [0008]
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 5-67399 discloses a third prior art semiconductor memory device. In the burn-in test mode of the semiconductor memory device, the stress voltage is supplied to a measuring terminal from an external unit. The semiconductor memory device detects whether the stress voltage is supplied to the internal circuits. In the normal operation mode, on the other hand, the supply voltage is supplied to the measuring terminal. The semiconductor memory device detects whether the operational voltage is supplied to the internal circuits. [0009]
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 9-147599 discloses a fourth prior art semiconductor memory device. The semiconductor memory device includes a burn-in circuit, which executes a burn-in test, an address key circuit, which supplies the burn-in circuit with a mode signal to instruct the execution of the burn-in test, and a burn-in-mode detector, which is connected to both the address key circuit and the burn-in circuit. The burn-in-mode detector detects whether the semiconductor memory device is in burn-in mode based on the mode signal and the input level of an external terminal signal. [0010]
  • In the third and fourth prior art devices, however, it is not detected whether the stress voltage has actually been applied to all the word lines. [0011]
  • Japanese Unexamined Patent Publication (KOKAI) No. Hei 5-282898 discloses a fifth prior art semiconductor memory device. The individual word lines of the semiconductor memory device are connected to the gates of MOS transistors. The current that flows between the drain and source of each transistor and the drain current that is originated from the ON action of the transistor are detected by a test terminal. This makes it possible to detect whether each word line is short-circuited with the power supply. [0012]
  • The transistors in the fifth prior art device are connected in a wired-OR fashion. When all the word lines are selected at a time in a burn-in test mode, therefore, the drain current simultaneously flows in a plurality of transistors. It is not therefore detected whether all the word lines have been selected properly. [0013]
  • As each transistor is turned on when the potential of each word line is equal to or higher than the source potential of that transistor by a predetermined value (threshold value), it is not detected whether the stress voltage has been applied to each word line. If the stress voltage applied to each word line is predictable based on the ON resistance of each transistor, it is not possible to estimate the ON resistance of each transistor when a plurality of transistors are selected at a time. Because the number of those word lines to which the stress voltage has not been applied adequately is not detected, it is not possible to determine whether the chip can be saved by the redundancy operation. [0014]
  • As apparent from the above, the reliabilities of the conventional burn-in tests are insufficient. To supplement the insufficient reliabilities, the wafer test process of semiconductor memory devices are carried out in the following fabrication process. [0015]
  • As shown in FIG. 1, a DC check on each chip on a wafer is performed first in step S[0016] 1. The DC check sorts out defective chips with a large short-circuit current by detecting the short-circuit current with a supply voltage supplied to each chip. In step S2, a simple function check is performed on each chip on the wafer. The simple function check roughly checks the operation of the internal circuits of each chip.
  • In step S[0017] 3, a wafer burn-in test is conducted. Then, a DC check in step S4 and redundancy setting in step S5 are carried out. In step S6, a full function check is executed to check whether all the memory cells operate normally by performing a write operation and read operation on all the memory cells.
  • In the case of manufacturing packaged devices, dicing (step S[0018] 7), assembly (step S8) and a simple check (step S9) are executed. To supplement the reliability of the wafer burn-in test in step S3, an additional burn-in test is conducted in step S10 through a normal operation of selecting the word lines one after another and applying the stress voltage to the selected word line. Then, a full function check is performed again (step S11) after which an assembled product will be shipped.
  • In the case of shipping device chips, an additional burn-in test is conducted on a wafer through the normal operation in step S[0019] 12 after step S6. Dicing is carried out after a DC check in step S13 and a simple check in step S14, and device chips will then be shipped.
  • The additional burn-in tests (steps S[0020] 10 and S12) for improving the reliability of the burn-in test make the test time longer and the cost for the test higher.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a semiconductor memory device with a high reliability on a wafer burn-in test. [0021]
  • To achieve the above object, the present invention provides a semiconductor memory device having a plurality of word lines. The memory device includes a detection circuit, which is connected to the plurality of word lines. The detection circuit detects whether a stress voltage for a burn-in test has been applied to all of the word lines along their entire lengths. [0022]
  • The present invention also provides a method of detecting a deficiency in a plurality of word lines for a semiconductor memory device having a plurality of memory cells connected to intersections of the plurality of word lines and bit lines. The method includes performing a write operation on associated memory cells by applying a stress voltage to a selected one of the word lines and by applying a write voltage higher than a normal write voltage to the bit lines, and detecting whether there is a deficiency in the plurality of word lines by reading cell information based on the write operation from individual memory cells by applying the stress voltage to the word lines again. [0023]
  • The present invention further provides a method of fabricating a semiconductor memory device. The method includes detecting whether a stress voltage has been normally applied to all word lines over their entire lengths in a wafer burn-in test in a wafer test step, and producing a packaging device and a chip device having shipping specifications based on the result of the detection. [0024]
  • The present invention further provides a semiconductor device including a semiconductor memory device having a plurality of word lines. The semiconductor memory device has a detection circuit, which is connected to the plurality of word lines, for detecting whether a stress voltage for a burn-in test has been applied to all of the word lines over their entire lengths. [0025]
  • Other aspects and advantages of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention. [0026]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features of the present invention that are believed to be novel are set forth with particularity in the appended claims. The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which: [0027]
  • FIG. 1 is a flowchart illustrating the fabrication process of a conventional memory device; [0028]
  • FIG. 2 is a schematic block diagram of a semiconductor memory device according to a first embodiment of the invention; [0029]
  • FIG. 3 is a schematic circuit diagram of a semiconductor memory device according to a second embodiment of the invention; [0030]
  • FIG. 4 is a schematic diagram of a latch circuit as another example of a comparator; [0031]
  • FIG. 5 is a circuit diagram showing a test mode circuit connected to an inverter circuit; [0032]
  • FIG. 6 is a circuit diagram showing a ROM and a ROM read circuit connected to an inverter circuit; [0033]
  • FIG. 7 is a schematic circuit diagram of a semiconductor memory device according to a third embodiment of the invention; [0034]
  • FIG. 8 is a schematic circuit diagram of a semiconductor memory device according to a fourth embodiment of the invention; and [0035]
  • FIG. 9 is a flowchart illustrating the fabrication process of semiconductor memory devices according to the first to fourth embodiments of the invention. [0036]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As shown in FIG. 2, a [0037] semiconductor memory device 100 according to the first embodiment of the invention includes a voltage detection circuit VC, word lines WL and a redundancy word line RWL. The word lines WL and the redundancy word line RWL are connected to the voltage detection circuit VC. Corresponding word drivers 3 are connected to the word lines WL and the redundancy word line RWL.
  • In a burn-in test mode, a stress voltage Vst is applied to the word lines WL and the redundancy word line RWL. The voltage detection circuit VC detects whether the stress voltage Vst has been applied to each word line WL over the entire length. [0038]
  • The following will discuss a [0039] semiconductor memory device 200 according to the second embodiment of the invention.
  • As shown in FIG. 3, the semiconductor memory device (DRAM) [0040] 200 includes a row decoder 1, a redundancy decoder 2, which is adjacent to the row decoder 1, global word lines GWL0-GWLi, which are connected to the row decoder 1, a redundancy global word line RGWL0, which is connected to the redundancy decoder 2, a stress-voltage determining circuit 8, which is connected to the global word lines GWL0-GWLi and the redundancy global word line RGWL0, and a stress determination control circuit 9, which is connected to the stress-voltage determining circuit 8. An address signal Add and a first wafer burn-in signal WBIX are supplied to the row decoder 1. The first wafer burn-in signal WBIX is also supplied to the redundancy decoder 2. In a wafer burn-in test mode, the first wafer burn-in signal WBIX is supplied to the row decoder 1 at an L level. In the normal operation mode, the first wafer burn-in signal WBIX is supplied to the row decoder 1 at an H level.
  • In the normal operation mode, the [0041] row decoder 1 selects one of the global word lines GWL0-GWLi in accordance with the address signal Add. In the wafer burn-in test mode, the row decoder 1 selects all the global word lines GWL0-GWLi in accordance with the first wafer burn-in signal WBIX.
  • A redundancy determining circuit (not shown) supplies a redundancy determination signal RW to the redundancy decoder [0042] 2. In the normal operation mode, the redundancy decoder 2 selects the redundancy global word line RGWL0 according to the redundancy determination signal RW. In the wafer burn-in test mode, the redundancy decoder 2 selects the redundancy global word line RGWL0 according to the L-level first wafer burn-in signal WBIX. That is, all the global word lines GWL0-GWLi and the redundancy global word line RGWL0 are selected in the wafer burn-in test mode.
  • The global word line GWL[0043] 0 is connected to a pair of word lines WL0 and WL1 via word drivers 3 a 0 and 3 b 0. The global word line GWLi is connected to a pair of word lines WLn−1 and WLn via word drivers 3 ai and 3 bi. The redundancy global word line RGWL0 is connected to a pair of redundancy word lines RWL0 and RWL1 via word drivers 3 ar 0 and 3 br 0.
  • An operational voltage Vpp is supplied to a [0044] driver selection circuit 4 via a P channel MOS (PMOS) transistor (first transistor) Tr1. The stress voltage Vst for a burn-in test is supplied to the driver selection circuit 4 via a PMOS transistor (second transistor) Tr2. The operational voltage Vpp is supplied to the word lines in the normal operation mode. When the external supply voltage is 3.3 V, for example, it is preferred that the operational voltage Vpp be 4.0 V and the stress voltage Vst be about 4.5 V. The driver selection circuit 4 supplies a drive voltage px0 to the individual word drivers 3 a 0, 3 ai and 3 ar 0 and supplies a drive voltage px1 to the individual word drivers 3 b 0, 3 bi and 3 br 0.
  • The first wafer burn-in signal WBIX is supplied via an [0045] inverter circuit 5 a to the gate of the first transistor Tr1, and is directly supplied to the gate of the second transistor Tr2.
  • Therefore, the operational voltage Vpp is supplied to the [0046] driver selection circuit 4 in the normal operation mode and the stress voltage Vst is supplied to the driver selection circuit 4 in the wafer burn-in test mode. The row decoder 1 sends a driver select signal DS to the driver selection circuit 4. In the normal operation mode, the driver selection circuit 4 supplies the drive voltage from the operational voltage Vpp to the word drivers 3 a 0, 3 ai and 3 ar 0 or the word drivers 3 b 0, 3 bi and 3 br 0. In the wafer burn-in test mode, on the other hand, the driver selection circuit 4 supplies the drive voltage originated from the stress voltage Vst to all the word drivers 3 a 0, 3 ai, 3 ar 0, 3 b 0, 3 bi and 3 br 0.
  • Each of the word lines WL[0047] 0-WLn and the redundancy word lines RWL0 and RWL1 is connected to a plurality of memory cells MC. A bit line (not shown) is connected to each memory cell MC.
  • The gates of word switches [0048] 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0, each configured by an N channel MOS (NMOS) transistor, are respectively connected to the distal ends of the word lines WL0-WLn, RWL0 and RWL1. Specifically, the word switches 6 a 0 and 6 b 0 are connected to the distal ends of the respective word lines WL0 and WL1. Likewise, the word switches 6 ai and 6 bi are connected to the distal ends of the respective word lines WLn−1 and WLn. The word switches 6 ar 0 and 6 br 0 are connected to the distal ends of the respective redundancy word lines RWL0 and RWL1.
  • A pair of word-line connection switches [0049] 7 a 0 and 7 b 0 are connected to the distal ends and proximal ends of the respective word lines WL0 and WL1. A pair of word-line connection switches 7 ai and 7 bi are connected to the distal ends and proximal ends of the respective word lines WLn−1 and WLn. A pair of word-line connection switches 7 ar 0 and 7 br 0 are connected to the distal ends and proximal ends of the respective redundancy word lines RWL0 and RWL1. Each of the word-line connection switches 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 and 7 br 0 is a PMOS transistor. The first wafer burn-in signal WBIX is supplied to the gate of each word-line connection switches 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 or 7 br 0. In the wafer burn-in test mode, therefore, the word-line connection switches 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 and 7 br 0 are turned on, thereby allowing all the word line pairs to have the same potential.
  • The word switches [0050] 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0 are connected in series. The word switches 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0 and the word-line connection switches 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 and 7 br 0 constitute the stress-voltage determining circuit 8.
  • The stress [0051] determination control circuit 9 is connected to the input terminal of the stress-voltage determining circuit 8 or an input node N1. The stress determination control circuit 9 includes NMOS transistors Tr3 and Tr4 and an inverter circuit 5 b. The drains of the NMOS transistors Tr3 and Tr4 are connected to the input node N1. The source of the NMOS transistor Tr3 is connected to a voltage supply Vss. The source of the NMOS transistor Tr4 is supplied with a first reference voltage Vref1. The gate of the NMOS transistor Tr4 is supplied with a second wafer burn-in signal WBIZ.
  • The first reference voltage Vref[0052] 1 is lower than the stress voltage Vst by a threshold value Vth of the NMOS transistors of the word switches 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0, or the memory cells MC (Vref1=Vst−Vth). When the stress voltage Vst is 4.5 V and the threshold value Vth is 1 V, for example, the first reference voltage Vref1 is 3.5 V.
  • The output terminal of the stress-[0053] voltage determining circuit 8 or an output node N2 is connected to the positive input terminal of a comparator 10. A second reference voltage Vref2 is supplied to the negative input terminal of the comparator 10.
  • The second reference voltage Vref[0054] 2 is lower than the stress voltage Vst by ½ of the threshold value Vth and is given by the following equation.
  • Vref 2=Vst−Vth/2
  • When the stress voltage Vst is 4.5 V and the threshold value Vth is 1 V, for example, the second reference voltage Vref[0055] 2 is 4.0 V. When the voltage at the output node N2 exceeds 4.0 V, the output signal of the comparator 10 has an H level. When the voltage at the output node N2 is equal to or lower than 4.0 V, on the other hand, the output signal of the comparator 10 has an L level. The output signal of the comparator 10 is inverted by an inverter circuit 5 d and the inverted signal is supplied to a burn-in tester device from an external terminal as an output signal OUT.
  • The first wafer burn-in signal WBIX is supplied to the [0056] comparator 10 via an inverter circuit 5 c. In the wafer burn-in test mode, therefore, the comparator 10 is enabled by the H-level output signal supplied from the inverter circuit 5 c.
  • A [0057] preset circuit 11, which operates on the same potential as the stress potential, is connected to the output node N2. The preset circuit 11 is supplied with an L-level one-shot pulse signal, or preset signal PR, at the time the burn-in test is initiated. The preset circuit 11 resets the voltage at the output node N2 to the level of the stress voltage Vst (4.5 V) in accordance with the preset signal PR.
  • The [0058] preset circuit 11 includes an inverter circuit 11 a, the threshold value of which is set to approximately 4.0 V. With the preset signal PR having an H level, the preset circuit 11 functions as a latch circuit to latch the potential at the output node N2 to the level of the stress voltage Vst or the level of the supply voltage Vss.
  • The operation of the [0059] semiconductor memory device 200 according to the second embodiment will be discussed below.
  • In the wafer burn-in test mode, the L-level first wafer burn-in signal WBIX, the H-level second wafer burn-in signal WBIZ and the stress voltage Vst are supplied to the [0060] semiconductor memory device 200. As a result, the first transistor Tr1 is turned off and the second transistor Tr2 is turned on, causing the stress voltage Vst to be applied to the driver selection circuit 4. The driver selection circuit 4 supplies the drive voltages px0 and Px1 corresponding to the stress voltage Vst to all the word drivers 3 a 0, 3 ai, 3 ar 0, 3 b 0, 3 bi and 3 br 0. The row decoder 1 selects all the global word lines GWL0-GWLi. Therefore, the stress voltage Vst is applied to all the word lines WL0-WLn and redundancy word lines RWL0 and RWL1. The word-line connection switches 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 and 7 br 0 are turned on by the L-level first wafer burn-in signal WBIX.
  • In the stress [0061] determination control circuit 9, the NMOS transistor Tr4 is turned on and the NMOS transistor Tr3 is turned off, thereby supplying the first reference voltage Vref1 to the input node N1. In response to the preset signal PR, the preset circuit 11 charges the output node N2 to the level of the stress voltage Vst. The H-level output signal of the inverter circuit 5 c enables the comparator 10.
  • The stress voltage Vst is applied to the word lines WL[0062] 0-WLn and redundancy word lines RWL0 and RWL1, thus turning on all the word switches 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0. Consequently, the voltage at the output node N2 falls from the preset level (stress voltage Vst) to the first reference voltage Vrefl lower than the second reference voltage Vref2. As a result, the output signal of the comparator 10 is inverted to the L level from the H level.
  • When the output signal OUT of the [0063] inverter circuit 5 d is at the H level, the burn-in tester device confirms that the stress voltage Vst is properly applied to all the word lines WL0-WLn and redundancy word lines RWL0 and RWL1.
  • At least one of the word switches [0064] 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0 is turned off and the output node N2 is kept at the level of the stress voltage Vst in the following cases:
  • (1) Both of two word lines that are controlled by a common global word line are deficient and the stress voltage Vst is not applied at all to the distal ends of the two word lines. [0065]
  • (2) The voltage level of this part of the word lines does not reach the stress voltage Vst. In this case, the output signal of the [0066] comparator 10 is kept at the H level and the output signal OUT of the inverter circuit 5 d at the L level.
  • When detecting the L-level output signal OUT, the burn-in tester device recognizes that there is a word line to which the stress voltage Vst is not applied properly. In this case, the chip is deficient. [0067]
  • When one of two word lines that are controlled by a common global word line is deficient, the stress voltage Vst is also applied to the deficient word line via the word-line connection switches [0068] 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 and 7 br 0 and the word switch that is connected to the deficient word line is turned on.
  • In this case, the chip is saved by replacing the global word line that corresponds to the deficient word line with the redundancy global word line, so that the chip is not considered to be defective. This is based on the premise that the probability of a deficiency occurring in one of two word lines that are connected to the global word line over a plurality of global word lines is extremely low. [0069]
  • In the normal operation mode, the H-level first wafer burn-in signal WBIX and the L-level second wafer burn-in signal WBIZ are supplied. In accordance with the address signal Add, the [0070] row decoder 1 selects one global word line or redundancy global word line. The first transistor Tr1 is turned on to supply the operational voltage Vpp to the driver selection circuit 4. The driver selection circuit 4 supplies the drive voltages px0 and px1 (operational voltage Vpp and supply voltage Vss) to the individual word drivers 3 a 0, 3 ai, 3 ar 0, 3 b 0, 3 bi and 3 br 0.
  • The [0071] comparator 10 is disabled by the L-level output signal supplied from the inverter circuit 5 c. In the stress determination control circuit 9, the NMOS transistor Tr4 is turned off and the NMOS transistor Tr3 is turned on so that the voltage at the input node N1 is set to the level of the supply voltage Vss. All of the word-line connection switches 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 and 7 br 0 are turned off.
  • In the normal operation mode, as apparent from the above, one of the word lines WL[0072] 0-WLn or one of redundancy word lines RWL0 and RWL1 is selected based on the address signal Add. Cell information is written in or read from those in the memory cells MC connected to the selected word line which are selected by the column decoder.
  • The [0073] semiconductor memory device 200 of the second embodiment has the following advantages.
  • (1) As the burn-in tester device detects the H-level output signal OUT, it detects that the stress voltage Vst is adequately applied to the word lines WL[0074] 0-WLn and redundancy word lines RWL0 and RWL1.
  • (2) Even if one of a pair of word lines is deficient, the stress voltage Vst is applied to both word lines by the word-line connection switches [0075] 7 a 0, 7 b 0, 7 ai, 7 bi, 7 ar 0 and 7 br 0. In this case, as the inverter circuit 5 d outputs the H-level output signal OUT, the burn-in tester device can detect that the stress voltage Vst has been applied to all the word lines.
  • (3) When the stress voltage Vst is not properly applied to a pair of word lines, the [0076] inverter circuit 5 d outputs the L-level output signal OUT. Based on the output signal OUT, therefore, improper application of the stress voltage Vst is detected.
  • The [0077] semiconductor memory device 200 of the second embodiment may be modified as follows.
  • A [0078] latch circuit 12 shown in FIG. 4 may be used in place of the comparator 10. The latch circuit 12 includes a first NAND gate 13 a and a second NAND gate 13 b. The two input terminals of the first NAND gate 13 a are respectively connected to the inverter circuit 5 c and the output node N2. The first input terminal of the second NAND gate 13 b is connected to the output terminal of the first NAND gate 13 a. The second input terminal of the second NAND gate 13 b is supplied with the preset signal PR. The output terminal of the second NAND gate 13 b is connected to the output node N2. The threshold value of the first NAND gate 13 a is approximately 4.0 V, and the voltage of the H-level output signal of the second NAND gate 13 b has the level of the stress voltage Vst.
  • In the wafer burn-in test mode, the output node N[0079] 2 is preset to the stress voltage Vst by the preset signal PR and the inverter circuit 5 c outputs an H-level signal. Accordingly, the first NAND gate 13 a outputs the L-level output signal OUT. The first and second NAND gates 13 a and 13 b latch the L-level output signal OUT.
  • Under this situation, when all the word switches [0080] 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0 are turned on and the voltage at the output node N2 becomes 3.5 V, the output signal OUT of the first NAND gate 13 a is inverted to the H level. Then, the first and second NAND gates 13 a and 13 b latch the H-level output signal OUT.
  • When all the word switches [0081] 6 a 0, 6 ai, 6 ar 0, 6 b 0, 6 bi and 6 br 0 are turned on, therefore, the latch circuit 12 like the comparator 10 inverts the output signal OUT.
  • As shown in FIG. 5, a [0082] test mode circuit 14, which is enabled by a test mode signal TM supplied to in the burn-in test mode may be connected to the inverter circuit 5 d. The test mode circuit 14 sends the output signal OUT of the inverter circuit 5 d to an external terminal 15 in response to the test mode signal TM. In the normal operation mode, the test mode circuit 14 is disabled so that the external terminal 15 is used as an input/output terminal for an arbitrary signal. In the burn-in test mode, the output signal OUT of the inverter circuit Sd is sent out from the external terminal 15.
  • As shown in FIG. 6, a [0083] programmable ROM 16 and a ROM read circuit 17 may be connected to the inverter circuit 5 d. The output signal OUT of the inverter circuit 5 d is written in the ROM 16. The ROM read circuit 17 reads data of the output signal written in the ROM 16 and sends out the data from the external terminal 15.
  • In this case, it is possible to read the output signal OUT of the [0084] inverter circuit 5 d written in the ROM 16 and detect whether the stress voltage Vst has been applied properly in any step after the wafer burn-in test is completed.
  • A [0085] semiconductor memory device 300 according to the third embodiment of the invention will be described below referring to FIG. 7. The third embodiment differs from the second embodiment in the stress-voltage determining circuit 8.
  • The stress-[0086] voltage determining circuit 8 includes plural pairs of word-line connection switches 18 a and 18 b configured by PMOS transistors and a plurality of word switches 19 configured by NMOS transistors. Each pair of word-line connection switches 18 a and 18 b are connected to the distal ends of each associated pair of word lines that are-controlled by a common global word line. Each word switch 19 has its gate connected to a node between the associated pair of wordline connection switches 18 a and 18 b.
  • The first wafer burn-in signal WBIX is supplied to the gates of the word-line connection switches [0087] 18 a and 18 b. In the wafer burn-in test mode, the word-line connection switches 18 a and 18 b are turned on based on the L-level first wafer burn-in signal WBIX. In this case, when the stress voltage Vst is applied to one of the word line pair, the word switch 19 is turned on.
  • The [0088] semiconductor memory device 300 of the-third embodiment has fewer word switches 19, thus making the stress-voltage determining circuit 8 smaller.
  • A [0089] semiconductor memory device 400 according to a fourth embodiment of the invention will now be discussed below referring to FIG. 8.
  • The [0090] semiconductor memory device 400 of the fourth embodiment detects whether the stress voltage has been properly applied to the word lines in the wafer burn-in test mode by using a dummy cell group provided in the memory cell array. The dummy cell group is connected to a pair of bit lines provided at the peripheral portion of the memory cell array in order to protect normal cells against, for example, external noise. In the normal operation mode, the dummy cell group is not accessed.
  • As shown in FIG. 8, in the memory cell array of the [0091] semiconductor memory device 400 of the fourth embodiment there are a normal memory cell group 20, which performs a normal write operation and a normal read operation, and a dummy cell group 21, which is located adjacent to the normal memory cell group 20 and is connected to the word lines WL0-WLn and redundancy word lines. Specifically, dummy cells DMC in the dummy cell group 21 are connected to the word lines WL0-WLn and each dummy cell DMC is connected to associated dummy bit lines DBLZ and DBLX.
  • [0092] Sense amplifiers 22 are connected between the dummy bit lines DBLZ and DBLX and between normal bit lines BLZ and BLX. Each sense amplifier 22 reads cell information from the dummy cells DMC or the normal memory cells MC.
  • The wafer burn-in test will be discussed below. [0093]
  • Before the stress voltage Vst is supplied to the word lines WL[0094] 0-WLn and redundancy word lines RWL, a voltage that is given by Vst−2Vth where Vth is the threshold voltage value of a cell transistor T is supplied to an opposing electrode 23 of a cell capacitor C in each dummy cell DMC in order to protect the dummy cell DMC. When the threshold voltage value Vth is 1 V and the stress voltage Vst is 4.5 V, for example, the voltage of the opposing electrode 23 is 2.5 V. To protect the normal memory cells MC, it is desirable to electrically isolate opposing electrodes 24 of the normal memory cells MC from the opposing electrodes 23 of the dummy cells DMC.
  • Next, a voltage of 3.5 V (Vst−Vth) is applied to, for example, the bit line BLZ and the stress voltage Vst is applied to one of the word lines WL[0095] 0-WLn and redundancy word lines RWL. If the stress voltage Vst is supplied to the selected word line over the entire length, the cell transistor T of the dummy cell DMC is turned on. Accordingly, the cell capacitor C of the dummy cell DMC is charged to 3.5 V and “1” is written as cell information.
  • When the stress voltage Vst is not applied to the cell transistor T of the dummy cell DMC due to a deficiency in the selected word line, the cell transistor T is not turned on. In this case, the cell capacitor C is not charged and “0” is written as cell information. [0096]
  • Next, to read cell information from any dummy cell DMC where writing has been done, the voltages on the dummy bit lines DBLZ and DBLX of the [0097] dummy cell group 21 are reset to 2.5 V (Vst−2Vth), then the stress voltage Vst is applied again to the word line to which the stress voltage Vst has been applied previously. As a result, cell information is read from the target dummy cell DMC onto the dummy bit lines DBLZ and DBLX, thereby producing a slight potential difference between the dummy bit lines DBLZ and DBLX. The sense amplifier 22 amplifies the potential difference and outputs cell information.
  • When the cell information is “1”, a [0098] detection circuit 402 detects that the stress voltage Vst has properly been applied to the selected word line. When the cell information is “0”, the detection circuit 402 detects that the stress voltage Vst has not properly been applied to the selected word line.
  • By repeating the above-described operation for all the word lines WL[0099] 0-WLn and RWL, it is detected whether there is a deficiency in the word lines WL0-WLn and RWL. The wafer burn-in test which selects all the word lines at a time is performed on chips that have no deficiencies and deficient chips that can be saved by the redundancy operation.
  • Instead of writing and reading cell information in and from dummy cells with respect to each word line, all the word lines may be selected simultaneously so that cell information is simultaneously written in all the dummy cells DMC. [0100]
  • In this case, with the write potential (3.5 V) applied to both dummy bit lines DBLZ and DBLX of the [0101] dummy cell group 21, the word lines are simultaneously selected and writing to the dummy cells DMC is carried out in this state. Thereafter, the word lines are selected one by one and cell information is read from the dummy cells DMC as in the above-described case.
  • This operation makes it possible to detect whether there is any deficiency in the word lines and shortens the time required to write cell information in the dummy cells DMC. The [0102] sense amplifiers 22 and the dummy bit line pair (DBLZ and DBLX) are controlled to be disabled when the semiconductor memory device is in the normal operation.
  • A description will now be given of a process testing memory devices of the first to third embodiments and a process of assembling the memory devices with reference to FIG. 9. [0103]
  • In the wafer testing process, a DC check in step S[0104] 21 and a simple function check in step S22 are performed as in the prior art.
  • In step S[0105] 23, a wafer burn-in testing process is executed. In the wafer burn-in testing process according to each of the first to third embodiments, it is detected with a high reliability whether the stress voltage has been applied to the word lines. In the fourth embodiment, it is detected first whether the stress voltage has properly been applied to all the word lines and then the wafer burn-in test is conducted. This makes the burn-in test highly reliable.
  • In steps S[0106] 24 and S25, a DC check and redundancy setting are carried out as in the prior art. In step S26, a full function check is executed to perform a write operation and read operation on all the memory cells and to check whether all the memory cells are operating normally. After dicing in step S27, chips will be shipped.
  • Packages devices will be shipped after assembling in step S[0107] 28 and a simple check in step S29.
  • As apparent from the above, because the memory devices of the first to fourth embodiments have an improved reliability on the wafer burn-in test, steps S[0108] 10 to S14 in the prior art are omitted. This shortens the testing time and reduces the cost for the test.
  • It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims. [0109]

Claims (23)

1. A semiconductor memory device having a plurality of word lines, comprising:
a detection circuit, which is connected to the plurality of word lines, for detecting whether a stress voltage for a burn-in test has been applied to all of the word lines along their entire lengths.
2. The semiconductor memory device according to claim 1, wherein the detection circuit has an input terminal, an output terminal and a plurality of word switches connected in series between the input terminal and the output terminal, and wherein each of the word switches is enabled when the stress voltage is applied to a corresponding one of the word lines over its entire length.
3. The semiconductor memory device according to claim 2, wherein the plurality of word lines include at least one redundancy word line and the detection circuit is connected to the at least one redundancy word line.
4. The semiconductor memory device according to claim 2, wherein the plurality of word lines include two or more word lines connected to at least one global word line, and wherein the semiconductor memory device further comprises at least one word-line connection switch connected between two or more word lines.
5. The semiconductor memory device according to claim 4, wherein the at least one word-line connection switch is located at distal end portions of the two or more word lines.
6. The semiconductor memory device according to claim 4, wherein the at least one word-line connection switch includes a first connection switch located at proximal end portions of the two or more word lines and a second connection switch located at distal end portions of the two or more word lines.
7. The semiconductor memory device according to claim 2, further comprising a stress determination control circuit, which is connected to the input terminal of the detection circuit, for supplying the input terminal with a first reference voltage that is lower than the stress voltage by a threshold voltage of each of the word switches.
8. The semiconductor memory device according to claim 7, further comprising a preset circuit, which is connected to the output terminal of the detection circuit, for supplying the output terminal with a preset voltage that is substantially equal to the stress voltage.
9. The semiconductor memory device according to claim 7, further comprising a latch circuit, which is connected to the output terminal of the detection circuit, for latching a voltage on the output terminal of the detection circuit by using a second reference voltage between the stress voltage and the first reference voltage as a threshold value.
10. The semiconductor memory device according to claim 7, further comprising a comparator, which is connected to the output terminal of the detection circuit, for comparing a second reference voltage between the stress voltage and the first reference voltage with a voltage at the output terminal of the detection circuit.
11. The semiconductor memory device according to claim 10, further comprising a test mode circuit, which is connected between an external terminal and the comparator, for supplying a detection signal from the comparator to the external terminal when activated at a time of a burn-in test.
12. The semiconductor memory device according to claim 10, further comprising a ROM and a ROM read circuit, which is connected between an external terminal and the comparator, and wherein a detection signal from the comparator is supplied to the ROM and the ROM read circuit reads the detection signal from the comparator from the ROM and supplies the detection signal to the external terminal.
13. The semiconductor memory device according to claim 1, wherein the semiconductor memory device has a plurality of memory cells connected to each of the word lines, and when the stress voltage is applied to each word line, the detection circuit detects the stress voltage being supplied to each word line over its entire length by detecting whether a write operation and read operation have been performed on those memory cells that are connected to that word line with a voltage that is higher than a write voltage used in a normal operation mode.
14. The semiconductor memory device according to claim 13, wherein each of the memory cells includes a cell capacitor having an opposing electrode to which a voltage higher than a voltage that is used in the normal operation mode is applied.
15. The semiconductor memory device according to claim 1, further comprising a plurality of normal memory cells, a plurality of dummy cells adjacent to the plurality of normal memory cells, and dummy bit lines connected to the plurality of dummy cells, wherein when the stress voltage is applied to the word lines, a write operation and read operation are performed on the dummy cells via the dummy bit lines.
16. The semiconductor memory device according to claim 15, wherein each of the dummy cells and the normal memory cells includes a cell capacitor having an opposing electrode and the opposing electrode of the cell capacitor of each of the normal memory cells is electrically isolated from the opposing electrode of the cell capacitor of each of the dummy cells.
17. A method of detecting a deficiency in a plurality of word lines for a semiconductor memory device having a plurality of memory cells connected to intersections of the plurality of word lines and bit lines, the method comprising:
performing a write operation on associated memory cells by applying a stress voltage to a selected one of the word lines and by applying a write voltage higher than a normal write voltage to the bit lines; and
detecting whether there is a deficiency in the plurality of word lines by reading cell information based on the write operation from individual memory cells by applying the stress voltage to the word lines again.
18. The method according to claim 17, wherein each of the individual memory cells is a dummy memory cell and the bit lines are dummy bit lines.
19. The method according to claim 17, wherein the plurality of word lines include a redundancy word line, and a write operation and read operation are performed on all of the word lines.
20. A method of fabricating a semiconductor memory device comprising the steps of:
detecting whether a stress voltage has been normally applied to all word lines over their entire lengths in a wafer burn-in test in a wafer test step; and
producing a packaging device and a chip device having shipping specifications based on the result of the detection.
21. The method according to claim 20, wherein the detection step detects whether the stress voltage has been normally applied to all of the word lines over their entire lengths based on a voltage that varies in accordance with operations of a plurality of word switches connected to the plurality of word lines.
22. The method according to claim 20, wherein the detection step detects whether the stress voltage has been normally applied to all of the word lines over their entire lengths by checking whether cell information has been written in dummy cells adjacent to normal memory cells.
23. A semiconductor device including a semiconductor memory device having a plurality of word lines, the semiconductor memory device having:
a detection circuit, which is connected to the plurality of word lines, for detecting whether a stress voltage for a burn-in test has been applied to all of the word lines over their entire lengths.
US10/288,461 2000-01-26 2002-11-06 Word-line deficiency detection method for semiconductor memory device Expired - Fee Related US6839293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/288,461 US6839293B2 (en) 2000-01-26 2002-11-06 Word-line deficiency detection method for semiconductor memory device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000017092A JP4727785B2 (en) 2000-01-26 2000-01-26 Semiconductor memory device and word line defect detection method for semiconductor memory device
JP2000-017092 2000-01-26
US09/768,459 US6501691B2 (en) 2000-01-26 2001-01-25 Word-line deficiency detection method for semiconductor memory device
US10/288,461 US6839293B2 (en) 2000-01-26 2002-11-06 Word-line deficiency detection method for semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/768,459 Division US6501691B2 (en) 2000-01-26 2001-01-25 Word-line deficiency detection method for semiconductor memory device

Publications (2)

Publication Number Publication Date
US20030058717A1 true US20030058717A1 (en) 2003-03-27
US6839293B2 US6839293B2 (en) 2005-01-04

Family

ID=18544128

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/768,459 Expired - Lifetime US6501691B2 (en) 2000-01-26 2001-01-25 Word-line deficiency detection method for semiconductor memory device
US10/288,461 Expired - Fee Related US6839293B2 (en) 2000-01-26 2002-11-06 Word-line deficiency detection method for semiconductor memory device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/768,459 Expired - Lifetime US6501691B2 (en) 2000-01-26 2001-01-25 Word-line deficiency detection method for semiconductor memory device

Country Status (2)

Country Link
US (2) US6501691B2 (en)
JP (1) JP4727785B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068815A1 (en) * 2003-09-26 2005-03-31 Garni Bradley J. Accelerated life test of mram cells
US20060181946A1 (en) * 2005-02-15 2006-08-17 Ki-Won Park Full-stress testable memory device having an open bit line architecture and method of testing the same
US20070141731A1 (en) * 2005-12-20 2007-06-21 Hemink Gerrit J Semiconductor memory with redundant replacement for elements posing future operability concern
US10984854B1 (en) 2019-10-01 2021-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with signal edge sharpener circuitry

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570194B2 (en) * 2000-02-22 2010-10-27 Okiセミコンダクタ株式会社 Semiconductor memory
JP2004055001A (en) * 2002-07-18 2004-02-19 Renesas Technology Corp Memory device
JP3938376B2 (en) * 2004-03-29 2007-06-27 シャープ株式会社 Test terminal invalidation circuit
JP2005332446A (en) * 2004-05-18 2005-12-02 Fujitsu Ltd Semiconductor memory
US7161845B2 (en) * 2004-12-23 2007-01-09 Taiwan Semiconductor Manufacturing Company, Ltd. Static random access memory device having a memory cell with multiple bit-elements
JP2007157282A (en) * 2005-12-07 2007-06-21 Elpida Memory Inc Wafer burn-in test method, wafer burn-in test apparatus, and semiconductor storage device
US8120976B2 (en) 2006-08-28 2012-02-21 Samsung Electronics Co., Ltd. Line defect detection circuit for detecting weak line
US20080235541A1 (en) * 2007-03-19 2008-09-25 Powerchip Semiconductor Corp. Method for testing a word line failure
KR20100103303A (en) * 2009-03-13 2010-09-27 삼성전자주식회사 Reliability evaluation circuit and reliability evaluation system
JP2015002252A (en) * 2013-06-14 2015-01-05 富士通セミコンダクター株式会社 Semiconductor device
TWI534819B (en) * 2014-07-31 2016-05-21 常憶科技股份有限公司 A new idea to detect global word-line defect under iddq testing concept
JP7086795B2 (en) * 2018-09-03 2022-06-20 ルネサスエレクトロニクス株式会社 Semiconductor equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371712A (en) * 1992-03-30 1994-12-06 Hitachi, Ltd. Semiconductor memory device having detection circuitry for sensing faults in word lines
US5430678A (en) * 1990-10-02 1995-07-04 Kabushiki Kaisha Toshiba Semiconductor memory having redundant cells
US5790459A (en) * 1995-08-04 1998-08-04 Micron Quantum Devices, Inc. Memory circuit for performing threshold voltage tests on cells of a memory array
US5995427A (en) * 1997-06-10 1999-11-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having test mode
US6333879B1 (en) * 1998-06-11 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device operable in a plurality of test operation modes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131700A (en) * 1983-12-20 1985-07-13 Nec Corp Non-volatile semiconductor memory
JPS61289600A (en) * 1985-06-17 1986-12-19 Fujitsu Ltd Semiconductor memory device
JPS62128099A (en) * 1985-11-28 1987-06-10 Fujitsu Ltd Test circuit for one-time rom
JPS62198147A (en) * 1986-02-26 1987-09-01 Hitachi Vlsi Eng Corp Semiconductor integrated circuit device
JPH03181096A (en) * 1989-12-08 1991-08-07 Mitsubishi Electric Corp Non-volatile semiconductor memory device
JPH0567399A (en) 1991-06-28 1993-03-19 Mitsubishi Electric Corp Semiconductor storing device having burn-in mode confirming means
JPH0660697A (en) 1992-08-10 1994-03-04 Nec Corp Semiconductor storage
KR0119887B1 (en) * 1994-06-08 1997-10-30 김광호 Wafer burn-in testing circuit of semiconductor memory device
JPH0917199A (en) 1995-06-27 1997-01-17 Sanyo Electric Co Ltd Semiconductor memory
JPH09147599A (en) 1995-11-28 1997-06-06 Mitsubishi Electric Corp Semiconductor storage device
JPH09274800A (en) * 1996-04-04 1997-10-21 Kawasaki Steel Corp Dynamic random access memory
JPH1050098A (en) * 1996-07-29 1998-02-20 Toshiba Corp Semiconductor integrated circuit device, monitoring method for stress test monitor for semiconductor integrated circuit device and stress test for semiconductor integrated circuit device
JPH11162198A (en) * 1997-12-01 1999-06-18 Mitsubishi Electric Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430678A (en) * 1990-10-02 1995-07-04 Kabushiki Kaisha Toshiba Semiconductor memory having redundant cells
US5371712A (en) * 1992-03-30 1994-12-06 Hitachi, Ltd. Semiconductor memory device having detection circuitry for sensing faults in word lines
US5790459A (en) * 1995-08-04 1998-08-04 Micron Quantum Devices, Inc. Memory circuit for performing threshold voltage tests on cells of a memory array
US5995427A (en) * 1997-06-10 1999-11-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having test mode
US6333879B1 (en) * 1998-06-11 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device operable in a plurality of test operation modes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068815A1 (en) * 2003-09-26 2005-03-31 Garni Bradley J. Accelerated life test of mram cells
US6894937B2 (en) 2003-09-26 2005-05-17 Freescale Semiconductor, Inc. Accelerated life test of MRAM cells
US20060181946A1 (en) * 2005-02-15 2006-08-17 Ki-Won Park Full-stress testable memory device having an open bit line architecture and method of testing the same
US7382668B2 (en) * 2005-02-15 2008-06-03 Samsung Electronics Co., Ltd. Full-stress testable memory device having an open bit line architecture and method of testing the same
US20070141731A1 (en) * 2005-12-20 2007-06-21 Hemink Gerrit J Semiconductor memory with redundant replacement for elements posing future operability concern
US10984854B1 (en) 2019-10-01 2021-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with signal edge sharpener circuitry
TWI730905B (en) * 2019-10-01 2021-06-11 台灣積體電路製造股份有限公司 Electronic device, memory device and operation method thereof

Also Published As

Publication number Publication date
US20010009525A1 (en) 2001-07-26
US6839293B2 (en) 2005-01-04
JP4727785B2 (en) 2011-07-20
JP2001210098A (en) 2001-08-03
US6501691B2 (en) 2002-12-31

Similar Documents

Publication Publication Date Title
US5317532A (en) Semiconductor memory device having voltage stress testing capability
US6574159B2 (en) Semiconductor memory device and testing method therefor
JP3076606B2 (en) Semiconductor memory device and inspection method thereof
US5673231A (en) Semiconductor memory device in which leakage current from defective memory cell can be suppressed during standby
JP3236105B2 (en) Nonvolatile semiconductor memory device and operation test method thereof
US6281739B1 (en) Fuse circuit and redundant decoder
US6501691B2 (en) Word-line deficiency detection method for semiconductor memory device
EP0638902A2 (en) Selector circuit selecting and outputting voltage applied to one of first and second terminal in response to voltage level applied to first terminal
JP2785717B2 (en) Semiconductor storage device
US6163488A (en) Semiconductor device with antifuse
US5523977A (en) Testing semiconductor memory device having test circuit
EP0986066B1 (en) Ferroelectric memory and method of testing the same
US6185137B1 (en) Semiconductor memory device with decreased current consumption
US5568436A (en) Semiconductor device and method of screening the same
US6741510B2 (en) Semiconductor memory device capable of performing burn-in test at high speed
KR100518579B1 (en) Semiconductor device and test method there-of
US7697356B2 (en) Method of testing semiconductor apparatus
US7286426B2 (en) Semiconductor memory device
US6809982B2 (en) Defective cell remedy method capable of automatically cutting capacitor fuses within the fabrication process
US6031773A (en) Method for stress testing the memory cell oxide of a DRAM capacitor
US6434070B1 (en) Semiconductor integrated circuit with variable bit line precharging voltage
US6538935B1 (en) Semiconductor memory device enabling reliable stress test after replacement with spare memory cell
US6535441B2 (en) Static semiconductor memory device capable of accurately detecting failure in standby mode
US6975548B2 (en) Memory device having redundant memory cell
US20040204891A1 (en) Semiconductor memory device having a test mode for testing an operation state

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FUJITSU MICROELECTRONICS LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU LIMITED;REEL/FRAME:021998/0645

Effective date: 20081104

Owner name: FUJITSU MICROELECTRONICS LIMITED,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU LIMITED;REEL/FRAME:021998/0645

Effective date: 20081104

AS Assignment

Owner name: FUJITSU SEMICONDUCTOR LIMITED, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:FUJITSU MICROELECTRONICS LIMITED;REEL/FRAME:024982/0245

Effective date: 20100401

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SOCIONEXT INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU SEMICONDUCTOR LIMITED;REEL/FRAME:035508/0637

Effective date: 20150302

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170104