US20030040619A1 - Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby - Google Patents

Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby Download PDF

Info

Publication number
US20030040619A1
US20030040619A1 US10/035,060 US3506001A US2003040619A1 US 20030040619 A1 US20030040619 A1 US 20030040619A1 US 3506001 A US3506001 A US 3506001A US 2003040619 A1 US2003040619 A1 US 2003040619A1
Authority
US
United States
Prior art keywords
toxin
thuringiensis var
amino acid
thuringiensis
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/035,060
Inventor
David Edwards
Corinna Herrnstadt
Edward Wilcox
Siu-Yin Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/035,060 priority Critical patent/US20030040619A1/en
Publication of US20030040619A1 publication Critical patent/US20030040619A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/075Bacillus thuringiensis

Definitions

  • Bacillius thuringiensis The most widely used microbial pesticides are derived from the bacterium Bacillius thuringiensis . This bacterial agent is used to control a wide range of leaf-eating caterpillars, Japanese beetles and mosquitos. Bacillius thuringiensis produces a proteinaceous paraspore or crystal which is toxic upon ingestion by a susceptible insect host. For example, B. thuringiensis var. kurstaki HD-1 produces a crystal called a delta toxin which is toxic to the larvae of a number of lepidopteran insects. The cloning and expression of this B.t. crystal protein gene in Escherichia coli has been described in the published literature (Schnepf, H. E. and Whiteley, H. R.
  • U.S. Pat. No. 4,448,885 and U.S. Pat. No. 4,467,036 both disclose the expression of B.t. crystal protein in E. coli.
  • B. thuringiensis var. kurstaki HD-1 is disclosed as being available from the well-known NRRL culture repository at Peoria, Ill. Its accession number there is NRRL B-3792. B. thuringiensis var. kurstaki HD-73 is also available from NRRL. Its accession number is NRRL B-4488.
  • the subject invention concerns a novel process for altering the insect host range of Bacillius thuringiensis toxins, and novel toxins produced as exemplification of this useful process. This alteration can result in expansion of the insect host range of the toxin, and/or, amplification of host toxicity.
  • the process comprises recombining in vitro the variable region(s) of two or more ⁇ -endotoxin genes. Specifically exemplified is the recombining of portions of two Bacillius thuringiensis var. kurstaki DNA sequences, i.e., referred to herein as k-1 and k-73, to produce chimeric B.t. toxins with expanded host ranges as compared to the toxins produced by the parent DNA's.
  • variable regions refers to the non-homologous regions of two or more DNA sequences. As shown by the examples presented herein, the recombining of such variable regions from two different B.t. DNA sequences yields, unexpectedly, a DNA sequence encoding a ⁇ -endotoxin with an expanded insect host range. In a related example, the recombining of two variable regions of two different B.t. toxin genes results in the creation of a chimeric toxin molecule with increased toxicity toward the target insect. The utility of this discovery by the inventors is clearly broader than the examples disclosed herein. From this discovery, it can be expected that a large number of new and useful toxins will be produced.
  • the subject process is exemplified by construction of chimeric toxin-producing DNA sequences from two well-known B.t. kurstaki DNA sequences, it should be understood that the process is not limited to these starting DNA sequences.
  • the invention process also can be used to construct chimeric toxins from any B. thuringiensis toxin-producing DNA sequence.
  • FIG. 1 A schematic diagram of plasmid pEW1 which contains the DNA sequence encoding Bacillius thuringiensis toxin k-1.
  • FIG. 2 A schematic diagram of plasmid pEW2 which contains the DNA sequence encoding Bacillius thuringiensis toxin k-73.
  • FIG. 3 A schematic diagram of plasmid pEW3 which contains the DNA sequence encoding Bacillius thuringiensis chimeric toxin k-73/k-1 (pHY).
  • FIG. 4 A schematic diagram of plasmid pEW4 which contains the DNA sequence encoding Bacillius thuringiensis chimeric toxin k-1/k-73 (pYH).
  • variable region(s) of two or more ⁇ -endotoxin genes Upon recombining in vitro the variable region(s) of two or more ⁇ -endotoxin genes, there is obtained a gene(s) encoding a chimeric toxin(s) which has an expanded and/or amplified host toxicity as compared to the toxin produced by the starting genes. This recombination is done using standard well-known genetic engineering techniques.
  • restriction enzymes disclosed herein can be purchased from Bethesda Research Laboratories, Gaithersburg, Md., or New England Biolabs, Beverly, Mass. The enzymes are used according to the instructions provided by the supplier.
  • Plasmids pEW1, pEW2, pEW3, and pEW4, constructed as described infra, have been deposited in E. coli hosts in the permanent collection (to be maintained for at least 30 years) of the Northern Regional Research Laboratory (NRRL), U.S. Department of Agriculture, Peoria, Ill., USA. Their accession numbers and dates of deposit are as follows:
  • Plasmid pBR322 is a well-known and available plasmid. It is maintained in the E. coli host ATCC 37017. Purified pBR322 DNA can be obtained as described in Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heynecker, H. L., Boyer, H. W., Crosa, J. H. and Falkow, S. (1977) Gene 2:95-113; and Sutcliffe, J. G. (1978) Nucleic Acids Res. 5:2721-2728.
  • NRRL B-18032, NRRL B-18033, NRRL B-18034, NRRL B-18035, and NRRL B-18101 are available to the public upon the grant of a patent which discloses these accession numbers in conjunction with the invention described herein. It should be understood that the availability of these deposits does not constitute a license to practice the subject invention in derogation of patent rights granted for the subject invention by governmental action.
  • any B. thuringiensis toxin-producing DNA sequence can be used as starting material for the subject invention.
  • B. thuringiensis organisms other than those previously given, are as follows:
  • B. thuringiensis cultures are available from the United States Department of Agriculture (USDA) at Brownsville, Texas. Requests should be made to Joe Garcia, USDA, ARS, Cotton Insects Research Unit, P.O. Box 1033, Brownsville, Tex. 78520 USA.
  • Bacillus cereus --ATCC 21281 Bacillus moritai --ATGC 21282
  • Bacillus lentimorbus --ATCC 14707 Bacillus sphaericus --ATCC 33203
  • Bacillius thuringiensis M-7 is a Bacillius thuringiensis isolate which, surprisingly, has activity against beetles of the order Coleoptera but not against Trichoplusia ni, Spodoptera exigua or Aedes aegypti. Included in the Coleoptera are various Diabrotica species (family Chrysomelidae) that are responsible for large agricultural losses, for example, D. undecimpunctata (western spotted cucumber beetle), D. longicornis (northern corn rootworm), D. virgitera (western corn rootworm), and D. undecimpunctata howardi (southern corn rootworm).
  • B. thuringiensis M-7 is unusual in having a unique parasporal body (crystal) which under phase contrast microscopy is dark in appearance with a flat, square configuration.
  • the pesticide encoded by the DNA sequence used as starting material for the invention process can be any toxin produced by a microbe.
  • it can be a polypeptide which has toxic activity toward a eukaryotic multicellular pest, such as insects, e.g., coleoptera, lepidoptera, diptera, hemiptera, dermaptera, and orthoptera; or arachnids; gastropods; or worms, such as nematodes and platyhelminths.
  • a eukaryotic multicellular pest such as insects, e.g., coleoptera, lepidoptera, diptera, hemiptera, dermaptera, and orthoptera; or arachnids; gastropods; or worms, such as nematodes and platyhelminths.
  • Various susceptible insects include beetles, moths, flies, grasshoppers, lice, and earwigs.
  • polypeptide produced in active form or a precursor or proform requiring further processing For toxin activity e.g., the novel crystal toxin of B. thuringiensis var. kurstaki, which requires processing by the pest.
  • the constructs produced by the process of the invention, containing chimeric toxin-producing DNA sequences, can be transformed into suitable hosts by using standard procedures.
  • Illustrative host cells may include either prokaryotes or eukaryotes, normally being limited to those cells which do not produce substances toxic to higher organisms, such as mammals. However, organisms which produce substances toxic to higher organisms could be used, where the toxin is unstable or the level of application sufficiently low as to avoid any possibility of toxicity to a mammalian host.
  • prokaryotes and lower eukaryotes such as fungi.
  • Illustrative prokaryotes both Gram-negative and -positive, include Enterobacteriaceae, such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus; Bacillaceae; Rhizobiaceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum; Lactobacillaceae; Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae and Nitrobacteraceae.
  • Enterobacteriaceae such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus
  • Bacillaceae Rhizobiaceae, such as Rhizobium
  • Spirillaceae such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulf
  • fungi such as Phycomycetes and Ascomycetes, which includes yeast, such as Saccharomyces and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasidium, Sporobolomyces, and the like.
  • Characteristics of particular interest in selecting a host cell for purposes of production include ease of introducing the chimeric toxin-producing gene into the host, availability of expression systems, efficiency of expression, stability of the pesticide in the host, and the presence of auxiliary genetic capabilities.
  • Characteristics of interest for use as a pesticide microcapsule include protective qualities for the pesticide, such as thick cell walls, pigmentation, and intracellular packaging or formation of inclusion bodies; leaf affinity; lack of mammalian toxicity; attractiveness to pests for ingestion; ease of killing and fixing without damage to the toxin; and the like. Other considerations include ease of formulation and handling, economics, storage stability, and the like.
  • Host organisms of particular interest include yeast, such as Rhodotorula sp., Aureobasidium sp., Saccharomyces sp., and Sporobolomyces sp.; phylloplane organisms such Pseudomonas sp., Erwinia sp. and Flavobacterium sp.; or such other organisms as Escherichia, Lactobacillus sp., Bacillus sp., and the like.
  • Specific organisms include Pseudomonas aeruginosa, Pseudomonas fluorescens, Saccharomyces cerevisiae, Bacillus thuringiensis, Escherichia coli, Bacillus subtilis, and the like.
  • the chimeric toxin-producing gene(s) can be introduced into the host in any convenient manner, either providing for extrachromosomal maintenance or integration into the host genome.
  • constructs may be used, which include replication systems from plasmids, viruses, or centromeres in combination with an autonomous replicating segment (ars) for stable maintenance.
  • constructs can be used which may provide for replication, and are either transposons or have transposon-like insertion activity or provide for homology with the genome of the host.
  • DNA sequences can be employed having the chimeric toxin-producing gene between sequences which are homologous with sequences in the genome of the host, either chromosomal or plasmid.
  • the chimeric toxin-producing gene(s) will be present in multiple copies. See for example, U.S. Pat. No. 4,399,216.
  • conjugation, transduction, transfection and transformation may be employed for introduction of the gene.
  • a large number of vectors are presently available which depend upon eukaryotic and prokaryotic replication systems, such as Co1E1, P-1 incompatibility plasmids, e.g., pRK290, yeast 2m ⁇ plasmid, lambda, and the like.
  • the DNA construct will desirably include a marker which allows for a selection of those host cells containing the construct.
  • the marker is commonly one which provides for biocide resistance, e.g., antibiotic resistance or heavy metal resistance, complementation providing prototrophy to an auxotrophic host, or the like.
  • the replication systems can provide special properties, such as runaway replication, can involve cos cells, or other special feature.
  • the chimeric toxin-producing gene(s) has transcriptional and translational initiation and termination regulatory signals recognized by the host cell, it will frequently be satisfactory to employ those regulatory features in conjunction with the gene.
  • the chimeric toxin-producing gene is modified, as for example, removing a leader sequence or providing a sequence which codes for the mature form of the pesticide, where the entire gene encodes for a precursor, it will frequently be necessary to manipulate the DNA sequence, so that a transcriptional initiation regulatory sequence may be provided which is different from the natural one.
  • the sequence can provide for constitutive expression of the pesticide or regulated expression, where the regulation may be inducible by a chemical, e.g., a metabolite, by temperature, or by a regulatable repressor. See for example, U.S. Pat. No. 4,374,927.
  • the particular choice of the promoter will depend on a number of factors, the strength of the promoter, the interference of the promoter with the viability of the cells, the effect of regulatory mechanisms endogenous to the cell on the promoter, and the like. A large number of promoters are available from a variety of sources, including commercial sources.
  • the cellular host containing the chimeric toxin-producing pesticidal gene may be grown in any convenient nutrient medium, where-the DNA construct provides a selective advantage, providing for a selective medium so that substantially all or all of the cells retain the chimeric toxin-producing gene. These cells may then be harvested in accordance with conventional ways and modified in the various manners described above. Alternatively, the cells can be fixed prior to harvesting.
  • Host cells transformed to contain chimeric toxin-producing DNA sequences can be treated to prolong pesticidal activity when the cells are applied to the environment of a target pest. This treatment can involve the killing of the host cells under protease deactivating or cell wall strengthening conditions, while retaining pesticidal activity.
  • the cells may be inhibited from proliferation in a variety of ways, so long as the technique does not deleteriously affect the properties of the pesticide, nor diminish the cellular capability in protecting the pesticide.
  • the techniques may involve physical treatment, chemical treatment, changing the physical character of the cell or leaving the physical character of the cell substantially intact, or the like.
  • Various techniques for inactivating the host cells include heat, usually 50° C. to 70° C.; freezing; UV irradiation; lyophilization; toxins, e.g., antibiotics; phenols; anilides, e.g., carbanilide and salicylanilide; hydroxyurea; quaternaries; alcohols; antibacterial dyes; EDTA and amidines; non-specific organic and inorganic chemicals, such as halogenating agents, e.g., chlorinating, brominating or iodinating agents; aldehydes, e.g., glutaraldehyde or formaldehyde; toxic gases, such as ozone and ethylene oxide; peroxide; psoralens; desiccating agents; or the like, which may be used individually or in combination.
  • halogenating agents e.g., chlorinating, brominating or iodinating agents
  • aldehydes e.g., glutaraldehy
  • the cells generally will have enhanced structural stability which will enhance resistance to environmental degradation in the field.
  • the method of inactivation should be selected so as not to inhibit processing of the proform to the mature form of the pesticide by the target pest pathogen.
  • formaldehyde will crosslink proteins and could inhibit processing of the proform of a polypeptide pesticide.
  • the method of inactivation or killing retains at least a substantial portion of the bioavailability or bioactivity of the toxin.
  • the method of treating the organism can fulfill a number of functions. First, it may enhance structural integrity. Second, it may provide for enhanced proteolytic stability of the toxin, by modifying the toxin so as to reduce its susceptibility to proteolytic degradation and/or by reducing the proteolytic activity of proteases naturally present in the cell.
  • the cells are preferably modified at an intact stage and when there has been a substantial build-up of the toxin protein. These modifications can be achieved in a variety of ways, such as by using chemical reagents having a broad spectrum of chemical reactivity.
  • the intact cells can be combined with a liquid reagent medium containing the chemical reagents, with or without agitation at temperatures in the range of about ⁇ 10 to 60° C.
  • the reaction time may be determined empirically and will vary widely with the reagents and reaction conditions. Cell concentrations will vary from about 10E2 to 10E10 per ml.
  • halogenating agents particularly halogens of atomic no. 17-80. More particularly, iodine can be used under mild conditions and for sufficient time to achieve the desired results.
  • suitable techniques include treatment with aldehydes, such as formaldehyde and glutaraldehyde; anti-infectives, such as zephiran chloride and cetylpyridinium chloride; alcohols, such as isopropyl and ethanol; various histologic fixatives, such as Bouin's fixative and Helly's fixative (See: Humason, Gretchen L., Animal Tissue Techniques, W.H. Freeman and Company, 1967); or a combination of physical (heat) and chemical agents that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of the target pest(s).
  • temperatures will generally range from about 0 to 50° C., but the reaction can be conveniently carried out at room temperature.
  • the iodination may be performed using triiodide or iodine at 0.5 to 5% in an acidic aqueous medium, particularly an aqueous carboxylic acid solution that may vary from about 0.5-5M.
  • acetic acid may be used, although other carboxylic acids, generally of from about 1 to 4 carbon atoms, may also be employed.
  • the time for the reaction will generally range from less than a minute to about 24 hrs, usually from about 1 to 6 hrs.
  • Any residual iodine may be removed by reaction with a reducing agent, such as dithionite, sodium thiosulfate, or other reducing agent compatible with ultimate usage in the field.
  • a reducing agent such as dithionite, sodium thiosulfate, or other reducing agent compatible with ultimate usage in the field.
  • the modified cells may be subjected to further treatment, such as washing to remove all of the reaction medium, isolation in dry form, and formulation with typical stickers, spreaders, and adjuvants generally utilized in agricultural applications, as is well known to those skilled in the art.
  • reagents capable of crosslinking the cell wall are known in the art for this purpose.
  • the treatment should result in enhanced stability of the pesticide. That is, there should be enhanced persistence or residual activity of the pesticide under field conditions. Thus, under conditions where the pesticidal activity of untreated cells diminishes, the activity of treated cells remains for periods of from 1 to 3 times longer.
  • the cells can be formulated for use in the environment in a variety of ways. They can be employed as wettable powders, granules, or dusts, by mixing with various inert materials, such as inorganic minerals (phyllosilicates, carbonates, sulfates, or phosphates) or botanical materials (powdered corncobs, rice hulls, or walnut shells).
  • the formulations can include spreader/sticker adjuvants, stabilizing agents, other pesticidal additives, or surfactants.
  • Liquid formulations can be aqueous-based or non-aqueous and employed as foams, gels, suspensions, emulsifiable concentrates, and the like.
  • the ingredients can include Theological agents, surfactants, emulsifiers, dispersants, polymers, and the like.
  • the pesticidal concentration will vary depending upon the nature of the particular formulation, e.g., whether it is a concentrate or to be used undiluted.
  • the pesticide will generally be present at a concentration of at least about 1% by weight, but can be up to 100% by weight.
  • the dry formulations will have from about 1 to 95% by weight of the pesticide, while the liquid formulations will generally be from about 1 to 60% by weight of the solids in the liquid phase.
  • the formulations will generally have from about 1E2 to 1E8 cells/mg.
  • the formulations can be applied to the environment of the pest(s), e.g., plants, soil or water, by spraying, dusting, sprinkling, or the like. These formulations can be administered at about 2 oz (liquid or dry) to 2 or more pounds Der hectare, as required.
  • the k-1 gene is the hd-l gene described by Schnepf et al. (J. Biol. Chem. 260:6264-6272 1985).
  • the k-1 gene was resected from the 5′ end with Bal31 up to position 504.
  • a SalI linker (5′GTCGACC3′).
  • the 3′ end of the gene was cleaved at position 4211 with the enzyme NdeI and blunt ended with the Klenow fragment of DNA polymerase.
  • the cloning vector pUC8 (Messing, J. and Vieira, J. [1982] Gene 19:269-276) which can be purchased from Pharmacia, Piscataway, N.J., was cleaved with SalI and EcoRI and cloned into plasmid pBR322 which had been cut with the same enzymes.
  • the trp promoter (Genblock, available from Pharmacia) was blunt ended at the 5′ end with Klenow and inserted into this hybrid vector by blunt end ligation of the 5′ end to the SmaI site of the vector, and by insertion of the 3′ end at the SalI site of the vector.
  • the k-1 gene was then inserted using the SalI site at the 5′ end and by blunt end ligation of the 3′ end to the PvuII site of the vector.
  • a schematic drawing of this construct, called pEW1 is shown in FIG. 1 of the drawings.
  • Plasmid pEW1 contains the DNA sequence encoding Bacillius thuringiensis toxin k-1.
  • the k-73 gene is the HD-73 gene described by Adang et al. (Gene 36:289-300 1985).
  • the k-73 gene was cleaved at position 176 with NsiI.
  • the sequence was then cleaved at position 3212 with HindIII and the 3036 base fragment consisting of residues 176-3212 was isolated by agarose gel electrophoresis.
  • Plasmid pEW1 prepared as described in Example 1, was also cleaved with HindIII (position 3345 in Table 1) and partially digested with NsiI (position 556 in Table 1). The 3036 base fragment from k-73, disclosed above, was inserted into the NsiI to HindIII region of pEW1 replacing the comparable fragment of the k-1 gene, and creating plasmid pEW2.
  • a schematic diagram of pEW2 is shown in FIG. 2 of the drawings.
  • Plasmid pEW2 contains the DNA sequence encoding Bacillius thuringiensis toxin k-73.
  • the k-1 gene was cut with SacI at position 1873. The gene was then submitted to partial digestion with HindIII and the 1427 base fragment consisting of residues 1873 to 3345 was isolated by agarose gel electrophoresis. Plasmid pEW2 was cut with SacI and HindIII and the large fragment representing the entire plasmid minus the SacI to HindIII fragment of the k-2 gene was isolated by agarose gel electrophoresis. The 1427 base fragment from the k-1 gene was then ligated into the SacI to HindIII region of pEW2, creating plasmid pEW3. A schematic diagram of pEW3 is shown in FIG. 3 of the drawings.
  • Plasmid pEW3 contains the DNA sequence encoding Bacillius thuringiensis chimeric toxin k-73/k-1 (pHY).
  • nucleotide sequence encoding the chimeric toxin is shown in Table 1.
  • the deduced amino acid sequence is shown in Table 1A.
  • the k-1 gene was cut at position 556 with NsiI.
  • the gene was then cut with SacI at position 1873 and the 1317 base fragment from NsiI to SacI was isolated by agarose gel electrophoresis.
  • Plasmid pEW2 was cut with SacI and then submitted to partial digestion with NsiI.
  • the large fragment representing the entire plasmid; minus the NsiI to SacI region of the k-73 gene, was isolated by agarose gel electrophoresis.
  • the 1317 base NsiI to SacI fragment of gene k-1 was then ligated into NsiI to SacI region of pEW2 to create plasmid pEW4.
  • a schematic diagram of pEW4 is shown in FIG. 4 of the drawings.
  • nucleotide sequence encoding the chimeric toxin is shown in Table 2.
  • the deduced amino acid sequence is shown in Table 2A.
  • Plasmid pEW4 contains the DNA sequence encoding Bacillius thuringiensis chimeric toxin k-1/k-73 (PYH).
  • Genes coding for chimeric insecticidal toxins can be inserted into plant cells using the Ti plasmid from Agrobacter tumefaciens. Plant cells can then be caused to regenerate into plants (Zambryski, P., Joos, H., Gentello, C., Leemans, J., Van Montague, M. and Schell, J. [1983] EMBO J. 2:2143-2150; Bartok, K., Binns, A., Matzke, A. and Chilton, M-D. [1983] Cell 32:1033-1043).
  • a particularly useful vector in this regard is pEND4K (Klee, H. J., Yanofsky, M. F.
  • This plasmid can replicate both in plant cells and in bacteria and has multiple cloning sites for passenger genes.
  • Toxin genes for example, can be inserted into the BamHI site of pEND4K, propagated in E. coli, and transformed into appropriate plant cells.
  • Genes coding for Bacillus thuringiensis chimeric toxins can be cloned into baculoviruses such as Autographa californica nuclear polyhedrosis virus (AcNPV). Plasmids can be constructed that contain the AcNPV genome cloned into a commercial cloning vector such as pUC8. The AcNPV genome is modified so that the coding region of the polyhedrin gene is removed and a unique cloning site for a passenger gene is placed directly behind the polyhedrin promoter. Examples of such vectors are DGP-B6874, described by Pennock et al. (Pennock, G. D., Shoemaker, C. and Miller, L. K.
  • ACB-1 Enhanced toxicity against all three insects tested was shown by a toxin denoted ACB-1.
  • the toxin ACB-1 (Table 3A) is encoded by plasmid pACB-1 (Table 3).
  • Plasmid pACB-l was constructed between the variable region of MTX-36, a wild B. thuringiensis strain, having the deposit accession number NRRL B-18101, and the variable region of HD-73 as follows: MTX-36; N-terminal to SacI site. HD-73; SacI site to C-terminal.
  • Total plasmid DNA was prepared from strain MTX-36 by standard procedures. The DNA was submitted to complete digestion by restriction enzymes SpeI and DraI. The digest was separated according to size by agarose gel electrophoresis and a 1962 bp fragment was purified by electroelution using standard procedures.
  • Plasmid pEW2 was purified and digested completely with SpeI and then submitted to partial digestion with DraI. The digest was submitted to agarose gel electrophoresis and a 4,138 bp fragment was purified by electroelution as above.
  • Plasmid DNA was prepared from pACB, digested completely with SacI and NdeI and a 3760 bp fragment was isolated by electroelution following agarose gel electrophoresis.
  • Plasmid pEW1 was digested completely with SacI and NdeI and a 2340 bp fragment was isolated by electroelution following agarose gel electrophoresis.
  • the above disclosure is further exemplification of the subject invention process for altering the host range of Bacillus toxins which comprises recombining in vitro the variable region of two or more toxin genes.
  • the gene encoding the same can be sequenced by standard procedures, as disclosed above.
  • the sequencing data can be used to alter other DNA by known molecular biology procedures to obtain the desired novel toxin.
  • the above-noted changes in the ACB-1 gene from HD-73 makes it possible to construct the ACB-1 gene as follows:
  • Plasmid pEW3, NRRL B-18034 was modified by altering the coding sequence for the toxin.
  • the 151 bp DNA fragment bounded by the AccI restriction site at nucleotide residue 1199 in the coding sequence, and the SacI restriction site at residue 1350 were removed by digestion with the indicated restriction endonucleases using standard procedures.
  • the removed 151 bp DNA fragment was replaced with the following synthetic DNA oligomer by standard procedures: A TAC AGA AAA AGC GGA ACG GTA GAT TCG CTG AAT GAA ATA CCG CCA CAG AAT AAC AAC GTG CCC CCG AGG CAA GAA TTT AGT CAT CGA TTA AGC CAT GTT TCA ATG TTT AGA TCT GGC TTT AGT AAT AGT AGT GTA AGT ATA ATA AGA GCT
  • X is one of the 20 common amino acids except Asp when the amino acid at position 425 is Gly; Y is one of the 20 common amino acids except Gly when the amino acid at position 411 is Asp.
  • the 20 common amino acids are as follows: alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, leucine, lysine, methionine, pheniylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine.
  • SYW1 Enhanced toxicity against tested insects was shown by a toxin denoted SYW1.
  • the toxin SYW1 (Table 4A) is encoded by plasmid pSYW1 (Table 4).
  • Plasmid pSYW1 was constructed as follows:
  • Plasmid DNA from pEW2 was prepared by standard procedures and submitted to complete digestion with restriction enzyme AsuII followed by partial digestion with EcoRI. A 5878 bp fragment was purified by electroelution following agarose gel electrophoresis of the digest by standard procedures.
  • Plasmid DNA from strain HD-1 was prepared and submitted to complete digestion with restriction enzymes AsuII and EcoRI. A 222 bp fragment was purified by electroelution following agarose gel electrophoresis of the digest.
  • amino acid changes (3) in toxin SYW1 from EW3 are as follows: (1) Arginine residue 289 in EW3 was changed to glycine in SYW1, (2) arginine residue 311 in EW3 was changed to lysine in SYW1, and (3) the tyrosine residue 313 was changed to glycine in SYW1.
  • a schematic representation of these two toxins is as follows:
  • X is one of the 20 common amino acids except Arg when the amino acid at position 311 is Arg and the amino acid at position 313 is Tyr
  • Y is one of the 20 common amino acids except Arg when the amino acid at position 289 is Arg and the amino acid at position 313 is Tyr
  • Z is one of the 20 common amino acids except Tyr when the amino acid at position 289 is Arg and the amino acid at position 311 is Arg.
  • Construction of the SYW1 gene can be carried out by procedures disclosed above for the construction of the ACB-1 gene from plasmid pEW3 with appropriate changes in the synthetic DNA oligomer.
  • the amino acid sequence of a protein is determined by the nucleotide sequence of the DNA. Because of the redundancy of the genetic code, i.e., more than one coding nucleotide triplet (codon) can be used for most of the amino acids used to make proteins, different nucleotide sequences can code for a particular amino acid.
  • the genetic code can be depicted as follows: Phenylalanine (Phe) TTK Histidine (His) CAK Leucine (Leu) XTY Glutamine (Gln) CAJ Isoleucine (Ile) ATM Asparagine (Asn) AAK Methionine (Met) ATG Lysine (Lys) AAJ Valine (Val) GTL Aspartic acid (Asp) GAK Serine (Ser) QRS Glutamic acid (Glu) GAJ Proline (Pro) CCL Cysteine (Cys) TGK Threonine (Thr) ACL Tryptophan (Trp) TGG Alanine (Ala) GCL Arginine (Arg) WGZ Tyrosine (Tyr) TAK Glycine (Gly) GGL Termination signal TAJ
  • Each 3-letter deoxynucleotide triplet corresponds to a trinucleotide of mRNA, having a 5′-end on the left and a 3′-end on the right. All DNA sequences given herein are those of the strand whose sequence corresponds to the mRNA sequence, with thymine substituted for uracil. The letters stand for the purine or pyrimidine bases forming the deoxynucleotide sequence.
  • W C or A if Z is A or G
  • M A, C or T
  • the novel amino acid sequence of the chimeric toxins, and other useful proteins can be prepared by equivalent nucleotide sequences encoding the same amino acid sequence of the proteins. Accordingly, the subject invention includes such equivalent nucleotide sequences.
  • proteins of identified structure and function may be constructed by changing the amino acid sequence if such changes do not alter the protein secondary structure (Kaiser, E. T. and Kezdy, F. J. [1984] Science 223:249-255).
  • the subject invention includes muteins of the amino acid sequences depicted herein which do not alter the protein secondary structure.
  • coli cells containing the above plasmids were grown overnight in L-broth.* The cells were pelleted and resuspended on 0.85% NaCl. The optical density at 575 nm was determined for these cell suspensions and appropriate dilutions were made in 0.85% NaCl. Three ml of each dilution were added to 27 ml of USDA diet (Dulmage, H.D., Martinez, A.J. and Pena, T [1976] USDA Agricultural Research Service Technical Bulletin No. 1528, U.S. Government Printing Office, Washington, D.C.). The diet/toxin mixture was then dispensed into 24 wells in a plastic tissue culture tray (1.0 ml/well).
  • TABLE 3 Nucleotide Sequence of Plasmid pACG-1 Encoding Chimeric Toxin ACG-1 The nucleotide differences as compared to the sequence shown in TABLE 1 are underlined at positions 1618 and 1661 and code for amino acid changes at positions 411 and 425 as shown in TABLE A.
  • TABLE 4 Nucleotide Sequence of Alasmid pSYW1 Encoding Chimeric Toxin SYW1
  • the nucleotide differences as compared to the sequence shown in TABLE 1 are underlined at positions 1252, 1319, 1320, 1323, 1324, and 1326; and code for amino acid changes at positions 289, 311, and 313, as shown in TABLE 4A.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention concerns an in vitro process for altering the insect host range (spectrum) of pesticidal toxins. The process comprises recombining in vitro the variable region(s) (non-homologous) of two or more genes encoding a pesticidal toxin. Specifically exemplified is the recombining of the variable regions of two genes obtained from well-known strains of Bacillius thuringiensis var. kurstaki. The resulting products are chimeric toxins which are shown to have an expanded and/or amplified insect host range as compared to the parent toxins.

Description

    CROSS REFERENCE TO A RELATED APPLICATION
  • This is a continuation-in-part of our copending application Ser. No. 808,129, filed on Dec. 12, 1985.[0001]
  • BACKGROUND OF THE INVENTION
  • The most widely used microbial pesticides are derived from the bacterium [0002] Bacillius thuringiensis. This bacterial agent is used to control a wide range of leaf-eating caterpillars, Japanese beetles and mosquitos. Bacillius thuringiensis produces a proteinaceous paraspore or crystal which is toxic upon ingestion by a susceptible insect host. For example, B. thuringiensis var. kurstaki HD-1 produces a crystal called a delta toxin which is toxic to the larvae of a number of lepidopteran insects. The cloning and expression of this B.t. crystal protein gene in Escherichia coli has been described in the published literature (Schnepf, H. E. and Whiteley, H. R. [1981] Proc. Natl. Acad. Sci. USA 78:2893-2897). U.S. Pat. No. 4,448,885 and U.S. Pat. No. 4,467,036 both disclose the expression of B.t. crystal protein in E. coli. In U.S. Pat. No. 4,467,036 B. thuringiensis var. kurstaki HD-1 is disclosed as being available from the well-known NRRL culture repository at Peoria, Ill. Its accession number there is NRRL B-3792. B. thuringiensis var. kurstaki HD-73 is also available from NRRL. Its accession number is NRRL B-4488.
  • BRIEF SUMMARY OF THE INVENTION
  • The subject invention concerns a novel process for altering the insect host range of [0003] Bacillius thuringiensis toxins, and novel toxins produced as exemplification of this useful process. This alteration can result in expansion of the insect host range of the toxin, and/or, amplification of host toxicity. The process comprises recombining in vitro the variable region(s) of two or more δ-endotoxin genes. Specifically exemplified is the recombining of portions of two Bacillius thuringiensis var. kurstaki DNA sequences, i.e., referred to herein as k-1 and k-73, to produce chimeric B.t. toxins with expanded host ranges as compared to the toxins produced by the parent DNA's.
  • “Variable regions,” as used herein, refers to the non-homologous regions of two or more DNA sequences. As shown by the examples presented herein, the recombining of such variable regions from two different B.t. DNA sequences yields, unexpectedly, a DNA sequence encoding a δ-endotoxin with an expanded insect host range. In a related example, the recombining of two variable regions of two different B.t. toxin genes results in the creation of a chimeric toxin molecule with increased toxicity toward the target insect. The utility of this discovery by the inventors is clearly broader than the examples disclosed herein. From this discovery, it can be expected that a large number of new and useful toxins will be produced. Thus, though the subject process is exemplified by construction of chimeric toxin-producing DNA sequences from two well-known B.t. [0004] kurstaki DNA sequences, it should be understood that the process is not limited to these starting DNA sequences. The invention process also can be used to construct chimeric toxins from any B. thuringiensis toxin-producing DNA sequence.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1: A schematic diagram of plasmid pEW1 which contains the DNA sequence encoding [0005] Bacillius thuringiensis toxin k-1.
  • FIG. 2: A schematic diagram of plasmid pEW2 which contains the DNA sequence encoding [0006] Bacillius thuringiensis toxin k-73.
  • FIG. 3: A schematic diagram of plasmid pEW3 which contains the DNA sequence encoding [0007] Bacillius thuringiensis chimeric toxin k-73/k-1 (pHY).
  • FIG. 4: A schematic diagram of plasmid pEW4 which contains the DNA sequence encoding [0008] Bacillius thuringiensis chimeric toxin k-1/k-73 (pYH).
  • DETAILED DISCLOSURE OF THE INVENTION
  • Upon recombining in vitro the variable region(s) of two or more δ-endotoxin genes, there is obtained a gene(s) encoding a chimeric toxin(s) which has an expanded and/or amplified host toxicity as compared to the toxin produced by the starting genes. This recombination is done using standard well-known genetic engineering techniques. [0009]
  • The restriction enzymes disclosed herein can be purchased from Bethesda Research Laboratories, Gaithersburg, Md., or New England Biolabs, Beverly, Mass. The enzymes are used according to the instructions provided by the supplier. [0010]
  • The various methods employed in the preparation of the plasmids and transformation of host organisms are well known in the art. These procedures are all described in Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) [0011] Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. Thus, it is within the skill of those in the genetic engineering art to extract DNA from microbial cells, perform restriction enzyme digestions, electrophorese DNA fragments, tail and anneal plasmid and insert DNA, ligate DNA, transform cells, prepare plasmid DNA, electrophorese proteins, and sequence DNA.
  • Plasmids pEW1, pEW2, pEW3, and pEW4, constructed as described infra, have been deposited in [0012] E. coli hosts in the permanent collection (to be maintained for at least 30 years) of the Northern Regional Research Laboratory (NRRL), U.S. Department of Agriculture, Peoria, Ill., USA. Their accession numbers and dates of deposit are as follows:
  • pEWl—NRRL B-18032; deposited on Nov. 29, 1985 [0013]
  • pEW2—NRRL B-18033; deposited on Nov. 29, 1985 [0014]
  • pEW3—NRRL B-18034; deposited on Nov. 29, 1985 [0015]
  • pEW4—NRRL B-18035; deposited on Nov. 29, 1985 [0016]
  • [0017] B. thuringiensis strain MTX-36, NRRL B-18101 was deposited on Aug. 25, 1986.
  • Plasmid pBR322 is a well-known and available plasmid. It is maintained in the [0018] E. coli host ATCC 37017. Purified pBR322 DNA can be obtained as described in Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heynecker, H. L., Boyer, H. W., Crosa, J. H. and Falkow, S. (1977) Gene 2:95-113; and Sutcliffe, J. G. (1978) Nucleic Acids Res. 5:2721-2728.
  • NRRL B-18032, NRRL B-18033, NRRL B-18034, NRRL B-18035, and NRRL B-18101 are available to the public upon the grant of a patent which discloses these accession numbers in conjunction with the invention described herein. It should be understood that the availability of these deposits does not constitute a license to practice the subject invention in derogation of patent rights granted for the subject invention by governmental action. [0019]
  • As disclosed above, any [0020] B. thuringiensis toxin-producing DNA sequence can be used as starting material for the subject invention. Examples of B. thuringiensis organisms, other than those previously given, are as follows:
  • [0021] Bacillius thuringiensis var. israelensis—ATCC 35646
  • [0022] Bacillius thuringiensis M-7—NRRb B-15939
  • [0023] Bacillius thuringiensis var. tenebrionis—DSM 2803
  • The following [0024] B. thuringiensis cultures are available from the United States Department of Agriculture (USDA) at Brownsville, Texas. Requests should be made to Joe Garcia, USDA, ARS, Cotton Insects Research Unit, P.O. Box 1033, Brownsville, Tex. 78520 USA.
    B. thuringiensis HD2
    B. thuringiensis var. finitimus HD3
    B. thuringiensis var. alesti HD4
    B. thuringiensis var. kurstaki HD73
    B. thuringiensis var. sotto HD770
    B. thuringiensis var. dendrolimus HD7
    B. thuringiensis var. kenyae HD5
    B. thuringiensis var. galleriae HD29
    B. thuringiensis var. canadensis HD224
    B. thuringiensis var. entomocidus HD9
    B. thuringiensis var. subtoxicus HD109
    B. thuringiensis var. aizawai 1-HD11
    B. thuringiensis var. morrisoni HD12
    B. thuringiensis var. ostriniae HD501
    B. thuringiensis var. tolworthi HD537
    B. thuringiensis var. darmscadiensis HD146
    B. thuringiensis var. tournanoffi HD201
    B. thuringiensis var. kyushuensis HD541
    B. thuringiensis var. thotnosoni HD542
    B. thurinpiensis var. pakistani HD395
    B. thuringiensis var. israelensis HD567
    B. thuringiensis var. indiana HD521
    B. thuringiensis var. dakota
    B. thuringiensis var. tohokuensis HD866
    B. thuringiensis var. kumanotoensis HD867
    B. thuringiensis var. cochigiensis HD868
    B. thuringiensis var. colmeri HD847
    B. thuringiensis var. wuhanensis HD525
  • Though the main thrust of the subject invention is directed toward a process for altering the host range of [0025] B. thuringiensis toxins, the process is also applicable in the same sense to other Bacillus toxin-producing microbes. Examples of such Bacillus organisms which can be used as starting material are as follows:
    Bacillus cereus--ATCC 21281
    Bacillus moritai--ATGC 21282
    Bacillus popilliae--ATCC 14706
    Bacillus lentimorbus--ATCC 14707
    Bacillus sphaericus--ATCC 33203
  • [0026] Bacillius thuringiensis M-7, exemplified herein, is a Bacillius thuringiensis isolate which, surprisingly, has activity against beetles of the order Coleoptera but not against Trichoplusia ni, Spodoptera exigua or Aedes aegypti. Included in the Coleoptera are various Diabrotica species (family Chrysomelidae) that are responsible for large agricultural losses, for example, D. undecimpunctata (western spotted cucumber beetle), D. longicornis (northern corn rootworm), D. virgitera (western corn rootworm), and D. undecimpunctata howardi (southern corn rootworm).
  • [0027] B. thuringiensis M-7 is unusual in having a unique parasporal body (crystal) which under phase contrast microscopy is dark in appearance with a flat, square configuration.
  • The pesticide encoded by the DNA sequence used as starting material for the invention process can be any toxin produced by a microbe. For example, it can be a polypeptide which has toxic activity toward a eukaryotic multicellular pest, such as insects, e.g., coleoptera, lepidoptera, diptera, hemiptera, dermaptera, and orthoptera; or arachnids; gastropods; or worms, such as nematodes and platyhelminths. Various susceptible insects include beetles, moths, flies, grasshoppers, lice, and earwigs. [0028]
  • Further, it can be a polypeptide produced in active form or a precursor or proform requiring further processing For toxin activity, e.g., the novel crystal toxin of [0029] B. thuringiensis var. kurstaki, which requires processing by the pest.
  • The constructs produced by the process of the invention, containing chimeric toxin-producing DNA sequences, can be transformed into suitable hosts by using standard procedures. Illustrative host cells may include either prokaryotes or eukaryotes, normally being limited to those cells which do not produce substances toxic to higher organisms, such as mammals. However, organisms which produce substances toxic to higher organisms could be used, where the toxin is unstable or the level of application sufficiently low as to avoid any possibility of toxicity to a mammalian host. As hosts, of particular interest will be the prokaryotes and lower eukaryotes, such as fungi. Illustrative prokaryotes, both Gram-negative and -positive, include Enterobacteriaceae, such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus; Bacillaceae; Rhizobiaceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum; Lactobacillaceae; Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae and Nitrobacteraceae. Among eukaryotes are fungi, such as Phycomycetes and Ascomycetes, which includes yeast, such as Saccharomyces and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasidium, Sporobolomyces, and the like. [0030]
  • Characteristics of particular interest in selecting a host cell for purposes of production include ease of introducing the chimeric toxin-producing gene into the host, availability of expression systems, efficiency of expression, stability of the pesticide in the host, and the presence of auxiliary genetic capabilities. Characteristics of interest for use as a pesticide microcapsule include protective qualities for the pesticide, such as thick cell walls, pigmentation, and intracellular packaging or formation of inclusion bodies; leaf affinity; lack of mammalian toxicity; attractiveness to pests for ingestion; ease of killing and fixing without damage to the toxin; and the like. Other considerations include ease of formulation and handling, economics, storage stability, and the like. [0031]
  • Host organisms of particular interest include yeast, such as Rhodotorula sp., Aureobasidium sp., Saccharomyces sp., and Sporobolomyces sp.; phylloplane organisms such Pseudomonas sp., Erwinia sp. and Flavobacterium sp.; or such other organisms as Escherichia, Lactobacillus sp., Bacillus sp., and the like. Specific organisms include [0032] Pseudomonas aeruginosa, Pseudomonas fluorescens, Saccharomyces cerevisiae, Bacillus thuringiensis, Escherichia coli, Bacillus subtilis, and the like.
  • The chimeric toxin-producing gene(s) can be introduced into the host in any convenient manner, either providing for extrachromosomal maintenance or integration into the host genome. [0033]
  • Various constructs may be used, which include replication systems from plasmids, viruses, or centromeres in combination with an autonomous replicating segment (ars) for stable maintenance. Where only integration is desired, constructs can be used which may provide for replication, and are either transposons or have transposon-like insertion activity or provide for homology with the genome of the host. DNA sequences can be employed having the chimeric toxin-producing gene between sequences which are homologous with sequences in the genome of the host, either chromosomal or plasmid. Desirably, the chimeric toxin-producing gene(s) will be present in multiple copies. See for example, U.S. Pat. No. 4,399,216. Thus, conjugation, transduction, transfection and transformation may be employed for introduction of the gene. [0034]
  • A large number of vectors are presently available which depend upon eukaryotic and prokaryotic replication systems, such as Co1E1, P-1 incompatibility plasmids, e.g., pRK290, yeast 2m μ plasmid, lambda, and the like. [0035]
  • Where an extrachromosomal element is employed, the DNA construct will desirably include a marker which allows for a selection of those host cells containing the construct. The marker is commonly one which provides for biocide resistance, e.g., antibiotic resistance or heavy metal resistance, complementation providing prototrophy to an auxotrophic host, or the like. The replication systems can provide special properties, such as runaway replication, can involve cos cells, or other special feature. [0036]
  • Where the chimeric toxin-producing gene(s) has transcriptional and translational initiation and termination regulatory signals recognized by the host cell, it will frequently be satisfactory to employ those regulatory features in conjunction with the gene. However, in those situations where the chimeric toxin-producing gene is modified, as for example, removing a leader sequence or providing a sequence which codes for the mature form of the pesticide, where the entire gene encodes for a precursor, it will frequently be necessary to manipulate the DNA sequence, so that a transcriptional initiation regulatory sequence may be provided which is different from the natural one. [0037]
  • A wide variety of transcriptional initiation sequences exist for a wide variety of hosts. The sequence can provide for constitutive expression of the pesticide or regulated expression, where the regulation may be inducible by a chemical, e.g., a metabolite, by temperature, or by a regulatable repressor. See for example, U.S. Pat. No. 4,374,927. The particular choice of the promoter will depend on a number of factors, the strength of the promoter, the interference of the promoter with the viability of the cells, the effect of regulatory mechanisms endogenous to the cell on the promoter, and the like. A large number of promoters are available from a variety of sources, including commercial sources. [0038]
  • The cellular host containing the chimeric toxin-producing pesticidal gene may be grown in any convenient nutrient medium, where-the DNA construct provides a selective advantage, providing for a selective medium so that substantially all or all of the cells retain the chimeric toxin-producing gene. These cells may then be harvested in accordance with conventional ways and modified in the various manners described above. Alternatively, the cells can be fixed prior to harvesting. [0039]
  • Host cells transformed to contain chimeric toxin-producing DNA sequences can be treated to prolong pesticidal activity when the cells are applied to the environment of a target pest. This treatment can involve the killing of the host cells under protease deactivating or cell wall strengthening conditions, while retaining pesticidal activity. [0040]
  • The cells may be inhibited from proliferation in a variety of ways, so long as the technique does not deleteriously affect the properties of the pesticide, nor diminish the cellular capability in protecting the pesticide. The techniques may involve physical treatment, chemical treatment, changing the physical character of the cell or leaving the physical character of the cell substantially intact, or the like. [0041]
  • Various techniques for inactivating the host cells include heat, usually 50° C. to 70° C.; freezing; UV irradiation; lyophilization; toxins, e.g., antibiotics; phenols; anilides, e.g., carbanilide and salicylanilide; hydroxyurea; quaternaries; alcohols; antibacterial dyes; EDTA and amidines; non-specific organic and inorganic chemicals, such as halogenating agents, e.g., chlorinating, brominating or iodinating agents; aldehydes, e.g., glutaraldehyde or formaldehyde; toxic gases, such as ozone and ethylene oxide; peroxide; psoralens; desiccating agents; or the like, which may be used individually or in combination. The choice of agent will depend upon the particular pesticide, the nature of the host cell, the nature of the modification of the cellular structure, such as fixing and preserving the cell wall with crosslinking agents, or the like. [0042]
  • The cells generally will have enhanced structural stability which will enhance resistance to environmental degradation in the field. Where the pesticide is in a proform, the method of inactivation should be selected so as not to inhibit processing of the proform to the mature form of the pesticide by the target pest pathogen. For example, formaldehyde will crosslink proteins and could inhibit processing of the proform of a polypeptide pesticide. The method of inactivation or killing retains at least a substantial portion of the bioavailability or bioactivity of the toxin. [0043]
  • The method of treating the organism can fulfill a number of functions. First, it may enhance structural integrity. Second, it may provide for enhanced proteolytic stability of the toxin, by modifying the toxin so as to reduce its susceptibility to proteolytic degradation and/or by reducing the proteolytic activity of proteases naturally present in the cell. The cells are preferably modified at an intact stage and when there has been a substantial build-up of the toxin protein. These modifications can be achieved in a variety of ways, such as by using chemical reagents having a broad spectrum of chemical reactivity. The intact cells can be combined with a liquid reagent medium containing the chemical reagents, with or without agitation at temperatures in the range of about −10 to 60° C. The reaction time may be determined empirically and will vary widely with the reagents and reaction conditions. Cell concentrations will vary from about 10E2 to 10E10 per ml. [0044]
  • Of particular interest as chemical reagents are halogenating agents, particularly halogens of atomic no. 17-80. More particularly, iodine can be used under mild conditions and for sufficient time to achieve the desired results. Other suitable techniques include treatment with aldehydes, such as formaldehyde and glutaraldehyde; anti-infectives, such as zephiran chloride and cetylpyridinium chloride; alcohols, such as isopropyl and ethanol; various histologic fixatives, such as Bouin's fixative and Helly's fixative (See: Humason, Gretchen L., Animal Tissue Techniques, W.H. Freeman and Company, 1967); or a combination of physical (heat) and chemical agents that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of the target pest(s). [0045]
  • For halogenation with iodine, temperatures will generally range from about 0 to 50° C., but the reaction can be conveniently carried out at room temperature. Conveniently, the iodination may be performed using triiodide or iodine at 0.5 to 5% in an acidic aqueous medium, particularly an aqueous carboxylic acid solution that may vary from about 0.5-5M. Conveniently, acetic acid may be used, although other carboxylic acids, generally of from about 1 to 4 carbon atoms, may also be employed. The time for the reaction will generally range from less than a minute to about 24 hrs, usually from about 1 to 6 hrs. Any residual iodine may be removed by reaction with a reducing agent, such as dithionite, sodium thiosulfate, or other reducing agent compatible with ultimate usage in the field. In addition, the modified cells may be subjected to further treatment, such as washing to remove all of the reaction medium, isolation in dry form, and formulation with typical stickers, spreaders, and adjuvants generally utilized in agricultural applications, as is well known to those skilled in the art. [0046]
  • Of particular interest are reagents capable of crosslinking the cell wall. A number of reagents are known in the art for this purpose. The treatment should result in enhanced stability of the pesticide. That is, there should be enhanced persistence or residual activity of the pesticide under field conditions. Thus, under conditions where the pesticidal activity of untreated cells diminishes, the activity of treated cells remains for periods of from 1 to 3 times longer. [0047]
  • The cells can be formulated for use in the environment in a variety of ways. They can be employed as wettable powders, granules, or dusts, by mixing with various inert materials, such as inorganic minerals (phyllosilicates, carbonates, sulfates, or phosphates) or botanical materials (powdered corncobs, rice hulls, or walnut shells). The formulations can include spreader/sticker adjuvants, stabilizing agents, other pesticidal additives, or surfactants. Liquid formulations can be aqueous-based or non-aqueous and employed as foams, gels, suspensions, emulsifiable concentrates, and the like. The ingredients can include Theological agents, surfactants, emulsifiers, dispersants, polymers, and the like. [0048]
  • The pesticidal concentration will vary depending upon the nature of the particular formulation, e.g., whether it is a concentrate or to be used undiluted. The pesticide will generally be present at a concentration of at least about 1% by weight, but can be up to 100% by weight. The dry formulations will have from about 1 to 95% by weight of the pesticide, while the liquid formulations will generally be from about 1 to 60% by weight of the solids in the liquid phase. The formulations will generally have from about 1E2 to 1E8 cells/mg. [0049]
  • The formulations can be applied to the environment of the pest(s), e.g., plants, soil or water, by spraying, dusting, sprinkling, or the like. These formulations can be administered at about 2 oz (liquid or dry) to 2 or more pounds Der hectare, as required. [0050]
  • Following are examples which illustrate procedures, including the best mode, for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted. [0051]
  • EXAMPLE 1 Construction of Plasmid pEW1
  • The k-1 gene is the hd-l gene described by Schnepf et al. (J. Biol. Chem. 260:6264-6272 1985). The k-1 gene was resected from the 5′ end with Bal31 up to position 504. To this position was added a SalI linker (5′GTCGACC3′). The 3′ end of the gene was cleaved at position 4211 with the enzyme NdeI and blunt ended with the Klenow fragment of DNA polymerase. [0052]
  • The cloning vector pUC8 (Messing, J. and Vieira, J. [1982] Gene 19:269-276) which can be purchased from Pharmacia, Piscataway, N.J., was cleaved with SalI and EcoRI and cloned into plasmid pBR322 which had been cut with the same enzymes. The trp promoter (Genblock, available from Pharmacia) was blunt ended at the 5′ end with Klenow and inserted into this hybrid vector by blunt end ligation of the 5′ end to the SmaI site of the vector, and by insertion of the 3′ end at the SalI site of the vector. The k-1 gene was then inserted using the SalI site at the 5′ end and by blunt end ligation of the 3′ end to the PvuII site of the vector. A schematic drawing of this construct, called pEW1, is shown in FIG. 1 of the drawings. [0053]
  • Plasmid pEW1 contains the DNA sequence encoding [0054] Bacillius thuringiensis toxin k-1.
  • EXAMPLE 2 Construction of Plasmid pEW2
  • The k-73 gene is the HD-73 gene described by Adang et al. (Gene 36:289-300 1985). The k-73 gene was cleaved at position 176 with NsiI. The sequence was then cleaved at position 3212 with HindIII and the 3036 base fragment consisting of residues 176-3212 was isolated by agarose gel electrophoresis. [0055]
  • Plasmid pEW1, prepared as described in Example 1, was also cleaved with HindIII (position 3345 in Table 1) and partially digested with NsiI (position 556 in Table 1). The 3036 base fragment from k-73, disclosed above, was inserted into the NsiI to HindIII region of pEW1 replacing the comparable fragment of the k-1 gene, and creating plasmid pEW2. A schematic diagram of pEW2 is shown in FIG. 2 of the drawings. [0056]
  • Plasmid pEW2 contains the DNA sequence encoding [0057] Bacillius thuringiensis toxin k-73.
  • EXAMPLE 3 Construction of Plasmid pEW3
  • The k-1 gene was cut with SacI at position 1873. The gene was then submitted to partial digestion with HindIII and the 1427 base fragment consisting of residues 1873 to 3345 was isolated by agarose gel electrophoresis. Plasmid pEW2 was cut with SacI and HindIII and the large fragment representing the entire plasmid minus the SacI to HindIII fragment of the k-2 gene was isolated by agarose gel electrophoresis. The 1427 base fragment from the k-1 gene was then ligated into the SacI to HindIII region of pEW2, creating plasmid pEW3. A schematic diagram of pEW3 is shown in FIG. 3 of the drawings. [0058]
  • Plasmid pEW3 contains the DNA sequence encoding [0059] Bacillius thuringiensis chimeric toxin k-73/k-1 (pHY).
  • The nucleotide sequence encoding the chimeric toxin is shown in Table 1. The deduced amino acid sequence is shown in Table 1A. [0060]
  • EXAMPLE 4 Construction of Plasmid pEW4
  • The k-1 gene was cut at position 556 with NsiI. The gene was then cut with SacI at position 1873 and the 1317 base fragment from NsiI to SacI was isolated by agarose gel electrophoresis. Plasmid pEW2 was cut with SacI and then submitted to partial digestion with NsiI. The large fragment representing the entire plasmid; minus the NsiI to SacI region of the k-73 gene, was isolated by agarose gel electrophoresis. The 1317 base NsiI to SacI fragment of gene k-1 was then ligated into NsiI to SacI region of pEW2 to create plasmid pEW4. A schematic diagram of pEW4 is shown in FIG. 4 of the drawings. [0061]
  • The nucleotide sequence encoding the chimeric toxin is shown in Table 2. The deduced amino acid sequence is shown in Table 2A. [0062]
  • Plasmid pEW4 contains the DNA sequence encoding [0063] Bacillius thuringiensis chimeric toxin k-1/k-73 (PYH).
  • EXAMPLE 5 Insertion of Chimeric Toxin Genes into Plants
  • Genes coding for chimeric insecticidal toxins, as disclosed herein, can be inserted into plant cells using the Ti plasmid from [0064] Agrobacter tumefaciens. Plant cells can then be caused to regenerate into plants (Zambryski, P., Joos, H., Gentello, C., Leemans, J., Van Montague, M. and Schell, J. [1983] EMBO J. 2:2143-2150; Bartok, K., Binns, A., Matzke, A. and Chilton, M-D. [1983] Cell 32:1033-1043). A particularly useful vector in this regard is pEND4K (Klee, H. J., Yanofsky, M. F. and Nester, E. W. [1985] Bio/Technology 3:637-642). This plasmid can replicate both in plant cells and in bacteria and has multiple cloning sites for passenger genes. Toxin genes, for example, can be inserted into the BamHI site of pEND4K, propagated in E. coli, and transformed into appropriate plant cells.
  • EXAMPLE 6 Cloning of B. thuringiensis Genes into Baculoviruses
  • Genes coding for [0065] Bacillus thuringiensis chimeric toxins, as disclosed herein, can be cloned into baculoviruses such as Autographa californica nuclear polyhedrosis virus (AcNPV). Plasmids can be constructed that contain the AcNPV genome cloned into a commercial cloning vector such as pUC8. The AcNPV genome is modified so that the coding region of the polyhedrin gene is removed and a unique cloning site for a passenger gene is placed directly behind the polyhedrin promoter. Examples of such vectors are DGP-B6874, described by Pennock et al. (Pennock, G. D., Shoemaker, C. and Miller, L. K. [19841 Mol. Cell. Biol. 4:399-406), and pAC380, described by Smith et al. (Smith, G. E., Summers, M. D. and Fraser, M. J. [1983] Mol. Cell. Biol. 3:2156-2165). The genes coding for k-1, k-73, k-73/k-1, k-1/k-73, or other B.t. genes can be modified with BamHI linkers at appropriate regions both upstream and downstream from the coding regions and inserted into the passenger site of one of the AcNPV vectors.
  • EXAMPLE 7 Chimeric Toxin Denoted ACB-1
  • Enhanced toxicity against all three insects tested was shown by a toxin denoted ACB-1. The toxin ACB-1 (Table 3A) is encoded by plasmid pACB-1 (Table 3). The insecticidal activity encoded by pACB-1, in comparison with pEW3 (Example 3), is as follows: [0066]
    LC50 (O.D.575/ml)
    Clone T. ni H. zea S. exigua
    pEW3 4.3 23.0 12.3
    pACB-1 1.2 3.9 1.2
  • The above test was conducted using the conditions described previously. [0067]
  • The above results show that the ACB-1 toxin has the best composite activity as compared to the other toxins tested herein against all three insects. [0068]
  • Plasmid pACB-l was constructed between the variable region of MTX-36, a wild [0069] B. thuringiensis strain, having the deposit accession number NRRL B-18101, and the variable region of HD-73 as follows: MTX-36; N-terminal to SacI site. HD-73; SacI site to C-terminal.
  • Total plasmid DNA was prepared from strain MTX-36 by standard procedures. The DNA was submitted to complete digestion by restriction enzymes SpeI and DraI. The digest was separated according to size by agarose gel electrophoresis and a 1962 bp fragment was purified by electroelution using standard procedures. [0070]
  • Plasmid pEW2 was purified and digested completely with SpeI and then submitted to partial digestion with DraI. The digest was submitted to agarose gel electrophoresis and a 4,138 bp fragment was purified by electroelution as above. [0071]
  • The two fragments (1962 bp from MTX-36 and 4138 bp from pEW2 were ligated together to form construct pACB. [0072]
  • Plasmid DNA was prepared from pACB, digested completely with SacI and NdeI and a 3760 bp fragment was isolated by electroelution following agarose gel electrophoresis. [0073]
  • Plasmid pEW1 was digested completely with SacI and NdeI and a 2340 bp fragment was isolated by electroelution following agarose gel electrophoresis. [0074]
  • The two fragments (3760 bp from pACB and 2340 from pEW1) were ligated together to form construct pACB-1. [0075]
  • The complete nucleotide sequence of the ACB-1 gene was determined and the deduced amino acid sequence of the toxin was compared with that determined for the toxin encoded by pEW3 (EW3). The result was that the deduced amino acid sequence of the ACB-1 toxin was identical to that of EW3 with two exceptions: (1) Aspartic acid residue 411 in EW3 was changed to asparagine in ACB-1 and (2) glycine residue 425 in EW3 was changed to glutamic acid in ACB-1. These two amino acid changes account for all of the changes in insect toxicity between these strains. The amino acid sequence of the EW3 toxin is as reported in Table 1. A schematic representation of these two toxins is as follows: [0076]
    Figure US20030040619A1-20030227-C00001
  • The above disclosure is further exemplification of the subject invention process for altering the host range of Bacillus toxins which comprises recombining in vitro the variable region of two or more toxin genes. Once a chimeric toxin is produced, the gene encoding the same can be sequenced by standard procedures, as disclosed above. The sequencing data can be used to alter other DNA by known molecular biology procedures to obtain the desired novel toxin. For example, the above-noted changes in the ACB-1 gene from HD-73, makes it possible to construct the ACB-1 gene as follows: [0077]
  • Plasmid pEW3, NRRL B-18034, was modified by altering the coding sequence for the toxin. The 151 bp DNA fragment bounded by the AccI restriction site at nucleotide residue 1199 in the coding sequence, and the SacI restriction site at residue 1350 were removed by digestion with the indicated restriction endonucleases using standard procedures. The removed 151 bp DNA fragment was replaced with the following synthetic DNA oligomer by standard procedures: [0078]
    A TAC AGA AAA AGC GGA ACG GTA GAT TCG CTG AAT GAA
      ATA CCG CCA CAG AAT AAC AAC GTG CCC CCG AGG CAA
      GAA TTT AGT CAT CGA TTA AGC CAT GTT TCA ATG TTT
      AGA TCT GGC TTT AGT AAT AGT AGT GTA AGT ATA ATA
      AGA GCT
  • The net result of this change is that the aspartic residue at position 411 in the toxin encoded by pEW3 (Table 1A) is converted to asparagine, and the glycine residue at position 425 is converted to a glutamic residue. All other amino acids encoded by these genes are identical. [0079]
  • The changes made at positions 411 and 425, discussed above, clearly illustrate the sensitivity of these two positions in toxin EW3. Accordingly, the scope of the invention is not limited to the particular amino acids depicted as participating in the changes. The scope of the invention includes substitution of all 19 other amino acids at these positions. This can be shown by the following schematic: [0080]
    Figure US20030040619A1-20030227-C00002
  • wherein X is one of the 20 common amino acids except Asp when the amino acid at position 425 is Gly; Y is one of the 20 common amino acids except Gly when the amino acid at position 411 is Asp. The 20 common amino acids are as follows: alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, leucine, lysine, methionine, pheniylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. [0081]
  • EXAMPLE 8 Chimeric Toxin Denoted SYW1
  • Enhanced toxicity against tested insects was shown by a toxin denoted SYW1. The toxin SYW1 (Table 4A) is encoded by plasmid pSYW1 (Table 4). The insecticidal activity encoded by pSYW1, in comparison with pEW1 (Example 1) and pEW2 (Example 2), is as follows: [0082]
    LC50 (O.D.575/ml)
    Clone T. ni H. zea S. exigua
    pEW1 3.5 12.3 18.8
    pEW2 1.4 52.3 5.9
    pSYW1 0.7 1.9 12.0
  • The above test was conducted using the conditions described previously. [0083]
  • Plasmid pSYW1 was constructed as follows: [0084]
  • Plasmid DNA from pEW2 was prepared by standard procedures and submitted to complete digestion with restriction enzyme AsuII followed by partial digestion with EcoRI. A 5878 bp fragment was purified by electroelution following agarose gel electrophoresis of the digest by standard procedures. [0085]
  • Plasmid DNA from strain HD-1 was prepared and submitted to complete digestion with restriction enzymes AsuII and EcoRI. A 222 bp fragment was purified by electroelution following agarose gel electrophoresis of the digest. [0086]
  • The two fragments (5878 bp from pEW2 and 222 bp from HD-1) were ligated together, by standard procedures, to form construct pSYW1. [0087]
  • The amino acid changes (3) in toxin SYW1 from EW3 are as follows: (1) Arginine residue 289 in EW3 was changed to glycine in SYW1, (2) arginine residue 311 in EW3 was changed to lysine in SYW1, and (3) the tyrosine residue 313 was changed to glycine in SYW1. A schematic representation of these two toxins is as follows: [0088]
    Figure US20030040619A1-20030227-C00003
  • The changes made at positions 289, 311, and 313, discussed above, clearly illustrate the sensitivity of these three positions in toxin EW3. Accordingly, the scope of the invention is not limited to the particular amino acids depicted as participating in the changes. The scope of the invention includes substitution of all the common amino acids at these positions. This can be shown by the following schematic: [0089]
    Figure US20030040619A1-20030227-C00004
  • wherein X is one of the 20 common amino acids except Arg when the amino acid at position 311 is Arg and the amino acid at position 313 is Tyr; Y is one of the 20 common amino acids except Arg when the amino acid at position 289 is Arg and the amino acid at position 313 is Tyr; and Z is one of the 20 common amino acids except Tyr when the amino acid at position 289 is Arg and the amino acid at position 311 is Arg. [0090]
  • Construction of the SYW1 gene can be carried out by procedures disclosed above for the construction of the ACB-1 gene from plasmid pEW3 with appropriate changes in the synthetic DNA oligomer. [0091]
  • As is well known in the art, the amino acid sequence of a protein is determined by the nucleotide sequence of the DNA. Because of the redundancy of the genetic code, i.e., more than one coding nucleotide triplet (codon) can be used for most of the amino acids used to make proteins, different nucleotide sequences can code for a particular amino acid. Thus, the genetic code can be depicted as follows: [0092]
    Phenylalanine (Phe) TTK Histidine (His) CAK
    Leucine (Leu) XTY Glutamine (Gln) CAJ
    Isoleucine (Ile) ATM Asparagine (Asn) AAK
    Methionine (Met) ATG Lysine (Lys) AAJ
    Valine (Val) GTL Aspartic acid (Asp) GAK
    Serine (Ser) QRS Glutamic acid (Glu) GAJ
    Proline (Pro) CCL Cysteine (Cys) TGK
    Threonine (Thr) ACL Tryptophan (Trp) TGG
    Alanine (Ala) GCL Arginine (Arg) WGZ
    Tyrosine (Tyr) TAK Glycine (Gly) GGL
    Termination signal TAJ
  • Key: Each 3-letter deoxynucleotide triplet corresponds to a trinucleotide of mRNA, having a 5′-end on the left and a 3′-end on the right. All DNA sequences given herein are those of the strand whose sequence corresponds to the mRNA sequence, with thymine substituted for uracil. The letters stand for the purine or pyrimidine bases forming the deoxynucleotide sequence. [0093]
  • A=adenine [0094]
  • G=guanine [0095]
  • C=cytosine [0096]
  • T=thymine [0097]
  • X=T or C if Y is A or G [0098]
  • X=C if Y is C or T [0099]
  • Y=A, G, C or T if X is C [0100]
  • Y=A or G if X is T [0101]
  • W=C or A if Z is A or G [0102]
  • W=C if Z is C or T [0103]
  • Z=A, G, C or T if W is C [0104]
  • Z=A or G if W is A [0105]
  • QR=TC if S is A, G, C or T; alternatively QR=AG if S is T or C [0106]
  • J=A or G [0107]
  • K=T or C [0108]
  • L=A, T, C or G [0109]
  • M=A, C or T [0110]
  • The above shows that the novel amino acid sequence of the chimeric toxins, and other useful proteins, can be prepared by equivalent nucleotide sequences encoding the same amino acid sequence of the proteins. Accordingly, the subject invention includes such equivalent nucleotide sequences. In addition it has been shown that proteins of identified structure and function may be constructed by changing the amino acid sequence if such changes do not alter the protein secondary structure (Kaiser, E. T. and Kezdy, F. J. [1984] Science 223:249-255). Thus, the subject invention includes muteins of the amino acid sequences depicted herein which do not alter the protein secondary structure. [0111]
  • The one-letter symbol for the amino acids used in Tables 1A and 2A is well known in the art. For convenience, the relationship of the three-letter abbreviation and the one-letter symbol for amino acids is as follows: [0112]
    Ala A
    Arg R
    Asn N
    Asp D
    Cys C
    Gln Q
    Glu E
    Gly G
    His H
    Ile I
    Leu L
    Lys K
    Met M
    Phe F
    Pro P
    Ser S
    Thr T
    Trp W
    Tyr Y
    Val V
  • The work described herein was all done in conformity with physical and biological containment requirements specified in the NIH Guidelines. [0113]
    CHART A
    Bioassay of Chimeric Toxins Against Various Insects
    LC50 (O.D. 575/ml diet)
    Plasmid Toxin T. ni S. exigua H. zea
    pEW1 k-1 3.5 12.3 18.8
    pEW2 k-73 1.4 52.3 5.9
    pEW3 k-73/k-1 5.7 9.6 10.4
    pEW4 k-1/k-73 0.8 30.4 2.2
    Recombinant E. coli cells containing the above plasmids were grown
    overnight in L-broth.* The cells were pelleted and resuspended on 0.85%
    NaCl. The optical density at 575 nm was determined for these cell
    suspensions and appropriate dilutions were made in 0.85% NaCl. Three
    ml of each dilution were added to 27 ml of USDA diet (Dulmage, H.D.,
    Martinez, A.J. and Pena, T [1976] USDA Agricultural Research
    Service Technical Bulletin No. 1528, U.S. Government Printing Office,
    Washington, D.C.). The diet/toxin mixture was then dispensed into
    24 wells in a plastic tissue culture tray (1.0 ml/well). Single
    neonate larvae from either Trichoplusia ni, Spodoptera
    exigua, or Heliothis zea were then added to each well.
    The trays were then covered with Mylar and punctured with small
    holes for air exchange. The larvae were observed after 7 days and
    LC50 values were calculated using the method of probit analysis
    (Finney, D.J. [1971] Probit Analysis 3rd ed. Cambridge
    University Press, Cambridge).
  • [0114]
    CHART B
    Assay of Toxins Against CF-1 Cells in Culture
    Live Cells (% of Control)
    Plasmid Toxin Expt. 1 Expt. 2
    pEW1 k-1 106% 108%
    pEW2 k-73  44%  46%
    pEW3 k-73/k-1 105% 97%
    pEW4 k-1/k-73  53%  58%
    Overnight cultures of E. coli containing the various plasmids were
    centrifuged and resuspended in 0.85% NaCl containing 1 mM
    EDTA1, 0.2 mM PMSF2, 0.2 mM TPCK3 and
    100 mM NaCH. Cells were broken in a bead beater (Biospec
    Products, Bartlesville, OK), centrifuged and the
    supernatant dialyzed against 20 mM Tris-glycine pH 8.5.
    Toxin was activated with 0.7% trypsin. Assays were carried
    out on Choristoxieura fumiferana cell line CF-1.
    Approximately 100 μg of activated toxin extract was
    added to 3.2 × 105 cells in a volume of
    1.0 ml. ATP levels were determined after 30 min incubation
    and the percentage of live cells remaining in the suspension
    was determined from standard curves.
  • [0115]
    CHART C
    Facile Comparison of Constructions of Plasmids pEW3 and pEW4
    5′ Asu II Sac I Xho I k-73 3′
    Figure US20030040619A1-20030227-P00801
    Figure US20030040619A1-20030227-P00801
    Figure US20030040619A1-20030227-P00801
    Asu II Sac I Xho I* k-1
    Figure US20030040619A1-20030227-P00801
    Figure US20030040619A1-20030227-P00801
    Figure US20030040619A1-20030227-P00801
    pEW3
    +++++++++++++++++++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    pEW4
    −−−−−−−−−−−−−−−−−−−−−++++++++++++++++++++++++++++++++++++++++
  • [0116]
    TABLE 1
    Nucleotide Sequence of Plasmid pEW3 Encoding
    Chimeric Toxin
    Numbering of the nucleotide bases is the same as
    Schnepf et al. (J. Biol. Chem. 260:6264-6272 [1985])
    for HD-1 and Adang et al. (Gene 36:289-300 [1985])
    for HD-73. Only protein coding sequences are shown.
                   (start HD-73)             ATG GATAACAATC 400
    CGAACATCAT TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA
    GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500
    TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG
    GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TTGTCCCTCT 600
    CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT
    AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700
    ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT
    ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800
    CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG
    TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAATTTACAA TTTATCAGTT 900
    TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC
    TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000
    ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG
    GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100
    AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT
    ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200
    GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA
    AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300
    TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA
    ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400
    TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG
    GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500
    AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT
    TGCTTATGAA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600
    GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA
    CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700
    AGGCTTTAGT AATAGTAGTG TAAGTATAAT AGAGCT (end hd-73)
        (start HD-1)         CCACGT TTTCTTGGCA GCATCGCAGT 1800
    GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT
    AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000
    GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA
    ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100
    AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG
    GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200
    AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA
    CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300
    CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA
    ACCTTTGAGG CAGATAATGA TTTAAGAAGA GCAACAAAGG CGGTGAATGA 2400
    GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT
    ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500
    TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG
    ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600
    ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA
    GGAGCGGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700
    TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT
    TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800
    GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA
    TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900
    GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT
    GACTTAGATT GTTCGTGTAG GGAATGGAGA AAGTGTGCCC ATCATTCGCA 3000
    TCATTTCTCC TTAGACATTG ATGTAGGATG TACASACTTA AATGAGGACC
    TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100
    CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT
    AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200
    TGGAATGGFA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT
    GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300
    TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT
    ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400
    GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA
    TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTTC TGGAACGTGA 3500
    AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GATCCTTGTT
    CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600
    TCGTGGCTAT ATCATTCGTG TCACAGCGTA CAGGAAGGGA TATGGAGAAG
    GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700
    AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA
    TGATTATACT GTAAATCTAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800
    ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC
    TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900
    TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGAT TATGTGACTA
    AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000
    GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA
    GGAA (end HD-1)
  • [0117]
    TABLE 1A
    Deduced Amino Acid Sequence of Chimeric Toxin Produced
    by Plasmid pEW
    N G N N P N T N E C I P Y N C L S N P E V E V L G G E R I E
    T G Y T P T G T S L S L T Q F L L S E F V P G A G F V L G L
    V D I I W G I F G P S Q W D A F L V Q T E Q L T N Q R I E E
    F A R N Q A I S R L E G L S N L Y Q T Y A E S F R E W E A D
    P T N P A L R E E N R I Q F N D M N S A L T T A I A L F A V
    Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q
    R W G F D A A T I N S R Y N D L T R L T G N Y T D Y A V R W
    Y N T G L E R V W G A D S R D W V R Y N G F R R E L T L T V
    L D I V A L F P N Y D S R R Y A T R T V S Q L T R E T Y T N
    P V L E N F D G S F R G S A G G T E R S T R S A H L N D I L
    N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G
    P E F T F P L Y G T N M N A A A P Q R T V A Q L G Q G V Y R
    T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y
    G T S S N L P S A V Y R K S G T V D S L D E T P P Q N N N V
    P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A
    P T F S W Q H R S A E F N N I I P S S Q T T Q T A L T K S T
    N L G S G T S V V K G P G F T G G D T L R R T S P G Q I S T
    L R V N I T A P L S Q R Y R V R T R Y A S T T N L Q F H T S
    I D G R P I N Q G N F S P T N S S G S N L G S G S F R T V G
    F T T P F N F S N G S S V F T L S P H V F N S G N E V Y T D
    R I E F V P P E V T F E P E Y D L E R P Q K A V N E L F T S
    S N Q T G L K T D V T D Y H I D Q V S N L V E C L S D E F C
    L D E K Q E L S E K V K H P K P L S D E P N L L Q D P N F R
    G I N P Q L D R G W R G S T D T T T Q G G D D V F K E N Y V
    T L L G T F D E C Y P T Y L Y Q K T D E S K L K A Y T R Y Q
    L R G Y T E D S Q D L E T Y L T P Y N P K H E T V N V P G T
    G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D
    L D C S C R D G E K C A N H S H H F S L D I D V G C T D L N
    E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P
    L V G E P L P P V K R P E K K W F D K R E K L E W E T N T V
    Y K E P K E S V D P L F V N S Q Y D Q L Q P G T N T P N T H
    P P D K P V H S T P E P Y L P E L S V T P G V N P P T F E E
    L E G P T F T P F S L Y D P P N V T K N G D F N N G L S C W
    N V K G H V D V E E P N N Q R S V L V L P E W E P E V S Q E
    V R V C P G P G Y T L R V T P Y K E G Y G E G C V T T H E T
    E N N T D E L K F S N C V E E E T Y P N N T V T C N D Y T V
    N Q E E Y G G A Y I S P N P G Y N E A P S V P A D Y P S V Y
    E E K S Y T D G R P E N P C E F N P G Y R D Y T P L P V G Y
    V T K E L E Y F P E T D K V W T E T G E T E G T F T V D S V
    E L L L M E E
  • [0118]
    TABLE 2
    Nucleotide Sequence of Plasmid pEW4 Encoding
    Chimeric Toxin
    Numbering of nucleotide bases is the same as Schnepf
    et al. (J. Biol. Chem. 260:6264-6272 [1985]) for
    HD-1 and Adang et al. (Gene 36:289-300 [1985]) for
    HD-7. Only protein coding sequences are shown.
          (start HD-1)          ATGG ATACATCC GACATCAAT
    GAATGCATTC CTTAATATTG TTTAAGTAAC CCTGAAGTAG AAGTATTAGG 600
    TGGAGAAAGA ATAGAAACTG GTTACACCCC AATCGATATT TCCTTGTCGC
    TAACGCAATT TCTTTTGAGT GAATTTGTTC CCGGTGCTGG ATTTGTGTTA 700
    GGACTAGTTG ATATAATATG GGGAATTTTT GGTCCCTCTC AATGGGACGC
    ATTTCCTGTA CAAATTGAAC AGTTAATTAA CCAAAGAATA GAAGAATTCG 800
    CTAGGAACCA AGCCATTTCT AGATTAGAAG GACTAAGCAA TCTTTATCAA
    ATTTACGCAG AATCTTTTAG AGAGTGGGAA GCAGATCCTA CTAATCCAGC 900
    ATTAAGAGAA GAGATGCGTA TTCAATTCAA TGACATGAAC AGTGCCCTTA
    CAACCGCTAT TCCTCTTTTG GCAGTTCAAA ATTATCAAGT TCCTCTTATA 1000
    TCAGTATATG TTCAAGCTGC AAATTTACAT TTATCAGTTT TGAGAGATGT
    TTCAGTGTTT GGACAAAGGT GGGGATTTGA TGCCGCGACT ATCAATAGTC 1100
    GTTATAATGA TTTAACTAGG CTTATTGGCA ACTATACAGA TTATGCTGTG
    CGCTGGTACA ATACGGGATT AGAGCGTGTA TGTGGACCGG ATTCTAGAGA 1200
    TTGGGTAAGG TATAATCAAT TTAGAAGAGA GCTAACACTT ACTGTATTAG
    ATATCGTTGC TCTATTCTCA AATTATGATA GTCGAAGGTA TCCAATTCGA 1300
    ACAGTTTCCC AATTAACAAG AGAAATTTAT ACGAACCCAG TATTAGAAAA
    TTTTGATGTT AGTTTTCGTG GAATGGCTCA GAGAATAGAA CAGAATATTA 1400
    GGCAACCACA TCTTATGGAT ATCCTTATTA GTATAACCAT TTATACTGAT
    GTGCATAGAG GCTTTAATTA TTGGTCAGGG CATCAAATAA CATCTTCTCC 1500
    TGTAGGGTTT TCAGGACCAG AATTCGCATT CCCTTTATTT GGGAATGCGA
    GGAATGCAGC TCCACCCATA CTTGTCTCAT TAACTGGTTT GGGGATTTTT 1600
    AGACAATTAT CTTCACCTTT ATATAGAAGA ATTATACTTG GTTCATGCCC
    AAATAATCAG GAACTGTTTG TCCTTGATGT AACGGAGTTT TCTTTTGCCT 1700
    CCCTAACGAC CAACTTGCCT TCCACTATAT ATAGACAAAG GGGTACAGTC
    GATTCACTAG ATGTAATACC GCCACAGGAT AATAGTGTAC CACCTCGTGC 1800
    GGGATTTAGC CATCGATTGA GTCATGTTAC AATGCTGAGC CAGCAAGCTG
    GAGCAGTTTA CACCTTGAGA GCTCACGT (stop HD-1)
                   (start HD-7)            CCT ATGTTCTCTT
    GGATACATCG TAGTGCTGAA TTTAATAATA TAATTGCATC GGATAGTATT 1800
    ACTCAAATCC CTGCAGTGAA GGGAAACTTT CTTTTTAATG GTTCTGTAAT
    TTCAGGACCA GGATTTACTT GTGGGGACTT AGTTAGATTA AATAGTAGTG 1900
    GAAATAACAT TCAGAATAGA GGGTATATTG AAGTATATTG TCACTTCCCA
    TCGACATCTA CCAGATATCG AGTTCGTGTA CGGTATGCTT CTGTAACCCC 2000
    GATTCACCTC AACGTTAATT GGGGTAATTC ATCCATTTTT TCCAATACAG
    TACCAGCTAC AGCTACGTCA TTAGATAATC TACAATCAAG TGATTTTGGT 2100
    TATTTTGAAA GTGCCAATGC TTTTACATCT TCATTAGGTA ATATAGTAGG
    TGTTAGAAAT TTTAGTGGGA CTGCAGGAGT GATAATAGAC AGATTTGAAT 2200
    TTATTCCAGT TACTGCAACA CTCGAGGCTG AATATAATCT GGAAAGAGCG
    CAGAAGGCGG TGAATGCGCT GTTTACGTCT ACAAACCAAC TAGGGCTAAA 2300
    AACAAATGTA ACGGATTATC ATATTGATCA AGTGTCCAAT TTAGTTACGT
    ATTTATCGGA TGAATTTTGT CTGGATGAAA AGCGAGAATT GTCCGAGAAA 2400
    GTCAAACATG CGAAGCGACT CAGTGATGAA CGCAATTTAC TCCAAGATTC
    AAATTTCAAA GACATTAATA ACGCACCAGA ACGTGGGTGG GGCGGAAGTA 2500
    CAGGGATTAC CATCCAAGGA GGGGATGACG TATTTAAAGA AAATTACGTC
    ACACTATCAG GTACCTTTGA TGAGTGCTAT CCAACATATT TGTATCAAAA 2600
    AATCGATGAA TCAAATTATA AAGCCTTTAC CCGTTATCAA TTAAGAGGGT
    ATATCGAAGA TAGTCAAGAC TTAGAAATCT ATTTAATTCG CTACAATGCA 2700
    AAACATGAAA CAGTAAATGT GCCAGGTACG GGTTCCTTAT GGCCGCTTTC
    AGCCCAAAGT CCAATCGGAA AGTGTGGAGA GCCGAATCGA TGCGCGCCAC 2800
    ACCTTGAATG GAATCCTGAC TTAGATTGTT CGTGTAGGGA TGGAGAAAAG
    TTTGCCCATC ATTCGCATCA TTTCTCCTTA GACATTGATG TAGGATGTAC 2900
    AGACTTAAAT GAGGACCTAG ATGTATGGGT GATCTTTAAG ATTAAGACGC
    AAGATGGGCA CGCAAGACTA GGGAATCTAG AGTTTCTCGA AGAGAAACCA 3000
    TTAGTAGGAG AAGCGCTAGC TCGTGTGAAA AGAGCGGAGA AAAAATGGAG
    AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATCGTT TATAAAGAGG 3100
    CAAAAGAATC TGTAGATGCT TTATTTGTAA ACTCTCAATA TGATCAATTA
    CAAGCGGATA CGAATATTGC CATGATTCAT GCGGCAGATA AACGTGTTCA 3200
    TAGCATTCGA GAAGCTTATC TGCCTGAGCT GTCTGTGATT CCGGGTGTCA
    ATGCGGCTAT TTTTGAAGAA TTAGAAGGGC GTATTTTCAC TGCATTCTCC 3300
    CTATATGATG CGAGAAATGT CATTAAAAAT GGTGATTTTA ATAATGGCTT
    ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA CAAAACAACC 3400
    AACGTTCGGT CCTTATTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA
    GTTCGTGTCT GTCCGGGTCG TGGCTATATC CTTCGTGTCA CAGCGTACAA 3500
    GGAGGGATAT GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACAATA
    CAGACGAACT GAGTTTAAGC AACTGCGTAG AAGAGGAAAT CTATCCAAAT 3600
    AACACGGTAA CGTGTAATGA TTATACTGTA AATCAAGAAG AATACGGAGG
    TGCGTACACT TCTCGTAATC GAGGATATAA CGAAGCTCCT TCCGTACCAG 3700
    CTGATTATTC GTCAGTCTAT GAAGAAAAAT CGTATACAGA TGGACGAAGA
    GAGAATCCTT GTGAATTTAA CAGAGGGTAT AGGGATTACA CGCCACTACC 3800
    AGTTTGTTAT GTACACAAAA AATTAGAATA CTTCCCAGAA ACCGATAAGG
    TATGGATTGA GATTGGAGAA ACGGAAGGAA CATTTATCGT GGACAGCGTG 3900
    GAATTACTCC TTATGGAGGA A (end HD-7)
  • [0119]
    TABLE 2A
    Deduced Amino Acid Sequence of Chimeric Toxin Produced
    by Plasmid pEW4
    N G N N P N T N E C I P Y N C L S N P E V E V L G G E R I E
    T G Y T P T G T S L S L T Q F L L S E F V P G A G F V L G L
    V D I I W G I F G P S Q W D A F L V Q T E Q L T N Q R I E E
    F A R N Q A I S R L E G L S N L Y Q T Y A E S F R E W E A D
    P T N P A L R E E N R I Q F N D M N S A L T T A I A L F A V
    Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q
    R W G F D A A T I N S R Y N D L T R L T G N Y T D Y A V R W
    Y N T G L E R V W G A D S R D W V R Y N G F R R E L T L T V
    L D I V A L F P N Y D S R R Y A T R T V S Q L T R E T Y T N
    P V L E N F D G S F R G S A G G T E R S T R S A H L N D I L
    N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G
    P E F T F P L Y G T N M N A A A P Q R T V A Q L G Q G V Y R
    T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y
    G T S S N L P S A V Y R K S G T V D S L D E T P P Q N N N V
    P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A
    P T F S W Q H R S A E F N N I I P S S Q T T Q T A L T K S T
    N L G S G T S V V K G P G F T G G D T L R R T S P G Q I S T
    L R V N I T A P L S Q R Y R V R T R Y A S T T N L Q F H T S
    I D G R P I N Q G N F S P T N S S G S N L G S G S F R T V G
    F T T P F N F S N G S S V F T L S P H V F N S G N E V Y T D
    R I E F V P P E V T F E P E Y D L E R P Q K A V N E L F T S
    S N Q T G L K T D V T D Y H I D Q V S N L V E C L S D E F C
    L D E K Q E L S E K V K H P K P L S D E P N L L Q D P N F R
    G I N P Q L D R G W R G S T D T T T Q G G D D V F K E N Y V
    T L L G T F D E C Y P T Y L Y Q K T D E S K L K A Y T R Y Q
    L R G Y T E D S Q D L E T Y L T P Y N P K H E T V N V P G T
    G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D
    L D C S C R D G E K C A N H S H H F S L D I D V G C T D L N
    E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P
    L V G E P L P P V K R P E K K W F D K R E K L E W E T N T V
    Y K E P K E S V D P L F V N S Q Y D Q L Q P G T N T P N T H
    P P D K P V H S T P E P Y L P E L S V T P G V N P P T F E E
    L E G P T F T P F S L Y D P P N V T K N G D F N N G L S C W
    N V K G H V D V E E P N N Q R S V L V L P E W E P E V S Q E
    V R V C P G P G Y T L R V T P Y K E G Y G E G C V T T H E T
    E N N T D E L K F S N C V E E E T Y P N N T V T C N D Y T V
    N Q E E Y G G A Y I S P N P G Y N E A P S V P A D Y P S V Y
    E E K S Y T D G R P E N P C E F N P G Y R D Y T P L P V G Y
    V T K E L E Y F P E T D K V W T E T G E T E G T F T V D S V
    E L L L M E E
  • [0120]
    TABLE 3
    Nucleotide Sequence of Plasmid pACG-1 Encoding
    Chimeric Toxin ACG-1
    The nucleotide differences as compared to the sequence
    shown in TABLE 1 are underlined at positions 1618
    and 1661 and code for amino acid changes at positions
    411 and 425 as shown in TABLE A.
                   (start HD-73)            ATG GATAACAATC 400
    CGAACATCAT TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA
    GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500
    TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG
    GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TTGTCCCTCT 600
    CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT
    AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700
    ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT
    ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800
    CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG
    TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAATTTACAA TTTATCAGTT 900
    TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC
    TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000
    ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG
    GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100
    AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT
    ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200
    GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA
    AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300
    TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA
    ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400
    TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG
    GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500
    AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT
    TGCTTATGAA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600
    GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA
    CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700
    AGGCTTTAGT AATAGTAGTG TAAGTATAAT AGAGCT (end hd-73)
        (start HD-1)         CCACGT TTTCTTGGCA GCATCGCAGT 1800
    GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT
    AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000
    GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA
    ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100
    AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG
    GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200
    AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA
    CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300
    CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA
    ACCTTTGAGG CAGATAATGA TTTAAGAAGA GCAACAAAGG CGGTGAATGA 2400
    GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT
    ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500
    TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG
    ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600
    ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA
    GGAGCGGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700
    TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT
    TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800
    GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA
    TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900
    GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT
    GACTTAGATT GTTCGTGTAG GGAATGGAGA AAGTGTGCCC ATCATTCGCA 3000
    TCATTTCTCC TTAGACATTG ATGTAGGATG TACASACTTA AATGAGGACC
    TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100
    CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT
    AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200
    TGGAATGGFA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT
    GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300
    TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT
    ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400
    GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA
    TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTTC TGGAACGTGA 3500
    AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GATCCTTGTT
    CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600
    TCGTGGCTAT ATCATTCGTG TCACAGCGTA CAGGAAGGGA TATGGAGAAG
    GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700
    AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA
    TGATTATACT GTAAATCTAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800
    ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC
    TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900
    TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGAT TATGTGACTA
    AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000
    GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA
    GGAA (end HD-1)
  • [0121]
    TABLE 3A
    Deduced Amino Acid Sequence of Chimneric Toxin
    ACG-1
    M D N N P N T N E C I P Y N C L S N P E V E V L G G E R I E
    T G Y T P T G T S L S L T Q F L L S E F V P G A G F V L G L
    V D I I W G I F G P S Q W D A F L V Q T E Q L T N Q R I E E
    F A R N Q A I S R L E G L S N L Y Q T Y A E S F R E W E A D
    P T N P A L R E E N R I Q F N D M N S A L T T A I A L F A V
    Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q
    R W G F D A A T I N S R Y N D L T R L T G N Y T D Y A V R W
    Y N T G L E R V W G A D S R D W V R Y N G F R R E L T L T V
    L D I V A L F P N Y D S R R Y A T R T V S Q L T R E T Y T N
    P V L E N F D G S F R G S A G G T E R S T R S A H L N D I L
    N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G
    P E F T F P L Y G T N M N A A A P Q R T V A Q L G Q G V Y R
    T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y
    G T S S N L P S A V Y R K S G T V D S L N E I P P Q N N N V
    P P R Q E F S H R L S H V S M F R S G F S N S S V S I I R A
    P T F S W Q H R S A E F N N I I P S S Q T T Q T A L T K S T
    N L G S G T S V V K G P G F T G G D T L R R T S P G Q I S T
    L R V N I T A P L S Q R Y R V R T R Y A S T T N L Q F H T S
    I D G R P I N Q G N F S P T N S S G S N L G S G S F R T V G
    F T T P F N F S N G S S V F T L S P H V F N S G N E V Y T D
    R I E F V P P E V T F E P E Y D L E R P Q K A V N E L F T S
    S N Q T G L K T D V T D Y H I D Q V S N L V E C L S D E F C
    L D E K Q E L S E K V K H P K P L S D E P N L L Q D P N F R
    G I N P Q L D R G W R G S T D T T T Q G G D D V F K E N Y V
    T L L G T F D E C Y P T Y L Y Q K T D E S K L K A Y T R Y Q
    L R G Y T E D S Q D L E T Y L T P Y N P K H E T V N V P G T
    G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D
    L D C S C R D G E K C A N H S H H F S L D I D V G C T D L N
    E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P
    L V G E P L P P V K R P E K K W F D K R E K L E W E T N T V
    Y K E P K E S V D P L F V N S Q Y D Q L Q P G T N T P N T H
    P P D K P V H S T P E P Y L P E L S V T P G V N P P T F E E
    L E G P T F T P F S L Y D P P N V T K N G D F N N G L S C W
    N V K G H V D V E E P N N Q R S V L V L P E W E P E V S Q E
    V R V C P G P G Y T L R V T P Y K E G Y G E G C V T T H E T
    E N N T D E L K F S N C V E E E T Y P N N T V T C N D Y T V
    N Q E E Y G G A Y I S P N P G Y N E A P S V P A D Y P S V Y
    E E K S Y T D G R P E N P C E F N P G Y R D Y T P L P V G Y
    V T K E L E Y F P E T D K V W T E T G E T E G T F T V D S V
    E L L L M E E
  • [0122]
    TABLE 4
    Nucleotide Sequence of Alasmid pSYW1 Encoding
    Chimeric Toxin SYW1
    The nucleotide differences as compared to the sequence
    shown in TABLE 1 are underlined at positions 1252, 1319,
    1320, 1323, 1324, and 1326; and code for amino acid
    changes at positions 289, 311, and 313, as shown
    in TABLE 4A.
                   (start HD-73)            ATG GATAACAATC 400
    CGAACATCAT TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA
    GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500
    TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG
    GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TTGTCCCTCT 600
    CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT
    AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700
    ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT
    ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800
    CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG
    TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAATTTACAA TTTATCAGTT 900
    TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC
    TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000
    ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG
    GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100
    AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT
    ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200
    GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA
    AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300
    TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA
    ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400
    TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG
    GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500
    AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT
    TGCTTATGAA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600
    GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA
    CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700
    AGGCTTTAGT AATAGTAGTG TAAGTATAAT AGAGCT (end hd-73)
        (start HD-1)          CCACGT TTTCTTGGCA GCATCGCAGT 1800
    GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT
    AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000
    GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA
    ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100
    AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG
    GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200
    AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA
    CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300
    CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA
    ACCTTTGAGG CAGATAATGA TTTAAGAAGA GCAACAAAGG CGGTGAATGA 2400
    GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT
    ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500
    TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAA ATGCGAAGCG
    ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600
    ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA
    GGAGCGGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700
    TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT
    TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800
    GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA
    TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900
    GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT
    GACTTAGATT GTTCGTGTAG GGAATGGAGA AAGTGTGCCC ATCATTCGCA 3000
    TCATTTCTCC TTAGACATTG ATGTAGGATG TACASACTTA AATGAGGACC
    TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100
    CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT
    AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200
    TGGAATGGFA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT
    GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300
    TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT
    ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400
    GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA
    TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTTC TGGAACGTGA 3500
    AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GATCCTTGTT
    CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600
    TCGTGGCTAT ATCATTCGTG TCACAGCGTA CAGGAAGGGA TATGGAGAAG
    GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700
    AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA
    TGATTATACT GTAAATCTAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800
    ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC
    TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900
    TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGAT TATGTGACTA
    AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000
    GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA
    GGAA (end HD-1)
  • [0123]
    TABLE 4A
    Deduced Amino Acid Sequence of Chirneric Toxin SYW1
    N G N N P N T N E C I P Y N C L S N P E V E V L G G E R I E
    T G Y T P T G T S L S L T Q F L L S E F V P G A G F V L G L
    V D I I W G I F G P S Q W D A F L V Q T E Q L T N Q R I E E
    F A R N Q A I S R L E G L S N L Y Q T Y A E S F R E W E A D
    P T N P A L R E E N R I Q F N D M N S A L T T A I A L F A V
    Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q
    R W G F D A A T I N S R Y N D L T R L T G N Y T D Y A V R W
    Y N T G L E R V W G A D S R D W V R Y N G F R R E L T L T V
    L D I V A L F P N Y D S R R Y A T R T V S Q L T R E T Y T N
    P V L E N F D G S F R G S A Q G I E G S T R S A H L N D I L
    N S I T I Y T D A K  R G E Y Y W S G H Q I M A S P V G F S G
    P E F T F P L Y G T N M N A A A P Q R T V A Q L G Q G V Y R
    T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y
    G T S S N L P S A V Y R K S G T V D S L D E T P P Q N N N V
    P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A
    P T F S W Q H R S A E F N N I I P S S Q T T Q T A L T K S T
    N L G S G T S V V K G P G F T G G D T L R R T S P G Q I S T
    L R V N I T A P L S Q R Y R V R T R Y A S T T N L Q F H T S
    I D G R P I N Q G N F S P T N S S G S N L G S G S F R T V G
    F T T P F N F S N G S S V F T L S P H V F N S G N E V Y T D
    R I E F V P P E V T F E P E Y D L E R P Q K A V N E L F T S
    S N Q T G L K T D V T D Y H I D Q V S N L V E C L S D E F C
    L D E K Q E L S E K V K H P K P L S D E P N L L Q D P N F R
    G I N P Q L D R G W R G S T D T T T Q G G D D V F K E N Y V
    T L L G T F D E C Y P T Y L Y Q K T D E S K L K A Y T R Y Q
    L R G Y T E D S Q D L E T Y L T P Y N P K H E T V N V P G T
    G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D
    L D C S C R D G E K C A N H S H H F S L D I D V G C T D L N
    E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P
    L V G E P L P P V K R P E K K W F D K R E K L E W E T N T V
    Y K E P K E S V D P L F V N S Q Y D Q L Q P G T N T P N T H
    P P D K P V H S T P E P Y L P E L S V T P G V N P P T F E E
    L E G P T F T P F S L Y D P P N V T K N G D F N N G L S C W
    N V K G H V D V E E P N N Q R S V L V L P E W E P E V S Q E
    V R V C P G P G Y T L R V T P Y K E G Y G E G C V T T H E T
    E N N T D E L K F S N C V E E E T Y P N N T V T C N D Y T V
    N Q E E Y G G A Y I S P N P G Y N E A P S V P A D Y P S V Y
    E E K S Y T D G R P E N P C E F N P G Y R D Y T P L P V G Y
    V T K E L E Y F P E T D K V W T E T G E T E G T F T V D S V
    E L L L M E E

Claims (60)

1. A process for altering the host range of Bacillus toxins which comprises recombining in vitro the variable region of two or more Bacillus toxin genes.
2. A process, according to claim 1, wherein the Bacillus is a Bacillius thuringiensis.
3. A process, according to claim 2, wherein variable regions of Bacillius thuringiensis var. kurstaki HD-1 and Bacillius thuringiensis var. kurstaki HD-73 are recombined in vitro to give genes encoding chimeric toxins having altered host ranges.
4. DNA, denoted pEW3, encoding a chimeric toxin having pesticidal activity, as follows:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGGA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1)
and equivalent nucleotide sequences coding for toxin EW3 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N Q L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
5. DNA, denoted pEW4, encoding a chimeric toxin, having pesticidal activity, as follows:
      (start HD-1)          ATGG ATAACAATCC GAACATCAAT GAATGCATTC CTTATAATTG TTTAAGTAAC CCTGAAGTAG AAGTATTAGG 600 TGGAGAAAGA ATAGAAACTG GTTACACCCC AATCGATATT TCCTTGTCGC TAACGCAATT TCTTTTGAGT GAATTTGTTC CCGGTGCTGG ATTTGTGTTA 700 GGACTAGTTG ATATAATATG GGGAATTTTT GGTCCCTCTC AATGGGACGC ATTTCCTGTA CAAATTGAAC AGTTAATTAA CCAAAGAATA GAAGAATTCG 800 CTAGGAACCA AGCCATTTCT AGATTAGAAG GACTAAGCAA TCTTTATCAA ATTTACGCAG AATCTTTTAG AGAGTGGGAA GCAGATCCTA CTAATCCAGC 900 ATTAAGAGAA GAGATGCGTA TTCAATTCAA TGACATGAAC AGTGCCCTTA CAACCGCTAT TCCTCTTTTG GCAGTTCAAA ATTATCAAGT TCCTCTTTTA 1000 TCAGTATATG TTCAAGCTGC AAATTTACAT TTATCAGTTT TGAGAGATGT TTCAGTGTTT GGACAAAGGT GGGGATTTGA TGCCGCGACT ATCAATAGTC 1100 GTTATAATGA TTTAACTAGG CTTATTGGCA ACTATACAGA TTATGCTGTG CGCTGGTACA ATACGGGATT AGAGCGTGTA TGGGGACCGG ATTCTAGAGA 1200 TTGGGTAAGG TATAATCAAT TTAGAAGAGA GCTAACACTT ACTGTATTAG ATATCGTTGC TCTATTCTCA AATTATGATA GTCGAAGGTA TCCAATTCGA 1300 ACAGTTTCCC AATTAACAAG AGAAATTTAT ACGAACCCAG TATTAGAAAA TTTTGATGGT AGTTTTCGTG GAATGGCTCA GAGAATAGAA CAGAATATTA 1400 GGCAACCACA TCTTATGGAT ATCCTTAATA GTATAACCAT TTATACTGAT GTGCATAGAG GCTTTAATTA TTGGTCAGGG CATCAAATAA CAGCTTCTCC 1500 TGTAGGGTTT TCAGGACCAG AATTCGCATT CCCTTTATTT GGGAATGCGG GGAATGCAGC TCCACCCGTA CTTGTCTCAT TAACTGGTTT GGGGPTTTTT 1600 AGAACATTAT CTTCACCTTT ATATAGAAGA ATTATACTTG GTTCAGGCCC AAATAATCAG GAACTGTTTG TCCTTGATGG AACGGAGTTT TCTTTTGCCT 1700 CCCTAACGAC CAACTTGCCT TCCACTATAT ATAGACAAAG GGGTACAGTC GATTCACTAG ATGTAATACC GCCACAGGAT AATAGTGTAC CACCTCGTGC 1800 GGGATTTAGC CATCGATTGA GTCATGTTAC AATGCTGAGC CAAGCAGCTG GAGCAGTTTA CACCTTGAGA GCTCAACGT  (stop HD-1)                (start HD-73)            CCT ATGTTCTCTT GGATACATCG TAGTGCTGAA TTTAATAATA TAATTGCATC GGATAGTATT 1800 ACTCAAATCC CTGCAGTGAA GGGAAACTTT CTTTTTAATG GTTCTGTAAT TTCAGGACCA GGATTTACTG GTGGGGACTT AGTTAGATTA AATAGTAGTG 1900 GAAATAACAT TCAGAATAGA GGGTATATTG AAGTTCCAAT TCACTTCCCA TCGACATCTA CCAGATATCG AGTTCGTGTA CGGTATGCTT CTGTAACCCC 2000 GATTCACCTC AACGTTAATT GGGGTAATTC ATCCATTTTT TCCAATACAG TACCAGCTAC AGCTACGTCA TTAGATAATC TACAATCAAG TGATTTTGGT 2100 TATTTTGAAA GTGCCAATGC TTTTACATCT TCATTAGGTA ATATAGTAGG TGTTAGAAAT TTTAGTGGGA CTGCAGGAGT GATAATAGAC AGATTTGAAT 2200 TTATTCCAGT TACTGCAACA CTCGAGGCTG AATATAATCT GGAAAGAGCG CAGAAGGCGG TGAATGCGCT GTTTACGTCT ACAAACCAAC TAGGGCTAAA 2300 AACAAATGTA ACGGATTATC ATATTGATCA AGTGTCCAAT TTAGTTACGT ATTTATCGGA TGAATTTTGT CTGGATGAAA AGCGAGAATT GTCCGAGAAA 2400 GTCAAACATG CGAAGCGACT CAGTGATGAA CGCAATTTAC TCCAAGATTC AAATTTCAAA GACATTAATA GGCAACCAGA ACGTGGGTGG GGCGGAAGTA 2500 CAGGGATTAC CATCCAAGGA GGGGATGACG TATTTAAAGA AAATTACGTC ACACTATCAG GTACCTTTGA TGAGTGCTAT CCAACATATT TGTATCAAAA 2600 AATCGATGAA TCAAAATTAA AAGCCTTTAC CCGTTATCAA TTAAGAGGGT ATATCGAAGA TAGTCAAGAC TTAGAAATCT ATTTAATTCG CTACAATGCA 2700 AAACATGAAA CAGTAAATGT GCCAGGTACG GGTTCCTTAT GGCCGCTTTC AGCCCAAAGT CCAATCGGAA AGTGTGGAGA GCCGAATCGA TGCGCGCCAC 2800 ACCTTGAATG GAATCCTGAC TTAGATTGTT CGTGTAGGGA TGGAGAAAAG TGTGCCCATC ATTCGCATCA TTTCTCCTTA GACATTGATG TAGGATGTAC 2900 AGACTTAAAT GAGGACCTAG GTGTATGGGT GATCTTTAAG ATTAAGACGC AAGATGGGCA CGCAAGACTA GGGAATCTAG AGTTTCTCGA AGAGAAACCA 3000 TTAGTAGGAG AAGCGCTAGC TCGTGTGAAA AGAGCGGAGA AAAAATGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATCGTT TATAAAGAGG 3100 CAAAAGAATC TGTAGATGCT TTATTTGTAA ACTCTCAATA TGATCAATTA CAAGCGGATA CGAATATTGC CATGATTCAT GCGGCAGATA AACGTGTTCA 3200 TAGCATTCGA GAAGCTTATC TGCCTGAGCT GTCTGTGATT CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA TTAGAAGGGC GTATTTTCAC TGCATTCTCC 3300 CTATATGATG CGAGAAATGT CATTAAAAAT GGTGATTTTA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA CAAAACAACC 3400 AACGTTCGGT CCTTGTTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA GTTCGTGTCT GTCCGGGTCG TGGCTATATC CTTCGTGTCA CAGCGTACAA 3500 GGAGGGATAT GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACAATA CAGACGAACT GAAGTTTAGC AACTGCGTAG AAGAGGAAAT CTATCCAAAT 3600 AACACGGTAA CGTGTAATGA TTATACTGTA AATCAAGAAG AATACGGAGG TGCGTACACT TCTCGTAATC GAGGATATAA CGAAGCTCCT TCCGTACCAG 3700 CTGATTATGC GTCAGTCTAT GAAGAAAAAT CGTATACAGA TGGACGAAGA GAGAATCCTT GTGAATTTAA CAGAGGGTAT AGGGATTACA CGCCACTACC 3800 AGTTGGTTAT GTGACAAAAG AATTAGAATA CTTCCCAGAA ACCGATAAGG TATGGATTGA GATTGGAGAA ACGGAAGGAA CATTTATCGT GGACAGCGTG 3900 GAATTACTCC TTATGGAGGA A (end HD-73)
and equivalent nucleotide sequences coding for toxin EW4 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F P V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L L A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F S N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G M A Q R I E Q N I R Q P H L M D I L N S I T I Y T D V H R G F N Y W S G H Q I T A S P V G F S G P E F A F P L F G N A G N A A P P V L V S L T G L G I F R T L S S P L Y R R I I L G S G P N N Q E L F V L D G T E F S F A S L T T N L P S T I Y R Q R G T V D S L D V I P P Q D N S V P P R A G F S H R L S H V T M L S Q A A G A V Y T L R A Q R P M F S W I H R S A E F N N I I A S D S I T Q I P A V K G N F L F N G S V I S G P G F T G G D L V R L N S S G N N I Q N R G Y I E V P I H F P S T S T R Y R V R V R Y A S V T P I H L N V N W G N S S I F S N T V P A T A T S L D N L Q S S D F G Y F E S A N A F T S S L G N I V G V R N F S G T A G V I I D R F E F I P V T A T L E A E Y N L E R A Q K A V N A L F T S T N Q L G L K T N V T D Y H I D Q V S N L V T Y L S D E F C L D E K R E L S E K V K H A K R L S D E R N L L Q D S N F K D I N R Q P E R G W G G S T G I T I Q G G D D V F K E N Y V T L S G T F D E C Y P T Y L Y Q K I D E S K L K A F T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V V P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
6. DNA, denoted pACB-l, encoding a chimeric toxin, having pesticidal activity, as follows:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGAAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG AATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1)
and equivalent; nucleotide sequences coding for toxin ACB-1 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L N E I P P Q N N N V P P R Q E F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
7. DNA, denoted pSYW1, encoding a chimeric toxin, having pesticidal activity, as follows:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AGGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAAA GGGGAATATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1)
and equivalent nucleotide sequences coding for toxin SYW1 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E G S I R S P H L M D I L N S I T I Y T D A H K G E Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A P L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
8. A chimeric toxin, EW3, having pesticidal activity, having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
and muteins thereof which do not alter the protein secondary structure.
9. A chimeric toxin, EW4, having pesticidal activity, having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F P V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L L A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F S N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G M A Q R I E Q N I R Q P H L M D I L N S I T I Y T D V H R G F N Y W S G H Q I T A S P V G F S G P E F A F P L F G N A G N A A P P V L V S L T G L G I F R T L S S P L Y R R I I L G S G P N N Q E L F V L D G T E F S F A S L T T N L P S T I Y R Q R G T V D S L D V I P P Q D N S V P P R A G F S H R L S H V T M L S Q A A G A V Y T L R A Q R P M F S W I H R S A E F N N I I A S D S I T Q I P A V K G N F L F N G S V I S G P G F T G G D L V R L N S S G N N I Q N R G Y I E V P I H F P S T S T R Y R V R V R Y A S V T P I H L N V N W G N S S I F S N T V P A T A T S L D N L Q S S D F G Y F E S A N A F T S S L G N I V G V R N F S G T A G V I I D R F E F I P V T A T L E A E Y N L E R A Q K A V N A L F T S T N Q L G L K T N V T D Y H I D Q V S N L V T Y L S D E F C L D E K R E L S E K V K H A K R L S D E R N L L Q D S N F K D I N R Q P E R G W G G S T G I T I Q G G D D V F K E N Y V T L S G T F D E C Y P T Y L Y Q K I D E S K L K A F T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V V P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
and muteins thereof which do not alter the protein secondary structure.
10. A chimeric toxin, ACB-1, having pesticidal activity, having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L N E I P P Q N N N V P P R Q E F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
and muteins thereof which do not alter the protein secondary structure.
11. A chimeric toxin, SYW1, having pesticidal activity, having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E G S I R S P H L M D I L N S I T I Y T D A H K G E Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
and muteins thereof which do not alter the protein secondary structure.
12. A pesticidal composition comprising pesticide-containing substantially intact cells having prolonged pesticidal activity when applied to the environment of a target pest, wherein said pesticide is a chimeric toxin, is intracellular and is produced as a result of expression of a heterologous gene encoding said chimeric toxin in said cell.
13. A pesticidal composition according to claim 12, wherein said cells are killed under protease deactivating or cell wall strengthening conditions, while retaining pesticidal activity.
14. A pesticidal composition, according to claim 12, wherein said cells are prokaryotes selected from the group consisting of Enterobacteriaceae, Bacillaceae, Rhizobiaceae, Spirillaceae, Lactobacillaceae, Pseudomonadaceae, Azotobacteraceae, and Nitrobacteraceae; or lower eukaryotes selected from the group consisting of Phycomycetes, Ascomycetes, and Basidiomycetes.
15. A pesticidal composition, according to claim 14, wherein said prokaryote is a Bacillus specie selected from a pesticide-Producing strain of Bacillus thuringiensis, consisting of B. thuringiensis M-7, B. thuringiensis var. kurstaki, B. thuringiensis var. finitimus, B. thuringiensis var. alesti, B. thuringiensis var. sotto, B. thuringiensis var. dendrolimus, B. thuringiensis var. kenyae B. thuringiensis var. galleriae, B. thuringiensis var. canadensis, B. thuringiensis var. entomocidus, B. thuringiensis var. subtoxicus, B. thuringiensis var. aizawai, B. thuringiensis var. morrisoni, B. thuringiensis var. ostriniae, B. thuringiensis var. tolworthi, B. thuringiensis var. darmstadiensis, B. thuringiensis var. toumanoffi, B. thuringiensis var. kyushuensis, B. thuringiensis var. thompsoni, B. thuringiensis var. pakistani, B. thuringiensis var. israelensis, B. thuringiensis var. indiana, B. thuringiensis var. dakota, B. thuringiensis var. tohokuensis, B. thuringiensis var. kumanotoensis, B. thuringiensis var. tochigiensis, B. thuringiensis var. colmeri, B. thuringiensis var. wuhanensis, B. thuringiensis var. tenebrionis, B. thuringiensis var. thuringiensis, and other Bacillus species selected from B. cereus, B. moritai, B. popilliae, B. lentimorbus, and B. sphaericus.
16. A method of protecting plants against pests which comprises applying to said plants an effective amount of a pesticidal composition comprising pesticide-containing substantially intact unicellular microorganisms, wherein said pesticide is a chimeric toxin, is intracellular, and is produced as a result of expression of a heterologous gene encoding said chimeric toxin in said microorganism, and said microorganism is treated under conditions which prolong the pesticidal activity when said composition is applied to the environment of a target pest.
17. A method according to claim 16, wherein said microorganisms are prokaryotes selected from the group consisting of Enterobacteriaceae, Bacillaceae, Rhizobiaceae, Spirillaceae, Lactobacillaceae, Pseudomonadaceae, Azotobacteraceae, and Nitrobacteraceae; or lower eukaryotes, selected from the group consisting of Phycomycetes, Ascomycetes, and Basidiomycetes.
18. A method according to claim 16, wherein said unicellular microorganisms are killed under protease deactivating or cell wall strengthening conditions, while retaining pesticidal activity.
19. Substantially intact unicellular microorganism cells containing an intracellular chimeric toxin, which toxin is a result of expression of a heterologous gene encoding said chimeric toxin, wherein said cells are killed under protease deactivating or cell wall strengthening conditions, while retaining pesticidal activity when said cell is applied to the environment of a target pest.
20. Cells according to claim 19, wherein said microorganism is a Pseudomonad and said toxin is derived from a B. thuringiensis.
21. A pesticidal composition, according to claim 12, wherein said gene, denoted pEW3, encoding a chimeric toxin, is as follows:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1)
and equivalent nucleotide sequences coding for toxin EW3 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
22. A pesticidal composition, according to claim 12, wherein said gene, denoted pEW4, encoding a chimeric toxin, is as follows:
      (start HD-1)          ATGG ATAACAATCC GAACATCAAT GAATGCATTC CTTATAATTG TTTAAGTAAC CCTGAAGTAG AAGTATTAGG 600 TGGAGAAAGA ATAGAAACTG GTTACACCCC AATCGATATT TCCTTGTCGC TAACGCAATT TCTTTTGAGT GAATTTGTTC CCGGTGCTGG ATTTGTGTTA 700 GGACTAGTTG ATATAATATG GGGAATTTTT GGTCCCTCTC AATGGGACGC ATTTCCTGTA CAAATTGAAC AGTTAATTAA CCAAAGAATA GAAGAATTCG 800 CTAGGAACCA AGCCATTTCT AGATTAGAAG GACTAAGCAA TCTTTATCAA ATTTACGCAG AATCTTTTAG AGAGTGGGAA GCAGATCCTA CTAATCCAGC 900 ATTAAGAGAA GAGATGCGTA TTCAATTCAA TGACATGAAC AGTGCCCTTA CAACCGCTAT TCCTCTTTTG GCAGTTCAAA ATTATCAAGT TCCTCTTTTA 1000 TCAGTATATG TTCAAGCTGC AAATTTACAT TTATCAGTTT TGAGAGATGT TTCAGTGTTT GGACAAAGGT GGGGATTTGA TGCCGCGACT ATCAATAGTC 1100 GTTATAATGA TTTAACTAGG CTTATTGGCA ACTATACAGA TTATGCTGTG CGCTGGTACA ATACGGGATT AGAGCGTGTA TGGGGACCGG ATTCTAGAGA 1200 TTGGGTAAGG TATAATCAAT TTAGAAGAGA GCTAACACTT ACTGTATTAG ATATCGTTGC TCTATTCTCA AATTATGATA GTCGAAGGTA TCCAATTCGA 1300 ACAGTTTCCC AATTAACAAG AGAAATTTAT ACGAACCCAG TATTAGAAAA TTTTGATGGT AGTTTTCGTG GAATGGCTCA GAGAATAGAA CAGAATATTA 1400 GGCAACCACA TCTTATGGAT ATCCTTAATA GTATAACCAT TTATACTGAT GTGCATAGAG GCTTTAATTA TTGGTCAGGG CATCAAATAA CAGCTTCTCC 1500 TGTAGGGTTT TCAGGACCAG AATTCGCATT CCCTTTATTT GGGAATGCGG GGAATGCAGC TCCACCCGTA CTTGTCTCAT TAACTGGTTT GGGGATTTTT 1600 AGAACATTAT CTTCACCTTT ATATAGAAGA ATTATACTTG GTTCAGGCCC AAATAATCAG GAACTGTTTG TCCTTGATGG AACGGAGTTT TCTTTTGCCT 1700 CCCTAACGAC CAACTTGCCT TCCACTATAT ATAGACAAAG GGGTACAGTC GATTCACTAG ATGTAATACC GCCACAGGAT AATAGTGTAC CACCTCGTGC 1800 GGGATTTAGC CATCGATTGA GTCATGTTAC AATGCTGAGC CAAGCAGCTG GAGCAGTTTA CACCTTGAGA GCTCAACGT  (stop HD-1                (start HD-73)            CCT ATGTTCTCTT GGATACATCG TAGTGCTGAA TTTAATAATA TAATTGCATC GGATAGTATT 1800 ACTCAAATCC CTGCAGTGAA GGGAAACTTT CTTTTTAATG GTTCTGTAAT TTCAGGACCA GGATTTACTG GTGGGGACTT AGTTAGATTA AATAGTAGTG 1900 GAAATAACAT TCAGAATAGA GGGTATATTG AAGTTCCAAT TCACTTCCCA TCGACATCTA CCAGATATCG AGTTCGTGTA CGGTATGCTT CTGTAACCCC 2000 GATTCACCTC AACGTTAATT GGGGTAATTC ATCCATTTTT TCCAATACAG TACCAGCTAC AGCTACGTCA TTAGATAATC TACAATCAAG TGATTTTGGT 2100 TATTTTGAAA GTGCCAATGC TTTTACATCT TCATTAGGTA ATATAGTAGG TGTTAGAAAT TTTAGTGGGA CTGCAGGAGT GATAATAGAC AGATTTGAAT 2200 TTATTCCAGT TACTGCAACA CTCGAGGCTG AATATAATCT GGAAAGAGCG CAGAAGGCGG TGAATGCGCT GTTTACGTCT ACAAACCAAC TAGGGCTAAA 2300 AACAAATGTA ACGGATTATC ATATTGATCA AGTGTCCAAT TTAGTTACGT ATTTATCGGA TGAATTTTGT CTGGATGAAA AGCGAGAATT GTCCGAGAAA 2400 GTCAAACATG CGAAGCGACT CAGTGATGAA CGCAATTTAC TCCAAGATTC AAATTTCAAA GACATTAATA GGCAACCAGA ACGTGGGTGG GGCGGAAGTA 2500 CAGGGATTAC CATCCAAGGA GGGGATGACG TATTTAAAGA AAATTACGTC ACACTATCAG GTACCTTTGA TGAGTGCTAT CCAACATATT TGTATCAAAA 2600 AATCGATGAA TCAAAATTAA AAGCCTTTAC CCGTTATCAA TTAAGAGGGT ATATCGAAGA TAGTCAAGAC TTAGAAATCT ATTTAATTCG CTACAATGCA 2700 AAACATGAAA CAGTAAATGT GCCAGGTACG GGTTCCTTAT GGCCGCTTTC AGCCCAAAGT CCAATCGGAA AGTGTGGAGA GCCGAATCGA TGCGCGCCAC 2800 ACCTTGAATG GAATCCTGAC TTAGATTGTT CGTGTAGGGA TGGAGAAAAG TGTGCCCATC ATTCGCATCA TTTCTCCTTA GACATTGATG TAGGATGTAC 2900 AGACTTAAAT GAGGACCTAG GTGTATGGGT GATCTTTAAG ATTAAGACGC AAGATGGGCA CGCAAGACTA GGGAATCTAG AGTTTCTCGA AGAGAAACCA 3000 TTAGTAGGAG AAGCGCTAGC TCGTGTGAAA AGAGCGGAGA AAAAATGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATCGTT TATAAAGAGG 3100 CAAAAGAATC TGTAGATGCT TTATTTGTAA ACTCTCAATA TGATCAATTA CAAGCGGATA CGAATATTGC CATGATTCAT GCGGCAGATA AACGTGTTCA 3200 TAGCATTCGA GAAGCTTATC TGCCTGAGCT GTCTGTGATT CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA TTAGAAGGGC GTATTTTCAC TGCATTCTCC 3300 CTATATGATG CGAGAAATGT CATTAAAAAT GGTGATTTTA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA CAAAACAACC 3400 AACGTTCGGT CCTTGTTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA GTTCGTGTCT GTCCGGGTCG TGGCTATATC CTTCGTGTCA CAGCGTACAA 3500 GGAGGGATAT GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACAATA CAGACGAACT GAAGTTTAGC AACTGCGTAG AAGAGGAAAT CTATCCAAAT 3600 AACACGGTAA CGTGTAATGA TTATACTGTA AATCAAGAAG AATACGGAGG TGCGTACACT TCTCGTAATC GAGGATATAA CGAAGCTCCT TCCGTACCAG 3700 CTGATTATGC GTCAGTCTAT GAAGAAAAAT CGTATACAGA TGGACGAAGA GAGAATCCTT GTGAATTTAA CAGAGGGTAT AGGGATTACA CGCCACTACC 3800 AGTTGGTTAT GTGACAAAAG AATTAGAATA CTTCCCAGAA ACCGATAAGG TATGGATTGA GATTGGAGAA ACGGAAGGAA CATTTATCGT GGACAGCGTG 3900 GAATTACTCC TTATGGAGGA A (end HD-73)
and equivalent nucleotide sequences coding for toxin EW4 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F P V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L L A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F S N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G M A Q R I E Q N I R Q P H L M D I L N S I T I Y T D V H R G F N Y W S G H Q I T A S P V G F S G P E F A F P L F G N A G N A A P P V L V S L T G L G I F R T L S S P L Y R R I I L G S G P N N Q E L F V L D G T E F S F A S L T T N L P S T I Y R Q R G T V D S L D V I P P Q D N S V P P R A G F S H R L S H V T M L S Q A A G A V Y T L R A Q R P M F S W I H R S A E F N N I I A S D S I T Q I P A V K G N F L F N G S V I S G P G F T G G D L V R L N S S G N N I Q N R G Y I E V P I H F P S T S T R Y R V R V R Y A S V T P I H L N V N W G N S S I F S N T V P A T A T S L D N L Q S S D F G Y F E S A N A F T S S L G N I V G V R N F S G T A G V I I D R F E F I P V T A T L E A E Y N L E R A Q K A V N A L F T S T N Q L G L K T N V T D Y H I D Q V S N L V T Y L S D E F C L D E K R E L S E K V K H A K R L S D E R N L L Q D S N F K D I N R Q P E R G W G G S T G I T I Q G G D D V F K E N Y V T L S G T F D E C Y P T Y L Y Q K I D E S K L K A F T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V V P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
23. A pesticidal composition, according to claim 12, wherein said gene, denoted pACB-1, encoding a chimeric toxin, is as follows:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGAAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG AATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1)
and equivalent nucleotide sequences coding for toxin ACB-1 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L N E I P P Q N N N V P P R Q E F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
24. A pesticidal composition, according to claim 12, wherein said gene, denoted pSYW1, encoding a chimeric toxin, is as follows:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AGGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAAA GGGGAATATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1)
and equivalent nucleotide sequences coding for toxin SYW1 with the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E G S I R S P H L M D I L N S I T I Y T D A H K G E Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E.
25. A recombinant DNA transfer vector comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1).
26. A recombinant DNA transfer vector comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
      start HD-1)           ATGG ATAACAATCC GAACATCAAT GAATGCATTC CTTATAATTG TTTAAGTAAC CCTGAAGTAG AAGTATTAGG 600 TGGAGAAAGA ATAGAAACTG GTTACACCCC AATCGATATT TCCTTGTCGC TAACGCAATT TCTTTTGAGT GAATTTGTTC CCGGTGCTGG ATTTGTGTTA 700 GGACTAGTTG ATATAATATG GGGAATTTTT GGTCCCTCTC AATGGGACGC ATTTCCTGTA CAAATTGAAC AGTTAATTAA CCAAAGAATA GAAGAATTCG 800 CTAGGAACCA AGCCATTTCT AGATTAGAAG GACTAAGCAA TCTTTATCAA ATTTACGCAG AATCTTTTAG AGAGTGGGAA GCAGATCCTA CTAATCCAGC 900 ATTAAGAGAA GAGATGCGTA TTCAATTCAA TGACATGAAC AGTGCCCTTA CAACCGCTAT TCCTCTTTTG GCAGTTCAAA ATTATCAAGT TCCTCTTTTA 1000 TCAGTATATG TTCAAGCTGC AAATTTACAT TTATCAGTTT TGAGAGATGT TTCAGTGTTT GGACAAAGGT GGGGATTTGA TGCCGCGACT ATCAATAGTC 1100 GTTATAATGA TTTAACTAGG CTTATTGGCA ACTATACAGA TTATGCTGTG CGCTGGTACA ATACGGGATT AGAGCGTGTA TGGGGACCGG ATTCTAGAGA 1200 TTGGGTAAGG TATAATCAAT TTAGAAGAGA GCTAACACTT ACTGTATTAG ATATCGTTGC TCTATTCTCA AATTATGATA GTCGAAGGTA TCCAATTCGA 1300 ACAGTTTCCC AATTAACAAG AGAAATTTAT ACGAACCCAG TATTAGAAAA TTTTGATGGT AGTTTTCGTG GAATGGCTCA GAGAATAGAA CAGAATATTA 1400 GGCAACCACA TCTTATGGAT ATCCTTAATA GTATAACCAT TTATACTGAT GTGCATAGAG GCTTTAATTA TTGGTCAGGG CATCAAATAA CAGCTTCTCC 1500 TGTAGGGTTT TCAGGACCAG AATTCGCATT CCCTTTATTT GGGAATGCGG GGAATGCAGC TCCACCCGTA CTTGTCTCAT TAACTGGTTT GGGGATTTTT 1600 AGAACATTAT CTTCACCTTT ATATAGAAGA ATTATACTTG GTTCAGGCCC AAATAATCAG GAACTGTTTG TCCTTGATGG AACGGAGTTT TCTTTTGCCT 1700 CCCTAACGAC CAACTTGCCT TCCACTATAT ATAGACAAAG GGGTACAGTC GATTCACTAG ATGTAATACC GCCACAGGAT AATAGTGTAC CACCTCGTGC 1800 GGGATTTAGC CATCGATTGA GTCATGTTAC AATGCTGAGC CAAGCAGCTG GAGCAGTTTA CACCTTGAGA GCTCAACGT (stop HD-1)     (start HD-73)                       CCT ATGTTCTCTT GGATACATCG TAGTGCTGAA TTTAATAATA TAATTGCATC GGATAGTATT 1800 ACTCAAATCC CTGCAGTGAA GGGAAACTTT CTTTTTAATG GTTCTGTAAT TTCAGGACCA GGATTTACTG GTGGGGACTT AGTTAGATTA AATAGTAGTG 1900 GAAATAACAT TCAGAATAGA GGGTATATTG AAGTTCCAAT TCACTTCCCA TCGACATCTA CCAGATATCG AGTTCGTGTA CGGTATGCTT CTGTAACCCC 2000 GATTCACCTC AACGTTAATT GGGGTAATTC ATCCATTTTT TCCAATACAG TACCAGCTAC AGCTACGTCA TTAGATAATC TACAATCAAG TGATTTTGGT 2100 TATTTTGAAA GTGCCAATGC TTTTACATCT TCATTAGGTA ATATAGTAGG TGTTAGAAAT TTTAGTGGGA CTGCAGGAGT GATAATAGAC AGATTTGAAT 2200 TTATTCCAGT TACTGCAACA CTCGAGGCTG AATATAATCT GGAAAGAGCG CAGAAGGCGG TGAATGCGCT GTTTACGTCT ACAAACCAAC TAGGGCTAAA 2300 AACAAATGTA ACGGATTATC ATATTGATCA AGTGTCCAAT TTAGTTACGT ATTTATCGGA TGAATTTTGT CTGGATGAAA AGCGAGAATT GTCCGAGAAA 2400 GTCAAACATG CGAAGCGACT CAGTGATGAA CGCAATTTAC TCCAAGATTC AAATTTCAAA GACATTAATA GGCAACCAGA ACGTGGGTGG GGCGGAAGTA 2500 CAGGGATTAC CATCCAAGGA GGGGATGACG TATTTAAAGA AAATTACGTC ACACTATCAG GTACCTTTGA TGAGTGCTAT CCAACATATT TGTATCAAAA 2600 AATCGATGAA TCAAAATTAA AAGCCTTTAC CCGTTATCAA TTAAGAGGGT ATATCGAAGA TAGTCAAGAC TTAGAAATCT ATTTAATTCG CTACAATGCA 2700 AAACATGAAA CAGTAAATGT GCCAGGTACG GGTTCCTTAT GGCCGCTTTC AGCCCAAAGT CCAATCGGAA AGTGTGGAGA GCCGAATCGA TGCGCGCCAC 2800 ACCTTGAATG GAATCCTGAC TTAGATTGTT CGTGTAGGGA TGGAGAAAAG TGTGCCCATC ATTCGCATCA TTTCTCCTTA GACATTGATG TAGGATGTAC 2900 AGACTTAAAT GAGGACCTAG GTGTATGGGT GATCTTTAAG ATTAAGACGC AAGATGGGCA CGCAAGACTA GGGAATCTAG AGTTTCTCGA AGAGAAACCA 3000 TTAGTAGGAG AAGCGCTAGC TCGTGTGAAA AGAGCGGAGA AAAAATGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATCGTT TATAAAGAGG 3100 CAAAAGAATC TGTAGATGCT TTATTTGTAA ACTCTCAATA TGATCAATTA CAAGCGGATA CGAATATTGC CATGATTCAT GCGGCAGATA AACGTGTTCA 3200 TAGCATTCGA GAAGCTTATC TGCCTGAGCT GTCTGTGATT CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA TTAGAAGGGC GTATTTTCAC TGCATTCTCC 3300 CTATATGATG CGAGAAATGT CATTAAAAAT GGTGATTTTA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA CAAAACAACC 3400 AACGTTCGGT CCTTGTTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA GTTCGTGTCT GTCCGGGTCG TGGCTATATC CTTCGTGTCA CAGCGTACAA 3500 GGAGGGATAT GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACAATA CAGACGAACT GAAGTTTAGC AACTGCGTAG AAGAGGAAAT CTATCCAAAT 3600 AACACGGTAA CGTGTAATGA TTATACTGTA AATCAAGAAG AATACGGAGG TGCGTACACT TCTCGTAATC GAGGATATAA CGAAGCTCCT TCCGTACCAG 3700 CTGATTATGC GTCAGTCTAT GAAGAAAAAT CGTATACAGA TGGACGAAGA GAGAATCCTT GTGAATTTAA CAGAGGGTAT AGGGATTACA CGCCACTACC 3800 AGTTGGTTAT GTGACAAAAG AATTAGAATA CTTCCCAGAA ACCGATAAGG TATGGATTGA GATTGGAGAA ACGGAAGGAA CATTTATCGT GGACAGCGTG 3900 GAATTACTCC TTATGGAGGA A (end HD-73).
27. A recombinant DNA transfer vector comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGAAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG AATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACACA  AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT APTTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1).
28. A recombinant DNA transfer vector comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AGGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAAA GGGGAATATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1).
29. The DNA transfer vector of claim 25 transferred to and replicated in a prokaryotic or lower eukaryotic microorganism.
30. The DNA transfer vector of claim 26 transferred to and replicated in a prokaryotic or lower eukaryotic microorganism.
31. The DNA transfer vector of claim 27 transferred to and replicated in a prokaryotic or lower eukaryotic microorganism.
32. The DNA transfer vector of claim 28 transferred to and replicated in a prokaryotic or lower eukaryotic microorganism.
33. Plasmid pEW1 as shown in FIG. 1 of the drawings.
34. Plasmid pEW2 as shown in FIG. 2 of the drawings.
35. Plasmid pEW3 as shown in FIG. 3 of the drawings.
36. Plasmid pEW4 as shown in FIG. 4 of the drawings.
37. Plasmid pACB-1, having the construction of plasmid pEW3 except that the DNA encoding aspartic acid at position 411 is converted to encode asparagine, and the DNA encoding glycine at position 425 is converted to encode glutamic acid.
38. Plasmid pSYW1, having the construction of plasmid pEW3 except that the DNA encoding arginine at position 289 is converted to encode glycine, the DNA encoding arginine at position 311 is converted to encode lysine, and the DNA encoding tyrosine at position 313 is converted to encode glutamate.
39. A microorganism transformed by the transfer vector of claim 25.
40. A microorganism transformed by the transfer vector of claim 26.
41. A microorganism transformed by the transfer vector of claim 27.
42. A microorganism transformed by the transfer vector of claim 28.
43. E. coli (pEW3), a microorganism according to claim 39.
44. E. coli (pEW4), a microorganism according to claim 40.
45. E. coli (pACB-1), a microorganism according to claim 41.
46. E. coli (pSYW1), a microorganism according to claim 42.
47. A process for preparing pesticidal chimeric toxin EW3 having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
which comprises culturing a prokaryotic microbe hosting a recombinant DNA transfer vector, denoted pEW3, comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1).
48. A process for preparing pesticidal chimeric toxin EW4 having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F P V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L L A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F S N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G M A Q R I E Q N I R Q P H L M D I L N S I T I Y T D V H R G F N Y W S G H Q I T A S P V G F S G P E F A F P L F G N A G N A A P P V L V S L T G L G I F R T L S S P L Y R R I I L G S G P N N Q E L F V L D G T E F S F A S L T T N L P S T I Y R Q R G T V D S L D V I P P Q D N S V P P R A G F S H R L S H V T M L S Q A A G A V Y T L R A Q R P M F S W I H R S A E F N N I I A S D S I T Q I P A V K G N F L F N G S V I S G P G F T G G D L V R L N S S G N N I Q N R G Y I E V P I H F P S T S T R Y R V R V R Y A S V T P I H L N V N W G N S S I F S N T V P A T A T S L D N L Q S S D F G Y F E S A N A F T S S L G N I V G V R N F S G T A G V I I D R F E F I P V T A T L E A E Y N L E R A Q K A V N A L F T S T N Q L G L K T N V T D Y H I D Q V S N L V T Y L S D E F C L D E K R E L S E K V K H A K R L S D E R N L L Q D S N F K D I N R Q P E R G W G G S T G I T I Q G G D D V F K E N Y V T L S G T F D E C Y P T Y L Y Q K I D E S K L K A F T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V V P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
which comprises culturing a prokaryotic microbe hosting a recombinant DNA transfer vector, denoted pEW4, comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
      (start HD-1)          ATGG ATAACAATCC GAACATCAAT GAATGCATTC CTTATAATTG TTTAAGTAAC CCTGAAGTAG AAGTATTAGG 600 TGGAGAAAGA ATAGAAACTG GTTACACCCC AATCGATATT TCCTTGTCGC TAACGCAATT TCTTTTGAGT GAATTTGTTC CCGGTGCTGG ATTTGTGTTA 700 GGACTAGTTG ATATAATATG GGGAATTTTT GGTCCCTCTC AATGGGACGC ATTTCCTGTA CAAATTGAAC AGTTAATTAA CCAAAGAATA GAAGAATTCG 800 CTAGGAACCA AGCCATTTCT AGATTAGAAG GACTAAGCAA TCTTTATCAA ATTTACGCAG AATCTTTTAG AGAGTGGGAA GCAGATCCTA CTAATCCAGC 900 ATTAAGAGAA GAGATGCGTA TTCAATTCAA TGACATGAAC AGTGCCCTTA CAACCGCTAT TCCTCTTTTG GCAGTTCAAA ATTATCAAGT TCCTCTTTTA 1000 TCAGTATATG TTCAAGCTGC AAATTTACAT TTATCAGTTT TGAGAGATGT TTCAGTGTTT GGACAAAGGT GGGGATTTGA TGCCGCGACT ATCAATAGTC 1100 GTTATAATGA TTTAACTAGG CTTATTGGCA ACTATACAGA TTATGCTGTG CGCTGGTACA ATACGGGATT AGAGCGTGTA TGGGGACCGG ATTCTAGAGA 1200 TTGGGTAAGG TATAATCAAT TTAGAAGAGA GCTAACACTT ACTGTATTAG ATATCGTTGC TCTATTCTCA AATTATGATA GTCGAAGGTA TCCAATTCGA 1300 ACAGTTTCCC AATTAACAAG AGAAATTTAT ACGAACCCAG TATTAGAAAA TTTTGATGGT AGTTTTCGTG GAATGGCTCA GAGAATAGAA CAGAATATTA 1400 GGCAACCACA TCTTATGGAT ATCCTTAATA GTATAACCAT TTATACTGAT GTGCATAGAG GCTTTAATTA TTGGTCAGGG CATCAAATAA CAGCTTCTCC 1500 TGTAGGGTTT TCAGGACCAG AATTCGCATT CCCTTTATTT GGGAATGCGG GGAATGCAGC TCCACCCGTA CTTGTCTCAT TAACTGGTTT GGGGATTTTT 1600 AGAACATTAT CTTCACCTTT ATATAGAAGA ATTATACTTG GTTCAGGCCC AAATAATCAG GAACTGTTTG TCCTTGATGG AACGGAGTTT TCTTTTGCCT 1700 CCCTAACGAC CAACTTGCCT TCCACTATAT ATAGACAAAG GGGTACAGTC GATTCACTAG ATGTAATACC GCCACAGGAT AATAGTGTAC CACCTCGTGC 1800 GGGATTTAGC CATCGATTGA GTCATGTTAC AATGCTGAGC CAAGCAGCTG GAGCAGTTTA CACCTTGAGA GCTCAACGT  (stop HD-1)                (start HD-73)            CCT ATGTTCTCTT GGATACATCG TAGTGCTGAA TTTAATAATA TAATTGCATC GGATAGTATT 1800 ACTCAAATCC CTGCAGTGAA GGGAAACTTT CTTTTTAATG GTTCTGTAAT TTCAGGACCA GGATTTACTG GTGGGGACTT AGTTAGATTA AATAGTAGTG 1900 GAAATAACAT TCAGAATAGA GGGTATATTG AAGTTCCAAT TCACTTCCCA TCGACATCTA CCAGATATCG AGTTCGTGTA CGGTATGCTT CTGTAACCCC 2000 GATTCACCTC AACGTTAATT GGGGTAATTC ATCCATTTTT TCCAATACAG TACCAGCTAC AGCTACGTCA TTAGATAATC TACAATCAAG TGATTTTGGT 2100 TATTTTGAAA GTGCCAATGC TTTTACATCT TCATTAGGTA ATATAGTAGG TGTTAGAAAT TTTAGTGGGA CTGCAGGAGT GATAATAGAC AGATTTGAAT 2200 TTATTCCAGT TACTGCAACA CTCGAGGCTG AATATAATCT GGAAAGAGCG CAGAAGGCGG TGAATGCGCT GTTTACGTCT ACAAACCAAC TAGGGCTAAA 2300 AACAAATGTA ACGGATTATC ATATTGATCA AGTGTCCAAT TTAGTTACGT ATTTATCGGA TGAATTTTGT CTGGATGAAA AGCGAGAATT GTCCGAGAAA 2400 GTCAAACATG CGAAGCGACT CAGTGATGAA CGCAATTTAC TCCAAGATTC AAATTTCAAA GACATTAATA GGCAACCAGA ACGTGGGTGG GGCGGAAGTA 2500 CAGGGATTAC CATCCAAGGA GGGGATGACG TATTTAAAGA AAATTACGTC ACACTATCAG GTACCTTTGA TGAGTGCTAT CCAACATATT TGTATCAAAA 2600 AATCGATGAA TCAAAATTAA AAGCCTTTAC CCGTTATCAA TTAAGAGGGT ATATCGAAGA TAGTCAAGAC TTAGAAATCT ATTTAATTCG CTACAATGCA 2700 AAACATGAAA CAGTAAATGT GCCAGGTACG GGTTCCTTAT GGCCGCTTTC AGCCCAAAGT CCAATCGGAA AGTGTGGAGA GCCGAATCGA TGCGCGCCAC 2800 ACCTTGAATG GAATCCTGAC TTAGATTGTT CGTGTAGGGA TGGAGAAAAG TGTGCCCATC ATTCGCATCA TTTCTCCTTA GACATTGATG TAGGATGTAC 2900 AGACTTAAAT GAGGACCTAG GTGTATGGGT GATCTTTAAG ATTAAGACGC AAGATGGGCA CGCAAGACTA GGGAATCTAG AGTTTCTCGA AGAGAAACCA 3000 TTAGTAGGAG AAGCGCTAGC TCGTGTGAAA AGAGCGGAGA AAAAATGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATCGTT TATAAAGAGG 3100 CAAAAGAATC TGTAGATGCT TTATTTGTAA ACTCTCAATA TGATCAATTA CAAGCGGATA CGAATATTGC CATGATTCAT GCGGCAGATA AACGTGTTCA 3200 TAGCATTCGA GAAGCTTATC TGCCTGAGCT GTCTGTGATT CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA TTAGAAGGGC GTATTTTCAC TGCATTCTCC 3300 CTATATGATG CGAGAAATGT CATTAAAAAT GGTGATTTTA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA CAAAACAACC 3400 AACGTTCGGT CCTTGTTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA GTTCGTGTCT GTCCGGGTCG TGGCTATATC CTTCGTGTCA CAGCGTACAA 3500 GGAGGGATAT GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACAATA CAGACGAACT GAAGTTTAGC AACTGCGTAG AAGAGGAAAT CTATCCAAAT 3600 AACACGGTAA CGTGTAATGA TTATACTGTA AATCAAGAAG AATACGGAGG TGCGTACACT TCTCGTAATC GAGGATATAA CGAAGCTCCT TCCGTACCAG 3700 CTGATTATGC GTCAGTCTAT GAAGAAAAAT CGTATACAGA TGGACGAAGA GAGAATCCTT GTGAATTTAA CAGAGGGTAT AGGGATTACA CGCCACTACC 3800 AGTTGGTTAT GTGACAAAAG AATTAGAATA CTTCCCAGAA ACCGATAAGG TATGGATTGA GATTGGAGAA ACGGAAGGAA CATTTATCGT GGACAGCGTG 3900 GAATTACTCC TTATGGAGGA A (end HD-73).
49. A process for preparing pesticidal chimeric toxin ACB-1 having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E W E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E R S I R S P H L M D I L N S I T I Y T D A H R G Y Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L N E I P P Q N N N V P P R Q E F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V R V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
which comprises culturing a prokaryotic microbe hosting a recombinant DNA transfer vector, denoted pACB-1, comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTCTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AAGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAGG GGTTATTATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGAAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG AATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1)
50. A process for preparing pesticidal chimeric toxin SYW1 having the following amino acid sequence:
M D N N P N I N E C I P Y N C L S N P E V E V L G G E R I E T G Y T P I D I S L S L T Q F L L S E F V P G A G F V L G L V D I I W G I F G P S Q W D A F L V Q I E Q L I N Q R I E E F A R N Q A I S R L E G L S N L Y Q I Y A E S F R E Q E A D P T N P A L R E E M R I Q F N D M N S A L T T A I P L F A V Q N Y Q V P L L S V Y V Q A A N L H L S V L R D V S V F G Q R W G F D A A T I N S R Y N D L T R L I G N Y T D Y A V R W Y N T G L E R V W G P D S R D W V R Y N Q F R R E L T L T V L D I V A L F P N Y D S R R Y P I R T V S Q L T R E I Y T N P V L E N F D G S F R G S A Q G I E G S I R S P H L M D I L N S I T I Y T D A H K G E Y Y W S G H Q I M A S P V G F S G P E F T F P L Y G T M G N A A P Q Q R I V A Q L G Q G V Y R T L S S T L Y R R P F N I G I N N Q Q L S V L D G T E F A Y G T S S N L P S A V Y R K S G T V D S L D E I P P Q N N N V P P R Q G F S H R L S H V S M F R S G F S N S S V S I I R A P T F S W Q H R S A E F N N I I P S S Q I T Q I P L T K S T N L G S G T S V V K G P G F T G G D I L R R T S P G Q I S T L R V N I T A P L S Q R Y R V R I R Y A S T T N L Q F H T S I D G R P I N Q G N F S A T M S S G S N L Q S G S F R T V G F T T P F N F S N G S S V F T L S A H V F N S G N E V Y I D R I E F V P A E V T F E A E Y D L E R A Q K A V N E L F T S S N Q I G L K T D V T D Y H I D Q V S N L V E C L S D E F C L D E K Q E L S E K V K H A K R L S D E R N L L Q D P N F R G I N R Q L D R G W R G S T D I T I Q G G D D V F K E N Y V T L L G T F D E C Y P T Y L Y Q K I D E S K L K A Y T R Y Q L R G Y I E D S Q D L E I Y L I R Y N A K H E T V N V P G T G S L W P L S A Q S P I G K C G E P N R C A P H L E W N P D L D C S C R D G E K C A H H S H H F S L D I D V G C T D L N E D L G V W V I F K I K T Q D G H A R L G N L E F L E E K P L V G E A L A R V K R A E K K W R D K R E K L E W E T N I V Y K E A K E S V D A L F V N S Q Y D Q L Q A D T N I A M I H A A D K R V H S I R E A Y L P E L S V I P G V N A A I F E E L E G R I F T A F S L Y D A R N V I K N G D F N N G L S C W N V K G H V D V E E Q N N Q R S V L V L P E W E A E V S Q E V P V C P G R G Y I L R V T A Y K E G Y G E G C V T I H E I E N N T D E L K F S N C V E E E I Y P N N T V T C N D Y T V N Q E E Y G G A Y T S R N R G Y N E A P S V P A D Y A S V Y E E K S Y T D G R R E N P C E F N R G Y R D Y T P L P V G Y V T K E L E Y F P E T D K V W I E I G E T E G T F I V D S V E L L L M E E
which comprises culturing a prokaryotic microbe hosting a recombinant DNA transfer vector, denoted pSYW1, comprising DNA having the following nucleotide sequence or equivalent nucleotide sequences containing bases whose translated region codes for the same amino acid sequence:
               (start HD-73)            ATG GATAACAATC 400 CGAACATCAA TGAATGCATT CCTTATAATT GTTTAAGTAA CCCTGAAGTA GAAGTATTAG GTGGAGAAAG AATAGAAACT GGTTACACCC CAATCGATAT 500 TTCCTTGTCG CTAACGCAAT TTDTTTTGAG TGAATTTGTT CCCGGTGCTG GATTTGTGTT AGGACTAGTT GATATAATAT GGGGAATTTT TGGTCCCTCT 600 CAATGGGACG CATTTCTTGT ACAAATTGAA CAGTTAATTA ACCAAAGAAT AGAAGAATTC GCTAGGAACC AAGCCATTTC TAGATTAGAA GGACTAAGCA 700 ATCTTTATCA AATTTACGCA GAATCTTTTA GAGAGTGGGA AGCAGATCCT ACTAATCCAG CATTAAGAGA AGAGATGCGT ATTCAATTCA ATGACATGAA 800 CAGTGCCCTT ACAACCGCTA TTCCTCTTTT TGCAGTTCAA AATTATCAAG TTCCTCTTTT ATCAGTATAT GTTCAAGCTG CAAATTTACA TTTATCAGTT 900 TTGAGAGATG TTTCAGTGTT TGGACAAAGG TGGGGATTTG ATGCCGCGAC TATCAATAGT CGTTATAATG ATTTAACTAG GCTTATTGGC AACTATACAG 1000 ATTATGCTGT ACGCTGGTAC AATACGGGAT TAGAACGTGT ATGGGGACCG GATTCTAGAG ATTGGGTAAG GTATAATCAA TTTAGAAGAG AATTAACACT 1100 AACTGTATTA GATATCGTTG CTCTGTTCCC GAATTATGAT AGTAGAAGAT ATCCAATTCG AACAGTTTCC CAATTAACAA GAGAAATTTA TACAAACCCA 1200 GTATTAGAAA ATTTTGATGG TAGTTTTCGA GGCTCGGCTC AGGGCATAGA AGGAAGTATT AGGAGTCCAC ATTTGATGGA TATACTTAAC AGTATAACCA 1300 TCTATACGGA TGCTCATAAA GGGGAATATT ATTGGTCAGG GCATCAAATA ATGGCTTCTC CTGTAGGGTT TTCGGGGCCA GAATTCACTT TTCCGCTATA 1400 TGGAACTATG GGAAATGCAG CTCCACAACA ACGTATTGTT GCTCAACTAG GTCAGGGCGT GTATAGAACA TTATCGTCCA CTTTATATAG AAGACCTTTT 1500 AATATAGGGA TAAATAATCA ACAACTATCT GTTCTTGACG GGACAGAATT TGCTTATGGA ACCTCCTCAA ATTTGCCATC CGCTGTATAC AGAAAAAGCG 1600 GAACGGTAGA TTCGCTGGAT GAAATACCGC CACAGAATAA CAACGTGCCA CCTAGGCAAG GATTTAGTCA TCGATTAAGC CATGTTTCAA TGTTTCGTTC 1700 AGGCTTTAGT AATAGTAGTG TAAGTATAAT AAGAGCT (end hd-73)     (start HD-1)         CCAACGT TTTCTTGGCA GCATCGCAGT 1900 GCTGAATTTA ATAATATAAT TCCTTCATCA CAAATTACAC AAATACCTTT AACAAAATCT ACTAATCTTG GCTCTGGAAC TTCTGTCGTT AAAGGACCAG 2000 GATTTACAGG AGGAGATATT CTTCGAAGAA CTTCACCTGG CCAGATTTCA ACCTTAAGAG TAAATATTAC TGCACCATTA TCACAAAGAT ATCGGGTAAG 2100 AATTCGCTAC GCTTCTACTA CAAATTTACA ATTCCATACA TCAATTGACG GAAGACCTAT TAATCAGGGT AATTTTTCAG CAACTATGAG TAGTGGGAGT 2200 AATTTACAGT CCGGAAGCTT TAGGACTGTA GGTTTTACTA CTCCGTTTAA CTTTTCAAAT GGATCAAGTG TATTTACGTT AAGTGCTCAT GTCTTCAATT 2300 CAGGCAATGA AGTTTATATA GATCGAATTG AATTTGTTCC GGCAGAAGTA ACCTTTGAGG CAGAATATGA TTTAGAAAGA GCACAAAAGG CGGTGAATGA 2400 GCTGTTTACT TCTTCCAATC AAATCGGGTT AAAAACAGAT GTGACGGATT ATCATATTGA TCAAGTATCC AATTTAGTTG AGTGTTTATC AGATGAATTT 2500 TGTCTGGATG AAAAACAAGA ATTGTCCGAG AAAGTCAAAC ATGCGAAGCG ACTTAGTGAT GAGCGGAATT TACTTCAAGA TCCAAACTTC AGAGGGATCA 2600 ATAGACAACT AGACCGTGGC TGGAGAGGAA GTACGGATAT TACCATCCAA GGAGGCGATG ACGTATTCAA AGAGAATTAC GTTACGCTAT TGGGTACCTT 2700 TGATGAGTGC TATCCAACGT ATTTATATCA AAAAATAGAT GAGTCGAAAT TAAAAGCCTA TACCCGTTAT CAATTAAGAG GGTATATCGA AGATAGTCAA 2800 GACTTAGAAA TCTATTTAAT TCGCTACAAT GCAAAACATG AAACAGTAAA TGTGCCAGGT ACGGGTTCCT TATGGCCGCT TTCAGCCCAA AGTCCAATCG 2900 GAAAGTGTGG AGAGCCGAAT CGATGCGCGC CACACCTTGA ATGGAATCCT GACTTAGATT GTTCGTGTAG GGATGGAGAA AAGTGTGCCC ATCATTCGCA 3000 TCATTTCTCC TTAGACATTG ATGTAGGATG TACAGACTTA AATGAGGACC TAGGTGTATG GGTGATCTTT AAGATTAAGA CGCAAGATGG GCACGCAAGA 3100 CTAGGGAATC TAGAGTTTCT CGAAGAGAAA CCATTAGTAG GAGAAGCGCT AGCTCGTGTG AAAAGAGCGG AGAAAAAATG GAGAGACAAA CGTGAAAAAT 3200 TGGAATGGGA AACAAATATC GTTTATAAAG AGGCAAAAGA ATCTGTAGAT GCTTTATTTG TAAACTCTCA ATATGATCAA TTACAAGCGG ATACGAATAT 3300 TGCCATGATT CATGCGGCAG ATAAACGTGT TCATAGCATT CGAGAAGCTT ATCTGCCTGA GCTGTCTGTG ATTCCGGGTG TCAATGCGGC TATTTTTGAA 3400 GAATTAGAAG GGCGTATTTT CACTGCATTC TCCCTATATG ATGCGAGAAA TGTCATTAAA AATGGTGATT TTAATAATGG CTTATCCTGC TGGAACGTGA 3500 AAGGGCATGT AGATGTAGAA GAACAAAACA ACCAACGTTC GGTCCTTGTT CTTCCGGAAT GGGAAGCAGA AGTGTCACAA GAAGTTCGTG TCTGTCCGGG 3600 TCGTGGCTAT ATCCTTCGTG TCACAGCGTA CAAGGAGGGA TATGGAGAAG GTTGCGTAAC CATTCATGAG ATCGAGAACA ATACAGACGA ACTGAAGTTT 3700 AGCAACTGCG TAGAAGAGGA AATCTATCCA AATAACACGG TAACGTGTAA TGATTATACT GTAAATCAAG AAGAATACGG AGGTGCGTAC ACTTCTCGTA 3800 ATCGAGGATA TAACGAAGCT CCTTCCGTAC CAGCTGATTA TGCGTCAGTC TATGAAGAAA AATCGTATAC AGATGGACGA AGAGAGAATC CTTGTGAATT 3900 TAACAGAGGG TATAGGGATT ACACGCCACT ACCAGTTGGT TATGTGACAA AAGAATTAGA ATACTTCCCA GAAACCGATA AGGTATGGAT TGAGATTGGA 4000 GAAACGGAAG GAACATTTAT CGTGGACAGC GTGGAATTAC TCCTTATGGA GGAA (end HD-1).
51. A chimeric toxin, having the amino acid sequence of toxin EW3, with changes which can be shown schematically as follows:
Figure US20030040619A1-20030227-C00005
wherein X is one of the 20 common amino acids except Asp when the amino acid at position 425 is Gly; Y is one of the 20 common amino acids except Gly when the amino acid at position 411 is Asp.
52. A chimeric toxin, having the amino acid sequence of toxin EW3, with changes which can be shown schematically as follows:
Figure US20030040619A1-20030227-C00006
wherein X is one of the 20 common amino acids except Arg when the amino acid at position 311 is Arg and the amino acid at position 313 is Tyr; Y is one of the 20 common amino acids except Arg when the amino acid at position 289 is Arg and the amino acid at position 313 is Tyr; and Z is one of the 20 common amino acids except Tyr when the amino acid at position 289 is Arg and the amino acid at position 311 is Arg.
53. DNA encoding a chimeric toxin as shown in claim 51.
54. DNA encoding a chimeric toxin as shown in claim 52.
55. A recombinant DNA transfer vector comprising DNA encoding a chimeric toxin as shown in claim 51.
56. A recombinant DNA transfer vector comprising DNA encoding a chimeric toxin as shown in claim 52.
57. A chimeric toxin comprising the variable region or regions of two or more Bacillus toxins.
58. A toxin, according to claim 57, wherein the Bacillus toxins are B. thuringiensis toxins.
59. A toxin, according to claim 58, wherein the B. thuringiensis toxins are B. thuringiensis var. kurstaki HD-1 toxin and B. thuringiensis var. kurstaki HD-73 toxin.
60. A toxin, according to claim 58, wherein the B. thuringiensis toxins are encoded by a pesticide-producing strain of Bacillius thuringiensis, consisting of B. thuringiensis M-7, B. thuringiensis var. kurstaki, B. thuringiensis var. finitimus, B. thuringiensis var. alesti, B. thuringiensis var. sotto, B. thuringiensis var. dendrolimus, B. thuringiensis var. kenyae, B. thuringiensis var. galleriae, B. thuringiensis var. canadensis, B. thuringiensis var. entomocidus, B. thuringiensis var. subtoxicus, B. thuringiensis var. aizawai, B. thuringiensis var. morrisoni, B. thuringiensis var. ostriniae, B. thuringiensis var. tolworthi, B. thuringiensis var. darmstadiensis, B. thuringiensis var. toumanoffi, B. thuringiensis var. kyushuensis, B. thuringiensis var. thompsoni, B. thuringiensis var. pakistani, B. thuringiensis var. israelensis, B. thuringiensis var. indiana, B. thuringiensis var. dakota, B. thuringiensis var. tohokuensis, B. thuringiensis var. kumanotoensis, B. thuringiensis var. tochigiensis, B. thuringiensis var. colmeri, B. thuringiensis var. wuhanensis, B. thuringiensis var. tenebrionis, B. thuringiensis var. thuringiensis, and other Bacillus species selected from B. cereus, B. moritai, B. popilliae, B. lentimorbus, and B. sphaericus.
US10/035,060 1985-12-12 2001-12-27 Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby Abandoned US20030040619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/035,060 US20030040619A1 (en) 1985-12-12 2001-12-27 Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US80812985A 1985-12-12 1985-12-12
US90457286A 1986-09-05 1986-09-05
US35659989A 1989-05-24 1989-05-24
US80392091A 1991-12-06 1991-12-06
US98012892A 1992-11-23 1992-11-23
US9780893A 1993-07-27 1993-07-27
US42061595A 1995-04-10 1995-04-10
US58078195A 1995-12-29 1995-12-29
US40578899A 1999-09-27 1999-09-27
US10/035,060 US20030040619A1 (en) 1985-12-12 2001-12-27 Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US40578899A Continuation 1985-12-12 1999-09-27

Publications (1)

Publication Number Publication Date
US20030040619A1 true US20030040619A1 (en) 2003-02-27

Family

ID=27123085

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/855,160 Expired - Lifetime US6090931A (en) 1985-12-12 1997-05-13 Process for altering the host range or increasing the toxicity of Bacillus thuringiensis lepidoteran toxins, and recombinant DNA sequences therefor
US10/035,060 Abandoned US20030040619A1 (en) 1985-12-12 2001-12-27 Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/855,160 Expired - Lifetime US6090931A (en) 1985-12-12 1997-05-13 Process for altering the host range or increasing the toxicity of Bacillus thuringiensis lepidoteran toxins, and recombinant DNA sequences therefor

Country Status (9)

Country Link
US (2) US6090931A (en)
EP (1) EP0228838B1 (en)
JP (1) JP2565696B2 (en)
CA (1) CA1341092C (en)
DE (1) DE3684895D1 (en)
ES (1) ES2046174T3 (en)
GR (1) GR3004899T3 (en)
HU (1) HUT43113A (en)
IL (1) IL80883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1341283C (en) * 1985-03-28 2001-08-14 Frank H. Gaertner Biological pesticides and methods for their delivery and use
CA1341092C (en) * 1985-12-12 2000-09-05 David L. Edwards Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby
GB2188049B (en) 1986-03-15 1990-09-05 Ciba Geigy Ag Insecticidal proteinaceous substance
JP3177237B2 (en) * 1987-06-10 2001-06-18 アンステイテユ・パストウール Nucleotide sequence encoding a polypeptide having larval insecticidal activity against lepidoptera
US6110734A (en) * 1987-06-10 2000-08-29 Institut Pasteur Nucleotide sequences coding for polypeptides endowed with a larvicidal activity towards lepidoptera
US6686149B1 (en) 1987-06-10 2004-02-03 Institut Pasteur Methods for obtaining nucleotide sequences coding for polypeptides specifically active for larvae of S. littoralis
FR2616444B1 (en) 1987-06-10 1990-03-02 Pasteur Institut NUCLEOTIDE SEQUENCES ENCODING POLYPEPTIDES HAVING LARVICIDAL ACTIVITY AGAINST LEPIDOPTERA
AU2257288A (en) * 1987-08-17 1989-03-09 Plant Genetic Systems N.V. Plants transformed with a dna sequence from bacillus thuringiensis
ES2063118T3 (en) * 1988-01-22 1995-01-01 Mycogen Corp NEW HYBRID GENES OF BACILLUS THURINGIENSIS, PLASMID AND TRANSFORMED PSEUDOMONAS FLUORESCENS.
BR8900881A (en) * 1988-02-25 1989-10-17 Sandoz Ag PROCESSES FOR THE PRODUCTION OF A TOXIC ENDOTOXIN PROTEIN TO INSECTS AND INSECTICIDE COMPOSITION
US5055294A (en) * 1988-03-03 1991-10-08 Mycogen Corporation Chimeric bacillus thuringiensis crystal protein gene comprising hd-73 and berliner 1715 toxin genes, transformed and expressed in pseudomonas fluorescens
GB8823068D0 (en) * 1988-09-30 1988-11-09 Ici Plc Recombinant dna
FR2639959A1 (en) * 1988-12-02 1990-06-08 Pasteur Institut Recombinant bacteria which are toxic towards Diptera larvae and their use for the production of larvicidal compositions.
ES2164633T3 (en) 1989-02-24 2002-03-01 Monsanto Technology Llc SYNTHETIC VEGETABLE GENES AND PROCEDURE FOR PREPARATION.
FR2643646B1 (en) * 1989-02-27 1993-09-17 Pasteur Institut EXPRESSION OF NUCLEOTIDES SEQUENCES ENCODING FOR GAS VESICLES
EP0400246A1 (en) * 1989-05-31 1990-12-05 Plant Genetic Systems, N.V. Prevention of Bt resistance development
US6855873B1 (en) 1989-05-31 2005-02-15 Bayer Bioscience, N.V. Recombinant plant expressing non-competitively binding Bt insecticidal cryatal proteins
US5908970A (en) * 1989-05-31 1999-06-01 Plant Genetic Systems N.V. Recombinant plant expressing non-competitively binding Bt insecticidal crystal proteins
IT1231157B (en) * 1989-07-20 1991-11-19 Crc Ricerca Chim NEW FUNCTIONAL HYBRID GENES OF BACILLUS THURINGIENSIS OBTAINED THROUGH IN VIVO RECOMBINATION.
AU649984B2 (en) * 1989-12-18 1994-06-09 Sandoz Ltd. Transformation of bacillus thuringiensis and production of a mutant B.t. endotoxin
EP0440581A1 (en) * 1990-01-31 1991-08-07 Ciba-Geigy Ag Temperature stable bacillus thuringiensis-toxin
TW261517B (en) * 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
IL109367A0 (en) * 1993-04-23 1994-07-31 Sandoz Ag Dna segment comprising gene encoding insecticidal protein
GB9318207D0 (en) 1993-09-02 1993-10-20 Sandoz Ltd Improvements in or relating to organic compounds
US6780408B1 (en) 1993-09-02 2004-08-24 Syngenta Participations Ag Genes encoding hybrid bacillus thuringiensis toxins
FR2740472B1 (en) * 1995-10-27 1998-01-16 Pasteur Institut NOVEL STRAINS OF BACILLUS THURINGIENSIS AND PESTICIDE COMPOSITION CONTAINING THEM
US6369213B1 (en) 1996-07-01 2002-04-09 Mycogen Corporation Toxins active against pests
WO1998000546A2 (en) * 1996-07-01 1998-01-08 Mycogen Corporation Bacillus thuringiensis toxins active against noctuidae pests
US6242669B1 (en) 1996-10-30 2001-06-05 Mycogen Corporation Pesticidal toxins and nucleotide sequences which encode these toxins
US6017534A (en) * 1996-11-20 2000-01-25 Ecogen, Inc. Hybrid Bacillus thuringiensis δ-endotoxins with novel broad-spectrum insecticidal activity
CA2272843C (en) 1996-11-20 2009-11-10 Ecogen, Inc. Broad-spectrum delta-endotoxins
US6713063B1 (en) 1996-11-20 2004-03-30 Monsanto Technology, Llc Broad-spectrum δ-endotoxins
US6121436A (en) 1996-12-13 2000-09-19 Monsanto Company Antifungal polypeptide and methods for controlling plant pathogenic fungi
BR9910174A (en) 1998-05-01 2001-03-06 Maxygen Inc Process for obtaining an optimized recombinant gene for pest resistance, library, and process for obtaining an organism that is pathogenic to a vegetable pest
AU2000269030A1 (en) * 2000-08-11 2002-02-25 Monsanto Technology Llc Broad-spectrum delta-endotoxins
CN102459315B (en) 2009-04-17 2016-03-02 陶氏益农公司 DIG-3 insecticidal cry toxins
US9234208B1 (en) 2010-05-10 2016-01-12 Dow Agrosciences Llc DIG-13 insecticidal cry toxins
EP2794887A2 (en) * 2011-03-30 2014-10-29 Universidad Nacional Autonoma De Mexico Mutant bacillus thuringiensis cry genes and methods of use
TW201615095A (en) 2014-10-31 2016-05-01 陶氏農業科學公司 DIG-303 insecticidal CRY toxins
AU2015372474B2 (en) 2014-12-30 2019-02-14 Dow Agrosciences Llc Modified Cry1Ca toxins useful for control of insect pests
CR20190367A (en) 2017-01-12 2019-09-25 Monsanto Technology Llc Pesticidal toxin proteins active against lepidopteran insects

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090931A (en) * 1985-12-12 2000-07-18 Mycogen Corporation Process for altering the host range or increasing the toxicity of Bacillus thuringiensis lepidoteran toxins, and recombinant DNA sequences therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4374927A (en) 1981-02-24 1983-02-22 The Board Of Trustees Of The Leland Stanford Jr. University Extrachromosomal regulation of expression
US4467036A (en) 1981-11-12 1984-08-21 The Board Of Regents Of The University Of Washington Bacillus thuringiensis crystal protein in Escherichia coli
WO1982003872A1 (en) * 1981-04-27 1982-11-11 Washington Univ B.thuringiensis crystal protein in e.coli
US4448885A (en) 1981-04-27 1984-05-15 Board Of The Regents Of The University Of Washington Bacillus thuringiensis crystal protein in Escherichia coli
DE3686452T2 (en) * 1985-06-14 1993-04-15 Repligen Corp ACTIVATED BACILLUS THURINGIENSIS DELTA ENDOTOXIN, MADE BY A MANIPULATED HYBRID GENE.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090931A (en) * 1985-12-12 2000-07-18 Mycogen Corporation Process for altering the host range or increasing the toxicity of Bacillus thuringiensis lepidoteran toxins, and recombinant DNA sequences therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria

Also Published As

Publication number Publication date
EP0228838A3 (en) 1988-05-11
US6090931A (en) 2000-07-18
JPS62143689A (en) 1987-06-26
JP2565696B2 (en) 1996-12-18
HUT43113A (en) 1987-09-28
IL80883A0 (en) 1987-03-31
IL80883A (en) 1994-01-25
GR3004899T3 (en) 1993-04-28
EP0228838A2 (en) 1987-07-15
DE3684895D1 (en) 1992-05-21
ES2046174T3 (en) 1994-02-01
EP0228838B1 (en) 1992-04-15
CA1341092C (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US20030040619A1 (en) Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby
US5055294A (en) Chimeric bacillus thuringiensis crystal protein gene comprising hd-73 and berliner 1715 toxin genes, transformed and expressed in pseudomonas fluorescens
US4771131A (en) Cloning and expression of Bacillus thuringiensis toxin gene encoding a protein toxic to beetles of the order Coleoptera
US5128130A (en) Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens
US4853331A (en) Cloning and expression of Bacillus thuringiensis toxin gene toxic to beetles of the order Coleoptera
EP0192319B1 (en) Cellular encapsulation of biological pesticides
US4695455A (en) Cellular encapsulation of pesticides produced by expression of heterologous genes
EP0498537B1 (en) Novel coleopteran-active bacillus thuringiensis isolate and a novel gene encoding a coleopteran-active toxin
US4996155A (en) Bacillus thuringiensis gene encoding a coleopteran-active toxin
US5635480A (en) Bacillus thuringiensis isolates and toxins
EP0340948B2 (en) Novel hybrid pesticidal toxins
US5508264A (en) Pesticidal compositions
US5596071A (en) Bacillus thuringiensis toxins active against hymenopteran pests
US5439881A (en) Gene encoding nematode-active toxin PS63B cloned from Bacillus thuringiensis isolate
US5306494A (en) Coleopteran-active Bacillus thuringiensis isolates and genes encoding coleopteran-active toxins
US5489432A (en) Bacillus thuringiensis isolates active against cockroaches and genes encoding cockroach-active toxins
US5186934A (en) Bacillus thuringiensis gene encoding a coleopteran-active toxin
US5508032A (en) Bacillus thuringiensis isolates active against cockroaches
EP0325400B1 (en) Novel hybrid bacillus thuringiensis gene, plasmid, and transformed pseudomonas fluorescens
US5002765A (en) Cloning and expression of bacillus thuringiensis gene toxic to beetles of the order coleoptera
EP0585396B1 (en) Novel bacillus thuringiensis isolates active against hymenopteran pests and genes encoding hymenopteran-active toxins
EP0500311A2 (en) Biologically active bacillus thuringiensis isolates and gene encoding a cleopteran-active toxin
EP0501650A2 (en) Bacillus thuringiensis genes encoding novel coleopteranactive protein toxins
US6051556A (en) Hybrid pesticidal toxins
CA1341472C (en) Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION