US20030027682A1 - Multiple ratio series electric vehicle drivetrain - Google Patents
Multiple ratio series electric vehicle drivetrain Download PDFInfo
- Publication number
- US20030027682A1 US20030027682A1 US09/921,827 US92182701A US2003027682A1 US 20030027682 A1 US20030027682 A1 US 20030027682A1 US 92182701 A US92182701 A US 92182701A US 2003027682 A1 US2003027682 A1 US 2003027682A1
- Authority
- US
- United States
- Prior art keywords
- speed
- output shaft
- drivetrain
- gearset
- speed ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2054—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0061—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
- B60L50/62—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
- B60W10/115—Stepped gearings with planetary gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0403—Synchronisation before shifting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/36—Temperature of vehicle components or parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/02—Clutches
- B60W2710/021—Clutch engagement state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/1005—Transmission ratio engaged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0403—Synchronisation before shifting
- F16H2061/0422—Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/2002—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
- F16H2200/2007—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2306/00—Shifting
- F16H2306/40—Shifting activities
- F16H2306/48—Synchronising of new gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/0806—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/68—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
- F16H61/684—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
- F16H61/686—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/909—Gearing
- Y10S903/91—Orbital, e.g. planetary gears
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/915—Specific drive or transmission adapted for hev
- Y10S903/917—Specific drive or transmission adapted for hev with transmission for changing gear ratio
- Y10S903/919—Stepped shift
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/945—Characterized by control of gearing, e.g. control of transmission ratio
Definitions
- This invention relates to an electrically-powered drivetrain configuration for a vehicle, and more particularly to a multiple ratio transmission driven by a pair of electric motors.
- an electric motor is drivingly coupled to the vehicle wheels through a transmission gear arrangement, and electric power for operating the motor is obtained from an engine-driven generator, storage batteries, or a fuel cell, for example.
- the transmission may be designed to provide two or more speed ratios, much like a transmission for an internal combustion engine. In such case, shifting from one speed ratio to another can be performed either by using hydraulically-activated clutches to absorb the shift energy or by mechanically shifting the transmission during an input power interruption.
- the hydraulic approach significantly increases the cost of the drivetrain, while the mechanical approach requires an undesired power interruption. Accordingly, what is desired is a series drivetrain that has the cost advantages of the mechanical approach, without a power interruption.
- the present invention is directed to an improved series electric drivetrain in which a multiple speed, mechanically-shifted transmission is driven by a pair of electric motors, and where the input power is provided by both electric motors during operation in any given speed ratio, and by only one of the electric motors during shifting between speed ratios.
- the electric motors are each rated at one-half of the continuous input power requirement of the drivetrain, and one of the motors is released from the output during shifting while the other carries a peak load of twice the continuous rating.
- a mechanical clutch is synchronously engaged to complete the shift, and the motors resume a shared supply of the transmission input power. In this way, the cost advantages of a mechanically-shifted transmission are realized without requiring a power interruption during transmission shifting.
- FIG. 1 is a schematic representation of a preferred drive arrangement according to this invention, including a three-speed series transmission driven by a pair of electric drive motors, and an engine-driven generator for supplying electric power to the drive motors.
- FIG. 2 Graphs A and B, depict the speeds of the electrical motors, the engine, the generator, and the transmission output shaft of the drivetrain depicted in FIG. 1, all as a function of vehicle speed.
- the reference numeral 10 generally designates a series electric vehicle drivetrain according to this invention.
- the drivetrain 10 includes two electric motors 12 , 14 coupled to an output shaft 16 through a three-speed planetary transmission 18 .
- the output shaft 16 is coupled to the vehicle drive wheels through a conventional differential gearset (not shown).
- the motors 12 , 14 are configured as induction machines, each having a fixed stator 12 a, 14 a, and a rotor 12 b, 14 b mounted on a respective transmission sleeve shaft 40 , 42 .
- the motors 12 and 14 share the drivetrain input load, and preferably, each is designed to continuously supply one-half of the input power requirement.
- electrical power for driving the electric motors 12 , 14 is obtained from the combination of a storage battery 20 and a generator 22 mechanically driven by an internal combustion engine 24 via a simple gear arrangement 26 .
- the battery 20 and generator output windings are coupled to a microprocessor-based electronic control unit (ECU) 28 , which includes suitable inverter circuitry for charging battery 20 and for energizing the electric motors 12 , 14 via lines 30 , 32 in response to various input signals, such as a driver torque request signal (TQ) on line 34 and an output shaft speed signal (OS) on line 36 .
- TQ driver torque request signal
- OS output shaft speed signal
- the ECU 28 may also control the running speed of engine 24 , as indicated by line 38 .
- the transmission 18 includes two coupled planetary gearsets 50 and 52 , and two friction or dog-type clutch mechanisms 54 , 56 .
- each planetary gearset 50 , 52 includes an outer (ring) gear circumscribing an inner (sun) gear, and a plurality of pinion gears rotatably mounted on a carrier such that the pinion gears meshingly engage both the outer gear and the inner gear.
- the gearset 50 includes a ring gear 60 , a sun gear 62 , and a set of pinion gears 64 mounted on a carrier 66 ; and the gearset 52 includes a ring gear 68 , a sun gear 70 , and a set of pinion gears 72 mounted on a carrier 74 .
- the ring gear 60 and planet carrier 74 are coupled to the output shaft 16
- sun gear 62 is coupled to the sleeve shaft 40
- sun gear 70 is coupled to the sleeve shaft 42 .
- the clutch mechanism 54 includes a central disk 76 attached to planet carrier 66 for selectively coupling planet carrier 66 to a grounded shaft 78 via clutch C 1 or to sleeve shaft 40 via clutch C 2 .
- the clutch mechanism 56 includes a central disk 80 attached to ring gear 68 for selectively coupling ring gear 68 to sleeve shaft 42 via clutch C 3 or a grounded sleeve shaft 82 via clutch C 4 .
- a first configuration providing Reverse, Neutral and a first (1 st ) forward speed ratios is established by engaging clutches C 1 and C 4 .
- a second configuration providing a second (2 nd ) forward speed ratio is established by engaging clutches C 1 and C 3
- a third configuration providing a third (3 rd ) forward speed ratio is established by engaging clutches C 2 and C 3 . Shifting among the forward speed ratios is achieved by releasing one of the engaged clutches to release a respective electric machine, bringing the speed of the released electric machine to a post-shift speed, and then synchronously engaging a clutch associated with the new speed ratio.
- shifting from 1 st to 2 nd involves (1) releasing clutch C 4 , (2) decelerating motor 14 to a post-shift speed, and (3) synchronously engaging clutch C 3 .
- the vehicle continues to accelerate during each such shift due to the torque produced by unreleased motor, and the motors 12 and 14 share the load torque except during shifting.
- Graph A depicts the speed of engine 24 as the dashed trace 90 and the speed of generator 22 as the solid trace 92 , both as a function of vehicle speed.
- Graph B depicts the speed of machine 12 as the solid trace 94 , the speed of machine 14 as the dashed trace 96 , and the speed of output shaft 16 as the chain-dot trace 98 , all as a function of vehicle speed.
- the shift from 1 st to 2 nd occurs in the vehicle speed interval V 1 -V 2
- the shift from 2 nd to 3 rd occurs in the vehicle speed interval V 3 -V 4 .
- the load torque is shared in this way by motors 12 and 14 until the speed of motor 14 reaches a limit speed +Smax at vehicle speed V 1 .
- clutch C 4 is released, and motor 14 is decelerated until it reaches the output shaft speed, which occurs at vehicle speed V 2 .
- the entire load torque is borne by motor 12 , which continues to be driven in the negative direction as shown.
- the load torque of motor 12 will increase to approximately twice its continuous rating during the shift, but the time required to decelerate motor 14 to the output shaft speed is relatively short (since only the inertia of the motor 14 and gearset 52 have to be overcome), and the temporarily elevated loading of motor 12 can be easily sustained without damage or overheating.
- the speed of motor 14 reaches the output shaft speed, the ring gear 68 , sun gear 70 and planet carrier 74 of gearset 52 all rotate at the output shaft speed, allowing the clutch C 3 to be synchronously engaged.
- motors 12 and 14 share the load torque, with motor 12 still being driven in the negative direction, and motor 14 still being driven in the positive direction at the speed of output shaft 16 .
- the 2 nd speed ratio is maintained until motor 12 reaches a limit speed ⁇ Smax at vehicle speed V 3 .
- clutch C 2 is released, and motor 12 is decelerated to zero speed and then accelerated until it reaches the output shaft speed, which occurs at vehicle speed V 4 .
- the entire load torque is borne by motor 14 , which continues to be driven in the positive direction as shown.
- the load torque of motor 14 will increase to approximately twice its continuous rating during the shift, but the time required to bring motor 12 to the output shaft speed is relatively short (since only the inertia of the motor 12 and gearset 50 have to be overcome), and the temporarily elevated loading of motor 14 can be easily sustained without damage or overheating.
- the speed of motor 12 reaches the output shaft speed, the ring gear 60 , sun gear 62 and planet carrier 66 of gearset 50 all rotate at the output shaft speed, allowing clutch C 2 to be synchronously engaged. Thereafter, the motors 12 and 14 share the load torque, with both motors 12 and 14 being driven in the positive direction, at the speed of output shaft 16 .
- the present invention provides an improved series electric drivetrain in which a multiple speed, mechanically-shifted transmission is driven by a pair of electric motors, and where the input power is provided by both electric motors during operation in any given speed ratio, and by only one of the electric motors during shifting between speed ratios.
- the motor not providing input power is released from the output and accelerated or decelerated to a post-shift speed equal to the output shaft speed.
- a clutch is synchronously engaged to complete the shift, and the motors resume a shared supply of the transmission input power.
- the clutches are synchronously engaged and disengaged for each of the shifts, the clutches C 1 -C 4 may be implemented with simple mechanically-activated friction clutches, or dog or spline-type mechanical clutches. In this way, the cost advantages of a mechanically-shifted transmission are realized without requiring a power interruption during transmission shifting.
- the engine 24 and generator 22 may be replaced with an alternate electrical power source, such as a fuel cell.
- the transmission may be configured to provide a different number of speed ratios; for example, a two-speed gearset can be achieved with a single planetary gearset, with motor 12 connected directly to output shaft 16 , and motor 14 coupled to gearset 52 as shown in FIG. 1.
- a four-speed gearset can be achieved by coupling the planet carriers of both gearsets 50 , 52 to the output shaft 16 , and using four discrete clutches to selectively ground the ring gears 60 , 68 , and to couple the planet carrier and sun gear of each gearset.
- four discrete clutches to selectively ground the ring gears 60 , 68 , and to couple the planet carrier and sun gear of each gearset.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Structure Of Transmissions (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
- This invention relates to an electrically-powered drivetrain configuration for a vehicle, and more particularly to a multiple ratio transmission driven by a pair of electric motors.
- In a series electric drivetrain, an electric motor is drivingly coupled to the vehicle wheels through a transmission gear arrangement, and electric power for operating the motor is obtained from an engine-driven generator, storage batteries, or a fuel cell, for example. To minimize the power requirements of the electric motor, the transmission may be designed to provide two or more speed ratios, much like a transmission for an internal combustion engine. In such case, shifting from one speed ratio to another can be performed either by using hydraulically-activated clutches to absorb the shift energy or by mechanically shifting the transmission during an input power interruption. The hydraulic approach significantly increases the cost of the drivetrain, while the mechanical approach requires an undesired power interruption. Accordingly, what is desired is a series drivetrain that has the cost advantages of the mechanical approach, without a power interruption.
- The present invention is directed to an improved series electric drivetrain in which a multiple speed, mechanically-shifted transmission is driven by a pair of electric motors, and where the input power is provided by both electric motors during operation in any given speed ratio, and by only one of the electric motors during shifting between speed ratios. Preferably, the electric motors are each rated at one-half of the continuous input power requirement of the drivetrain, and one of the motors is released from the output during shifting while the other carries a peak load of twice the continuous rating. When the released motor has decelerated to the post-shift speed, a mechanical clutch is synchronously engaged to complete the shift, and the motors resume a shared supply of the transmission input power. In this way, the cost advantages of a mechanically-shifted transmission are realized without requiring a power interruption during transmission shifting.
- FIG. 1 is a schematic representation of a preferred drive arrangement according to this invention, including a three-speed series transmission driven by a pair of electric drive motors, and an engine-driven generator for supplying electric power to the drive motors.
- FIG. 2, Graphs A and B, depict the speeds of the electrical motors, the engine, the generator, and the transmission output shaft of the drivetrain depicted in FIG. 1, all as a function of vehicle speed.
- Referring to FIG. 1, the
reference numeral 10 generally designates a series electric vehicle drivetrain according to this invention. Thedrivetrain 10 includes twoelectric motors output shaft 16 through a three-speedplanetary transmission 18. Theoutput shaft 16, in turn, is coupled to the vehicle drive wheels through a conventional differential gearset (not shown). In the illustrated embodiment, themotors fixed stator rotor transmission sleeve shaft motors electric motors storage battery 20 and agenerator 22 mechanically driven by aninternal combustion engine 24 via asimple gear arrangement 26. Thebattery 20 and generator output windings are coupled to a microprocessor-based electronic control unit (ECU) 28, which includes suitable inverter circuitry forcharging battery 20 and for energizing theelectric motors lines line 34 and an output shaft speed signal (OS) online 36. The ECU 28 may also control the running speed ofengine 24, as indicated byline 38. - The
transmission 18 includes two coupledplanetary gearsets type clutch mechanisms planetary gearset gearset 50 includes aring gear 60, asun gear 62, and a set ofpinion gears 64 mounted on acarrier 66; and thegearset 52 includes aring gear 68, asun gear 70, and a set ofpinion gears 72 mounted on acarrier 74. As shown in FIG. 1, thering gear 60 andplanet carrier 74 are coupled to theoutput shaft 16,sun gear 62 is coupled to thesleeve shaft 40, andsun gear 70 is coupled to thesleeve shaft 42. Theclutch mechanism 54 includes acentral disk 76 attached toplanet carrier 66 for selectivelycoupling planet carrier 66 to a groundedshaft 78 via clutch C1 or tosleeve shaft 40 via clutch C2. Similarly, theclutch mechanism 56 includes acentral disk 80 attached toring gear 68 for selectivelycoupling ring gear 68 tosleeve shaft 42 via clutch C3 or a groundedsleeve shaft 82 via clutch C4. - A first configuration providing Reverse, Neutral and a first (1st) forward speed ratios is established by engaging clutches C1 and C4. A second configuration providing a second (2nd) forward speed ratio is established by engaging clutches C1 and C3, and a third configuration providing a third (3rd) forward speed ratio is established by engaging clutches C2 and C3. Shifting among the forward speed ratios is achieved by releasing one of the engaged clutches to release a respective electric machine, bringing the speed of the released electric machine to a post-shift speed, and then synchronously engaging a clutch associated with the new speed ratio. For example, shifting from 1st to 2nd involves (1) releasing clutch C4, (2) decelerating
motor 14 to a post-shift speed, and (3) synchronously engaging clutch C3. The vehicle continues to accelerate during each such shift due to the torque produced by unreleased motor, and themotors - The above-described operation for forward vehicle movement is now described in reference to Graphs A-B of FIG. 2 in the context of a full power acceleration. Graph A depicts the speed of
engine 24 as thedashed trace 90 and the speed ofgenerator 22 as thesolid trace 92, both as a function of vehicle speed. Graph B depicts the speed ofmachine 12 as thesolid trace 94, the speed ofmachine 14 as thedashed trace 96, and the speed ofoutput shaft 16 as the chain-dot trace 98, all as a function of vehicle speed. The shift from 1st to 2nd occurs in the vehicle speed interval V1-V2, while the shift from 2nd to 3rd occurs in the vehicle speed interval V3-V4. - When the vehicle is stationary, the clutches C1 and C4 are engaged to ground the planet carrier 99 of
gearset 50 and thering gear 68 ofgearset 52. Theengine 24 idles at idle speed ESi, andgenerator 22 is driven at an idle speed of GSi, as indicated in Graph A. At such point, themotors output shaft 16 is driven in a positive direction to produce forward vehicle movement by drivingmotor 12 in a negative direction, andmotor 14 in a positive direction, as indicated bytraces motors motor 14 reaches a limit speed +Smax at vehicle speed V1. At such point, clutch C4 is released, andmotor 14 is decelerated until it reaches the output shaft speed, which occurs at vehicle speed V2. During this interval, the entire load torque is borne bymotor 12, which continues to be driven in the negative direction as shown. If themotors motor 12 will increase to approximately twice its continuous rating during the shift, but the time required to deceleratemotor 14 to the output shaft speed is relatively short (since only the inertia of themotor 14 andgearset 52 have to be overcome), and the temporarily elevated loading ofmotor 12 can be easily sustained without damage or overheating. When the speed ofmotor 14 reaches the output shaft speed, thering gear 68,sun gear 70 andplanet carrier 74 ofgearset 52 all rotate at the output shaft speed, allowing the clutch C3 to be synchronously engaged. Thereafter, themotors motor 12 still being driven in the negative direction, andmotor 14 still being driven in the positive direction at the speed ofoutput shaft 16. The 2nd speed ratio is maintained untilmotor 12 reaches a limit speed −Smax at vehicle speed V3. At such point, clutch C2 is released, andmotor 12 is decelerated to zero speed and then accelerated until it reaches the output shaft speed, which occurs at vehicle speed V4. During this interval, the entire load torque is borne bymotor 14, which continues to be driven in the positive direction as shown. Again, if themotors motor 14 will increase to approximately twice its continuous rating during the shift, but the time required to bringmotor 12 to the output shaft speed is relatively short (since only the inertia of themotor 12 andgearset 50 have to be overcome), and the temporarily elevated loading ofmotor 14 can be easily sustained without damage or overheating. When the speed ofmotor 12 reaches the output shaft speed, thering gear 60,sun gear 62 andplanet carrier 66 ofgearset 50 all rotate at the output shaft speed, allowing clutch C2 to be synchronously engaged. Thereafter, themotors motors output shaft 16. - In summary, the present invention provides an improved series electric drivetrain in which a multiple speed, mechanically-shifted transmission is driven by a pair of electric motors, and where the input power is provided by both electric motors during operation in any given speed ratio, and by only one of the electric motors during shifting between speed ratios. During a shift, the motor not providing input power is released from the output and accelerated or decelerated to a post-shift speed equal to the output shaft speed. When the released motor reaches the post-shift speed, a clutch is synchronously engaged to complete the shift, and the motors resume a shared supply of the transmission input power. Since the clutches are synchronously engaged and disengaged for each of the shifts, the clutches C1-C4 may be implemented with simple mechanically-activated friction clutches, or dog or spline-type mechanical clutches. In this way, the cost advantages of a mechanically-shifted transmission are realized without requiring a power interruption during transmission shifting.
- While the present invention has been described in reference to the illustrated embodiments, it is expected that various modifications in addition to those mentioned above will occur to those skilled in the art. For example, the
engine 24 andgenerator 22 may be replaced with an alternate electrical power source, such as a fuel cell. Also, the transmission may be configured to provide a different number of speed ratios; for example, a two-speed gearset can be achieved with a single planetary gearset, withmotor 12 connected directly tooutput shaft 16, andmotor 14 coupled togearset 52 as shown in FIG. 1. By way of further example, a four-speed gearset can be achieved by coupling the planet carriers of bothgearsets output shaft 16, and using four discrete clutches to selectively ground thering gears
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/921,827 US6524215B1 (en) | 2001-08-06 | 2001-08-06 | Multiple ratio series electric vehicle drivetrain |
DE60223631T DE60223631T2 (en) | 2001-08-06 | 2002-06-04 | Multi-speed serial electric vehicle drive |
EP02012299A EP1283382B1 (en) | 2001-08-06 | 2002-06-04 | Multiple ratio series electric vehicle drivetrain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/921,827 US6524215B1 (en) | 2001-08-06 | 2001-08-06 | Multiple ratio series electric vehicle drivetrain |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030027682A1 true US20030027682A1 (en) | 2003-02-06 |
US6524215B1 US6524215B1 (en) | 2003-02-25 |
Family
ID=25446032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/921,827 Expired - Fee Related US6524215B1 (en) | 2001-08-06 | 2001-08-06 | Multiple ratio series electric vehicle drivetrain |
Country Status (3)
Country | Link |
---|---|
US (1) | US6524215B1 (en) |
EP (1) | EP1283382B1 (en) |
DE (1) | DE60223631T2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015219462A1 (en) * | 2015-10-08 | 2017-04-13 | Volkswagen Aktiengesellschaft | Hybrid powertrain for a motor vehicle |
US9878638B2 (en) | 2013-04-27 | 2018-01-30 | Audi Ag | Method for operating a drive device of a motor vehicle and corresponding drive device |
WO2019060922A1 (en) * | 2017-09-25 | 2019-03-28 | St9 Gas And Oil, Llc | Electric drive pump for well stimulation |
US20220144057A1 (en) * | 2019-03-19 | 2022-05-12 | Zf Friedrichshafen Ag | Method for operating a drive train of a working machine, drive train for a working machine, and working machine |
US11598324B2 (en) | 2018-04-16 | 2023-03-07 | St9 Gas And Oil, Llc | Electric drive pump for well stimulation |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2379721A (en) * | 2001-09-12 | 2003-03-19 | Luk Lamellen & Kupplungsbau | Automated transmission system |
US6662890B2 (en) * | 2002-02-26 | 2003-12-16 | General Motors Corporation | Vehicle transmission with a fuel cell power source and a multi-range transmission |
CN101844558B (en) * | 2002-12-25 | 2012-11-07 | 丰田自动车株式会社 | Control device of hybrid drive unit |
US6827165B2 (en) * | 2003-02-11 | 2004-12-07 | General Motors Corporation | Electro-mechanical powertrain with a fuel cell transmission |
US20060112781A1 (en) * | 2004-11-30 | 2006-06-01 | Brian Kuras | Multi-motor/multi-range torque transmitting power system |
US20060145482A1 (en) * | 2005-01-06 | 2006-07-06 | Bob Roethler | Vehicle powertrain that compensates for a prime mover having slow transient response |
US7166050B2 (en) * | 2005-02-15 | 2007-01-23 | General Motors Corporation | Powertrain with an electrically-variable transmission |
US7475747B2 (en) * | 2005-06-03 | 2009-01-13 | Paul J. Plishner | Electric or hybrid vehicle with a spare electric motor power source |
DE102005027117A1 (en) * | 2005-06-10 | 2006-12-14 | Zf Friedrichshafen Ag | Electric drive system for a vehicle with anti-slip steering, transmission unit and vehicle |
US7273435B2 (en) * | 2005-09-29 | 2007-09-25 | Gm Global Technology Operations, Inc. | Multi-mode electrically variable transmissions having two planetary gear sets with one fixed interconnection and clutched input |
JP5001566B2 (en) * | 2006-03-23 | 2012-08-15 | 三菱ふそうトラック・バス株式会社 | Electric vehicle control device |
US7363995B2 (en) * | 2006-05-01 | 2008-04-29 | American Axle & Manufacturing, Inc. | Overrunning clutch and method of controlling engagement of same |
US7377343B2 (en) * | 2006-05-01 | 2008-05-27 | American Axle & Manufacturing, Inc. | Centrifugal clutch |
US7364524B2 (en) * | 2006-05-01 | 2008-04-29 | American Axel & Manufacturing, Inc. | Driveline coupling for electric module |
US7559390B2 (en) * | 2006-05-01 | 2009-07-14 | American Axle & Manufacturing, Inc. | Electronic all-wheel drive module with overrunning clutch differential |
KR100756715B1 (en) | 2006-06-26 | 2007-09-07 | 현대자동차주식회사 | Power train of an hybrid electric vehicle and manipulating method thereof |
US8127873B1 (en) * | 2007-06-26 | 2012-03-06 | Walsh Robert D | Electric powered automobile/wheel turbine motor |
US8214094B2 (en) * | 2008-12-03 | 2012-07-03 | Southwest Research Institute | Hybrid system for motor vehicle with internal combustion engine and motor-generator |
WO2012058387A1 (en) | 2010-10-28 | 2012-05-03 | Amp Electric Vehicles Inc. | Drive module and manifold for electric motor drive assembly |
US8740745B2 (en) * | 2011-03-23 | 2014-06-03 | Toyota Jidosha Kabushiki Kaisha | Vehicle drive device |
DE102011051625B4 (en) * | 2011-07-07 | 2024-07-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Hybrid powertrain, electric machine arrangement and motor vehicle |
RU2015125350A (en) | 2012-11-29 | 2017-01-11 | Мак Тракс, Инк. | SEQUENTIAL HYBRID TRANSMISSION AND TRANSMISSION METHOD FOR SUCH TRANSMISSION |
US9481256B2 (en) | 2014-01-30 | 2016-11-01 | Amp Electric Vehicles Inc. | Onboard generator drive system for electric vehicles |
US11173781B2 (en) | 2019-12-20 | 2021-11-16 | Allison Transmission, Inc. | Component alignment for a multiple motor mixed-speed continuous power transmission |
US11331991B2 (en) | 2019-12-20 | 2022-05-17 | Allison Transmission, Inc. | Motor configurations for multiple motor mixed-speed continuous power transmission |
US11421759B2 (en) | 2020-06-02 | 2022-08-23 | Allison Transmission, Inc. | Output gearing for a dual motor mixed-speed continuous power transmission |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE523122A (en) * | ||||
US5509491A (en) * | 1994-04-18 | 1996-04-23 | General Motors Corporation | Dual-motor electric drive system for vehicles |
US5558589A (en) * | 1995-07-20 | 1996-09-24 | General Motors Corporation | Two-mode, compound-split, electro-mechanical vehicular transmission |
US5571058A (en) * | 1995-08-08 | 1996-11-05 | General Motors Corporation | Four-mode, input-split, paralell, hybrid transmission |
US5730676A (en) * | 1996-10-22 | 1998-03-24 | General Motors Corporation | Three-mode, input-split hybrid transmission |
US5931757A (en) * | 1998-06-24 | 1999-08-03 | General Motors Corporation | Two-mode, compound-split electro-mechanical vehicular transmission |
US5935035A (en) * | 1998-06-24 | 1999-08-10 | General Motors Corporation | Electro-mechanical powertrain |
DE19903936A1 (en) * | 1998-11-03 | 2000-05-04 | Bosch Gmbh Robert | Gearboxes, in particular for motor vehicles |
US6090005A (en) * | 1999-07-26 | 2000-07-18 | General Motors Corporation | Two-mode, compound-split, vehicular transmission having both enhanced speed and enhanced tractive power |
US6300735B1 (en) * | 2000-03-22 | 2001-10-09 | Caterpillar Inc. | Control for a two degree of freedom electromechanical transmission and associated method |
US6358173B1 (en) * | 2000-06-12 | 2002-03-19 | General Motors Corporation | Two-mode, compound-split, electro-mechanical vehicular transmission having significantly reduced vibrations |
-
2001
- 2001-08-06 US US09/921,827 patent/US6524215B1/en not_active Expired - Fee Related
-
2002
- 2002-06-04 DE DE60223631T patent/DE60223631T2/en not_active Expired - Lifetime
- 2002-06-04 EP EP02012299A patent/EP1283382B1/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9878638B2 (en) | 2013-04-27 | 2018-01-30 | Audi Ag | Method for operating a drive device of a motor vehicle and corresponding drive device |
DE102015219462A1 (en) * | 2015-10-08 | 2017-04-13 | Volkswagen Aktiengesellschaft | Hybrid powertrain for a motor vehicle |
WO2019060922A1 (en) * | 2017-09-25 | 2019-03-28 | St9 Gas And Oil, Llc | Electric drive pump for well stimulation |
US11339769B2 (en) | 2017-09-25 | 2022-05-24 | St9 Gas And Oil, Llc | Electric drive pump for well stimulation |
US11598324B2 (en) | 2018-04-16 | 2023-03-07 | St9 Gas And Oil, Llc | Electric drive pump for well stimulation |
US20220144057A1 (en) * | 2019-03-19 | 2022-05-12 | Zf Friedrichshafen Ag | Method for operating a drive train of a working machine, drive train for a working machine, and working machine |
US12090830B2 (en) * | 2019-03-19 | 2024-09-17 | Zf Friedrichshafen Ag | Method for operating a drive train of a working machine, drive train for a working machine, and working machine |
Also Published As
Publication number | Publication date |
---|---|
EP1283382A2 (en) | 2003-02-12 |
US6524215B1 (en) | 2003-02-25 |
DE60223631T2 (en) | 2008-10-30 |
DE60223631D1 (en) | 2008-01-03 |
EP1283382A3 (en) | 2005-10-12 |
EP1283382B1 (en) | 2007-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6524215B1 (en) | Multiple ratio series electric vehicle drivetrain | |
US6478705B1 (en) | Hybrid electric powertrain including a two-mode electrically variable transmission | |
US8622863B2 (en) | Driving apparatus for hybrid vehicle | |
KR101916073B1 (en) | Power transmission system of hybrid electric vehicle | |
RU2653904C2 (en) | Method of management of a hybrid power transmission, vehicle and electronic device for hybrid power transmission control | |
US7128680B2 (en) | Compound differential dual power path transmission | |
US7255186B2 (en) | Hybrid drive system and vehicle equipped therewith | |
US6666787B2 (en) | Electromechanical transmission | |
US6527659B1 (en) | Two-mode input-compound split electromechanical transmission for front wheel drive vehicles | |
US8777790B2 (en) | Continuously variable transmission device having power split | |
US8177671B2 (en) | Control system for hybrid drive unit | |
US20070072723A1 (en) | Powertrain with series electric launch and electric power assisted performance | |
US20130196805A1 (en) | Hybrid powertrain with layshaft transmission and electric torque converter and method of controlling same | |
EP2210758A1 (en) | Hybrid power driving system and driving method thereof | |
JP4445185B2 (en) | Power transmission device for vehicle | |
US8021256B2 (en) | Electrically-variable transmission with compounded output gearing | |
JP2001246949A (en) | Automatic transmission of hybrid vehicle | |
US20130324340A1 (en) | Two-mode electrically-variable transmission with offset motor and two planetary gear sets | |
JP4120314B2 (en) | Power transmission device for vehicle | |
JP4400676B2 (en) | Hybrid vehicle drive system | |
JP2010143264A (en) | Automatic transmission | |
US6691808B2 (en) | Drive unit for motor vehicles | |
US8425359B1 (en) | Four-mode hybrid transmission | |
JP2004210116A (en) | Drive device of hybrid vehicle | |
JP4013863B2 (en) | Drive device for hybrid vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL MOTORS CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHMIDT, MICHAEL ROLAND;REEL/FRAME:012073/0394 Effective date: 20010727 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORATION;REEL/FRAME:022117/0022 Effective date: 20050119 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORATION;REEL/FRAME:022117/0022 Effective date: 20050119 |
|
AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0501 Effective date: 20081231 |
|
AS | Assignment |
Owner name: CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SEC Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013 Effective date: 20090409 Owner name: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECU Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013 Effective date: 20090409 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023238/0015 Effective date: 20090709 |
|
XAS | Not any more in us assignment database |
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0383 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0326 Effective date: 20090814 |
|
AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023155/0922 Effective date: 20090710 |
|
AS | Assignment |
Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023161/0864 Effective date: 20090710 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025245/0273 Effective date: 20100420 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025311/0680 Effective date: 20101026 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0222 Effective date: 20101027 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025780/0795 Effective date: 20101202 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: ALLISON TRANSMISSION, INC., INDIANA Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS LLC;REEL/FRAME:033659/0069 Effective date: 20140617 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150225 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:037023/0222 Effective date: 20141017 |