US20030021761A1 - Ionene polymers and their use in treating mucositis - Google Patents

Ionene polymers and their use in treating mucositis Download PDF

Info

Publication number
US20030021761A1
US20030021761A1 US10/051,766 US5176602A US2003021761A1 US 20030021761 A1 US20030021761 A1 US 20030021761A1 US 5176602 A US5176602 A US 5176602A US 2003021761 A1 US2003021761 A1 US 2003021761A1
Authority
US
United States
Prior art keywords
substituted
unsubstituted
group
mucositis
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/051,766
Inventor
Richard Fitzpatrick
Philip Goddard
Robert Barker
Keith Shackett
Jeffrey Klinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genzyme Corp
Original Assignee
Geltex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geltex Pharmaceuticals Inc filed Critical Geltex Pharmaceuticals Inc
Priority to US10/051,766 priority Critical patent/US20030021761A1/en
Assigned to GELTEX PHARMACEUTICALS, INC. reassignment GELTEX PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FITZPATRICK, RICHARD J., GODDARD, PHILIP J., KLINGER, JEFFREY D., BARKER, ROBERT H., JR., SHACKETT, KEITH K.
Publication of US20030021761A1 publication Critical patent/US20030021761A1/en
Assigned to GENZYME CORPORATION reassignment GENZYME CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: GELTEX PHARMACEUTICALS, INC.
Priority to US11/454,142 priority patent/US20070025954A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0627Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • A61K31/787Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/80Polymers containing hetero atoms not provided for in groups A61K31/755 - A61K31/795
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/02Local antiseptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • C08G73/0226Quaternisation of polyalkylene(poly)amines

Definitions

  • Oral mucositis is a common, painful, dose-limiting toxicity of drug and radiation therapy for cancer.
  • the disorder is characterized by breakdown of the oral mucosa, which results in the formation of ulcerative lesions.
  • ulcerations that accompany mucositis are frequent portals of entry for indigenous oral bacteria leading to sepsis or bacteremia.
  • Mucositis occurs to some degree in more than one third of all patients receiving anti-neoplastic drug therapy, and there are about one million occurrences of oral mucositis annually in the United States. The frequency and severity are significantly greater among patients who are treated with induction therapy for leukemia or with many of the conditioning regimens for bone marrow transplant.
  • Standard therapy for mucositis is predominantly palliative, including application of topical analgesics such as lidocaine and/or systemic administration of narcotics and antibiotics.
  • topical analgesics such as lidocaine and/or systemic administration of narcotics and antibiotics.
  • Chlorhexidine mouthwash is extensively used in oral mucositis treatment and prevention, however, its efficacy is decreased in saliva and it is relatively ineffective against the Gram negative bacteria that tend to colonize the oral cavity.
  • This invention relates to the use of polyionenes are effective in treating or preventing oral mucositis in hamsters.
  • the polyionene poly(4,4′-trimethylenebis(1-methylpiperidinium)-alt-octane (X) was effective in significantly reducing the severity of oral mucositis at a concentration as low as 1.0 mg/mL. This contrasts with chlorhexidine, which is commonly used to treat oral mucositis but was unsuccessful in treating the hamster model at a concentration of 0.5% (v/v). Based on this discovery, methods of treating and/or preventing mucositis in a mammal are disclosed.
  • the method of treating mucositis comprises administering to the mammal an effective amount of an ionene polymer.
  • the ionene polymer comprises a repeat unit represented by Structural Formula (I):
  • the polymer may be comprised of identical or non-identical repeat units so as to form either a homopolymer or a copolymer.
  • R 1 is a substituted or unsubstituted hydrocarbyl group.
  • R 1 is a substituted or unsubstituted arylene or lower alkylene group.
  • Each Q is represented by Structural Formula (II), (III), (IV), (V), or (VI):
  • Cy 1 and Cy 2 are each independently a quaternary nitrogen-containing monocyclic heteroaromatic ring or non-aromatic heterocyclic ring.
  • A is a covalent bond, or a substituted or unsubstituted lower alkylene group.
  • R 2 and R 3 are independently a substituted or unsubstituted aliphatic or aromatic group.
  • R 2 and R 3 are each independently an alkyl group or a hydroxyalkyl group.
  • Each X ⁇ is a physiologically acceptable anion.
  • x and y are integers, where x is an integer from 0-4 or from 1-4 and y is an integer from 1-5 or from 2-5.
  • the ionene polymers of the present invention have been found to be effective in the treatment of oral mucositis.
  • the ionene polymers of this invention additionally have been found to be non-irritating and low in toxicity to warm-blooded animals.
  • the present invention provides a method of using ionene polymers in pharmaceutical compositions for the treatment of mucositis.
  • “Ionene polymers” or “polyionenes,” as used in the present invention are cationic polymers or copolymers with quatemized nitrogen or phosphorus located in the main polymeric chain or backbone of the polymer, providing a positive charge.
  • Polyionenes can also be polyguanidines or copolymers thereof, where the cationic nitrogen atom is an imide nitrogen directly bonded to the polymer backbone.
  • the molecular weight of the ionene polymers of the present invention is generally not limiting, but each polymer typically comprises from 50 to about 500 repeat units.
  • Mucositis is defined herein as inflammation and/or ulceration of a mucous membrane.
  • the disclosed method can be used to treat mucositis in the stomach, intestines, and the like; however, it is particularly effective when used to treat oral mucositis.
  • Oral mucositis is characterized by inflammation of a mucous membrane of the oral cavity or lips and is typically accompanied by redness, swelling, and/or ulcerations of the mouth. Included in this description is oral mucositis that is a side-effect of anti-cancer therapies such as chemotherapy and radiotherapy, and oral mucositis that is a side effect of bone marrow transplantation or stem cell transplant or ablation.
  • Mucositis also includes mucositis that develops spontaneously in a healthy patient not receiving anti-cancer therapy, as in the case of a canker sore or mouth ulcer.
  • Treatment includes both prophylactic and therapeutic uses of the ionene polymers.
  • Desired prophylactic effects include prevention of and inhibition of mucositis, reduction in severity of mucositis, reduction in size of mucositis lesions compared with, for example, what is normally experienced by a mammal undergoing cancer therapy, and reduction in likelihood of developing mucositis.
  • Desired therapeutic effects include amelioration of the discomfort associated with the oral mucositis, and/or increased rate of healing of mucositis lesions compared with, for example, what is normally experienced by a mammal undergoing cancer therapy.
  • the invention provides, in one aspect, a method of treating mucositis or oral mucositis comprising administering an effective amount of an ionene polymer.
  • Q is represented by Structural Formula (IV) and Cy 1 is a piperidinium ring having a quaternary nitrogen additionally substituted with a hydrogen or a substituted or unsubstituted lower alkyl group. More preferably, the quaternary nitrogen is additionally substituted with a lower alkyl or hydroxy substituted lower alkyl group.
  • An example of a “piperidinium” ionene repeat unit is represented in Structural Formula (VII):
  • R 4 is hydrogen or a substituted or unsubstituted lower alkyl group and R 1 is as defined above.
  • a specific example of a pip eridinium ionene repeat unit is shown in Structural Formula (VIII):
  • Q is represented by Structural Formula (V) and Cy 1 and Cy 2 are each piperidinium rings having a quaternary nitrogen additionally substituted independently with a hydrogen or a substituted or unsubstituted lower alkyl group and A is as defined above. More preferably, the quaternary nitrogen is additionally substituted with a lower alkyl or hydroxy substituted lower alkyl group.
  • An example of a “piperidinium” ionene repeat unit of this type is represented in Structural Formula (IX):
  • R 5 and R 6 are each independently hydrogen or a substituted or unsubstituted lower alkyl group.
  • R 5 and R 6 are each independently an alkyl group or a hydroxyalkyl group, and A is an unsubstituted straight chained lower alkylene group.
  • A is an unsubstituted straight chained lower alkylene group and R 1 is a substituted or unsubstituted straight chained lower alkylene or polyalkylene group optionally substituted with one or more hydroxyl groups, preferably an unsubstituted polyalkylene glycol or —CH 2 CHOH(CH 2 ) n CHOHCH 2 — where n is an integer ranging from 0 to 8.
  • Specific examples of “piperidinium” ionene repeat units are represented by the Structural Formulas (X), (XI), (XII), (XIII), (XIV), and (XV):
  • Q is represented by Structural Formula (V) and Cy 1 and Cy 2 are each pyridinium groups and A is as defined above.
  • a “pyridinium” ionene polymer of this type the polymer is characterized by repeat units represented by Structural Formula (XVI):
  • a and R 1 are as defined above.
  • A is an unsubstituted straight chained lower alkylene group.
  • R 1 is a substituted or unsubstituted straight chained lower alkylene or polyalkylene glycol group optionally substituted with one or more hydroxyl groups, preferably an unsubstituted polyalkylene or —CH 2 CHOH(CH 2 ) n CHOHCH 2 — where n is an integer ranging from 0 to 8.
  • An example of a repeat unit with these components is represented by Structural Formula (XVII):
  • pyridinium ionene polymers are represented by Structural Formulas (XVIII), (XIX), (XX), (XXI), (XXII), (XXIII), and (XXIV):
  • Another polyionene suitable for use in the present invention comprises a repeat unit where Q is represented by Structural Formula (II).
  • R 1 is preferably a substituted or unsubstituted phenylene, lower alkylene, polyalkylene glycol group, or —CH 2 CHOH(CH 2 ) n CHOHCH 2 —, where n is an integer ranging from 0 to 8, and R 2 and R 3 are as defined above. Even more preferably, R 1 is a substituted or substituted straight chained lower alkylene group or polyalkylene glycol optionally substituted with one or more hydroxyl groups.
  • Yet another polyionene suitable for use in the present invention comprises a repeat unit where Q is represented by Structural Formula (III).
  • Q is represented by Structural Formula (III)
  • R 1 is preferably a substituted or unsubstituted arylene, lower alkylene, polalkylene glycol group, or —CH 2 CHOH(CH 2 ) n CHOHCH 2 —, where n is integer ranging from 0 to 8, and R 2 and R 3 are as defined above.
  • R 1 is a substituted or substituted straight chained lower alkylene group or polyalkylene glycol optionally substituted with one or more hydroxyl groups.
  • a specific example is represented by Structural Formula (XXV):
  • Q is represented by Structural Formula (VI).
  • R 1 is an unsubstituted lower alkylene or lower alkylene glycol group and x is 1 and y is 2; x is 1 and y is 3; x is 1 and y is 4; or x is 1 and y is 5.
  • Specific examples of guanidine ionene polymers and copolymers comprise repeat units of formulas (XXVI), (XXVII), (XXVIII), and (XXIX):
  • ionene polymers suitable for use in the disclosed method include homopolymers and copolymers.
  • the variables in each repeat unit of a copolymer of the present invention are independently selected.
  • the alkylene group represented by A in one repeat unit can differ from the alkylene group represented by A in other repeat units.
  • Q is identical in all repeat units and R 1 varies; R 1 is identical in all repeat units and Q varies; or Q and R 1 each vary among repeat units.
  • Q, R 1 , and A are identical in all repeat units.
  • ionene copolymer where Q varies within the polymer
  • Q is represented by Structural Formula (II) and Structural Formula (III).
  • This copolymer is comprised of repeat units represented by Structural Formulas (XXXa) and (XXXb):
  • R 1 , R 2 , R 3 and X are as defined above, and are chosen independently for each repeat unit. That is, R 1 , R 2 , R 3 , and X are not necessarily the same throughout the copolymer.
  • R 10 is a substituted or unsubstituted lower alkylene group having 1 to about 24 carbon atoms, preferably having about 4 to about 12 carbon atoms.
  • Each X ⁇ is a physiologically acceptable anion.
  • An “aliphatic group” is non-aromatic, consists solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds.
  • An aliphatic group may be straight chained, branched, or cyclic and typically contains between about 1 and about 24 carbon atoms, more typically between about 1 and about 12 carbon atoms.
  • Aliphatic groups are preferably lower alkyl groups or lower alkylene groups, which include C1-24 (preferably C1-C12) straight chained or branched saturated hydrocarbons.
  • An alkyl group is a saturated hydrocarbon in a molecule that is bonded to one other group in the molecule through a single covalent bond from one of its carbon atoms.
  • Examples of lower alkyl groups include methyl, ethyl, n-propyl, iso -propyl, n-butyl, sec-butyl and tert-butyl.
  • An oxyalkyl group is an alkyl group where an oxygen atom connects the alkyl group and one other group.
  • An alkylene group is a saturated hydrocarbon in a molecule that is bonded to two other groups in the molecule through single covalent bonds from two of its carbon atoms.
  • Examples of lower alkylene groups include methylene, ethylene, propylene, iso-propylene (—CH(CH 2 )CH 2 —), butylene, sec-butylene (—CH(CH 3 )CH 2 CH 2 —), and tert-butylene (—C(CH 3 ) 2 CH 2 —).
  • Aromatic groups include carbocyclic aromatic groups such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthracyl and 2-anthacyl, and heterocyclic aromatic groups such as N-imidazolyl, 2-imidazole, 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 2-pyranyl, 3-pyranyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-pyrazinyl, 2-thiazole, 4-thiazole, 5-thiazole, 2-oxazolyl, 4-oxazolyl and 5-oxazolyl.
  • Aromatic groups also include fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring or heteroaryl ring is fused to one or more other heteroaryl rings.
  • Examples include 2-benzothienyl, 3-benzothienyl, 2-benzofuranyl, 3-benzofuranyl, 2-indolyl, 3-indolyl, 2-quinolinyl, 3-quinolinyl, 2-benzothiazole, 2-benzooxazole, 2-benzimidazole, 2-quinolinyl, 3-quinolinyl, 1-isoquinolinyl, 3-quinolinyl, 1-isoindolyl and 3-isoindolyl.
  • Phenyl is a preferred aromatic group.
  • “Arylene” is an aromatic ring(s) moiety in a molecule that is bonded to two other groups in the molecule through single covalent bonds from two of its ring atoms. Examples include phenylene -[—(C 6 H 4 )—], thienylene [—(C 4 H 2 S)—] and furanylene [—(C 4 H 2 O)—].
  • a polyalkylene glycol is an alkylene group, which includes one or more ether linkages, where the chain includes a total of about 1 to about 12 carbon and oxygen atoms, and is optionally substituted with one or more hydroxyl groups.
  • the polyalkylene glycol is polyethylene glycol or polypropylene glycol.
  • a “hydrocarbyl group” is an alkylene or arylene group, i.e., —(CH 2 ) x — or —(CH 2 ) x C 6 H 4 (CH 2 ) x — where x is a positive integer (e.g., from 1 to about 30), preferably between 6 and about 30, more preferably between about 6 and about 15.
  • the carbon chain of the hydrocarbyl group may be optionally interrupted with any combination of ether (—O—), thioether (—S—), amine [—N(R a )—] or ammonium [—N + (R a R b )—] linkages.
  • R a and R b are independently —H, alkyl, substituted alkyl, phenyl, or substituted phenyl.
  • R a and R b can be the same or different, but are preferably the same.
  • hydrocarbyl groups include butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, 4-oxaoctylene, 4-azaoctylene, 4-thiaoctylene, 3,6-dioxaoctylene, 3,6-diazaoctylene, and 4,9-dioxadodecane.
  • Suitable substituents on an aliphatic, aromatic or benzyl group are those that do not substantially decrease the mucositis-treating properties of the molecule (e.g., increase the ED 50 by more than a factor of ten).
  • suitable substituents on an aliphatic, aromatic or benzyl group include, for example, halogen (—Br, —Cl, —I and —F) —OR, —CN, —NO 2 , —NR 2 , —COOR, —CONR 2 , —SO k R (k is 0, 1 or 2) and —NH—C( ⁇ NH)—NH 2 .
  • Each R is independently —H, an aliphatic group, a substituted aliphatic group, a benzyl group, a substituted benzyl group, an aromatic group or a substituted aromatic group, and preferably —H, a lower alkyl group, a benzylic group or a phenyl group.
  • a substituted benzylic group or aromatic group can also have an aliphatic or substituted aliphatic group as a substituent.
  • a substituted aliphatic group can also have a benzyl, substituted benzyl, aromatic or substituted aromatic group as a substituent.
  • a substituted aliphatic, substituted aromatic or substituted benzyl group can have more than one substituent.
  • a preferred substituent on an aliphatic group is —OH.
  • the anions represented by X in the polymer can be the same or different.
  • Each X ⁇ in a repeat unit can separately be a monovalent anion, i.e., an anion having a negative charge of one.
  • two or more X ⁇ s in the same repeat unit or in different repeat units, taken together, can represent an anion having a negative charge of two, three or more.
  • a polymer can comprise anions of different charges.
  • counteranions examples include sulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, proprionate, decanoate, caprylate, acrylate, formate, isobutyrate, caproate, heptanoate, propiolate, oxalate, malonate, succinate, fumarate, maleate, benzoate, sulfonate, phenylacetate, citrate, lactate, glycolate, tartrate and the like. Bromide and chloride are preferred. One anion can be exchanged for another by passing a solution containing the desired counter anion over the polymer.
  • physiologically acceptable salts of the polymers having repeat units represented by Formulas VI and XXVI-XXIX can be formed by reacting the polymer with a suitable acid. Examples include the corresponding acid of the salts listed in the previous paragraph.
  • the hydrochloride and hydrobromide salts are preferred.
  • Polymers represented by Formulas VI and XXVI-XXIX can have up to one molecule of hydrochloride or hydrobromide for every —NHC( ⁇ NH)NH— group in the repeat unit.
  • the polymer can be administered alone or in a pharmaceutical composition comprising the polymer, a pharmaceutically acceptable carrier, and optionally, one or more additional drugs, e.g., antibiotics or antimicrobials.
  • additional drugs e.g., antibiotics or antimicrobials.
  • antibiotics or antimicrobials examples include streptomycin, rifamycin, amphotericin B, griseofulvin, penicillin, cephalothin, cefazolin, chloramphenicol, fluconazole, clindamycin, erythromycin, bacitracin, vancomycin, ciprofloxiacin, tertracycline, and fusidic acid.
  • the polymers can be administered, for example, topically, orally, intranasally, by aerosol or rectally.
  • the form in which the polymer is administered for example, powder, tablet, capsule, solution, or emulsion, depends in part on the route by which it is administered.
  • the polymer is preferably administered orally as a gargle, an ointment, a swab, a gel, and the like.
  • Suitable carriers and diluents for an ionene polymer will be immediately apparent to persons skilled in the art.
  • These carrier and diluent materials include, for example, gelatin, lactose, starch, magnesium stearate, preservatives (stabilizers), sugars, emulsifying agents, salts and buffers.
  • examples of pharmaceutically acceptable carriers include, for example, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose, or a collagen matrix.
  • an effective amount of an ionene polymer to be administered will be determined on an individual basis, and will be determined at least in part, by consideration of the individual's size, the severity of symptoms to be treated and the result sought. As used herein, an effective amount refers to an appropriate amount of ionene polymer, which results in a desired therapeutic or prophylactic effect with respect to mucositis, as defined above.
  • Typical dosages for applied and/or ingested ionene polymers range from between about 0.05 ⁇ g/kg body weight to about 500 mg/kg body weight, more typically between about 0.1 ⁇ g/kg body weight to about 100 mg/kg body weight and even more typically between about 0.5 ⁇ g/kg body weight and about 10 mg/kg body weight.
  • the method of the claimed invention is particularly useful in the treatment of oral mucositis resulting from anti-cancer therapy, such as radiation therapy or chemotherapy, including induction therapy in leukemia patients.
  • anti-cancer therapy such as radiation therapy or chemotherapy
  • the treatment can be particularly beneficial for patients undergoing treatment for tumors of the head and neck, such as radiation patients.
  • treatment with an ionene polymer is initiated before the onset of the chemotherapy, during chemotherapy, after chemotherapy is complete but before symptoms appear or any combination of the above.
  • treatment with the ionene polymer is initiated before the onset of radiation therapy, during radiation exposure, after radiation exposure has been terminated (preferably no sooner than about one hour, more preferably five hours after termination) but before symptoms appear or any combination of the above.
  • the ionene polymer is administered after symptoms of mucositis (e.g., mouth ulcers) have appeared.
  • ionene polymers of the present invention can be prepared by a reacting a divalent electrophile such as an ⁇ , ⁇ -dihalogenated alkane or a corresponding diepoxide with a divalent nucleophile such as 4,4′-trimethylenedipiperidine or N,N,N′,N′-tetramethyl-1,3-propanediamine.
  • a divalent electrophile such as an ⁇ , ⁇ -dihalogenated alkane or a corresponding diepoxide
  • a divalent nucleophile such as 4,4′-trimethylenedipiperidine or N,N,N′,N′-tetramethyl-1,3-propanediamine.
  • the divalent nucleophile is an ⁇ , ⁇ -diaminoalkane or an ⁇ , ⁇ -aminoguanidine and the divalent electrophile typically is an ⁇ , ⁇ -biscyanoguanidine.
  • Polymerizing with one divalent electrophile and one divalent nucleophile results in a homopolymer.
  • Polymerizing with two or more divalent electrophiles and/or divalent nucleophiles results in a copolymer.
  • Such homopolymers and copolymers are encompassed within the present invention.
  • Polyionene polymers are typically “capped” at the termini with a partially reacted divalent electrophile or nucleophile or a monovalent electrophile or nucleophile.
  • a partially reacted divalent electrophile or nucleophile or a monovalent electrophile or nucleophile For example, when polymerizing 4,4′-trimethylenepyridine and 1,6-dibromohexane (or the corresponding epoxide), the resulting polymer is capped at either end with one of the following groups:
  • the capping group can be reacted further, for example, by hydrolyzing the epoxide or reacting the halide or epoxide with a nucleophile.
  • An example of a capping group for polyguanidine polymers or copolymers is represented by Structural Formula (XXXIV):
  • R 11 is a C2-C90 alkyl, C2-C90 oxyalkyl, or aromatic group and the symbol “*” represents the bond connecting the cap to the polymer or copolymer.
  • Ionene polymers of the invention may also be cross-linked with primary, secondary or other polyfunctional amine using means known in the art.
  • Ionene polymers can be cross-linked by polymerizing in the presence of a multivalent nucleophile (i.e., a compound with three or more nucleophilic groups such as a triamine or tetraamine) or a multivalent electrophile (i.e., a compound with three or more nucleophilic groups such as a trihalide or tetrahalide).
  • a multivalent nucleophile i.e., a compound with three or more nucleophilic groups such as a triamine or tetraamine
  • a multivalent electrophile i.e., a compound with three or more nucleophilic groups such as a trihalide or tetrahalide
  • 4,4′-Trimethylenebis(1-methylpiperidine)-alt-1,8-Dibromooctane was prepared by dissolving 4,4′-Trimethylenebis(1-methylpiperidine) (39.9 ml) in 30 ml of DMF in a 250 ml Erlenmeyer flask. 1,8-Dibromooctane (27.63 ml) was also added to the flask. The reaction was purged with nitrogen, covered with a septum, and stirred with a magnetic stir plate. The initial solution was clear. After approximately 20 minutes of stirring the reaction exothermed and solidified. A light yellow solid polymer formed and was left to further polymerize for a week. The polymer was dissolved in ⁇ 300 ml of deionized water and dialyzed (3500 molecular weight cut-off) in water 3 ⁇ and 1 ⁇ in water/MeOH 70%/30%.
  • N,N,N′,N′-Tetramethyl-1,3-propanediamine-alt-1,6-Dibromohexane was prepared by dissolving N,N,N′,N′-Tetramethyl-1,3-propanediamine (31.9 ml) in 40 ml of DMF in a 250 Erlenmeyer flask. 1,6-Dibromohexane (29.3 ml) was added to the flask. The reaction was purged with nitrogen, covered with a septum, and stirred with a magnetic stir plate. The initial solution was clear. A very quick reaction that exothermed and solidified occurred. An off white solid polymer formed and was left to further polymerize for a week. The polymer was dissolved in approximately 300 ml of deionized water and dialyzed (3500 MW) in water 3 ⁇ and 1 ⁇ in water/MeOH 70%/30%.
  • Hexamethylene biscyano guanidine (4.00 mmoles, 1.00 g) and 1,3-aminoguanidine (4.00 mmoles, 0.502 g) were added to a 40 ml vial with a septa-cap followed by 2 equivalents of concentrated HCl. The mixture was heated to 165° C. in an oil-bath for 3 h. The resulting orange solid was acidified with 1 eq. concentrated HCl, dissolved in water and purified by centrifugation through a 3K Macrosep filtration membrane.
  • 1,4-Bis(diphenylphosphino)butane (2.31 mmoles, 0.986 g) and 1,4-dibromobutane (2.31 mmoles, 0.276 g) were dissolved in DMF (1.333 ml) and shaken for 1 week.
  • the resulting viscous liquid was diluted with water and purified by centrifugation through a 3K Macrosep.
  • Hydroxyl-containing polymer (XVII) was cross-linked with 6 mole % 1,6-diisocyanatohexane in DMF to produce a gel. The gel was washed with 70% methanol-water and lyophilized.
  • N,N,N′,N′-Tetramethyl-1,3-propanediamine 34.64 mmoles, 5.795 ml
  • 1,9-dibromononane 34.64 mmoles, 7.048 ml
  • 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene 3.464 mmoles, 1.383 g
  • Trimethylenedipyridine 100 g was placed in a roundbottom flask. To the flask was added 1,2,7,8-diepoxyoctane (71.72g). The reaction was stirred under nitrogen at room temperature for 20 min. until nearly all the trimethylenedipyridine was dissolved. At this time, acetic acid (121 g) was slowly added dropwise over a 24 hr period. The reaction was stirred at room temperature for an additional four days. The resulting material was dark blue and highly viscous. The solid was dissolved in water and purified by tangential flow with a 1K MWCO membrane.
  • Oral mucositis is a frequent sequel to chemotherapeutic treatment for a number of cancers, as well as of irradiation for head and neck tumors. While the precise causes of mucositis remain unknown, oral microflora are thought to be involved in both the induction and exacerbation of disease.
  • the efficacy of polyionene polymers in treating oral mucositis was assayed according to a hamster model disclosed in Sonis et al., Oral Oncology 36:373 (2000), the entire teachings of which are incorporated herein by reference.
  • Ulcers may have a yellow/gray appearance due to a pseudomembrane. Cumulative size of ulcers should equal about 1 ⁇ 4 of the pouch. Severe erythema and vasodilation. 4 Cumulative size of ulcers should equal about 1 ⁇ 2 of the pouch. Loss of pliability. Severe erythema and vasodilation. 5 Virtually all of pouch is ulcerated. Loss of pliability (pouch can only partially be extracted from mouth).

Abstract

A method of using ionene polymers for the treatment of mucositis and oral mucositis in mammals is provided. The method comprises administering to a mammal an effective amount of an ionene polymer to prophylactically or therapeutically treat mucositis.

Description

    RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 60/262,586, filed on Jan. 18, 2001. The entire teachings of the above application are incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • Oral mucositis is a common, painful, dose-limiting toxicity of drug and radiation therapy for cancer. The disorder is characterized by breakdown of the oral mucosa, which results in the formation of ulcerative lesions. In granulocytopenic patients, the ulcerations that accompany mucositis are frequent portals of entry for indigenous oral bacteria leading to sepsis or bacteremia. Mucositis occurs to some degree in more than one third of all patients receiving anti-neoplastic drug therapy, and there are about one million occurrences of oral mucositis annually in the United States. The frequency and severity are significantly greater among patients who are treated with induction therapy for leukemia or with many of the conditioning regimens for bone marrow transplant. Among these individuals, moderate to severe mucositis (ulceration) is not unusual in more than three-quarters of patients. The incidence of mucositis is even higher in younger patients. Moderate to severe mucositis occurs in virtually all patients who receive radiation therapy for tumors of the head and neck and typically begins with cumulative exposures of 15 Gy and then worsens as total doses of 60 Gy or more are reached. [0002]
  • Clinically mucositis progresses through four stages: (1) An initial stage that is characterized by inflammatory changes of erythema and edema. Localized islands of hyperkeratosis may also be seen. This stage is symptomatically mild and may be successfully palliated by topical anesthetics. (2) Subsequently the mucosa breaks down and becomes eroded and atrophic with increasingly significant inflammatory changes. This stage is increasingly painful and may require systemic analgesic therapy in the form of NSAIDs or oral narcotics for adequate palliation. (3) The third stage of mucositis is the most symptomatic. Full thickness ulcers of the mucosa cause severe discomfort necessitating parenteral narcotic therapy. In addition, in the myelosuppressive patient, these ulcerations provide a systemic portal of entry for the oral microflora often leading to bacteremia and sepsis. Antimicrobial intervention is required. (4) Finally, spontaneous healing occurs 2-3 weeks after cessation of anti-neoplastic therapy. [0003]
  • The complexity of mucositis as a biological process has only been recently appreciated. The condition appears to represent a sequential interaction of oral mucosal cells and tissues including connective tissue, endothelium, epithelium, and inflammatory cells, pro-inflammatory cytokines and local environmental factors such as bacteria and saliva. Damage to epithelial and connective tissue induces release of inflammatory cytokines leading to mucosal damage. Additionally, both direct and indirect effects to epithelial cells result in either apoptotic or necrotic changes in the basal layer; differentiation into new epithelial cells is halted. The arrest of epithelial cell renewal leads to atrophy followed by ulceration. [0004]
  • Standard therapy for mucositis is predominantly palliative, including application of topical analgesics such as lidocaine and/or systemic administration of narcotics and antibiotics. No standard curative treatment for mucositis exists. Chlorhexidine mouthwash is extensively used in oral mucositis treatment and prevention, however, its efficacy is decreased in saliva and it is relatively ineffective against the Gram negative bacteria that tend to colonize the oral cavity. Thus, there is a need for new treatments that inhibit, prevent, reduce the severity, and/or promote the healing of mucositis. [0005]
  • SUMMARY OF THE INVENTION
  • This invention relates to the use of polyionenes are effective in treating or preventing oral mucositis in hamsters. For example, the polyionene poly(4,4′-trimethylenebis(1-methylpiperidinium)-alt-octane (X) was effective in significantly reducing the severity of oral mucositis at a concentration as low as 1.0 mg/mL. This contrasts with chlorhexidine, which is commonly used to treat oral mucositis but was unsuccessful in treating the hamster model at a concentration of 0.5% (v/v). Based on this discovery, methods of treating and/or preventing mucositis in a mammal are disclosed. [0006]
  • The method of treating mucositis comprises administering to the mammal an effective amount of an ionene polymer. In a preferred embodiment of the present invention, the ionene polymer comprises a repeat unit represented by Structural Formula (I): [0007]
    Figure US20030021761A1-20030130-C00001
  • The polymer may be comprised of identical or non-identical repeat units so as to form either a homopolymer or a copolymer. [0008]
  • R[0009] 1 is a substituted or unsubstituted hydrocarbyl group. Preferably, R1 is a substituted or unsubstituted arylene or lower alkylene group.
  • Each Q is represented by Structural Formula (II), (III), (IV), (V), or (VI): [0010]
    Figure US20030021761A1-20030130-C00002
  • Cy[0011] 1 and Cy2 are each independently a quaternary nitrogen-containing monocyclic heteroaromatic ring or non-aromatic heterocyclic ring.
  • A is a covalent bond, or a substituted or unsubstituted lower alkylene group. [0012]
  • R[0013] 2 and R3 are independently a substituted or unsubstituted aliphatic or aromatic group. Preferably, in the repeat units of formulae (II) and (III), R2 and R3 are each independently an alkyl group or a hydroxyalkyl group.
  • Each X[0014] , separately or taken together with other Xs, is a physiologically acceptable anion.
  • The values x and y are integers, where x is an integer from 0-4 or from 1-4 and y is an integer from 1-5 or from 2-5. [0015]
  • The ionene polymers of the present invention have been found to be effective in the treatment of oral mucositis. The ionene polymers of this invention additionally have been found to be non-irritating and low in toxicity to warm-blooded animals. [0016]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a method of using ionene polymers in pharmaceutical compositions for the treatment of mucositis. “Ionene polymers” or “polyionenes,” as used in the present invention, are cationic polymers or copolymers with quatemized nitrogen or phosphorus located in the main polymeric chain or backbone of the polymer, providing a positive charge. Polyionenes can also be polyguanidines or copolymers thereof, where the cationic nitrogen atom is an imide nitrogen directly bonded to the polymer backbone. The molecular weight of the ionene polymers of the present invention is generally not limiting, but each polymer typically comprises from 50 to about 500 repeat units. [0017]
  • Mucositis is defined herein as inflammation and/or ulceration of a mucous membrane. The disclosed method can be used to treat mucositis in the stomach, intestines, and the like; however, it is particularly effective when used to treat oral mucositis. Oral mucositis is characterized by inflammation of a mucous membrane of the oral cavity or lips and is typically accompanied by redness, swelling, and/or ulcerations of the mouth. Included in this description is oral mucositis that is a side-effect of anti-cancer therapies such as chemotherapy and radiotherapy, and oral mucositis that is a side effect of bone marrow transplantation or stem cell transplant or ablation. Mucositis also includes mucositis that develops spontaneously in a healthy patient not receiving anti-cancer therapy, as in the case of a canker sore or mouth ulcer. [0018]
  • Treatment includes both prophylactic and therapeutic uses of the ionene polymers. Desired prophylactic effects include prevention of and inhibition of mucositis, reduction in severity of mucositis, reduction in size of mucositis lesions compared with, for example, what is normally experienced by a mammal undergoing cancer therapy, and reduction in likelihood of developing mucositis. Desired therapeutic effects include amelioration of the discomfort associated with the oral mucositis, and/or increased rate of healing of mucositis lesions compared with, for example, what is normally experienced by a mammal undergoing cancer therapy. Thus, the invention provides, in one aspect, a method of treating mucositis or oral mucositis comprising administering an effective amount of an ionene polymer. [0019]
  • In a preferred embodiment of the present invention, Q is represented by Structural Formula (IV) and Cy[0020] 1 is a piperidinium ring having a quaternary nitrogen additionally substituted with a hydrogen or a substituted or unsubstituted lower alkyl group. More preferably, the quaternary nitrogen is additionally substituted with a lower alkyl or hydroxy substituted lower alkyl group. An example of a “piperidinium” ionene repeat unit is represented in Structural Formula (VII):
    Figure US20030021761A1-20030130-C00003
  • where R[0021] 4 is hydrogen or a substituted or unsubstituted lower alkyl group and R1 is as defined above. A specific example of a pip eridinium ionene repeat unit is shown in Structural Formula (VIII):
    Figure US20030021761A1-20030130-C00004
  • In another preferred embodiment, Q is represented by Structural Formula (V) and Cy[0022] 1 and Cy2 are each piperidinium rings having a quaternary nitrogen additionally substituted independently with a hydrogen or a substituted or unsubstituted lower alkyl group and A is as defined above. More preferably, the quaternary nitrogen is additionally substituted with a lower alkyl or hydroxy substituted lower alkyl group. An example of a “piperidinium” ionene repeat unit of this type is represented in Structural Formula (IX):
    Figure US20030021761A1-20030130-C00005
  • where A and R[0023] 1 are as defined above, and R5 and R6 are each independently hydrogen or a substituted or unsubstituted lower alkyl group. Preferably, R5 and R6 are each independently an alkyl group or a hydroxyalkyl group, and A is an unsubstituted straight chained lower alkylene group. Even more preferably, A is an unsubstituted straight chained lower alkylene group and R1 is a substituted or unsubstituted straight chained lower alkylene or polyalkylene group optionally substituted with one or more hydroxyl groups, preferably an unsubstituted polyalkylene glycol or —CH2CHOH(CH2)nCHOHCH2— where n is an integer ranging from 0 to 8. Specific examples of “piperidinium” ionene repeat units are represented by the Structural Formulas (X), (XI), (XII), (XIII), (XIV), and (XV):
    Figure US20030021761A1-20030130-C00006
  • In yet another preferred embodiment, Q is represented by Structural Formula (V) and Cy[0024] 1 and Cy2 are each pyridinium groups and A is as defined above. In one example of a “pyridinium” ionene polymer of this type, the polymer is characterized by repeat units represented by Structural Formula (XVI):
    Figure US20030021761A1-20030130-C00007
  • in which A and R[0025] 1 are as defined above. In a more preferred embodiment, A is an unsubstituted straight chained lower alkylene group. Even more preferably, A is an unsubstituted straight chained lower alkylene group and R1 is a substituted or unsubstituted straight chained lower alkylene or polyalkylene glycol group optionally substituted with one or more hydroxyl groups, preferably an unsubstituted polyalkylene or —CH2CHOH(CH2)nCHOHCH2— where n is an integer ranging from 0 to 8. An example of a repeat unit with these components is represented by Structural Formula (XVII):
    Figure US20030021761A1-20030130-C00008
  • Other specific examples of “pyridinium” ionene polymers are represented by Structural Formulas (XVIII), (XIX), (XX), (XXI), (XXII), (XXIII), and (XXIV): [0026]
    Figure US20030021761A1-20030130-C00009
  • Other specific examples of repeat units of polyionenes that can be used in the disclosed method are represented by Structural Formula (XXIII) above, wherein m=1 and n=0; m=1 and n=1; m=1 and n=2; m=1 and n=4; m=1 and n=5; m=1 and n—6; m=1 and n=8; m=2 and n=0; m—2 and n=1; m=2 and n=2; m=2 and n=4; m=2 and n=5; m=2 and n=6; m=2 and n=8; m—3 and n=0; m=3 and n=1; m=3 and n=2; m=3 and n=4; m=3 and n=5; m=3 and n=6; m=3 and n=8; m=4 and n=1; m=4 and n—1; m=4 and n—2; m=4 and n=4; m=4 and n=5; m=4 and n-6; m=4 and n—8; m=5 and n=1; m=5 and n=2; m=5 and n=2; m=5 and n—4; m=5 and n—5; m=5 and n=6; and m=5 and n=8. [0027]
  • Other specific examples of repeat units of polyionenes that can be used in the disclosed method are represented by Structural Formula (XXIV) above, wherein m=1 and n=0; m=1 and n=1; m=1 and n=2; m=1 and n=4; m=1 and n=5; m=1 and n—6; m=1 and n=8; m=2 and n=0; m=2 and n=1; m=2 and n=2; m=2 and n=4; m=2 and n=5; m=2 and n=6; m=2 and n=8; m=3 and n=0; m=3 and n=1; m=3 and n=2; m=3 and n=4; m=3 and n=5; m=3 and n=6; m=3 and n=8; m=4 and n=0; m=4 and n=1; m=4 and n=2; m=4 and n=4; m=4 and n=5; m=4 and n=6; m=4 and n=8; m=5 and n=0; m=5 and n=1; m=5 and n=2; m=5 and n=4; m=5 and n=5; m=5 and n=6; and m=5 and n=8. [0028]
  • Another polyionene suitable for use in the present invention comprises a repeat unit where Q is represented by Structural Formula (II). When Q is represented by Structural Formula (II), R[0029] 1 is preferably a substituted or unsubstituted phenylene, lower alkylene, polyalkylene glycol group, or —CH2CHOH(CH2)nCHOHCH2—, where n is an integer ranging from 0 to 8, and R2 and R3 are as defined above. Even more preferably, R1 is a substituted or substituted straight chained lower alkylene group or polyalkylene glycol optionally substituted with one or more hydroxyl groups.
  • Yet another polyionene suitable for use in the present invention comprises a repeat unit where Q is represented by Structural Formula (III). When Q is represented by Structural Formula (III), R[0030] 1 is preferably a substituted or unsubstituted arylene, lower alkylene, polalkylene glycol group, or —CH2CHOH(CH2)nCHOHCH2—, where n is integer ranging from 0 to 8, and R2 and R3 are as defined above. Even more preferably, R1 is a substituted or substituted straight chained lower alkylene group or polyalkylene glycol optionally substituted with one or more hydroxyl groups. A specific example is represented by Structural Formula (XXV):
    Figure US20030021761A1-20030130-C00010
  • In another embodiment of the present invention, Q is represented by Structural Formula (VI). Preferably, R[0031] 1 is an unsubstituted lower alkylene or lower alkylene glycol group and x is 1 and y is 2; x is 1 and y is 3; x is 1 and y is 4; or x is 1 and y is 5. Specific examples of guanidine ionene polymers and copolymers comprise repeat units of formulas (XXVI), (XXVII), (XXVIII), and (XXIX):
    Figure US20030021761A1-20030130-C00011
  • As noted above, ionene polymers suitable for use in the disclosed method include homopolymers and copolymers. The variables in each repeat unit of a copolymer of the present invention are independently selected. For example, in a copolymer, the alkylene group represented by A in one repeat unit can differ from the alkylene group represented by A in other repeat units. Alternatively, Q is identical in all repeat units and R[0032] 1 varies; R1 is identical in all repeat units and Q varies; or Q and R1 each vary among repeat units. In a homopolymer Q, R1, and A are identical in all repeat units.
  • In one example of an ionene copolymer where Q varies within the polymer, Q is represented by Structural Formula (II) and Structural Formula (III). This copolymer is comprised of repeat units represented by Structural Formulas (XXXa) and (XXXb): [0033]
    Figure US20030021761A1-20030130-C00012
    Figure US20030021761A1-20030130-C00013
  • where R[0034] 1, R2, R3 and X are as defined above, and are chosen independently for each repeat unit. That is, R1, R2, R3, and X are not necessarily the same throughout the copolymer.
  • In one example of an ionene copolymer of this type, the repeat units of Structural Formulae (XXXa) and (XXXb) alternate to form a repeat unit represented by Structural Formula (XXXI): [0035]
    Figure US20030021761A1-20030130-C00014
  • where R[0036] 10 is a substituted or unsubstituted lower alkylene group having 1 to about 24 carbon atoms, preferably having about 4 to about 12 carbon atoms. Each X, separately or taken together with other Xs, is a physiologically acceptable anion.
  • In another example of an ionene copolymer where Q varies within the copolymer, Q alternates between repeat units represented by Structural Formulae (II)-(V), (X)-(XV), or (XVII)-(XXII) and a repeat unit represented by Structural Formula (VI). One copolymer of this type is represented by Structural Formula (XXXII): [0037]
    Figure US20030021761A1-20030130-C00015
  • One example of a repeat unit of an ionene copolymer where Q is identical and R[0038] 1 varies is represented by Structural Formula (XXXIII):
    Figure US20030021761A1-20030130-C00016
  • An “aliphatic group” is non-aromatic, consists solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched, or cyclic and typically contains between about 1 and about 24 carbon atoms, more typically between about 1 and about 12 carbon atoms. [0039]
  • Aliphatic groups are preferably lower alkyl groups or lower alkylene groups, which include C1-24 (preferably C1-C12) straight chained or branched saturated hydrocarbons. An alkyl group is a saturated hydrocarbon in a molecule that is bonded to one other group in the molecule through a single covalent bond from one of its carbon atoms. Examples of lower alkyl groups include methyl, ethyl, n-propyl, iso -propyl, n-butyl, sec-butyl and tert-butyl. An oxyalkyl group is an alkyl group where an oxygen atom connects the alkyl group and one other group. An alkylene group is a saturated hydrocarbon in a molecule that is bonded to two other groups in the molecule through single covalent bonds from two of its carbon atoms. Examples of lower alkylene groups include methylene, ethylene, propylene, iso-propylene (—CH(CH[0040] 2)CH2—), butylene, sec-butylene (—CH(CH3)CH2CH2—), and tert-butylene (—C(CH3)2CH2—).
  • Aromatic groups include carbocyclic aromatic groups such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthracyl and 2-anthacyl, and heterocyclic aromatic groups such as N-imidazolyl, 2-imidazole, 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 2-pyranyl, 3-pyranyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-pyrazinyl, 2-thiazole, 4-thiazole, 5-thiazole, 2-oxazolyl, 4-oxazolyl and 5-oxazolyl. [0041]
  • Aromatic groups also include fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring or heteroaryl ring is fused to one or more other heteroaryl rings. Examples include 2-benzothienyl, 3-benzothienyl, 2-benzofuranyl, 3-benzofuranyl, 2-indolyl, 3-indolyl, 2-quinolinyl, 3-quinolinyl, 2-benzothiazole, 2-benzooxazole, 2-benzimidazole, 2-quinolinyl, 3-quinolinyl, 1-isoquinolinyl, 3-quinolinyl, 1-isoindolyl and 3-isoindolyl. [0042]
  • Phenyl is a preferred aromatic group. [0043]
  • “Arylene” is an aromatic ring(s) moiety in a molecule that is bonded to two other groups in the molecule through single covalent bonds from two of its ring atoms. Examples include phenylene -[—(C[0044] 6H4)—], thienylene [—(C4H2S)—] and furanylene [—(C4H2O)—].
  • A polyalkylene glycol is an alkylene group, which includes one or more ether linkages, where the chain includes a total of about 1 to about 12 carbon and oxygen atoms, and is optionally substituted with one or more hydroxyl groups. Preferably, the polyalkylene glycol is polyethylene glycol or polypropylene glycol. [0045]
  • A “hydrocarbyl group” is an alkylene or arylene group, i.e., —(CH[0046] 2)x— or —(CH2)xC6H4(CH2)x— where x is a positive integer (e.g., from 1 to about 30), preferably between 6 and about 30, more preferably between about 6 and about 15. The carbon chain of the hydrocarbyl group may be optionally interrupted with any combination of ether (—O—), thioether (—S—), amine [—N(Ra)—] or ammonium [—N+(RaRb)—] linkages. Ra and Rb are independently —H, alkyl, substituted alkyl, phenyl, or substituted phenyl. Ra and Rb can be the same or different, but are preferably the same. Examples of hydrocarbyl groups include butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, 4-oxaoctylene, 4-azaoctylene, 4-thiaoctylene, 3,6-dioxaoctylene, 3,6-diazaoctylene, and 4,9-dioxadodecane.
  • Suitable substituents on an aliphatic, aromatic or benzyl group are those that do not substantially decrease the mucositis-treating properties of the molecule (e.g., increase the ED[0047] 50 by more than a factor of ten). Examples of suitable substituents on an aliphatic, aromatic or benzyl group include, for example, halogen (—Br, —Cl, —I and —F) —OR, —CN, —NO2, —NR2, —COOR, —CONR2, —SOkR (k is 0, 1 or 2) and —NH—C(═NH)—NH2. Each R is independently —H, an aliphatic group, a substituted aliphatic group, a benzyl group, a substituted benzyl group, an aromatic group or a substituted aromatic group, and preferably —H, a lower alkyl group, a benzylic group or a phenyl group. A substituted benzylic group or aromatic group can also have an aliphatic or substituted aliphatic group as a substituent. A substituted aliphatic group can also have a benzyl, substituted benzyl, aromatic or substituted aromatic group as a substituent. A substituted aliphatic, substituted aromatic or substituted benzyl group can have more than one substituent. A preferred substituent on an aliphatic group is —OH.
  • The anions represented by X in the polymer can be the same or different. Each X[0048] in a repeat unit can separately be a monovalent anion, i.e., an anion having a negative charge of one. Alternatively, two or more Xs in the same repeat unit or in different repeat units, taken together, can represent an anion having a negative charge of two, three or more. A polymer can comprise anions of different charges. Examples of suitable counteranions include sulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, proprionate, decanoate, caprylate, acrylate, formate, isobutyrate, caproate, heptanoate, propiolate, oxalate, malonate, succinate, fumarate, maleate, benzoate, sulfonate, phenylacetate, citrate, lactate, glycolate, tartrate and the like. Bromide and chloride are preferred. One anion can be exchanged for another by passing a solution containing the desired counter anion over the polymer.
  • Also included in the present invention are physiologically acceptable salts of the polymers having repeat units represented by Formulas VI and XXVI-XXIX. Salts can be formed by reacting the polymer with a suitable acid. Examples include the corresponding acid of the salts listed in the previous paragraph. The hydrochloride and hydrobromide salts are preferred. Polymers represented by Formulas VI and XXVI-XXIX can have up to one molecule of hydrochloride or hydrobromide for every —NHC(═NH)NH— group in the repeat unit. [0049]
  • The polymer can be administered alone or in a pharmaceutical composition comprising the polymer, a pharmaceutically acceptable carrier, and optionally, one or more additional drugs, e.g., antibiotics or antimicrobials. Examples include streptomycin, rifamycin, amphotericin B, griseofulvin, penicillin, cephalothin, cefazolin, chloramphenicol, fluconazole, clindamycin, erythromycin, bacitracin, vancomycin, ciprofloxiacin, tertracycline, and fusidic acid. [0050]
  • The polymers can be administered, for example, topically, orally, intranasally, by aerosol or rectally. The form in which the polymer is administered, for example, powder, tablet, capsule, solution, or emulsion, depends in part on the route by which it is administered. For oral mucositis, the polymer is preferably administered orally as a gargle, an ointment, a swab, a gel, and the like. [0051]
  • Suitable carriers and diluents for an ionene polymer will be immediately apparent to persons skilled in the art. These carrier and diluent materials, either organic or inorganic in nature, include, for example, gelatin, lactose, starch, magnesium stearate, preservatives (stabilizers), sugars, emulsifying agents, salts and buffers. When applied directly to the lesion, examples of pharmaceutically acceptable carriers include, for example, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose, or a collagen matrix. [0052]
  • An effective amount of an ionene polymer to be administered will be determined on an individual basis, and will be determined at least in part, by consideration of the individual's size, the severity of symptoms to be treated and the result sought. As used herein, an effective amount refers to an appropriate amount of ionene polymer, which results in a desired therapeutic or prophylactic effect with respect to mucositis, as defined above. Typical dosages for applied and/or ingested ionene polymers range from between about 0.05 μg/kg body weight to about 500 mg/kg body weight, more typically between about 0.1 μg/kg body weight to about 100 mg/kg body weight and even more typically between about 0.5 μg/kg body weight and about 10 mg/kg body weight. [0053]
  • The method of the claimed invention is particularly useful in the treatment of oral mucositis resulting from anti-cancer therapy, such as radiation therapy or chemotherapy, including induction therapy in leukemia patients. The treatment can be particularly beneficial for patients undergoing treatment for tumors of the head and neck, such as radiation patients. For prophylactic treatment of mucositis resulting from chemotherapy, treatment with an ionene polymer is initiated before the onset of the chemotherapy, during chemotherapy, after chemotherapy is complete but before symptoms appear or any combination of the above. For prophylactic treatment of mucositis resulting from radiation therapy, treatment with the ionene polymer is initiated before the onset of radiation therapy, during radiation exposure, after radiation exposure has been terminated (preferably no sooner than about one hour, more preferably five hours after termination) but before symptoms appear or any combination of the above. For therapeutic treatment of mucositis resulting from radiation therapy or chemotherapy, the ionene polymer is administered after symptoms of mucositis (e.g., mouth ulcers) have appeared. [0054]
  • The method is preferably used with human patients, but can also be used with other mammals, such as companion animals (e.g., dogs, cats, and the like), farm animals (horses, cattle, goats, and the like) and laboratory animals (hamsters, mice, rats, and the like). ionene polymers of the present invention can be prepared by a reacting a divalent electrophile such as an α,ω-dihalogenated alkane or a corresponding diepoxide with a divalent nucleophile such as 4,4′-trimethylenedipiperidine or N,N,N′,N′-tetramethyl-1,3-propanediamine. When preparing a polyguanidine, the divalent nucleophile is an α,ω-diaminoalkane or an α,ω-aminoguanidine and the divalent electrophile typically is an α,ω-biscyanoguanidine. Polymerizing with one divalent electrophile and one divalent nucleophile results in a homopolymer. Polymerizing with two or more divalent electrophiles and/or divalent nucleophiles results in a copolymer. Such homopolymers and copolymers are encompassed within the present invention. [0055]
  • Polyionene polymers are typically “capped” at the termini with a partially reacted divalent electrophile or nucleophile or a monovalent electrophile or nucleophile. For example, when polymerizing 4,4′-trimethylenepyridine and 1,6-dibromohexane (or the corresponding epoxide), the resulting polymer is capped at either end with one of the following groups: [0056]
    Figure US20030021761A1-20030130-C00017
  • Optionally, the capping group can be reacted further, for example, by hydrolyzing the epoxide or reacting the halide or epoxide with a nucleophile. An example of a capping group for polyguanidine polymers or copolymers is represented by Structural Formula (XXXIV): [0057]
    Figure US20030021761A1-20030130-C00018
  • where R[0058] 11 is a C2-C90 alkyl, C2-C90 oxyalkyl, or aromatic group and the symbol “*” represents the bond connecting the cap to the polymer or copolymer.
  • Ionene polymers of the invention may also be cross-linked with primary, secondary or other polyfunctional amine using means known in the art. Ionene polymers can be cross-linked by polymerizing in the presence of a multivalent nucleophile (i.e., a compound with three or more nucleophilic groups such as a triamine or tetraamine) or a multivalent electrophile (i.e., a compound with three or more nucleophilic groups such as a trihalide or tetrahalide). [0059]
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. The invention will now be further and specifically described by the following non-limiting Examples.[0060]
  • EXAMPLES Example 1
  • Preparation of Poly(hexamethylenebiscyanoguanidine-alt-4,9-dioxadodecane) (XXVIII). [0061]
  • Hexamethylenebiscyanoguanidine (3.99 mmoles, 1.00 g) and 4,9-dioxa-1,12-dodecanediamine (3.99 mmoles, 0.848 ml) were added to a 40 ml vial with a septa-cap followed by 2 equivalents of concentrated HCl. The mixture was heated to 135-145° C. in a shaker overnight. The resulting clear yellow, brittle solid was dissolved in water and purified by centrifugation through a 3K Macrosep filtration membrane. [0062]
  • Example 2
  • Preparation of Poly(4,4′-trimethylenebis(1-methylpiperidinium)-alt-octane) (X). [0063]
  • 4,4′-Trimethylenebis(1-methylpiperidine)-alt-1,8-Dibromooctane was prepared by dissolving 4,4′-Trimethylenebis(1-methylpiperidine) (39.9 ml) in 30 ml of DMF in a 250 ml Erlenmeyer flask. 1,8-Dibromooctane (27.63 ml) was also added to the flask. The reaction was purged with nitrogen, covered with a septum, and stirred with a magnetic stir plate. The initial solution was clear. After approximately 20 minutes of stirring the reaction exothermed and solidified. A light yellow solid polymer formed and was left to further polymerize for a week. The polymer was dissolved in ˜300 ml of deionized water and dialyzed (3500 molecular weight cut-off) in water 3× and 1× in water/MeOH 70%/30%. [0064]
  • Example 3
  • Preparation of Poly(4-(dimethylamino)phenyldiphenylphosphonium-alt-dodecane) (XXXI, Where R10 is Dodecyl). [0065]
  • 4-(Dimethylamino)phenyldiphenylphosphine (1.73 mmoles, 0.529 g) and 1,12-dibromododecane (1.73 mmoles, 0.569 g) were dissolved in DMF (1 ml) and shaken for 1 week. The resulting viscous liquid was diluted with water and purified by centrifugation through a 3K Macrosep. [0066]
  • Example 4
  • Preparation of Poly(4,4′-trimethylenedipyridinium-alt-hexane) (XIX). [0067]
  • 4,4′-Trimethylenedipyridine (3.46 mmoles, 0.687 g) was added to a 40 ml vial followed by 2.3 ml of DMF/methanol (1:1 v:v). 1,6-dibromohexane (3.46 mmoles, 0.533 ml) was added and the vial was capped with a septa-cap. The vial was purged with nitrogen and placed in a shaker for 1 week. The resulting clear orange viscous solution was diluted in water and purified by centrifugation through a 3K Macrosep. [0068]
  • Example 5
  • Preparation of Poly(4,4′-trimethylenedipyridinium-alt-nonane) (XX). [0069]
  • 4,4′-Trimethylenedipyridine (3.46 mmoles, 0.687 g) was added to a 40 ml vial followed by 2.3 ml of DMF/methanol (1:1 v:v). 1,9-dibromononane (3.46 mmoles, 0.705 ml) was added and the vial was capped with a septa-cap. The vial was purged with nitrogen and placed in a shaker for 1 week. The resulting light orange waxy solid was dissolved in water and purified by centrifugation through a 3K Macrosep. [0070]
  • Example 6
  • Preparation of Poly(N,N-dimethylpropylammonium-alt-N,N-dimethylhexylammonium). [0071]
  • N,N,N′,N′-Tetramethyl-1,3-propanediamine-alt-1,6-Dibromohexane was prepared by dissolving N,N,N′,N′-Tetramethyl-1,3-propanediamine (31.9 ml) in 40 ml of DMF in a 250 Erlenmeyer flask. 1,6-Dibromohexane (29.3 ml) was added to the flask. The reaction was purged with nitrogen, covered with a septum, and stirred with a magnetic stir plate. The initial solution was clear. A very quick reaction that exothermed and solidified occurred. An off white solid polymer formed and was left to further polymerize for a week. The polymer was dissolved in approximately 300 ml of deionized water and dialyzed (3500 MW) in water 3× and 1× in water/MeOH 70%/30%. [0072]
  • Example 7
  • Preparation of Poly(hexamethylene biscyano guanidine-alt-nonane) (XXIX). [0073]
  • Hexamethylenebiscyanoguanidine (3.99 mmoles, 1.00 g) and 1,9-diaminononane (3.99 mmoles, 0.623 g) were added to a 40 ml vial with a septa-cap followed by 2 equivalents of concentrated HCl. The mixture was heated to 135-145° C. in a shaker overnight. The solid was dissolved in water and purified by centrifugation through a 3K Macrosep filtration membrane. [0074]
  • Example 8
  • Preparation of Poly(4,4′-trimethylenedipiperidinium-alt-hexane) (XI). [0075]
  • 4,4′-Trimethylenedipiperidine (3.466 mmoles, 1.139 g) was added to a 40 ml vial followed by 2 ml DMF/MeOH (1:1 v:v). 1,6-Dibromohexane (3.466 mmoles, 0.533 ml) was added and the vial was capped with a septa-cap. The vial was purged with nitrogen and placed in a shaker for 1 week. The resulting opalescent waxy solid was dissolved in water and purified by centrifugation through a 3K Macrosep. [0076]
  • Example 9
  • Preparation of Poly(hexamethylenebiscyanoguanidine-alt-hydrazine) (XXVI). [0077]
  • Hexamethylene biscyano guanidine (4.00 mmoles, 1.00 g) and hydrazine (4.00 mmoles, 0.274 g) were added to a 40 vial with a septa-cap followed by 2 equivalents of concentrated HCl. The mixture was heated to 165° C. in an oil-bath for 3 h. The resulting pink foam was acidified with 2 equivalents concentrated HCl, dissolved in water and purified by centrifugation through a 3K Macrosep filtration membrane. [0078]
  • Example 10
  • Preparation of Poly(4-(dimethylamino)phenyldiphenylphosphonium-alt-nonane) (XXXI, Where R10 is Nonyl). [0079]
  • 4-(Dimethylamino)phenyldiphenylphosphine (1.73 mmoles, 0.529 g) and 1,9-dibromononane (1.73 mmoles, 0.352 g) were dissolved in DMF (1 ml) and shaken for 1 week. The resulting viscous liquid was diluted with water and purified by centrifugation through a 3K Macrosep. [0080]
  • Example 11
  • Preparation of Poly(4-(dimethylamino)phenyldiphenylphosphonium-alt-decane) (XXXI, Where R10 is Decyl). [0081]
  • 4-(Dimethylamino)phenyldiphenylphosphine (1.73 mmoles, 0.529 g) and 1,10-dibromodecane (1.73=moles, 1.04 g) were dissolved in DMF (1 ml) and shaken for 1 week. The resulting viscous liquid was diluted with water and purified by centrifugation through a 3K Macrosep. [0082]
  • Example 12
  • Preparation of Poly(hexamethylene biscyano guanidine-alt-1,3-aminoguanidine) (XXVII). [0083]
  • Hexamethylene biscyano guanidine (4.00 mmoles, 1.00 g) and 1,3-aminoguanidine (4.00 mmoles, 0.502 g) were added to a 40 ml vial with a septa-cap followed by 2 equivalents of concentrated HCl. The mixture was heated to 165° C. in an oil-bath for 3 h. The resulting orange solid was acidified with 1 eq. concentrated HCl, dissolved in water and purified by centrifugation through a 3K Macrosep filtration membrane. [0084]
  • Example 13
  • Preparation of Poly(1,3-bis(diphenylphosphonium)propane-alt-butane) (XXXIII). [0085]
  • 1,3-Bis(diphenylphosphino)propane (1.33 mmoles, 0.550 g) and 1,4-dibromobutane (1.33 mmoles, 0.159 g) were dissolved in DMF (0.769 ml) and shaken for 1 week. The resulting viscous liquid was diluted with water and purified by centrifugation through a 3K Macrosep. [0086]
  • Example 14
  • Preparation of Poly(4-(dimethylamino)phenyldiphenylphosphonium-alt-butane) (XXXI, Where R10 is Butyl). [0087]
  • 4-(Dimethylamino)phenyldiphenylphosphine (1.73 mmoles, 0.529 g) and 1,4-dibromobutane (1.73 mmoles, 0.207 g) were dissolved in DMF (1 ml) and shaken for 1 week. The resulting viscous liquid was diluted with water and purified by centrifugation through a 3K Macrosep. [0088]
  • Example 15
  • Preparation of Poly(1,4-bis(diphenylphosphonium)butane-alt-butane) (XXV). [0089]
  • 1,4-Bis(diphenylphosphino)butane (2.31 mmoles, 0.986 g) and 1,4-dibromobutane (2.31 mmoles, 0.276 g) were dissolved in DMF (1.333 ml) and shaken for 1 week. The resulting viscous liquid was diluted with water and purified by centrifugation through a 3K Macrosep. [0090]
  • Example 16
  • Preparation of Crosslinked Polymers—Post-Polymerization Crosslinking [0091]
  • Hydroxyl-containing polymer (XVII) was cross-linked with 6 mole % 1,6-diisocyanatohexane in DMF to produce a gel. The gel was washed with 70% methanol-water and lyophilized. [0092]
  • Example 17
  • Preparation of Crosslinked Polymers—in situ Crosslinking [0093]
  • N,N,N′,N′-Tetramethyl-1,3-propanediamine (34.64 mmoles, 5.795 ml), 1,9-dibromononane (34.64 mmoles, 7.048 ml), and 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (3.464 mmoles, 1.383 g) were dissolved in DMF (1 ml) and shaken for a week at room temperature. The resulting white gel was washed with hot DMF, methanol, and water and lyophilized. [0094]
  • Example 18
  • Preparation of Poly(trimethylenedipyridinium-alt-2,7-dihydroxyoctane) (XVI). [0095]
  • Trimethylenedipyridine (100 g) was placed in a roundbottom flask. To the flask was added 1,2,7,8-diepoxyoctane (71.72g). The reaction was stirred under nitrogen at room temperature for 20 min. until nearly all the trimethylenedipyridine was dissolved. At this time, acetic acid (121 g) was slowly added dropwise over a 24 hr period. The reaction was stirred at room temperature for an additional four days. The resulting material was dark blue and highly viscous. The solid was dissolved in water and purified by tangential flow with a 1K MWCO membrane. [0096]
  • Example 19
  • Polyionene Polymers are Effective in Treating Mucositis in a Hamster Model Following Irradiation Therapy [0097]
  • Oral mucositis is a frequent sequel to chemotherapeutic treatment for a number of cancers, as well as of irradiation for head and neck tumors. While the precise causes of mucositis remain unknown, oral microflora are thought to be involved in both the induction and exacerbation of disease. The efficacy of polyionene polymers in treating oral mucositis was assayed according to a hamster model disclosed in Sonis et al., [0098] Oral Oncology 36:373 (2000), the entire teachings of which are incorporated herein by reference.
  • Briefly, male Golden Syrian hamsters (Charles River Laboratories), aged 5 to 6 weeks, with body weights of approximately 90 g at project commencement, were used. Mucositis was induced using an acute radiation protocol. A single dose of radiation (35-40 Gy/dose) was administered to all animals on Day 0. Radiation was generated with a 250 kilovolt potential (15 mA) source at a focal distance of 50 cm, hardened with a 0.35 mm Cu filtration system. Irradiation targeted the left buccal pouch mucosa at a rate of 121.5 cGy/minute. Prior to irradiation, animals were anesthetized with an intraperitoneal injection of sodium pentobarbital (80 mg/kg). The left buccal pouch was everted, fixed and isolated using a lead shield. [0099]
  • All animals were dosed with test material three times per day. A needleless tuberculin syringe containing 0.5 ml of the test compound was inserted into the left cheek pouch and the drug deposited into the pouch. Dosing began on Day 0 and continued until Day 19. [0100]
  • For the evaluation of mucositis, the animals were anesthetized with inhalation anesthetics, and the left pouch everted. Mucositis was scored visually by comparison to a validated photographic scale, ranging from 0 for normal to 5 for severe ulceration. In descriptive terms, this scale is defined as follows: [0101]
    Score Description
    0 Pouch completely healthy. No erythema or vasodilation.
    1 Light to severe erythema and vasodilation. No erosion of
    mucosa.
    2 Severe erythema and vasodilation. Erosion of superficial
    aspects of mucosa leaving denuded areas. Decreased
    stippling of mucosa.
    3 Formation of off-white ulcers in one or more places. Ulcers
    may have a yellow/gray appearance due to a
    pseudomembrane. Cumulative size of ulcers should equal
    about ¼ of the pouch. Severe erythema and vasodilation.
    4 Cumulative size of ulcers should equal about ½ of the
    pouch. Loss of pliability. Severe erythema and vasodilation.
    5 Virtually all of pouch is ulcerated. Loss of pliability (pouch
    can only partially be extracted from mouth).
  • A photograph was taken of each animal's cheek pouch mucosa using a standardized technique. At the conclusion of the experiment, all films were developed and the photographs randomly numbered. At least two independent trained-observers graded the photographs in blinded fashion using the above-described scale (blinded scoring). A score of 1-2 is considered to represent a mild stage of the disease, whereas a score of 3-5 is considered to indicate moderate to severe mucositis in which frank ulceration of the cheek pouch is evident. Treatment efficacy was measured by the reduction in time that the animals experienced ulcerative mucositis (a score <3) expressed as a percentage of the time that the animals in the control group experienced ulcerative mucositis (a score >3). Animals treated with polyionene compounds experienced a significant reduction in the percent time they experienced ulcerative mucositis. For example, the chloride salt of an approximately 20 kDa polyionene consisting of repeat units characterized by Structural Formula (X) was effective in treating mucositis, as shown below: [0102]
    Formulation Concentration (mg/mL) % Reduction From Control
    Chloride Salt 1.0 33.1
    Chloride Salt Dissolved in 0.1 33.5
    Hydroxypropylmethylcellulose
    Chloride Salt Dissolved in 1.0 46.6
    Hydroxypropylmethylcellulose
  • Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed in the scope of the following claims. [0103]

Claims (32)

What is claimed is:
1. A method of treating mucositis in a mammal comprising administering to said mammal an effective amount of an ionene polymer.
2. A method of treating mucositis in a mammal comprising administering to said mammal an effective amount of an ionene polymer characterized by a repeat unit having the formula:
Figure US20030021761A1-20030130-C00019
wherein R1 is a substituted or unsubstituted hydrocarbyl group; and each Q is independently:
Figure US20030021761A1-20030130-C00020
wherein Cy1 and Cy2 are each independently a quaternary nitrogen-containing monocyclic heteroaromatic ring or non-aromatic heterocyclic ring, A is a covalent bond, or a substituted or unsubstituted lower alkylene group, and R2 and R3 are independently a substituted or unsubstituted aliphatic or aromatic group; each X, separately or taken together with other Xs, is a physiologically acceptable anion; x is an integer from 0-4; and y is an integer from 1-5.
3. The method of claim 2, wherein said ionene polymer is administered therapeutically.
4. The method of claim 2, wherein said ionene polymer is administered prophylactically.
5. The method of claim 2, wherein R1 is a substituted or unsubstituted arylene or lower alkylene group.
6. The method of claim 2, wherein said mucositis is oral mucositis.
7. The method of claim 6, wherein said oral mucositis is a side effect of anti-cancer therapy.
8. The method of claim 7, wherein said anti-cancer therapy is chemotherapy or radiation therapy.
9. The method of claim 6, wherein said oral mucositis is a side effect of bone marrow transplantation or stem cell transplant or ablation.
10. The method of claim 6, wherein each R2 and R3 are each independently an alkyl group or a hydroxyalkyl group.
11. The method of claim 6, wherein said repeat unit has the formula:
Figure US20030021761A1-20030130-C00021
12. The method of claim 11, wherein R1 is a substituted or unsubstituted straight chained lower alkylene group or polyalkylene glycol optionally substituted with one or more —OH groups.
13. The method of claim 6, wherein said repeat unit has the formula:
Figure US20030021761A1-20030130-C00022
wherein R4 is hydrogen or a substituted or unsubstituted lower alkyl group.
14. The method of claim 13, wherein R4 is a lower alkyl or hydroxy substituted lower alkyl.
15. The method of claim 6, wherein said repeat unit has the formula:
Figure US20030021761A1-20030130-C00023
wherein A is a bond or substituted or unsubstituted lower alkylene group, and wherein R5 and R6 are each independently hydrogen or a substituted or unsubstituted lower alkyl group.
16. The method of claim 15, wherein R5 and R6 are each independently an alkyl group or a hydroxyalkyl group.
17. The method of claim 16, wherein A is an unsubstituted straight chained lower alkylene group.
18. The method of claim 17, wherein R1 is a substituted or unsubstituted straight chained lower alkylene group or polyalkylene glycol optionally substituted with one or more —OH groups.
19. The method of claim 18, wherein R1 is an unsubstituted polyalkylene glycol or —CH2CHOH(CH2)nCHOHCH2— wherein n is an integer from 0 to 8.
20. The method of claim 6, wherein said repeat unit has the formula:
Figure US20030021761A1-20030130-C00024
wherein A is a bond or substituted or unsubstituted lower alkylene group.
21. The method of claim 20, wherein A is an unsubstituted straight chained lower alkylene group.
22. The method of claim 21, wherein R1 is a substituted or unsubstituted straight chained lower alkylene group or polyalkylene glycol optionally substituted with one or more —OH groups.
23. The method of claim 22, wherein R1 is an unsubstituted polyalkylene glycol or —CH2CHOH(CH2)nCHOHCH2— wherein n is an integer from 0 to 8.
24. The method of claim 23, wherein said repeat unit has the formula:
Figure US20030021761A1-20030130-C00025
25. A method of treating mucositis in a mammal, comprising administering to said mammal an effective amount of an ionene copolymer characterized by a repeat unit of the formula:
Figure US20030021761A1-20030130-C00026
and a repeat unit of the formula:
Figure US20030021761A1-20030130-C00027
wherein R1 is a substituted or unsubstituted hydrocarbyl group; R2 and R3 are independently a substituted o r unsubstituted a liphatic or aromatic group; and each X in the polymer or copolymer, separately or taken together with other Xs, is a physiologically acceptable anion.
26. The method of claim 25, wherein said mucositis is oral mucositis.
27. The method of claim 26, wherein said oral mucositis is a side-effect of anti-cancer therapy.
28. The method of claim 27, wherein the anti-cancer therapy is chemotherapy or radiation therapy.
29. The method of claim 25, wherein said polymer or copolymer is comprised of repeat units of the formula:
Figure US20030021761A1-20030130-C00028
wherein R10 is a substituted or unsubstituted lower alkylene group having from about 4 to about 12 carbon atoms and each X, separately or taken together with other Xs is a physiologically acceptable anion.
30. The method of claim 6, wherein said polymer is characterized by repeat units of the formula:
Figure US20030021761A1-20030130-C00029
31. The method of claim 30, wherein said copolymer is characterized by the formula:
Figure US20030021761A1-20030130-C00030
32. The method of claim 30, wherein one or both end of the polymer or copolymer is capped with a group represented by the formula:
Figure US20030021761A1-20030130-C00031
wherein R11 is a C2-C90 alkyl, C2-C90 oxyalkyl, or aromatic group and the symbol “*” represents the bond connecting the cap to the polymer or copolymer.
US10/051,766 2001-01-18 2002-01-17 Ionene polymers and their use in treating mucositis Abandoned US20030021761A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/051,766 US20030021761A1 (en) 2001-01-18 2002-01-17 Ionene polymers and their use in treating mucositis
US11/454,142 US20070025954A1 (en) 2001-01-18 2006-06-15 Ionene polymers and their use as antimicrobial agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26258601P 2001-01-18 2001-01-18
US10/051,766 US20030021761A1 (en) 2001-01-18 2002-01-17 Ionene polymers and their use in treating mucositis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/454,142 Continuation US20070025954A1 (en) 2001-01-18 2006-06-15 Ionene polymers and their use as antimicrobial agents

Publications (1)

Publication Number Publication Date
US20030021761A1 true US20030021761A1 (en) 2003-01-30

Family

ID=22998147

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/051,766 Abandoned US20030021761A1 (en) 2001-01-18 2002-01-17 Ionene polymers and their use in treating mucositis
US10/051,765 Expired - Lifetime US6955806B2 (en) 2001-01-18 2002-01-17 Ionene polymers and their use as antimicrobial agents
US11/454,142 Abandoned US20070025954A1 (en) 2001-01-18 2006-06-15 Ionene polymers and their use as antimicrobial agents

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/051,765 Expired - Lifetime US6955806B2 (en) 2001-01-18 2002-01-17 Ionene polymers and their use as antimicrobial agents
US11/454,142 Abandoned US20070025954A1 (en) 2001-01-18 2006-06-15 Ionene polymers and their use as antimicrobial agents

Country Status (7)

Country Link
US (3) US20030021761A1 (en)
EP (1) EP1372675A2 (en)
JP (2) JP2004520473A (en)
BR (1) BR0206734A (en)
CA (1) CA2434693A1 (en)
NZ (1) NZ526821A (en)
WO (2) WO2002056895A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955806B2 (en) * 2001-01-18 2005-10-18 Genzyme Corporation Ionene polymers and their use as antimicrobial agents
US20060002887A1 (en) * 2002-11-19 2006-01-05 Genzyme Corporation Ionene oligomers and polymers
US20140322912A1 (en) * 2008-11-26 2014-10-30 Enthone Inc. Method and composition for electrodeposition of copper in microelectronics with dipyridyl-based levelers

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046223A2 (en) * 2002-11-19 2004-06-03 Genzyme Corporation Polyionene polymers with hydrolyzable linkages
AT500998B1 (en) * 2003-03-20 2008-10-15 Geopharma Produktionsgmbh ANTIMICROBIAL ACTIVE MEDICINAL PRODUCT
US20040220534A1 (en) * 2003-04-29 2004-11-04 Martens Paul W. Medical device with antimicrobial layer
US20070218096A1 (en) * 2006-03-14 2007-09-20 Debbie Wooley Medical equipment and methods of making and using the same
US20090092574A1 (en) 2006-12-29 2009-04-09 Scott Richard W Ophthalmic And Otic Compositions Of Facially Amphiphilic Polymers And Oligomers And Uses Thereof
US20080166384A1 (en) * 2007-01-05 2008-07-10 Darren Jones Stethoscope head cover and associated method
US8512731B2 (en) * 2007-11-13 2013-08-20 Medtronic Minimed, Inc. Antimicrobial coatings for medical devices and methods for making and using them
JP5083907B2 (en) * 2008-12-19 2012-11-28 独立行政法人産業技術総合研究所 Gel-like antibacterial agent
US20100306913A1 (en) * 2009-06-08 2010-12-09 Susan Zazzara Leakproof disposable bedpan with integral biohazard containment
WO2012123273A1 (en) * 2011-03-11 2012-09-20 Basf Se Antimicrobial coating
JP5833745B2 (en) 2011-05-16 2015-12-16 セルシューティクス・コーポレーション Compounds for use in the treatment of mucositis
AT513858B1 (en) * 2013-01-25 2014-08-15 Sealife Pharma Gmbh New bioactive polymers
SG11201610886VA (en) * 2014-07-11 2017-01-27 Genzyme Corp Main chain polyamines
CN106794197A (en) 2014-10-02 2017-05-31 西托索尔本茨公司 The porous alimentary canal sorbant polymer applied through stomach and intestine is used to preventing or treats radiation-induced mucositis, the purposes of esophagitis, enteritis, colitis and stomach and intestine acute radiation syndrome
CN104829814B (en) * 2015-04-27 2017-04-12 南阳师范学院 Polymer containing quaternized piperidine group, preparation method thereof, anion exchange membrane, and preparation method thereof
US9642360B2 (en) 2015-06-25 2017-05-09 International Business Machines Corporation Antimicrobial polymers formed by bulk polyaddition
FR3041350B1 (en) * 2015-09-21 2019-05-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives SOLID ELECTROLYTE FOR ELECTROCHEMICAL GENERATOR
US10653142B2 (en) 2017-12-12 2020-05-19 International Business Machines Corporation Polymers with antimicrobial functionalities
US10687528B2 (en) 2017-12-12 2020-06-23 International Business Machines Corporation Antimicrobial polymers with enhanced functionalities
US10743537B2 (en) 2017-12-12 2020-08-18 International Business Machines Corporation Monomer compositions with antimicrobial functionality
US10836864B2 (en) 2017-12-12 2020-11-17 International Business Machines Corporation Chemical compositions with antimicrobial functionality
US10667514B2 (en) 2017-12-12 2020-06-02 International Business Machines Corporation Antimicrobial ionene compositions with a variety of functional groups
US10595527B2 (en) 2017-12-12 2020-03-24 International Business Machines Corporation Antimicrobial polymers capable of supramolecular assembly
US10687530B2 (en) 2017-12-12 2020-06-23 International Business Machines Corporation Hydrophilic polymers with antimicrobial functionalities
US10017462B1 (en) * 2018-03-05 2018-07-10 The Florida International University Board Of Trustees Antimicrobial poly(guanylurea)s
US11548982B2 (en) * 2019-05-16 2023-01-10 Marwian GmbH Active biocidal substances and production process thereof
WO2021248008A1 (en) 2020-06-05 2021-12-09 Innovation Pharmaceuticals Inc. Arylamide compounds for treatment and prevention of viral infections

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217429A (en) * 1973-06-11 1980-08-12 Merck & Co., Inc. Poly-[(methylimino)trimethylene]
US4414080A (en) * 1982-05-10 1983-11-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Photoelectrochemical electrodes
US4898808A (en) * 1988-10-27 1990-02-06 Konica Corporation Antistatic silver halide photographic light-sensitive material
US5419897A (en) * 1993-04-09 1995-05-30 Buckman Laboratories International, Inc. Ionene polymers as anthelmintics in animals
US5427777A (en) * 1992-03-19 1995-06-27 Lowchol Scientific, Inc. Ingestible polymeric phosphonium salts, composition thereof and method of treating hypercholesterolemia
US5668084A (en) * 1995-08-01 1997-09-16 Zeneca Inc. Polyhexamethylene biguanide and surfactant composition and method for preventing waterline residue
US5789395A (en) * 1996-08-30 1998-08-04 The Research Foundation Of State University Of New York Method of using tetracycline compounds for inhibition of endogenous nitric oxide production
US6048679A (en) * 1998-12-28 2000-04-11 Eastman Kodak Company Antistatic layer coating compositions
US6238682B1 (en) * 1993-12-13 2001-05-29 The Procter & Gamble Company Anhydrous skin lotions having antimicrobial components for application to tissue paper products which mitigate the potential for skin irritation
US6245320B1 (en) * 1999-09-01 2001-06-12 University Of Maryland Inhibition of mucin release from airway goblet cells by polycationic peptides
US6767549B2 (en) * 1996-06-24 2004-07-27 Genzyme Corporation Ionic polymers as anti-infective agents

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642232A (en) * 1947-04-22 1953-06-16 Nat Rubber Machinery Co Garbage grinder control mechanism
US2643232A (en) * 1949-08-22 1953-06-23 Ici Ltd Polymeric diguanides
US3966906A (en) * 1961-10-11 1976-06-29 Behringwerke Aktiengesellschaft Disaggregated gamma globulin and process for preparing it
GB1255526A (en) * 1969-08-13 1971-12-01 Ciba Geigy U K Ltd Improvements in or relating to pigment compositions
US3641034A (en) * 1969-09-02 1972-02-08 Polaroid Corp Polymers of dipyridyl
BE755563A (en) * 1969-09-02 1971-03-01 Polaroid Corp VARIABLE LIGHT FILTERING DEVICE
US3946035A (en) * 1972-06-29 1976-03-23 L'oreal Anti-inflammatory polymers, pharmaceutical compositions containing the same and process for producing said polymers
SU476257A1 (en) 1973-05-04 1975-07-05 Ташкентский Государственный Университет Им.В.И.Ленина The method of obtaining poly-α-methylene-4,42 dipyridyly chloride
US4206295A (en) * 1973-06-11 1980-06-03 Merck & Co., Inc. Process of preparing poly[{alkyl-(3-ammoniopropyl)iminio}trimethylene dihalides]
DE2333939A1 (en) * 1973-07-04 1975-01-23 Bayer Ag PROCESS FOR THE PREPARATION OF SUBSTITUTED AMINOBENZIMIDE CHLORIDES
US3929990A (en) * 1973-12-18 1975-12-30 Millmaster Onyx Corp Microbiocidal polymeric quaternary ammonium compounds
US3923973A (en) * 1973-12-18 1975-12-02 Millmaster Onyx Corp Fungicidal polymeric quaternary ammonium compounds
US4025627A (en) * 1973-12-18 1977-05-24 Millmaster Onyx Corporation Microbiocidal polymeric quaternary ammonium compounds
US3874870A (en) * 1973-12-18 1975-04-01 Mill Master Onyx Corp Microbiocidal polymeric quarternary ammonium compounds
CA1063357A (en) * 1974-05-21 1979-10-02 James J. Benedict Abrasive composition
US4025617A (en) * 1974-10-03 1977-05-24 Millmaster Onyx Corporation Anti-microbial quaternary ammonium co-polymers
US3961042A (en) * 1974-10-03 1976-06-01 Millmaster Onyx Corporation Quaternary ammonium co-polymers for controlling the proliferation of bacteria
JPS5914735B2 (en) * 1974-10-07 1984-04-05 コニカ株式会社 Processing method for photographic materials
US3931319A (en) * 1974-10-29 1976-01-06 Millmaster Onyx Corporation Capped polymers
US4027020A (en) * 1974-10-29 1977-05-31 Millmaster Onyx Corporation Randomly terminated capped polymers
US4025653A (en) * 1975-04-07 1977-05-24 Millmaster Onyx Corporation Microbiocidal polymeric quaternary ammonium compounds
CH599389B5 (en) 1975-12-23 1978-05-31 Ciba Geigy Ag
US4113709A (en) * 1976-08-12 1978-09-12 Petrolite Corporation Polyquaternary polythiazines
DE2930865A1 (en) * 1979-07-30 1981-02-12 Schuelke & Mayr Gmbh DISINFECTANT AND PRESERVATIVE
US4499077A (en) * 1981-02-03 1985-02-12 Stockel Richard F Anti-microbial compositions and associated methods for preparing the same and for the disinfecting of various objects
US4778813A (en) * 1981-07-07 1988-10-18 Buckman Laboratories International, Inc. Polymeric quaternary ammonium compounds, their preparation and use
US4506081A (en) * 1982-09-02 1985-03-19 Buckman Laboratories, Inc. Polymeric quaternary ammonium compounds and their uses
JPS59217787A (en) 1983-05-25 1984-12-07 Japan Electronic Ind Dev Assoc<Jeida> Electrochromic material
JPS60229025A (en) 1984-04-27 1985-11-14 Mitsubishi Chem Ind Ltd Reversible recording material
JPS60229027A (en) 1984-04-27 1985-11-14 Ricoh Co Ltd Binary type diazo copying material
US4980067A (en) * 1985-07-23 1990-12-25 Cuno, Inc. Polyionene-transformed microporous membrane
JPS6251138A (en) 1985-08-29 1987-03-05 Toshiba Corp Deflector for color picture tube
JPS6262881A (en) 1985-09-11 1987-03-19 Tsutomu Kagitani Electromagnetic wave energy ray dosimeter
LU86123A1 (en) * 1985-10-17 1987-06-02 Fabricom Air Conditioning Sa WATER DISINFECTION PROCESS
JPH0243989A (en) * 1988-08-03 1990-02-14 Otsuka Chem Co Ltd Method for controlling microorganism of water system
DE3840103C2 (en) * 1988-11-28 1994-10-06 Bayrol Chem Fab Gmbh Method for sterilizing and de-aerating water
US4960590A (en) * 1989-02-10 1990-10-02 Buckman Laboratories International, Inc. Novel polymeric quaternary ammonium trihalides
BE1002830A5 (en) 1989-02-15 1991-06-25 Fabricom Air Conditioning Sa DISINFECTANT AND / OR PRESERVATION COMPOSITION AND METHOD FOR DISINFECTION AND / OR PRESERVATION OF FOOD.
US4891423A (en) * 1989-03-20 1990-01-02 Stockel Richard F Polymeric biguanides
DE3912224A1 (en) * 1989-04-13 1990-10-25 Max Planck Gesellschaft POLYMERS WITH HIGH BREAKING INDEX AND LOW OPTICAL DISPERSION
US5283316A (en) * 1989-04-13 1994-02-01 Max-Planck-Gesellschaft Zur Fordrung Der Wissenchaften Polymers with high refractive index and low optical dispersion
US5128100A (en) * 1989-10-12 1992-07-07 Buckman Laboratories, Intl., Inc. Process for inhibiting bacterial adhesion and controlling biological fouling in aqueous systems
US5451398A (en) * 1990-01-05 1995-09-19 Allergan, Inc. Ophthalmic and disinfecting compositions and methods for preserving and using same
KR920009873A (en) 1990-11-21 1992-06-25 리챠드 지. 워터맨 Improved Epoxy Compositions, Curable Compositions, and Cured Products
US5149524A (en) * 1991-01-03 1992-09-22 Rohm And Haas Company Antimicrobial polymeric quaternary ammonium salts
US5256420A (en) * 1991-12-23 1993-10-26 Ciba-Geigy Corporation Method of imparting antimicrobial acitivity to an ophthalmic composition
US5352833A (en) * 1992-10-26 1994-10-04 Isp Investments Inc. Antibacterial polymeric quaternary ammonium compounds
US5300287A (en) * 1992-11-04 1994-04-05 Alcon Laboratories, Inc. Polymeric antimicrobials and their use in pharmaceutical compositions
DE4237493A1 (en) * 1992-11-06 1994-05-11 Fresenius Ag Process for immobilizing linear polymers on a chemically inert support material, matrix which can be produced by this process and has antimicrobial activity based on an inert support material and a coating made of polyions and their use
US6123928A (en) * 1992-12-21 2000-09-26 Biophysica, Inc. Sunblocking polymers and their novel formulations
AU5715594A (en) 1992-12-22 1994-07-19 K.I Chemical Research Center Polycationic polymer and polycationic bactericidal/algicidal agent
US5681862A (en) * 1993-03-05 1997-10-28 Buckman Laboratories International, Inc. Ionene polymers as microbicides
JPH06279214A (en) * 1993-03-26 1994-10-04 Otsuka Chem Co Ltd Sterilization and disinfection of hand finger
JP2808255B2 (en) * 1994-03-31 1998-10-08 ティーディーケイ株式会社 Humidity sensor element
US5731275A (en) 1994-04-05 1998-03-24 Universite De Montreal Synergistic detergent and disinfectant combinations for decontaminating biofilm-coated surfaces
US5575993A (en) * 1994-08-31 1996-11-19 Buckman Laboratories International, Inc. Ionene polymers containing biologically-active anions
JPH0892017A (en) * 1994-09-19 1996-04-09 Tomey Technol Corp Solution preparation for contact lens
KR0155191B1 (en) * 1994-10-05 1998-12-01 강박광 Cationic polymer and process for preparing the same
US5637308A (en) * 1995-07-10 1997-06-10 Buckman Laboratories International, Inc. Tabletized ionene polymers
BR9707318A (en) * 1996-02-07 1999-04-13 Buckman Labor Inc Microbicidal composition and method to control the growth of at least one microorganism
US5709976A (en) * 1996-06-03 1998-01-20 Xerox Corporation Coated papers
US5866016A (en) * 1997-07-01 1999-02-02 Buckman Laboratories International, Inc. Methods and compositions for controlling biofouling using combinations of an ionene polymer and a salt of dodecylamine
EP0910552B1 (en) * 1996-07-02 2006-08-23 Buckman Laboratories International, Inc. Use of COMBINATIONS OF AN IONENE POLYMER AND A SALT OF DODECYLAMINE for controlling biofouling
US5961958A (en) 1996-07-16 1999-10-05 Four Star Partners Methods, compositions, and dental delivery systems for the protection of the surfaces of teeth
US6016508A (en) * 1997-07-02 2000-01-18 Microsoft Corporation Server-determined client refresh periods for dynamic directory services
CA2294795A1 (en) 1997-07-07 1999-01-21 Bayer Aktiengesellschaft Electrochrome polymer systems
JPH1160414A (en) * 1997-08-22 1999-03-02 Sagami Chem Res Center Microbicidal composition and control of microorganism
JPH1171208A (en) * 1997-08-27 1999-03-16 Sagami Chem Res Center Composition having microbicidal activity and control of microbe
US6007803A (en) * 1997-09-19 1999-12-28 Geltex Pharmaceuticals, Inc. Ionic polymers as toxin binding agents
EP1082109B1 (en) 1998-04-29 2004-06-16 Sumitomo Pharmaceuticals Company, Limited Oral formulation comprising biguanide and an organic acid
CA2352076A1 (en) * 1998-12-18 2000-06-22 Alcon Laboratories, Inc. Bis-amido polybiguanides and the use thereof to disinfect contact lenses and preserve pharmaceutical compositions
JP2000280622A (en) 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd Information recording medium
SG103256A1 (en) * 2000-04-11 2004-04-29 Univ Singapore Electrically conductive polymers
US20030021761A1 (en) * 2001-01-18 2003-01-30 Geltex Pharmaceuticals, Inc. Ionene polymers and their use in treating mucositis
AU2003291565A1 (en) * 2002-11-19 2004-06-15 Genzyme Corporation Polyionenes for treating infections associated with cystic fibrosis
WO2004046109A2 (en) * 2002-11-19 2004-06-03 Genzyme Corporation Ionene oligomers and polymers
WO2004046223A2 (en) * 2002-11-19 2004-06-03 Genzyme Corporation Polyionene polymers with hydrolyzable linkages

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217429A (en) * 1973-06-11 1980-08-12 Merck & Co., Inc. Poly-[(methylimino)trimethylene]
US4414080A (en) * 1982-05-10 1983-11-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Photoelectrochemical electrodes
US4898808A (en) * 1988-10-27 1990-02-06 Konica Corporation Antistatic silver halide photographic light-sensitive material
US5427777A (en) * 1992-03-19 1995-06-27 Lowchol Scientific, Inc. Ingestible polymeric phosphonium salts, composition thereof and method of treating hypercholesterolemia
US5419897A (en) * 1993-04-09 1995-05-30 Buckman Laboratories International, Inc. Ionene polymers as anthelmintics in animals
US6238682B1 (en) * 1993-12-13 2001-05-29 The Procter & Gamble Company Anhydrous skin lotions having antimicrobial components for application to tissue paper products which mitigate the potential for skin irritation
US5668084A (en) * 1995-08-01 1997-09-16 Zeneca Inc. Polyhexamethylene biguanide and surfactant composition and method for preventing waterline residue
US6767549B2 (en) * 1996-06-24 2004-07-27 Genzyme Corporation Ionic polymers as anti-infective agents
US5789395A (en) * 1996-08-30 1998-08-04 The Research Foundation Of State University Of New York Method of using tetracycline compounds for inhibition of endogenous nitric oxide production
US6048679A (en) * 1998-12-28 2000-04-11 Eastman Kodak Company Antistatic layer coating compositions
US6245320B1 (en) * 1999-09-01 2001-06-12 University Of Maryland Inhibition of mucin release from airway goblet cells by polycationic peptides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955806B2 (en) * 2001-01-18 2005-10-18 Genzyme Corporation Ionene polymers and their use as antimicrobial agents
US20070025954A1 (en) * 2001-01-18 2007-02-01 Fitzpatrick Richard J Ionene polymers and their use as antimicrobial agents
US20060002887A1 (en) * 2002-11-19 2006-01-05 Genzyme Corporation Ionene oligomers and polymers
US20140322912A1 (en) * 2008-11-26 2014-10-30 Enthone Inc. Method and composition for electrodeposition of copper in microelectronics with dipyridyl-based levelers
US9613858B2 (en) * 2008-11-26 2017-04-04 Enthone Inc. Method and composition for electrodeposition of copper in microelectronics with dipyridyl-based levelers

Also Published As

Publication number Publication date
WO2002080939A8 (en) 2003-01-30
BR0206734A (en) 2004-03-02
WO2002056895A2 (en) 2002-07-25
EP1372675A2 (en) 2004-01-02
NZ526821A (en) 2005-02-25
US20030031644A1 (en) 2003-02-13
CA2434693A1 (en) 2002-10-17
WO2002080939A3 (en) 2003-10-09
WO2002056895A3 (en) 2004-02-19
WO2002080939A2 (en) 2002-10-17
JP2004520473A (en) 2004-07-08
JP2007162024A (en) 2007-06-28
US20070025954A1 (en) 2007-02-01
US6955806B2 (en) 2005-10-18

Similar Documents

Publication Publication Date Title
US20030021761A1 (en) Ionene polymers and their use in treating mucositis
US7125547B2 (en) Poly(diallylamine)-based bile acid sequestrants
US6726905B1 (en) Poly (diallylamines)-based phosphate binders
US6290947B1 (en) Ionic polymers as toxin-binding agents
US8163799B2 (en) Amido-amine polymer compositions
US20190290638A1 (en) Subcutaneous delivery of poly(oxazoline) polymer conjugates
US20090304623A1 (en) Once A Day Formulation for Phosphate Binders
NZ503384A (en) Polymer having a plurality of cationic groups attached to the polymer backbone via an aliphatic spacer group as toxin-binding agents
RU97114572A (en) METHOD OF TREATMENT OF URINE HOLDING BY MEANS OF (S) -OXYBUTININ AND (S) -DEZETHYLOXIBUTININ
US20100254935A1 (en) Amine condensation polymers as phosphate sequestrants
PT97549A (en) METHOD FOR THE PREPARATION OF POLYMERIC AMIDES AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US6482402B1 (en) Antimicrobial compositions and methods
US20060002888A1 (en) Polyionenes for treating infections associated with cystic fibrosis
WO2004046109A2 (en) Ionene oligomers and polymers
EP0389079B1 (en) Polyamides bearing functionalized side chains useful as water soluble hypolipidemic agents
JP6654057B2 (en) Composition for controlling local pain comprising a polyion complex containing a local anesthetic as an active ingredient
EP1815861A2 (en) Ionene polymers and their use as antimicrobial agents
WO2001000240A2 (en) Antitumor compound
AU2002311754A1 (en) Ionene polymers and their use as antimicrobial agents
JPH05294913A (en) Polyamide having functionalized side chains, useful as water-soluble hypolipidemic agent
MXPA99006152A (en) Poly(diallylamine)based bile acid sequestrants

Legal Events

Date Code Title Description
AS Assignment

Owner name: GELTEX PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FITZPATRICK, RICHARD J.;GODDARD, PHILIP J.;BARKER, ROBERT H., JR.;AND OTHERS;REEL/FRAME:012876/0626;SIGNING DATES FROM 20020225 TO 20020227

AS Assignment

Owner name: GENZYME CORPORATION, MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:GELTEX PHARMACEUTICALS, INC.;REEL/FRAME:014022/0197

Effective date: 20030327

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION