US20030003592A1 - Detection of analytes in aqueous environments - Google Patents
Detection of analytes in aqueous environments Download PDFInfo
- Publication number
- US20030003592A1 US20030003592A1 US10/193,246 US19324602A US2003003592A1 US 20030003592 A1 US20030003592 A1 US 20030003592A1 US 19324602 A US19324602 A US 19324602A US 2003003592 A1 US2003003592 A1 US 2003003592A1
- Authority
- US
- United States
- Prior art keywords
- indicator
- macromolecule
- analyte
- concentration
- glucose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/66—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/1459—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D257/00—Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
- C07D257/02—Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
- G01N33/542—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/84—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7786—Fluorescence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
- Y10T436/144444—Glucose
Definitions
- This invention relates to indicator molecules for detecting the presence or concentration of an analyte in a medium, such as a liquid, and to methods for achieving such detection. More particularly, the invention relates to copolymer macromolecules containing relatively hydrophobic indicator component monomers, and hydrophilic monomers, such that the macromolecule is capable of use in an aqueous environment.
- Indicator molecules for detecting the presence or concentration of an analyte in a medium are known. Unfortunately, many of such indicators, being large organic molecules, are insoluble or sparingly soluble in water.
- U.S. Pat. No. 5,503,770 describes a fluorescent boronic acid-containing compound that emits fluorescence of a high intensity upon binding to saccharides, including glucose.
- the fluorescent compound has a molecular structure comprising a fluorophore, at least one phenylboronic acid moiety and at least one amine-providing nitrogen atom where the nitrogen atom is disposed in the vicinity of the phenylboronic acid moiety so as to interact with the boronic acid.
- U.S. Pat. No. 5,503,770 describes the compound as suitable for detecting saccharides. See also T. James, et al., J. Am. Chem. Soc. 117(35):8982-87 (1995). However, the compound described in example 2 of U.S. Pat. No. 5,503,770 (having formula (6)) is substantially insoluble in water, and as a practical matter requires the presence of an organic solvent such as methanol in order to work in a liquid environment.
- an organic solvent such as methanol
- the present invention is directed to an indicator macromolecule for detecting the presence or concentration of an analyte in an aqueous environment, said macromolecule comprising a copolymer of:
- the macromolecule is capable of detecting the presence or concentration of said analyte in an aqueous environment.
- the present invention is directed to a method for the production of an indicator macromolecule for detecting the presence or concentration of an analyte in an aqueous environment, said method comprising copolymerizing:
- the resulting macromolecule is capable of detecting the presence or concentration of said analyte in an aqueous environment.
- the present invention is directed to a method for detecting the presence or concentration of an analyte in a sample having an aqueous environment, said method comprising:
- the resulting macromolecule is capable of detecting the presence or concentration of said analyte in an aqueous environment, and wherein the indicator macromolecule has a detectable quality that changes in a concentration-dependent manner when said macromolecule is exposed to said analyte;
- the present invention provides a macromolecule which is capable of exhibiting an excimer effect, which comprises a copolymer of:
- the present invention provides a method for producing a macromolecule which is capable of exhibiting an excimer effect, which method comprises copolymerizing:
- the present invention provides a method for detecting the presence or concentration of an analyte in a sample, said method comprising:
- one or more indicator component monomers the molecules of which are capable of exhibiting an excimer effect when suitably oriented with respect to each other, and which are also capable of detecting the presence or concentration of an analyte;
- the resulting macromolecule exhibits said excimer effect, and wherein the indicator macromolecule has a detectable quality that changes in a concentration-dependent manner when said macromolecule is exposed to said analyte;
- FIGS. 1 - 2 illustrate the emission spectra of several indicator macromolecules of the present invention as described in Example 2.
- the present invention provides a way to utilize, in aqueous environment, indicator component monomers which by themselves are insoluble or sparingly soluble in an aqueous environment.
- indicator component monomers which by themselves are insoluble or sparingly soluble in an aqueous environment.
- Such indicators are, in effect, copolymerized with one or more monomers which are sufficiently hydrophilic such that the resulting indicator macromolecule is sufficiently hydrophilic overall so as to overcome the hydrophobic contribution of the indicator component monomers.
- Suitable indicator components include indicator molecules which are insoluble or sparingly soluble in water, and whose analyte is at least sparingly soluble in water.
- Suitable analytes include glucose, fructose and other cis-diols; oxygen; carbon dioxide; various ions such as zinc, potassium, hydrogen (pH measurement), carbonate, etc.
- indicator components are known.
- the compounds depicted in U.S. Pat. No. 5,503,770 are useful for detecting saccharides such as glucose, but are sparingly soluble to insoluble in water.
- Other classes of indicators include the lanthanide chelates disclosed in copending U.S. application Ser. No. 09/265,979 filed Mar. 11, 1999 (and published as PCT International Application WO 99/46600 on Sep. 16, 1999), incorporated herein by reference; polyaromatic hydrocarbons and their derivatives; etc.
- the indicator components of the present invention will generally have a detectable quality that changes in a concentration-dependent manner when the macromolecule is exposed to the analyte to be measured.
- the indicator may include a luminescent (fluorescent or phosphorescent) or chemiluminescent label, an absorbance based label, etc.
- the indicator may comprise an energy donor moiety and an energy acceptor moiety, each spaced such that there is a detectable change when the macromolecule is bound to the analyte.
- the detectable quality is a detectable spectral change, such as changes in fluorescent decay time (determined by time domain or frequency domain measurement), fluorescent intensity, fluorescent anisotropy or polarization; a spectral shift of the emission spectrum; a change in time-resolved anisotropy decay (determined by time domain or frequency domain measurement), etc.
- Suitable hydrophilic monomers should be sufficiently hydrophilic so as to overcome the sum of the hydrophobic indicator component monomers, such that the resultant indicator macromolecule is capable of functioning in an aqueous environment. It will be readily apparent that a wide variety of hydrophilic monomers are suitable for use in the present invention.
- suitable hydrophilic monomers include methacrylamides, methacrylates, vinyls, polysaccharides, polyamides, polyamino acids, hydrophilic silanes or siloxanes, etc., as well as mixtures of two or more different monomers.
- Suitable hydrophilic monomers for a given application will vary according to a number of factors, including intended temperature of operation, salinity, pH, presence and identity of other solutes, ionic strength, etc. It would be readily apparent that the degree of hydrophilicity of the indicator macromolecule can be increased by adding additional functional constituents such as ions (e.g., sulfonate, quartenary amine, carboxyl, etc.), polar moieties (e.g., hydroxyl, sulfhydryl, amines, carbonyl, amides, etc.), halogens, etc.
- ions e.g., sulfonate, quartenary amine, carboxyl, etc.
- polar moieties e.g., hydroxyl, sulfhydryl, amines, carbonyl, amides, etc.
- halogens e.g., halogens, etc.
- hydrophilic monomer to indicator component monomer may vary widely depending on the specific application desired.
- Preferred ratios of hydroplilic monomer:indicator component monomer range from about 2:1 to about 500:1, more preferably from about 5:1 to about 50:1.
- the indicator macromolecules of the present invention may generally be synthesized by simply copolymerizing at least one indicator component monomer with at least one hydrophilic monomer. Optimum polymerization conditions (time, temperature, catalyst, etc.) will vary according to the specific reactants and the application of the final product, and can easily be established by one of ordinary skill.
- the indicator macromolecules of the present invention may have any desired extent of water solubility.
- the indicator macromolecule of Examples 1 and 2 below are very soluble, readily dissolving in aqueous solution.
- indicator macromolecules containing, for example, the hydrophilic monomer HEMA (hydroxyethyl methacrylate) or other common hydrogel constituents can be non-soluble yet hydrophilic.
- the soluble indicator macromolecules may be used directly in solution if so desired.
- the indicator macromolecule may be immobilized (such as by mechanical entrapment or covalent or ionic attachment) onto or within an insoluble surface or matrix such as glass, plastic, polymeric materials, etc.
- the entrapping material preferably should be sufficiently permeable to the analyte to allow suitable interaction between the analyte and the indicator components in the macromolecule.
- the indicator macromolecules of the present invention can be used as indicator molecules for detecting sub-levels or supra-levels of glucose in blood or urine, thus providing valuable information for diagnosing or monitoring such diseases as diabetes and adrenal insufficiency.
- Medical/pharmaceutical production of glucose for human therapeutic application requires monitoring and control.
- Uses for the present invention in agriculture include detecting levels of an analyte such as glucose in soybeans and other agricultural products.
- Glucose must be carefully monitored in critical harvest decisions for such high value products as wine grapes.
- glucose is the most expensive carbon source and feedstock in fermentation processes
- glucose monitoring for optimum reactor feed rate control is important in power alcohol production.
- Reactor mixing and control of glucose concentration also is critical to quality control during production of soft drinks and fermented beverages, which consumes the largest amounts of glucose and fermentable (cis-diol) sugars internationally.
- the indicator macromolecules incorporate fluorescent indicator substituents
- various detection techniques also are known in the art that can make use of the macromolecules of the present invention.
- the macromolecules of the invention can be used in fluorescent sensing devices (e.g., U.S. Pat. No. 5,517,313) or can be bound to polymeric material such as test paper for visual inspection. This latter technique would permit, for example, glucose measurement in a manner analogous to determining pH with a strip of litmus paper.
- the macromolecules described herein may also be utilized as simple reagents with standard benchtop analytical instrumentation such as spectrofluorometers or clinical analyzers as made by Shimadzu, Hitachi, Jasco, Beckman and others. These molecules would also provide analyte specific chemical/optical signal transduction for fiber optic-based sensors and analytical fluorometers as made by Ocean Optics (Dunedin, Fla.), or Oriel Optics.
- U.S. Pat. No. 5,517,313 the disclosure of which is incorporated herein by reference, describes a fluorescence sensing device in which the macromolecules of the present invention can be used to determine the presence or concentration of an analyte such as glucose or other cis-diol compound in a liquid medium.
- the sensing device comprises a layered array of a fluorescent indicator molecule-containing matrix (hereafter “fluorescent matrix”), a high-pass filter and a photodetector.
- a light source preferably a light-emitting diode (“LED”)
- LED light-emitting diode
- the high-pass filter allows emitted light to reach the photodetector, while filtering out scattered incident light from the light source.
- the fluorescence of the indicator molecules employed in the device described in U.S. Pat. No. 5,517,313 is modulated, e.g., attenuated or enhanced, by the local presence of an analyte such as glucose or other cis-diol compound.
- the material which contains the indicator molecule is permeable to the analyte.
- the analyte can diffuse into the material from the surrounding test medium, thereby affecting the fluorescence emitted by the indicator molecules.
- the light source, indicator molecule-containing material, high-pass filter and photodetector are configured such that at least a portion of the fluorescence emitted by the indicator molecules impacts the photodetector, generating an electrical signal which is indicative of the concentration of the analyte (e.g., glucose) in the surrounding medium.
- the concentration of the analyte e.g., glucose
- sensing devices also are described in U.S. Pat. Nos. 5,910,661, 5,917,605 and 5,894,351, all incorporated herein by reference.
- the macromolecules of the present invention can also be used in an implantable device, for example to continuously monitor an analyte in vivo (such as blood glucose levels).
- analyte in vivo such as blood glucose levels.
- Suitable devices are described in, for example, co-pending U.S. patent application Ser. No. 09/383,148 filed Aug. 26, 1999, as well as U.S. Pat. Nos. 5,833,603, 6,002,954 and 6,011,984, all incorporated herein by reference.
- the macromolecules of the present invention have unique advantages when used in absorbance-based assays. For example, absorbance of a sample is directly proportional to both the concentration of the absorber and the sample path length. Thus, it is apparent that for a given level of absorbance, the sample path length may be greatly reduced if the absorber concentration is greatly increased. That desirable increase in concentration may be accomplished by decreasing the ratio of the hydrophilic monomer:indicator component monomer. In effect, the present invention allows the localized concentration of much more absorber component into a limited space, thereby increasing the absorbance per unit thickness. Thus the present invention additionally allows use of much smaller equipment when performing absorbance-based assays.
- Examples 1 and 2 of the present application Some examples of typical excimer-forming polyaromatic hydrocarbons include anthracene and pyrene. There are many others.
- An example is the anthracene derivative (boronate included), the indicator component used in Examples 1 and 2 of the present application.
- anthracene is known to form excimers in solution, one must be able to concentrate the molecule to sufficiently high levels to observe any excimer character.
- the anthracene derivative of Examples 1 and 2 the molecule is insoluble in water and insufficiently soluble in a solvent such as methanol to observe excimer characteristics.
- the relative concentration of the anthracene derivative monomer was increased in proportion to the hydrophilic monomer in the copolymer from 500:1, 400:1, 200:1, 100:1, 50:1, 25:1, 15:1 and then 5:1. All have the characteristic blue emission at 417 nm of the anthracene derivative except at 5:1 ratio, a green emission suddenly emission is that of an excimer hybrid and the emission has been shifted downfield by approximately 100+ nanometers ( ⁇ 515-570 nm, green).
- the concentration of the overall solution does not need to be high since the distance between planar species is being controlled by placement along the polymer backbone rather than soluble concentration in 3-D space.
- the excimer emission region is not responsive to changes in analyte concentration, but is responsive to all other aspects of the system analyzed, such as excitation intensity, temperature, and pH.
- the present indicator macromolecules may serve as both an indicator and an internal reference.
- an ideal referencing scheme is one where the emission intensity at an indicator wavelength is divided optically using select bandpass filters, by the emission intensity at the excimer wavelength.
- the resultant value corrects for interfering factors which affect fluorescent emission properties, such as fluorescent quenching by, e.g., oxygen, drift and error in pH, power factors and drift affecting LED intensity, ambient temperature excursions, etc.
- macromolecules of the present invention which exhibit an excimer effect will be useful in both aqueous and non-aqueous environments. Consequently, those macromolecules, as well as the component monomers (excimer-forming and other monomer), may range from hydrophilic to hydrophobic, depending upon the desired application.
- the excimer macromolecules of the present invention when used to detect the presence or concentration of an analyte, the macromolecule may be used directly in solution, or may be immobilized as described above.
- the macromolecules of the present invention can be prepared by persons skilled in the art without an undue amount of experimentation using readily known reaction mechanisms and reagents, including reaction mechanisms which are consistent with the general procedures described below.
- step a) To a solution of the product obtained in step a) above (2.440 g, 0.00734 mole) and a trace of inhibitor DBMP (10 mg) in chloroform (200 mL) stirring in an ice-water bath, DIEA (diisopropylethylamine) (2.846 g, 3.84 mL, 0.022 mole, 3.0 eq) was added by portions in 10 minutes, and then a solution of 2,2-dimethylpropane-1,3-diyl[o-(bromomethyl)phenyl]boronate (2.492 g, 0.00881 mole, 1.2 eq) in chloroform (15 mL) was added in 30 minutes. The reaction was run at room temperature for 20 hours.
- DIEA diisopropylethylamine
- Table 1 shows the results using two different concentrations (15 mg/ml and 25 mg/ml) of the 25:1 indicator macromolecule of this example with four different glucose concentrations.
- Table 2 shows the results using two different concentrations (10 mg/ml and 20 mg/ml) of the 50:1 indicator macromolecule of this example with four different glucose concentrations.
- I/Io is the ratio of the emitted intensities at 420 nm after and before exposure to glucose (365 nm excitation) TABLE 1 I/Io for 15 mg/ml I/Io for 25 mg/ml Glucose indicator indicator concentration macromolecule macromolecule (mM) (25:1) (25:1) 0 1.00 1.00 50 1.44 1.50 100 1.75 1.90 200 2.13 2.33
- FIG. 1 depicts the emission spectra of the 5:1 indicator macromolecule when exposed to three concentrations of glucose (0 mM, 30 mM and 60 mM) after excitement by light at 365 nm. Also shown in the shaded region of FIG. 1 is the emission of the non-excimer 25:1 indicator macromolecule from example 1.
- the excimer emission region shows an “isosbestic region” rather than an isosbestic point. It can be seen from FIG. 1 that the excimer emission region (the region where the 0 mM, 30 mM and 60 mM glucose lines overlap) is not responsive to changes in glucose concentration (just like an isosbestic point).
- the excimer emission region begins approximately 100 nm downfield from the peak responsive wavelength of the anthracene derivative modulation. Except for glucose, the excimer is responsive to all other aspects of the system, such as excitation intensity, temperature, and pH. Therefore, an ideal referencing scheme is one where the amplitude or signal value at 415 nm is divided electronically by the amplitude or signal value at 515 nm or another wavelength or range of wavelengths within the excimer emission region, and the resultant value will be corrected for drift and error in pH, power factors and drift affecting LED intensity, ambient temperature excursions, etc. That is demonstrated below.
- the glucose modulation of the 5:1 indicator macromolecule was measured with three different glucose solutions (0 mM, 100 mM and 200 mM).
- the emission spectra were determined for each of the glucose solutions at three different spectrophotometer slit configurations for source and emitted light (1.5 being narrower and 3 being wider).
- the data are shown in Table 3.
- the ratio of the emission intensity at 420 nm to the emission intensity at 550 nm is relatively independent of slit configuration.
- the temperature stability of the 5:1 excimer indicator macromolecule was determined.
- the ratio of the emissions at 420 nm and 550 nm for a 1 mg/ml solution of the 5:1 excimer indicator macromolecule exposed to 200 mM glucose (pH 7.5) was 7.57 at room temperature and 7.53 at approximately 60° C.
- the pH stability of the 5:1 excimer indicator macromolecule was also determined.
- the ratio of the emissions at 420 nm and 550 nm for a 1 mg/ml solution of the 5:1 excimer indicator macromolecule at three different pH levels (6.5, 7.0 and 7.5) were determined (excitation light at 370 nm, slits 1.5,3), and are shown in Table 4.
- the full emission spectra are shown in FIG. 2. The variation over the range tested was statistically insignificant.
- the stability of the excimer pi cloud exceeds that of non-excimer anthracene derivative, and, that the boronate recognition feature, which is able to perturb the pi cloud properties of the non-excimer, and thus make a good indicator, is not able to perturb the more stable excimer cloud and thus the excimer makes a very good reference indicator.
- the reference molecule is structurally unaltered from the read channel indicator.
- the polymer matrix may be the same, and in this example is in fact the same macromolecule.
- the recognition element is open and intact, but the inductive energy influence between recognition element and fluorophore center has been muted.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Diabetes (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Abstract
The invention relates to indicator molecules for detecting the presence or concentration of an analyte in a medium, such as a liquid, and to methods for achieving such detection. More particularly, the invention relates to copolymer macromolecules containing relatively hydrophobic indicator component monomers, and hydrophilic monomers, such that the macromolecule is capable of use in an aqueous environment.
Description
- This application is a divisional of pending U.S. patent application Ser. No. 09/632,624, filed Aug. 4, 2000.
- Not applicable.
- 1. Field of the Invention
- This invention relates to indicator molecules for detecting the presence or concentration of an analyte in a medium, such as a liquid, and to methods for achieving such detection. More particularly, the invention relates to copolymer macromolecules containing relatively hydrophobic indicator component monomers, and hydrophilic monomers, such that the macromolecule is capable of use in an aqueous environment.
- 2. Description of the Related Art
- Indicator molecules for detecting the presence or concentration of an analyte in a medium are known. Unfortunately, many of such indicators, being large organic molecules, are insoluble or sparingly soluble in water. For example, U.S. Pat. No. 5,503,770 (James, et al.) describes a fluorescent boronic acid-containing compound that emits fluorescence of a high intensity upon binding to saccharides, including glucose. The fluorescent compound has a molecular structure comprising a fluorophore, at least one phenylboronic acid moiety and at least one amine-providing nitrogen atom where the nitrogen atom is disposed in the vicinity of the phenylboronic acid moiety so as to interact with the boronic acid. Such interaction thereby causes the compound to emit fluorescence upon saccharide binding. U.S. Pat. No. 5,503,770 describes the compound as suitable for detecting saccharides. See also T. James, et al.,J. Am. Chem. Soc. 117(35):8982-87 (1995). However, the compound described in example 2 of U.S. Pat. No. 5,503,770 (having formula (6)) is substantially insoluble in water, and as a practical matter requires the presence of an organic solvent such as methanol in order to work in a liquid environment.
- Lack of aqueous solubility is a severe problem when dealing with applications in an aqueous environment, for example, in vivo applications. Thus, there remains a great need for adapting insoluble or sparingly soluble indicators for use in aqueous environments.
- In one aspect, the present invention is directed to an indicator macromolecule for detecting the presence or concentration of an analyte in an aqueous environment, said macromolecule comprising a copolymer of:
- a) one or more indicator component monomers which individually are not sufficiently water soluble to permit their use in an aqueous environment for detecting the presence or concentration of said analyte; and
- b) one or more hydrophilic monomers;
- such that the macromolecule is capable of detecting the presence or concentration of said analyte in an aqueous environment.
- In another aspect, the present invention is directed to a method for the production of an indicator macromolecule for detecting the presence or concentration of an analyte in an aqueous environment, said method comprising copolymerizing:
- a) one or more indicator component monomers which individually are not sufficiently water soluble to permit their use in an aqueous environment for detecting the presence or concentration of said analyte; and
- b) one or more hydrophilic monomers;
- such that the resulting macromolecule is capable of detecting the presence or concentration of said analyte in an aqueous environment.
- In another aspect, the present invention is directed to a method for detecting the presence or concentration of an analyte in a sample having an aqueous environment, said method comprising:
- a) exposing the sample to an indicator macromolecule, said macromolecule comprising a copolymer of:
- i) one or more indicator component monomers which individually are not sufficiently water soluble to permit their use in an aqueous environment for detecting the presence or concentration of said analyte; and
- ii) one or more hydrophilic monomers;
- such that the resulting macromolecule is capable of detecting the presence or concentration of said analyte in an aqueous environment, and wherein the indicator macromolecule has a detectable quality that changes in a concentration-dependent manner when said macromolecule is exposed to said analyte; and
- b) measuring any change in said detectable quality to thereby determine the presence or concentration of said analyte in said sample.
- In another aspect, the present invention provides a macromolecule which is capable of exhibiting an excimer effect, which comprises a copolymer of:
- a) one or more excimer forming monomers, the molecules of which are capable of exhibiting an excimer effect when suitably oriented with respect to each other; and
- b) one or more other monomers;
- such that the resulting macromolecule exhibits said excimer effect.
- In yet another aspect, the present invention provides a method for producing a macromolecule which is capable of exhibiting an excimer effect, which method comprises copolymerizing:
- a) one or more excimer forming monomers, the molecules of which are capable of exhibiting an excimer effect when suitably oriented with respect to each other;
- b) one or more other monomers;
- such that the resulting macromolecule exhibits said excimer effect.
- In yet another aspect, the present invention provides a method for detecting the presence or concentration of an analyte in a sample, said method comprising:
- a) exposing the sample to an indicator macromolecule, said macromolecule comprising a copolymer of:
- i) one or more indicator component monomers, the molecules of which are capable of exhibiting an excimer effect when suitably oriented with respect to each other, and which are also capable of detecting the presence or concentration of an analyte; and
- ii) one or more other monomers;
- such that the resulting macromolecule exhibits said excimer effect, and wherein the indicator macromolecule has a detectable quality that changes in a concentration-dependent manner when said macromolecule is exposed to said analyte; and
- b) measuring any change in said detectable quality to thereby determine the presence or concentration of said analyte in said sample.
- FIGS.1-2 illustrate the emission spectra of several indicator macromolecules of the present invention as described in Example 2.
- In one aspect, the present invention provides a way to utilize, in aqueous environment, indicator component monomers which by themselves are insoluble or sparingly soluble in an aqueous environment. Such indicators are, in effect, copolymerized with one or more monomers which are sufficiently hydrophilic such that the resulting indicator macromolecule is sufficiently hydrophilic overall so as to overcome the hydrophobic contribution of the indicator component monomers.
- Suitable indicator components include indicator molecules which are insoluble or sparingly soluble in water, and whose analyte is at least sparingly soluble in water. Suitable analytes include glucose, fructose and other cis-diols; oxygen; carbon dioxide; various ions such as zinc, potassium, hydrogen (pH measurement), carbonate, etc.
- Many such indicator components are known. For example, the compounds depicted in U.S. Pat. No. 5,503,770 are useful for detecting saccharides such as glucose, but are sparingly soluble to insoluble in water. Other classes of indicators include the lanthanide chelates disclosed in copending U.S. application Ser. No. 09/265,979 filed Mar. 11, 1999 (and published as PCT International Application WO 99/46600 on Sep. 16, 1999), incorporated herein by reference; polyaromatic hydrocarbons and their derivatives; etc.
- The indicator components of the present invention will generally have a detectable quality that changes in a concentration-dependent manner when the macromolecule is exposed to the analyte to be measured. Many such qualities are known and may be used in the present invention. For example, the indicator may include a luminescent (fluorescent or phosphorescent) or chemiluminescent label, an absorbance based label, etc. The indicator may comprise an energy donor moiety and an energy acceptor moiety, each spaced such that there is a detectable change when the macromolecule is bound to the analyte.
- Preferably, the detectable quality is a detectable spectral change, such as changes in fluorescent decay time (determined by time domain or frequency domain measurement), fluorescent intensity, fluorescent anisotropy or polarization; a spectral shift of the emission spectrum; a change in time-resolved anisotropy decay (determined by time domain or frequency domain measurement), etc.
- Suitable hydrophilic monomers should be sufficiently hydrophilic so as to overcome the sum of the hydrophobic indicator component monomers, such that the resultant indicator macromolecule is capable of functioning in an aqueous environment. It will be readily apparent that a wide variety of hydrophilic monomers are suitable for use in the present invention. For example, suitable hydrophilic monomers include methacrylamides, methacrylates, vinyls, polysaccharides, polyamides, polyamino acids, hydrophilic silanes or siloxanes, etc., as well as mixtures of two or more different monomers.
- Suitable hydrophilic monomers for a given application will vary according to a number of factors, including intended temperature of operation, salinity, pH, presence and identity of other solutes, ionic strength, etc. It would be readily apparent that the degree of hydrophilicity of the indicator macromolecule can be increased by adding additional functional constituents such as ions (e.g., sulfonate, quartenary amine, carboxyl, etc.), polar moieties (e.g., hydroxyl, sulfhydryl, amines, carbonyl, amides, etc.), halogens, etc.
- It will be appreciated that the molar ratio of hydrophilic monomer to indicator component monomer may vary widely depending on the specific application desired. Preferred ratios of hydroplilic monomer:indicator component monomer range from about 2:1 to about 500:1, more preferably from about 5:1 to about 50:1.
- The indicator macromolecules of the present invention may generally be synthesized by simply copolymerizing at least one indicator component monomer with at least one hydrophilic monomer. Optimum polymerization conditions (time, temperature, catalyst, etc.) will vary according to the specific reactants and the application of the final product, and can easily be established by one of ordinary skill.
- It will be appreciated that the indicator macromolecules of the present invention may have any desired extent of water solubility. For example, the indicator macromolecule of Examples 1 and 2 below are very soluble, readily dissolving in aqueous solution. On the other hand, indicator macromolecules containing, for example, the hydrophilic monomer HEMA (hydroxyethyl methacrylate) or other common hydrogel constituents, can be non-soluble yet hydrophilic.
- The soluble indicator macromolecules may be used directly in solution if so desired. On the other hand, if the desired application so requires, the indicator macromolecule may be immobilized (such as by mechanical entrapment or covalent or ionic attachment) onto or within an insoluble surface or matrix such as glass, plastic, polymeric materials, etc. When the indicator macromolecule is entrapped within, for example, another polymer, the entrapping material preferably should be sufficiently permeable to the analyte to allow suitable interaction between the analyte and the indicator components in the macromolecule.
- Many uses exist for the indicator macromolecules of the present invention, including uses as indicators in the fields of energy, medicine and agriculture. For example, the indicator macromolecules can be used as indicator molecules for detecting sub-levels or supra-levels of glucose in blood or urine, thus providing valuable information for diagnosing or monitoring such diseases as diabetes and adrenal insufficiency. Medical/pharmaceutical production of glucose for human therapeutic application requires monitoring and control.
- Uses for the present invention in agriculture include detecting levels of an analyte such as glucose in soybeans and other agricultural products. Glucose must be carefully monitored in critical harvest decisions for such high value products as wine grapes. As glucose is the most expensive carbon source and feedstock in fermentation processes, glucose monitoring for optimum reactor feed rate control is important in power alcohol production. Reactor mixing and control of glucose concentration also is critical to quality control during production of soft drinks and fermented beverages, which consumes the largest amounts of glucose and fermentable (cis-diol) sugars internationally.
- When the indicator macromolecules incorporate fluorescent indicator substituents, various detection techniques also are known in the art that can make use of the macromolecules of the present invention. For example, the macromolecules of the invention can be used in fluorescent sensing devices (e.g., U.S. Pat. No. 5,517,313) or can be bound to polymeric material such as test paper for visual inspection. This latter technique would permit, for example, glucose measurement in a manner analogous to determining pH with a strip of litmus paper. The macromolecules described herein may also be utilized as simple reagents with standard benchtop analytical instrumentation such as spectrofluorometers or clinical analyzers as made by Shimadzu, Hitachi, Jasco, Beckman and others. These molecules would also provide analyte specific chemical/optical signal transduction for fiber optic-based sensors and analytical fluorometers as made by Ocean Optics (Dunedin, Fla.), or Oriel Optics.
- U.S. Pat. No. 5,517,313, the disclosure of which is incorporated herein by reference, describes a fluorescence sensing device in which the macromolecules of the present invention can be used to determine the presence or concentration of an analyte such as glucose or other cis-diol compound in a liquid medium. The sensing device comprises a layered array of a fluorescent indicator molecule-containing matrix (hereafter “fluorescent matrix”), a high-pass filter and a photodetector. In this device, a light source, preferably a light-emitting diode (“LED”), is located at least partially within the indicator material, or in a waveguide upon which the indicator matrix is disposed, such that incident light from the light source causes the indicator molecules to fluoresce. The high-pass filter allows emitted light to reach the photodetector, while filtering out scattered incident light from the light source.
- The fluorescence of the indicator molecules employed in the device described in U.S. Pat. No. 5,517,313 is modulated, e.g., attenuated or enhanced, by the local presence of an analyte such as glucose or other cis-diol compound.
- In the sensor described in U.S. Pat. No. 5,517,313, the material which contains the indicator molecule is permeable to the analyte. Thus, the analyte can diffuse into the material from the surrounding test medium, thereby affecting the fluorescence emitted by the indicator molecules. The light source, indicator molecule-containing material, high-pass filter and photodetector are configured such that at least a portion of the fluorescence emitted by the indicator molecules impacts the photodetector, generating an electrical signal which is indicative of the concentration of the analyte (e.g., glucose) in the surrounding medium.
- In accordance with other possible embodiments for using the indicator macromolecules of the present invention, sensing devices also are described in U.S. Pat. Nos. 5,910,661, 5,917,605 and 5,894,351, all incorporated herein by reference.
- The macromolecules of the present invention can also be used in an implantable device, for example to continuously monitor an analyte in vivo (such as blood glucose levels). Suitable devices are described in, for example, co-pending U.S. patent application Ser. No. 09/383,148 filed Aug. 26, 1999, as well as U.S. Pat. Nos. 5,833,603, 6,002,954 and 6,011,984, all incorporated herein by reference.
- The macromolecules of the present invention have unique advantages when used in absorbance-based assays. For example, absorbance of a sample is directly proportional to both the concentration of the absorber and the sample path length. Thus, it is apparent that for a given level of absorbance, the sample path length may be greatly reduced if the absorber concentration is greatly increased. That desirable increase in concentration may be accomplished by decreasing the ratio of the hydrophilic monomer:indicator component monomer. In effect, the present invention allows the localized concentration of much more absorber component into a limited space, thereby increasing the absorbance per unit thickness. Thus the present invention additionally allows use of much smaller equipment when performing absorbance-based assays.
- As a further aspect of the present invention, it has been discovered that certain macromolecules exhibit an excimer effect. By way of background, when two planar molecules with aromatic structure (such as is common with fluorophores) are concentrated to a point where their pi electron orbital lobes may overlap, a resonance condition can then occur for some species where the resonance from overlap results in a hybrid (couplet) structure which is energy favorable and stable. These two planar molecules become oriented in a coplanar configuration like two slices of bread on a sandwich with their electron clouds overlapping between them. For fluorescent planar species, a characteristic downfield emission occurs relative to the uncoupled species at wavelength of substantially lower energy than the parent species. Molecules able to form such favorable resonant configurations are known as excimers. As used herein, an excimer effect refers to the resulting characteristic longer wavelength emission from excimers.
- Some examples of typical excimer-forming polyaromatic hydrocarbons include anthracene and pyrene. There are many others. An example is the anthracene derivative (boronate included), the indicator component used in Examples 1 and 2 of the present application. Although anthracene is known to form excimers in solution, one must be able to concentrate the molecule to sufficiently high levels to observe any excimer character. In the case of the anthracene derivative of Examples 1 and 2, the molecule is insoluble in water and insufficiently soluble in a solvent such as methanol to observe excimer characteristics. In the present examples, the relative concentration of the anthracene derivative monomer was increased in proportion to the hydrophilic monomer in the copolymer from 500:1, 400:1, 200:1, 100:1, 50:1, 25:1, 15:1 and then 5:1. All have the characteristic blue emission at 417 nm of the anthracene derivative except at 5:1 ratio, a green emission suddenly emission is that of an excimer hybrid and the emission has been shifted downfield by approximately 100+ nanometers (˜515-570 nm, green). The concentration of the overall solution does not need to be high since the distance between planar species is being controlled by placement along the polymer backbone rather than soluble concentration in 3-D space.
- Surprisingly, it has been found that the excimer emission region is not responsive to changes in analyte concentration, but is responsive to all other aspects of the system analyzed, such as excitation intensity, temperature, and pH. As a result, the present indicator macromolecules may serve as both an indicator and an internal reference. For example, an ideal referencing scheme is one where the emission intensity at an indicator wavelength is divided optically using select bandpass filters, by the emission intensity at the excimer wavelength. The resultant value corrects for interfering factors which affect fluorescent emission properties, such as fluorescent quenching by, e.g., oxygen, drift and error in pH, power factors and drift affecting LED intensity, ambient temperature excursions, etc.
- It will be readily appreciated that the macromolecules of the present invention which exhibit an excimer effect will be useful in both aqueous and non-aqueous environments. Consequently, those macromolecules, as well as the component monomers (excimer-forming and other monomer), may range from hydrophilic to hydrophobic, depending upon the desired application.
- Also, when the excimer macromolecules of the present invention are used to detect the presence or concentration of an analyte, the macromolecule may be used directly in solution, or may be immobilized as described above.
- The macromolecules of the present invention can be prepared by persons skilled in the art without an undue amount of experimentation using readily known reaction mechanisms and reagents, including reaction mechanisms which are consistent with the general procedures described below.
- a) Preparation of 9-[(methacryloylaminopropylamino) methyl]anthracene
- (A) One-Phase
- To a suspension of N-(3-aminopropyl) methacrylamide hydrochloride (Polysciences, #21200) (11.82 g, 0.066 mole, 3.0 eq) and a trace of inhibitor DBMP (2,6-di-t-butyl-4-methylphenol) (10 mg) in chloroform (250 mL) stirring in an ice-water bath, diisopropylethylamine (25 mL, 18.55 g. 0.144 mole, 6.5 eq) was added dropwise in 20 minutes. The mixture was allowed to warm up to room temperature and cooled again in ice-water bath. A clear solution of 9-chloromethylanthracene (5.0 g, 0.022 mole) in chloroform (100 mL) was added dropwise over 1 hour. It was run at 25° C. for 1 hour, 50° C. for 12 hours and then 70° C. for 2 hours.
- The mixture was washed with water (60 mL×4), and the aqueous layer was extracted with methylene chloride. The organic layers were combined, dried over Na2SO4, separated, and the solvent was removed under reduced pressure at 40° C. The crude material was then chromatographed on silica gel with 2-5% methanol in methylene chloride to give 2.44 g (33.4%) of product as a solid. TLC (silica gel): Rf 0.39 (MeOH/CH2Cl2=1/9), a single spot.
- (B) Two-Phase
- To a clear solution of N-(3-aminopropyl) methacrylamide hydrochloride (788 mg, 4.41 mmole, 10 eq) and a trace of inhibitor MEHQ (methylether hydroquinone) (2 mg) in a mixture of water (30 mL) and tetrahydrofuran (30 mL) stirring in an ice-water bath. A Na2CO3/NaHCO3 buffer (66 mL, 0.2 M, pH 10) was added in 1 hour and a solution of 9-chloromethylanthracene (100 mg, 0.441 mmole) in chloroform (100 mL) was added in 3 hours. It was run at 25° C. for 7 hours and then 55° C. for 12 hours.
- The organic layer was separated, washed with water (50 mL×4), and the aqueous layers were extracted with methylene chloride. The organic layers were combined, dried over Na2SO4, separated, and the solvent was removed with reduced pressure at 45° C. The crude material (270 mg) was then chromatographed on silica gel with 10-20% methanol in methylene chloride to give 28.7 mg (19.6% of product as a solid TLC (silica gel): Rf 0.77 (MeOH/CH2Cl2 =3/7), a single spot.
- b) Preparation of 9-[[N-methacryloylaminopropyl-N-(o-boronobenzyl)amino]methyl]anthracene
- To a solution of the product obtained in step a) above (2.440 g, 0.00734 mole) and a trace of inhibitor DBMP (10 mg) in chloroform (200 mL) stirring in an ice-water bath, DIEA (diisopropylethylamine) (2.846 g, 3.84 mL, 0.022 mole, 3.0 eq) was added by portions in 10 minutes, and then a solution of 2,2-dimethylpropane-1,3-diyl[o-(bromomethyl)phenyl]boronate (2.492 g, 0.00881 mole, 1.2 eq) in chloroform (15 mL) was added in 30 minutes. The reaction was run at room temperature for 20 hours.
- The mixture was washed with water, separated and the aqueous layers were extracted with methylchloride. The organic layers were combined, dried over Na2SO4, separated and the solvent was removed with reduced pressure at 25° C. The semi-solid (4.75 g) was then chromatographed on silica gel with 2-5% methanol in methylene chloride to give 2.50 g (76.3%) of product as a lightly yellow crystalline solid, mp 72-73° C., TLC (silica gel): Rf 0.36 (MeOH/CH2Cl2=1/9). It is soluble in CH2Cl2, CHCl3, THF, CH3OH, and C2H5OH. Limited solubility in H2O and ether.
- c) Preparation of Water-Soluble-Copolymeric Solutions of MAPTAC and 9-[[N-methacryloylaminopropyl-N-(o-boronobenzyl)amino]methyl]anthracene
- (50:1) Solution:
- To a solution of the monomer (42:3 mg, 0.0908 mmole) in ethanol (100%, 1.5 mL), MAPTAC [3-(methacryloylamino)propyl]trimethylammonium chloride (2.0 mL, 1.0 g, 4.54 mmole, 50 eq) and an AIBN (azobisisobutyl nitrile) ethanolic solution (0.183 M, 0.2 mL) as radical initiator were added, a clear solution was obtained. It was saturated with nitrogen and then heated to 70° C. in 1 hour, and kept at 70° C. for 80 minutes, and a viscous liquid was obtained.
- The liquid obtained was treated with water (26 mL) and filtered through a microfilter (0.45 um) to give a clear solution. After dialysis through a cellulose acetate membrane (MWCO 3500) with water 5 L×4), it was concentrated with polyethylene glycol (MW 20 K) to a clear solution (34.54 g). Concentration: 24.0 mg solid in 1.0 g solution, total solid 829 mg, yield 79.5%.
- Similar procedures were applied to prepare copolymeric solutions of 500:1, 400:1, 200:1, 100:1, 50:1, 25:1, 15:1, and 5:1 molar ratios of hydrophilic monomer: indicator.
- Glucose Modulation of 50:1 and 25:1 Co-Polymers
- The modulation of the fluorescence of the 50:1 and 25:1 indicator macromolecules by glucose solutions having various concentrations is shown below in Tables 1 and 2. Table 1 shows the results using two different concentrations (15 mg/ml and 25 mg/ml) of the 25:1 indicator macromolecule of this example with four different glucose concentrations. Table 2 shows the results using two different concentrations (10 mg/ml and 20 mg/ml) of the 50:1 indicator macromolecule of this example with four different glucose concentrations. In both Tables, I/Io is the ratio of the emitted intensities at 420 nm after and before exposure to glucose (365 nm excitation)
TABLE 1 I/Io for 15 mg/ml I/Io for 25 mg/ml Glucose indicator indicator concentration macromolecule macromolecule (mM) (25:1) (25:1) 0 1.00 1.00 50 1.44 1.50 100 1.75 1.90 200 2.13 2.33 -
TABLE 2 I/Io for 10 mg/ml I/Io for 20 mg/ml Glucose indicator indicator concentration macromolecule macromolecule (mM) (50:1) (50:1) 0 1.00 1.00 50 1.40 1.48 100 1.70 1.79 200 2.04 2.22 - This example demonstrates a surprising and useful eximer effect present in connection with the 5:1 indicator macromolecule prepared in Example 1.
- FIG. 1 depicts the emission spectra of the 5:1 indicator macromolecule when exposed to three concentrations of glucose (0 mM, 30 mM and 60 mM) after excitement by light at 365 nm. Also shown in the shaded region of FIG. 1 is the emission of the non-excimer 25:1 indicator macromolecule from example 1. The excimer emission region shows an “isosbestic region” rather than an isosbestic point. It can be seen from FIG. 1 that the excimer emission region (the region where the 0 mM, 30 mM and 60 mM glucose lines overlap) is not responsive to changes in glucose concentration (just like an isosbestic point). The excimer emission region begins approximately 100 nm downfield from the peak responsive wavelength of the anthracene derivative modulation. Except for glucose, the excimer is responsive to all other aspects of the system, such as excitation intensity, temperature, and pH. Therefore, an ideal referencing scheme is one where the amplitude or signal value at 415 nm is divided electronically by the amplitude or signal value at 515 nm or another wavelength or range of wavelengths within the excimer emission region, and the resultant value will be corrected for drift and error in pH, power factors and drift affecting LED intensity, ambient temperature excursions, etc. That is demonstrated below.
- Demonstration of Excitation Intensity, Temperature and pH Correction
- The glucose modulation of the 5:1 indicator macromolecule was measured with three different glucose solutions (0 mM, 100 mM and 200 mM). The emission spectra were determined for each of the glucose solutions at three different spectrophotometer slit configurations for source and emitted light (1.5 being narrower and 3 being wider). The data are shown in Table 3. In the Table, the ratio of the emission intensity at 420 nm to the emission intensity at 550 nm is relatively independent of slit configuration.
TABLE 3 I420/I550 I420/I550 Slit I420/ I550 100 mM 200 mM Configuration 0 mM glucose glucose glucose 1.5/1.5 3.92 6.18 7.36 1.5/3 3.93 6.12 7.25 3/3 4.00 6.27 7.28 - The temperature stability of the 5:1 excimer indicator macromolecule was determined. The ratio of the emissions at 420 nm and 550 nm for a 1 mg/ml solution of the 5:1 excimer indicator macromolecule exposed to 200 mM glucose (pH 7.5) was 7.57 at room temperature and 7.53 at approximately 60° C.
- The pH stability of the 5:1 excimer indicator macromolecule was also determined. The ratio of the emissions at 420 nm and 550 nm for a 1 mg/ml solution of the 5:1 excimer indicator macromolecule at three different pH levels (6.5, 7.0 and 7.5) were determined (excitation light at 370 nm, slits 1.5,3), and are shown in Table 4. The full emission spectra are shown in FIG. 2. The variation over the range tested was statistically insignificant.
TABLE 4 I420/I550 pH 6.5 I420/I550 pH 7.0 I420/I550 pH 7.5 4.28 ± 0.18 4.60 ± 0.37 4.29 ± 0.19 - It is believed that the stability of the excimer pi cloud exceeds that of non-excimer anthracene derivative, and, that the boronate recognition feature, which is able to perturb the pi cloud properties of the non-excimer, and thus make a good indicator, is not able to perturb the more stable excimer cloud and thus the excimer makes a very good reference indicator. The reference molecule is structurally unaltered from the read channel indicator. The polymer matrix may be the same, and in this example is in fact the same macromolecule. The recognition element is open and intact, but the inductive energy influence between recognition element and fluorophore center has been muted.
- The foregoing is quite significant, because it can eliminate the need for separate physical and/or chemical environments between indicator and reference molecules.
-
Claims (11)
1. An indicator macromolecule for detecting the presence or concentration of an analyte in an aqueous environment, said macromolecule comprising a copolymer of:
a) one or more indicator component monomers which individually are not sufficiently water soluble to permit their use in an aqueous environment for detecting the presence or concentration of said analyte; and
b) one or more hydrophilic monomers; such that the macromolecule is capable of detecting the presence or concentration of said analyte in an aqueous environment.
2. The indicator macromolecule of claim 1 , wherein the indicator component monomer comprises an N-(o-boronobenzyl) amino]methyl]anthracene derivative.
3. The indicator macromolecule of claim 2 , wherein the hydrophilic monomer comprises [3-(methacryloylamino)-propyl]trimethylammonium chloride.
4. The indicator macromolecule of claim 1 , wherein the indicator component monomer is selected from the group consisting of a lanthanide chelate and a polyaromatic hydrocarbon.
5. The indicator macromolecule of claim 1 , wherein the molar ratio of hydrophilic monomer:indicator component momomer is from about 2:1 to about 500:1.
6. The indicator macromolecule of claim 5 , wherein the ratio of hydrophilic monomer:indicator component momomer is from about 5:1 to about 50:1.
7. The indicator macromolecule of claim 6 , wherein the ratio of hydrophilic monomer:indicator component momomer is about 5:1.
8. The indicator macromolecule of claim 1 , wherein the analyte detected is selected from the group consisting of a cis-diol; oxygen; carbon dioxide; and zinc, potassium, hydrogen, or carbonate ions.
9. The indicator macromolecule of claim 8 , wherein the analyte detected is a saccharide.
10. The indicator macromolecule of claim 9 , wherein the saccharide is glucose.
11. The indicator macromolecule of claim 1 , wherein
i) the molar ratio of hydrophilic monomer:indicator component momomer is from about 2:1 to about 15:1,
ii) the indicator component monomer comprises an N-(o-boronobenzyl) amino]methyl]anthracene derivative,
iii) the hydrophilic monomer comprises [3-(methacryloylamino)-propyl]trimethylammonium chloride, and
iv) the macromolecule exhibits an excimer effect.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/193,246 US20030003592A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63262400A | 2000-08-04 | 2000-08-04 | |
US10/193,246 US20030003592A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US63262400A Division | 2000-08-04 | 2000-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030003592A1 true US20030003592A1 (en) | 2003-01-02 |
Family
ID=24536267
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/920,627 Expired - Lifetime US6794195B2 (en) | 2000-08-04 | 2001-08-03 | Detection of analytes in aqueous environments |
US10/193,246 Abandoned US20030003592A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
US10/193,249 Abandoned US20030013202A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
US10/193,244 Abandoned US20030008408A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
US10/193,245 Abandoned US20030013204A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
US10/788,264 Expired - Lifetime US7060503B2 (en) | 2000-08-04 | 2004-03-01 | Detection of Analytes in aqueous environments |
US11/448,903 Expired - Fee Related US7939332B2 (en) | 2000-08-04 | 2006-06-08 | Detection of analytes in aqueous environments |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/920,627 Expired - Lifetime US6794195B2 (en) | 2000-08-04 | 2001-08-03 | Detection of analytes in aqueous environments |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/193,249 Abandoned US20030013202A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
US10/193,244 Abandoned US20030008408A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
US10/193,245 Abandoned US20030013204A1 (en) | 2000-08-04 | 2002-07-12 | Detection of analytes in aqueous environments |
US10/788,264 Expired - Lifetime US7060503B2 (en) | 2000-08-04 | 2004-03-01 | Detection of Analytes in aqueous environments |
US11/448,903 Expired - Fee Related US7939332B2 (en) | 2000-08-04 | 2006-06-08 | Detection of analytes in aqueous environments |
Country Status (13)
Country | Link |
---|---|
US (7) | US6794195B2 (en) |
EP (3) | EP1557422B1 (en) |
JP (1) | JP2004506069A (en) |
KR (1) | KR100922146B1 (en) |
CN (2) | CN101845116B (en) |
AU (4) | AU7814501A (en) |
BR (1) | BR0112871A (en) |
CA (1) | CA2415338C (en) |
DK (3) | DK1557422T3 (en) |
HK (3) | HK1076471A1 (en) |
MX (1) | MXPA03001043A (en) |
TW (1) | TWI313354B (en) |
WO (1) | WO2002012251A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050227242A1 (en) * | 2004-04-13 | 2005-10-13 | Sensors For Medicine And Science, Inc. | Non-covalent immobilization of indicator molecules |
US20060019681A1 (en) * | 2004-07-20 | 2006-01-26 | Motorola, Inc. | Reducing delay in setting up calls |
US20170151758A1 (en) * | 2015-12-01 | 2017-06-01 | Norbord Inc. | Oriented Strand Board |
Families Citing this family (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
CA2415338C (en) * | 2000-08-04 | 2012-10-23 | Sensors For Medicine And Science, Inc. | Detection of analytes in aqueous environments |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6800451B2 (en) * | 2001-01-05 | 2004-10-05 | Sensors For Medicine And Science, Inc. | Detection of glucose in solutions also containing an alpha-hydroxy acid or a beta-diketone |
US7041468B2 (en) | 2001-04-02 | 2006-05-09 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
IL145683A0 (en) * | 2001-09-26 | 2002-06-30 | Enoron Technologies Ltd | Apparatus and method for measuring optically active materials |
US6916894B2 (en) | 2002-03-29 | 2005-07-12 | Nitto Denko Corporation | Polydioxaborines |
ITMI20021921A1 (en) * | 2002-09-10 | 2004-03-11 | Indena Spa | FUNCTIONALIZATION OF POSITION 14 OF TASSANIC NUCLEI AND SUMMARY OF NEW ANTI-TUMOR DERIVATIVES. |
DE60336834D1 (en) | 2002-10-09 | 2011-06-01 | Abbott Diabetes Care Inc | FUEL FEEDING DEVICE, SYSTEM AND METHOD |
US7727181B2 (en) | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US7993108B2 (en) | 2002-10-09 | 2011-08-09 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
AU2003287735A1 (en) * | 2002-11-12 | 2004-06-03 | Argose, Inc. | Non-invasive measurement of analytes |
US20040106163A1 (en) * | 2002-11-12 | 2004-06-03 | Workman Jerome James | Non-invasive measurement of analytes |
AU2003303597A1 (en) | 2002-12-31 | 2004-07-29 | Therasense, Inc. | Continuous glucose monitoring system and methods of use |
US7297548B2 (en) | 2003-03-28 | 2007-11-20 | Terumo Kabushiki Kaisha | Solid-phase saccharide sensing compounds |
JP2006514680A (en) * | 2003-03-28 | 2006-05-11 | テルモ株式会社 | Solid-phase saccharide detection compound |
US7679407B2 (en) | 2003-04-28 | 2010-03-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
US8445702B2 (en) * | 2003-05-05 | 2013-05-21 | Life Technologies Corporation | Zinc binding compounds and their method of use |
US20050250214A1 (en) * | 2004-05-05 | 2005-11-10 | Gee Kyle R | Zinc binding compounds and their method of use |
US8066639B2 (en) | 2003-06-10 | 2011-11-29 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
US8029765B2 (en) * | 2003-12-24 | 2011-10-04 | Masimo Laboratories, Inc. | SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors |
EP1718198A4 (en) | 2004-02-17 | 2008-06-04 | Therasense Inc | Method and system for providing data communication in continuous glucose monitoring and management system |
US7450980B2 (en) * | 2004-03-31 | 2008-11-11 | Terumo Kabushiki Kaisha | Intracorporeal substance measuring assembly |
CA2571112A1 (en) * | 2004-06-17 | 2006-01-26 | Bayer Healthcare Llc | Coaxial diffuse reflectance read head |
JP4691333B2 (en) * | 2004-07-23 | 2011-06-01 | テルモ株式会社 | Fluorescent monomer compound for saccharide measurement, fluorescent sensor substance for saccharide measurement, and saccharide measurement sensor for implantation in the body |
JP4520272B2 (en) * | 2004-10-14 | 2010-08-04 | テルモ株式会社 | Fluorescent monomer compound for saccharide measurement, fluorescent sensor substance for saccharide measurement, and saccharide measurement sensor for implantation in the body |
EP1619229B1 (en) | 2004-07-23 | 2007-04-11 | Terumo Kabushiki Kaisha | Saccharide-measuring fluorescent monomer, saccharide-measuring fluorescent sensor substance, and implantable, saccharide-measuring sensor |
JP4691345B2 (en) * | 2004-10-07 | 2011-06-01 | テルモ株式会社 | Fluorescent monomer compound for saccharide measurement, fluorescent sensor substance for saccharide measurement, and saccharide measurement sensor for implantation in the body |
EP1863559A4 (en) | 2005-03-21 | 2008-07-30 | Abbott Diabetes Care Inc | Method and system for providing integrated medication infusion and analyte monitoring system |
US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US7620437B2 (en) | 2005-06-03 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US20070014726A1 (en) * | 2005-07-18 | 2007-01-18 | Sensors For Medicine And Science | Oxidation-resistant indicator macromolecule |
US7756561B2 (en) | 2005-09-30 | 2010-07-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US7583190B2 (en) | 2005-10-31 | 2009-09-01 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US8344966B2 (en) | 2006-01-31 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing a fault tolerant display unit in an electronic device |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US20080071157A1 (en) | 2006-06-07 | 2008-03-20 | Abbott Diabetes Care, Inc. | Analyte monitoring system and method |
WO2008014280A2 (en) * | 2006-07-25 | 2008-01-31 | Glumetrics, Inc. | Flourescent dyes for use in glucose sensing |
US7549338B1 (en) * | 2006-09-28 | 2009-06-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Nanostructure sensor of presence and concentration of a target molecule |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
KR101492849B1 (en) * | 2006-11-30 | 2015-02-12 | 센세오닉스, 인코포레이티드 | Oxidation resistant indicator molecules |
US7751863B2 (en) * | 2007-02-06 | 2010-07-06 | Glumetrics, Inc. | Optical determination of ph and glucose |
US7829341B2 (en) | 2007-07-11 | 2010-11-09 | Glumetrics, Inc. | Polyviologen boronic acid quenchers for use in analyte sensors |
WO2008098087A2 (en) | 2007-02-06 | 2008-08-14 | Glumetrics, Inc. | Optical systems and methods for rationmetric measurement of blood glucose concentration |
US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US8665091B2 (en) | 2007-05-08 | 2014-03-04 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US7928850B2 (en) | 2007-05-08 | 2011-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
WO2008141243A2 (en) * | 2007-05-10 | 2008-11-20 | Glumetrics, Inc. | Device and methods for calibrating analyte sensors |
CA2686065A1 (en) * | 2007-05-10 | 2008-11-20 | Glumetrics, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
EP3078714A1 (en) | 2007-08-06 | 2016-10-12 | Medtronic Minimed, Inc. | Hpts-mono and bis cys-ma polymerizable fluorescent dyes for use in analyte sensors |
US20090247984A1 (en) * | 2007-10-24 | 2009-10-01 | Masimo Laboratories, Inc. | Use of microneedles for small molecule metabolite reporter delivery |
EP2217316A4 (en) | 2007-11-21 | 2013-01-16 | Glumetrics Inc | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
WO2009129186A2 (en) | 2008-04-17 | 2009-10-22 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8560082B2 (en) | 2009-01-30 | 2013-10-15 | Abbott Diabetes Care Inc. | Computerized determination of insulin pump therapy parameters using real time and retrospective data processing |
WO2010129375A1 (en) | 2009-04-28 | 2010-11-11 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
US9226701B2 (en) | 2009-04-28 | 2016-01-05 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
US9184490B2 (en) | 2009-05-29 | 2015-11-10 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US9517023B2 (en) | 2009-06-01 | 2016-12-13 | Profusa, Inc. | Method and system for directing a localized biological response to an implant |
US8479496B2 (en) | 2009-07-02 | 2013-07-09 | GM Global Technology Operations LLC | Selective catalytic reduction system using electrically heated catalyst |
US8798934B2 (en) | 2009-07-23 | 2014-08-05 | Abbott Diabetes Care Inc. | Real time management of data relating to physiological control of glucose levels |
WO2011026148A1 (en) | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
EP2473098A4 (en) | 2009-08-31 | 2014-04-09 | Abbott Diabetes Care Inc | Analyte signal processing device and methods |
EP2482720A4 (en) | 2009-09-29 | 2014-04-23 | Abbott Diabetes Care Inc | Method and apparatus for providing notification function in analyte monitoring systems |
US20110077477A1 (en) | 2009-09-30 | 2011-03-31 | Glumetrics, Inc. | Sensors with thromboresistant coating |
US8467843B2 (en) | 2009-11-04 | 2013-06-18 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of blood glucose measurement |
JP2013519101A (en) | 2010-02-08 | 2013-05-23 | グルメトリクス, インコーポレイテッド | Antioxidant protection of chemical sensors |
EP2537033A1 (en) * | 2010-02-19 | 2012-12-26 | Lightship Medical Limited | Indicator system for fibre optic sensor |
EP2545373B1 (en) * | 2010-03-11 | 2022-08-24 | Medtronic Minimed, Inc. | Measuring analyte concentration incorporating temperature and ph correction |
JP2010209339A (en) * | 2010-04-19 | 2010-09-24 | Terumo Corp | Fluorescence monomer compound for saccharide measurement, fluorescence sensor substance for saccharide measurement, and internally implanted sensor for saccharide measurement |
US10010272B2 (en) | 2010-05-27 | 2018-07-03 | Profusa, Inc. | Tissue-integrating electronic apparatus |
US8822722B2 (en) | 2010-09-30 | 2014-09-02 | Terumo Kabushiki Kaisha | Fluorescent hydrogel and method for producing the same, and sensor for measuring saccharides using the same |
WO2012048150A1 (en) | 2010-10-06 | 2012-04-12 | Profusa, Inc. | Tissue-integrating sensors |
US9134238B2 (en) * | 2010-12-01 | 2015-09-15 | Nalco Company | Method for determination of system parameters for reducing crude unit corrosion |
AU2012229109A1 (en) | 2011-03-15 | 2013-10-10 | Senseonics, Incorporated | Integrated catalytic protection of oxidation sensitive materials |
EP2769226B1 (en) | 2011-07-15 | 2017-05-24 | Medtronic Minimed, Inc. | Combinations of fluorphores and pyridinium boronic acid quenchers for use in analyte sensors |
JP6443802B2 (en) | 2011-11-07 | 2018-12-26 | アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. | Analyte monitoring apparatus and method |
CN102721681B (en) * | 2012-06-01 | 2014-09-17 | 北京航空航天大学 | Carbon dioxide chemical fluorescent sensor material on basis of amidine/guanidine group and preparation detection method thereof |
US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
CA2904031A1 (en) | 2013-03-14 | 2014-10-02 | Profusa, Inc. | Method and device for correcting optical signals |
JP6244004B2 (en) | 2013-03-14 | 2017-12-06 | プロフサ,インコーポレイテッド | Oxygen sensor |
JP2014203831A (en) * | 2013-04-01 | 2014-10-27 | テルモ株式会社 | In-vivo substance detection device |
US10219729B2 (en) | 2013-06-06 | 2019-03-05 | Profusa, Inc. | Apparatus and methods for detecting optical signals from implanted sensors |
US9963556B2 (en) | 2013-09-18 | 2018-05-08 | Senseonics, Incorporated | Critical point drying of hydrogels in analyte sensors |
CN103700003A (en) * | 2013-12-30 | 2014-04-02 | 陶鹏 | House online direct renting method and system based on wish conformity matching |
US9814413B2 (en) | 2014-07-24 | 2017-11-14 | Thomas Jefferson University | Long-term implantable monitoring system and methods of use |
EP3558118A4 (en) | 2016-12-21 | 2021-02-24 | Profusa, Inc. | Polymerizable near-ir dyes |
WO2018119400A1 (en) | 2016-12-22 | 2018-06-28 | Profusa, Inc. | System and single-channel luminescent sensor for and method of determining analyte value |
JOP20190161A1 (en) * | 2016-12-27 | 2017-06-16 | Profusa Inc | Near-ir glucose sensors |
WO2018184012A1 (en) | 2017-03-31 | 2018-10-04 | Capillary Biomedical, Inc. | Helical insertion infusion device |
CN110730631B (en) | 2017-04-19 | 2023-02-21 | 传感技术股份有限公司 | Detection and correction of analyte indicator changes |
WO2019194875A2 (en) | 2017-12-28 | 2019-10-10 | Profusa, Inc. | Oxidase-based sensors and methods of using |
CA3110179A1 (en) * | 2018-08-20 | 2020-02-27 | Senseonics, Incorporated | Mediated drug release for reducing in vivo analyte indicator degradation |
CN110272442A (en) * | 2019-07-18 | 2019-09-24 | 亳州学院 | One kind is containing double boron polycyclic aromatic hydrocarbons (PAH) fluorescent materials, preparation method and applications |
CN115176155A (en) | 2019-10-25 | 2022-10-11 | 塞卡科实验室有限公司 | Indicator compounds, devices including indicator compounds, and methods of making and using the same |
JP6767021B1 (en) * | 2020-02-18 | 2020-10-14 | 大日精化工業株式会社 | Ink composition for moisture indicator, moisture detection sheet and its manufacturing method |
CN115616096A (en) * | 2021-07-16 | 2023-01-17 | 张家港市国泰华荣化工新材料有限公司 | Method for measuring BHT and MEHQ in organic silicon product |
CN115287055B (en) * | 2021-12-22 | 2024-06-11 | 温州医科大学 | Reagent for high-selectivity rapid detection of zinc ions and detection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6002954A (en) * | 1995-11-22 | 1999-12-14 | The Regents Of The University Of California | Detection of biological molecules using boronate-based chemical amplification and optical sensors |
US6011984A (en) * | 1995-11-22 | 2000-01-04 | Minimed Inc. | Detection of biological molecules using chemical amplification and optical sensors |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE454781B (en) * | 1986-10-17 | 1988-05-30 | Wallac Oy | HYBRIDIZATION PROCEDURE FOR THE DETECTION OF POLYNUCLEOTIDE SEQUENCE |
GB8926407D0 (en) * | 1989-11-22 | 1990-01-10 | Gen Electric Plc | Polymers |
ATE145829T1 (en) | 1990-09-25 | 1996-12-15 | Allergan Inc | DEVICE AND METHOD FOR DISINFECTING CONTACT LENSES AND DETECTING THE PRESENCE OF AN OXIDATIVE DISINFECTANT |
JPH09500411A (en) * | 1993-07-13 | 1997-01-14 | アボツト・ラボラトリーズ | Fluorescent polymer labeled conjugates and intermediates |
US5661040A (en) * | 1993-07-13 | 1997-08-26 | Abbott Laboratories | Fluorescent polymer labeled conjugates and intermediates |
GB2284809B (en) * | 1993-11-07 | 1998-04-29 | Japan Res Dev Corp | A fluorescent phenylboronic acid suitable for use in the detection of saccharides |
US5517313A (en) | 1995-02-21 | 1996-05-14 | Colvin, Jr.; Arthur E. | Fluorescent optical sensor |
US5833603A (en) | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
ATE275573T1 (en) | 1996-05-15 | 2004-09-15 | Univ Rochester | NEW NUCLEOSIDE ANALOGUES THAT HAVE POLYCYCLIC AROMATIC GROUPS AS SUBSTITUENTS, METHOD FOR THEIR PRODUCTION AND THEIR APPLICATIONS |
US5894351A (en) | 1997-05-13 | 1999-04-13 | Colvin, Jr.; Arthur E. | Fluorescence sensing device |
US5910661A (en) | 1997-05-13 | 1999-06-08 | Colvin, Jr.; Arthur E. | Flourescence sensing device |
US5917605A (en) | 1997-05-13 | 1999-06-29 | Colvin, Jr.; Arthur E. | Fluorescence sensing device |
WO1999046600A1 (en) * | 1998-03-11 | 1999-09-16 | Sensors For Medicine And Science, Inc. | Detection of analytes by fluorescent lanthanide chelates |
CN102226766B (en) | 1998-08-26 | 2017-03-01 | 医药及科学传感器公司 | Based on optical sensing device further |
CA2415338C (en) * | 2000-08-04 | 2012-10-23 | Sensors For Medicine And Science, Inc. | Detection of analytes in aqueous environments |
US20020094586A1 (en) | 2001-01-05 | 2002-07-18 | Sensors For Medicine And Science, Inc. | Detection of analytes |
-
2001
- 2001-08-03 CA CA2415338A patent/CA2415338C/en not_active Expired - Lifetime
- 2001-08-03 EP EP04078499.3A patent/EP1557422B1/en not_active Expired - Lifetime
- 2001-08-03 JP JP2002518226A patent/JP2004506069A/en active Pending
- 2001-08-03 DK DK04078499.3T patent/DK1557422T3/en active
- 2001-08-03 MX MXPA03001043A patent/MXPA03001043A/en active IP Right Grant
- 2001-08-03 DK DK10183994.2T patent/DK2292626T3/en active
- 2001-08-03 BR BR0112871-0A patent/BR0112871A/en not_active Application Discontinuation
- 2001-08-03 TW TW090119063A patent/TWI313354B/en not_active IP Right Cessation
- 2001-08-03 KR KR1020037001549A patent/KR100922146B1/en active IP Right Grant
- 2001-08-03 CN CN2010101586708A patent/CN101845116B/en not_active Expired - Lifetime
- 2001-08-03 EP EP01956112A patent/EP1307464B1/en not_active Expired - Lifetime
- 2001-08-03 US US09/920,627 patent/US6794195B2/en not_active Expired - Lifetime
- 2001-08-03 DK DK01956112.5T patent/DK1307464T3/en active
- 2001-08-03 CN CN01813855A patent/CN1446222A/en active Pending
- 2001-08-03 EP EP10183994.2A patent/EP2292626B1/en not_active Expired - Lifetime
- 2001-08-03 WO PCT/US2001/024294 patent/WO2002012251A1/en active Application Filing
- 2001-08-03 AU AU7814501A patent/AU7814501A/en active Pending
- 2001-08-03 AU AU2001278145A patent/AU2001278145B2/en not_active Expired
-
2002
- 2002-07-12 US US10/193,246 patent/US20030003592A1/en not_active Abandoned
- 2002-07-12 US US10/193,249 patent/US20030013202A1/en not_active Abandoned
- 2002-07-12 US US10/193,244 patent/US20030008408A1/en not_active Abandoned
- 2002-07-12 US US10/193,245 patent/US20030013204A1/en not_active Abandoned
-
2003
- 2003-09-19 HK HK05111148.3A patent/HK1076471A1/en not_active IP Right Cessation
- 2003-09-19 HK HK03106722.9A patent/HK1054556B/en not_active IP Right Cessation
- 2003-09-19 HK HK11109121.0A patent/HK1154865A1/en not_active IP Right Cessation
-
2004
- 2004-03-01 US US10/788,264 patent/US7060503B2/en not_active Expired - Lifetime
-
2006
- 2006-06-08 US US11/448,903 patent/US7939332B2/en not_active Expired - Fee Related
- 2006-09-01 AU AU2006204661A patent/AU2006204661A1/en not_active Abandoned
-
2010
- 2010-04-06 AU AU2010201347A patent/AU2010201347B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6002954A (en) * | 1995-11-22 | 1999-12-14 | The Regents Of The University Of California | Detection of biological molecules using boronate-based chemical amplification and optical sensors |
US6011984A (en) * | 1995-11-22 | 2000-01-04 | Minimed Inc. | Detection of biological molecules using chemical amplification and optical sensors |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050227242A1 (en) * | 2004-04-13 | 2005-10-13 | Sensors For Medicine And Science, Inc. | Non-covalent immobilization of indicator molecules |
US7713745B2 (en) | 2004-04-13 | 2010-05-11 | Sensors For Medicine And Science, Inc. | Non-covalent immobilization of indicator molecules |
US20060019681A1 (en) * | 2004-07-20 | 2006-01-26 | Motorola, Inc. | Reducing delay in setting up calls |
US7092721B2 (en) | 2004-07-20 | 2006-08-15 | Motorola, Inc. | Reducing delay in setting up calls |
US20170151758A1 (en) * | 2015-12-01 | 2017-06-01 | Norbord Inc. | Oriented Strand Board |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030003592A1 (en) | Detection of analytes in aqueous environments | |
AU2001278145A1 (en) | Detection of analytes in aqueous environments | |
US6627177B2 (en) | Polyhydroxyl-substituted organic molecule sensing optical in vivo method utilizing a boronic acid adduct and the device thereof | |
JP3318019B2 (en) | Optical detection of saccharides | |
US20020106810A1 (en) | Polyhydroxyl-substituted organic molecule sensing optical in vitro method utilizing a boronic acid adduct and the device thereof | |
US20020119581A1 (en) | Detection of analytes | |
JP2005500512A (en) | Detection of glucose in solutions that also contain alpha-hydroxy acids or beta-diketones | |
JP2004536279A5 (en) | ||
Sharrett et al. | Exploring the use of APTS as a fluorescent reporter dye for continuous glucose sensing | |
US20020090734A1 (en) | Detection of glucose in solutions also containing an alpha-hydroxy acid or a beta-diketone | |
US20020094586A1 (en) | Detection of analytes | |
AU2002246941A1 (en) | Detection of analytes | |
AU2007202790A1 (en) | Optical determination of glucose utilizing boronic acid adducts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |