US20020183735A1 - Ablation of rectal and other internal body structures - Google Patents
Ablation of rectal and other internal body structures Download PDFInfo
- Publication number
- US20020183735A1 US20020183735A1 US10/196,504 US19650402A US2002183735A1 US 20020183735 A1 US20020183735 A1 US 20020183735A1 US 19650402 A US19650402 A US 19650402A US 2002183735 A1 US2002183735 A1 US 2002183735A1
- Authority
- US
- United States
- Prior art keywords
- catheter
- region
- tissue
- electrodes
- substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1485—Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/06—Electrodes for high-frequency therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
- A61N1/403—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/24—Surgical instruments, devices or methods, e.g. tourniquets for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1402—Probes for open surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00292—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
- A61B2017/00296—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means mounted on an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22065—Functions of balloons
- A61B2017/22067—Blocking; Occlusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22072—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
- A61B2017/22074—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
- A61B2017/22077—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel with a part piercing the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/30—Surgical pincettes without pivotal connections
- A61B2017/306—Surgical pincettes without pivotal connections holding by means of suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00023—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00065—Material properties porous
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00089—Thermal conductivity
- A61B2018/00101—Thermal conductivity low, i.e. thermally insulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00184—Moving parts
- A61B2018/00196—Moving parts reciprocating lengthwise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
- A61B2018/0025—Multiple balloons
- A61B2018/00261—Multiple balloons arranged in a line
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00273—Anchoring means for temporary attachment of a device to tissue
- A61B2018/00279—Anchoring means for temporary attachment of a device to tissue deployable
- A61B2018/00285—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00321—Head or parts thereof
- A61B2018/00327—Ear, nose or throat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00547—Prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00553—Sphincter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00666—Sensing and controlling the application of energy using a threshold value
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00666—Sensing and controlling the application of energy using a threshold value
- A61B2018/00678—Sensing and controlling the application of energy using a threshold value upper
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
- A61B2018/00708—Power or energy switching the power on or off
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00744—Fluid flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00761—Duration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00886—Duration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00898—Alarms or notifications created in response to an abnormal condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00982—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
- A61B2090/3782—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/002—Irrigation
- A61B2218/003—Irrigation using a spray or a foam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
- A61M2025/0096—Catheter tip comprising a tool being laterally outward extensions or tools, e.g. hooks or fibres
Definitions
- This invention relates to ablation of rectal and other internal body structures.
- a catheter is inserted into the rectum, and at least one electrode is disposed thereon for emitting energy to ablate body structures or other tissue in an ablation region in or near the rectum, such as the sphincter, rectum, colon, or prostate.
- the invention provides a method and system for ablation of body structures or tissue in an ablation region in or near the rectum (such as the sphincter, rectum, colon, or prostate).
- a catheter is inserted into the rectum, and at least one electrode is disposed thereon for emitting energy to ablate body structures or other tissue, such as by cell death, dehydration, or denaturation.
- the environment for the ablation region is isolated or otherwise controlled, such as by blocking gas or fluid using a pair of inflatable balloons at upstream and downstream locations from the ablation region.
- inflatable balloons also serve to anchor the catheter in place and prevent the catheter from being expelled from the body.
- the catheter is flexible for reaching a selected internal organ or region
- a plurality of electrodes are disposed on the catheter and at least one such electrode is selected and advanced out of the catheter to penetrate and ablate selected tissue inside the body in ablation region in or near the rectum, such as an individual cyst, hemorrhoid, polyp, tumor, or other selected lesion or tissue.
- the electrodes are coupled to sensors to determine control parameters of the body structure or tissue, such as impedance or temperature, and which are used by feedback technique to control delivery of energy for ablation or fluids for cooling or hydration.
- the catheter includes an optical path disposed for coupling to an external view piece, so as to allow medical personnel to view or control positioning of the catheter and operation of the electrodes.
- the catheter is disposed to deliver flowable substances for aiding in ablation, such as saline or antibiotics, or for aiding in repair of tissue (either before or after ablation), such as collagen or another substance for covering lesions or for filling fissures in or near the ablation region, or for other medicinal effects, such as anesthetic, anti-inflammatory, or antispasmodic substances.
- the flowable substances are delivered using at least one lumen in the catheter, either from at least one hole in the catheter, from an area of the catheter covered by a microporous membrane, or from microporous balloons (either the same as or in addition to balloons used to anchor the catheter in place or to block gas or fluid).
- FIGS. 1 and 1 a show a side view of a catheter and electrode assembly.
- FIGS. 2 and 2 a show a cut-away view of a catheter and electrode, taken along a line 2 -- 2 in FIG. 1.
- FIG. 3 shows a method of treatment of a hemorrhoid.
- FIG. 4 shows a method of treatment of a prolapsed or spasmodic muscle.
- FIG. 5 shows a method of treatment of an anal fissure.
- FIG. 6 shows a method of treatment of a tumor in the prostate.
- FIG. 1 shows a side view of a catheter and electrode assembly.
- An assembly 100 for ablating rectal and other internal body structures includes a catheter 110 , a control and delivery linkage 120 , and a control element 130 .
- the catheter 110 is coupled to the control and delivery linkage 120 using a gearing element 121 , which allows the catheter 110 to be rotated with respect to the control and delivery linkage 120 by an operator using the control element 130 .
- the catheter 110 includes a base 111 , having a substantially cylindrical shape, coupled at a proximal end to the gearing element 121 , and having a distal end.
- the catheter 110 is preferably disposed for insertion into the rectum at an angle to the control and delivery linkage 120 , preferably an angle between about 30° and about 45° less than a right angle.
- the catheter 110 is between about 1 inch (2.54 cm) and about 2 inches (5.08 cm) in diameter, and between about 6 inches (15.24 cm) and about 8 inches (20.32 cm) in length.
- the catheter 110 includes a plurality of holes 112 , and a plurality of electrodes 113 which may be extended from at least some of the holes 112 .
- the holes 112 are spaced regularly around the circumference and along the length of the catheter 110 , having a spacing of about 0.25 inches (0.64 cm) between adjacent holes 112 .
- the electrodes 113 are spaced regularly to occupy about one-half of the holes 112 , and are between about 0.5 cm and about 1.0 cm in length.
- the electrodes 113 each include a metallic tube 114 defining a hollow lumen 115 , shaped similarly to an injection needle, so as to be disposed to deliver at least one flowable substance to a region 140 near the catheter 110 .
- the deliverable flowable substance includes saline with a concentration of less than about 10% NaCl, which aids in both hydration of body structures and other tissue, and in delivery of RF energy to the region 140 .
- the deliverable flowable substance includes other substances, including saline with other concentrations, systemic or topical antibiotics, collagen or another hardenable substance, or other bioactive, chemoactive, or radioactive substances (including anesthetic, anti-inflammatory, or antispasmodic substances, or tracer materials).
- the catheter 110 includes at least one balloon 116 , disposed for inflation so as to block gas or fluid from the body from entering the region 140 .
- the distal balloon 116 and the proximal balloon 116 preferably each comprise ring-shaped balloons, disposed so that when inflated each surrounds the catheter 110 and makes a gas-tight or fluid-tight seal, both with the catheter 110 and with a wall 141 of the rectum or other body structure into which the catheter 110 is inserted.
- the distal balloon 116 may comprise a spherical or ellipsoidal balloon disposed at the distal end of the catheter 110 in such manner that when inflated it surrounds the catheter 110 and makes a gas-tight or fluid-tight seal with the wall 141 .
- the catheter 110 also includes at least one balloon 116 disposed to anchor the catheter 110 at a selected location within the rectum or other body structure into which the catheter 110 is inserted.
- the balloon 116 used to anchor the catheter 110 is the proximal balloon 116 , which when inflated prevents the catheter 110 from being expelled from the body in like manner as the operation of a Foley catheter.
- the balloon 116 used to anchor the catheter 110 may comprise an additional or alternative balloon which is disposed solely or primarily for the purpose of anchoring the catheter 110 into its selected place, again in like manner as the operation of a Foley catheter.
- the catheter 110 includes a fluid circulation system 117 , including at least one fluid outlet port and at least one fluid inlet port.
- the fluid circulation system 117 is disposed for providing fluid in the region near the catheter 110 , such as for delivering fluid for cooling the region 140 and for removing other fluid for aspirating the region 140 .
- the catheter 110 includes an optical view port 118 , possibly including a lens or other transparent or translucent covering, disposed to allow inflow of light (visible or infrared) for transmission to an operator for viewing and control of the operation of the catheter 110 .
- an optical view port 118 possibly including a lens or other transparent or translucent covering, disposed to allow inflow of light (visible or infrared) for transmission to an operator for viewing and control of the operation of the catheter 110 .
- the catheter 110 includes at least one sensor 119 , such as a sensor 119 for impedance or temperature.
- the temperature sensor 119 includes a thermocouple, but in alternative embodiments, the temperature sensor 119 may include a thermistor or other device for sensing temperature and providing signals responsive to temperature near the catheter 110 .
- the control and delivery linkage 120 includes a metallic tube 223 defining a hollow lumen 224 , and is further described with reference to FIG. 2.
- control and delivery linkage 120 is between about 1 ⁇ 2 inch (1.27 cm) and about 5 ⁇ 8 inches (1.59 cm) in diameter, and between about 6 inches (15.24 cm) and about 8 inches (20.32 cm) in length.
- the control element 130 includes an electrode actuation element 131 for advancing the electrodes 113 out from the catheter 110 , a electrode retraction element 132 for retracting the electrodes 113 into from the catheter 110 , and an operation element 133 for controlling operation of the catheter 110 , including delivery of flowable substances using the holes 112 and delivery of energy using the electrodes 113 .
- FIG. 2 shows a cut-away view of a catheter, taken along a line 2 -- 2 in FIG. 1.
- the catheter 110 comprises a rotatable element 210 which is disposed for rotation in a first direction 211 to advance the electrodes 113 out of the catheter 110 and in a second direction 212 opposite the first direction 211 to retract the electrodes 113 back into the catheter 110 .
- the rotatable element 210 is coupled to a spring (not shown) or other device which holds the rotatable element 210 in a steady state with the electrodes 113 retracted into the catheter 110 .
- the rotatable element 210 is coupled to the electrode actuation element 131 , which forces the rotatable element 210 to rotate in the first direction 211 so as to advance the electrodes 113 out of the catheter 110 .
- the spring causes the rotatable element 210 to rotate in the second direction 212 so as to retract the electrodes 113 back into the catheter 110 .
- Each electrode 113 is coupled to an electrode carrier 220 .
- each electrode carrier 220 is substantially bar-shaped (but is shown end-on in the figure) and is coupled to a plurality of electrodes 113 , such as about between about three and about six electrodes 113 , so as to substantially simultaneously advance that plurality of electrodes 113 out of the catheter 110 and retract that plurality of electrodes 113 back into the catheter.
- a plurality of electrode carriers 220 are each disposed in a set of lines corresponding to lines of electrodes 113 disposed for advancement out of the catheter 110 and retraction back into the catheter 110 .
- the electrodes 113 may be disposed so that when advanced, the electrodes 113 extend to selected depths within the body structure to be ablated. These selected depths may be the same depth for all electrodes 113 which are advanced, or may include a first depth for a first set of electrodes 113 and a second depth for a second set of electrodes 113 .
- the electrode carriers 220 are coupled to a set of controls (not shown) in the control element 130 for selecting one or more electrode carriers 220 independently using one or more actuation levers 221 , so as to be able to independently advance one or more sets of electrodes 113 coupled thereto out of the catheter 110 and to independently retract one or more sets of electrodes 113 back into the catheter 110 .
- Each electrode carrier 220 is coupled to the rotatable element 210 using a bearing 222 , in such manner so as to translate rotation of the rotatable element 210 into linear radial movement of the electrodes 113 .
- the electrodes are advanced in a first linear movement 223
- the electrodes are retracted in a second linear movement 224 .
- An interior 230 of the rotatable element 210 includes a lumen 225 through which fluids and other flowable substances are provided, and in which conductors providing control signals and sensor signals are disposed.
- Operation of the catheter and electrode assembly 100 includes at least the following steps:
- the catheter 110 is inserted into the body at an opening, such as the rectum.
- the opening is the rectum.
- a region of the rectum is first infused with a lubricant, such as K-Y jelly, and with an anesthetic, such as lidocaine.
- a lubricant such as K-Y jelly
- an anesthetic such as lidocaine.
- An anti-inflammatory, antispasmodic, or other condign medication would also be applied as appropriate.
- the catheter 110 is inserted into the lubricated region of the rectum. Due to the potential pain induced by the presence of the catheter 110 or electrodes 113 , during operation the catheter 110 infuses a mixture of saline and lidocaine into the region 140 to be ablated.
- the opening may be another opening into the body, such as a natural orifice such as the vagina or the urethra, or an opening which has been made surgically, such as an incision which allows the catheter 110 to be inserted into a blood vessel.
- a natural orifice such as the vagina or the urethra
- an opening which has been made surgically such as an incision which allows the catheter 110 to be inserted into a blood vessel.
- the preferred size of the catheter 110 will of course be responsive to the size of the opening if other than the rectum.
- the choice of medicinal elements to be infused prior to or coeval with the catheter 110 will of course be responsive to judgments by medical personnel, and may include lubricants, anesthetics, antispasmodics, antiinflammatories, antibiotics, or other materials with bioactive, chemoactive, or radio-active effect.
- the catheter 110 is positioned within the body at a selected orientation and location, such as a position near a hemorrhoid.
- the catheter 110 is positioned in the rectum near an eternal or internal hemorrhoid, in a manner as shown in FIG. 3.
- the electrodes 113 are ultimately advanced into the hemorrhoid to ablate the hemorrhoid.
- the catheter 110 is positioned in the rectum near a prolapsed or spasmodic muscle, in a manner as shown in FIG. 4.
- the electrodes 113 are ultimately advanced into the prolapsed or spasmodic muscle to ablate selected portions of the prolapsed or spasmodic muscle.
- the catheter 110 is positioned in the rectum near an anal fissure, in a manner as shown in FIG. 5.
- collagen is deposited into the fissure and the electrodes 113 are ultimately advanced into a region near the collagen to harden the collagen for filling the fissure.
- the catheter 110 is positioned in the colon near a polyp, in a manner similar to that shown in FIG. 3.
- the electrodes 113 are ultimately advanced into the polyp to ablate the polyp.
- the catheter 110 is positioned in the rectum near a pilonital cyst, in a manner similar to that shown in FIG. 3.
- the electrodes 113 are ultimately advanced into the cyst to ablate the cyst.
- the catheter 110 is positioned in the rectum, colon, large intestine, or small intestine, near a cyst or tumor, in a manner similar to that shown in FIG. 3.
- the electrodes 113 are ultimately advanced into the cyst or tumor to ablate the cyst or tumor.
- the catheter 110 is positioned in a male patient, in the rectum near the prostate, in a manner as shown in FIG. 6.
- the electrodes 113 are ultimately advanced into a tumor in the prostate to ablate the tumor.
- the catheter 110 is positioned in a female patient, in the vagina, near a cyst or fibroid, in a manner similar to that shown in FIG. 3.
- the electrodes 113 are ultimately advanced into the cyst or fibroid to ablate the cyst or fibroid.
- the catheter 110 is positioned in a female patient, in the vagina, near a prolapsed uterus, in a manner similar to that shown in FIG. 4.
- the electrodes 113 are ultimately advanced into the prolapsed uterus selected portions of the prolapsed uterus.
- the catheter 110 is anchored into place at the selected orientation and location by inflating a balloon 116 , such as the distal balloon 116 and the proximal balloon 116 .
- the catheter 110 is anchored into place using the proximal balloon 116 and the proximal balloon 116 operates in similar manner as a Foley catheter.
- the catheter 110 includes a stop balloon 116 , such as a ring balloon (as shown in FIG. 3), disposed outside the body so as to prevent the catheter 110 from being inserted “too far”, i.e., beyond its selected location.
- a stop balloon 116 such as a ring balloon (as shown in FIG. 3) disposed outside the body so as to prevent the catheter 110 from being inserted “too far”, i.e., beyond its selected location.
- the region 140 near the catheter 110 is isolated from the rest of the body by inflating the distal balloon 116 and the proximal balloon 116 .
- this step uses the same distal balloon 116 and the proximal balloon 116 as the step of anchoring the catheter 110 into place.
- Isolation of the region 140 near the catheter 110 from the rest of the body need not be absolute.
- the distal balloon 116 and the proximal balloon 116 are microporous, are inflated using saline or water, and thus are disposed to provide saline or water into the region 140 near the catheter 110 .
- gas and fluids from the rest of the body are allowed to leak into one or more of the balloons 116 and from there are allowed to leak into the region 140 near the catheter 110 .
- the seal made with the wall 141 of the region 140 by the balloon 116 is gas-tight
- that seal is allowed to be simply fluid-tight, and might allow gas to leak from the rest of the body into the region 140 near the catheter 110 .
- One or more sets of electrodes 113 are selected for advancement into a selected mass of tissue in the region 140 .
- the rotatable element 210 is rotated in the first direction 211 , causing the selected sets of electrodes 113 to advance out of the catheter 110 and into the selected mass of tissue.
- the selected set of electrodes 113 are just those electrodes 113 which are needed to penetrate the selected mass of tissue for ablation.
- the selected set of electrodes 113 are just those electrodes 113 which are needed to penetrate the hemorrhoid. If a plurality of hemorrhoids are selected for ablation, either (1) electrodes 113 needed to penetrate the plurality of hemorrhoids are selected, or (2) electrodes 113 needed to penetrate one of the hemorrhoids are selected, and the operation is repeated for each individual one of the hemorrhoids.
- the selected set of electrodes 113 are just those electrodes 113 which are needed to penetrate the selected body structure. If there is more than one such selected body structure, either (1) more than one set of electrodes 113 may be selected, or (2) just one set of electrodes 113 may be selected and the operation is repeated for each individual such body structure.
- the selected body structure for ablation is muscle tissue or other tissue which is part of a larger body structure, such as a prolapsed or spasmodic muscle
- the selected set of electrodes 113 are just those one or more sets of electrodes 113 which are needed to penetrate the portion of the body structure which has been selected for ablation.
- Flowable substances are provided using the holes 112 , and energy is provided to the electrodes 113 , so as to ablate the mass of tissue in the region 140 .
- the flowable substances are provided using the holes 112 to the region 140 near the catheter 110 .
- the flowable substances may be provided, in addition or instead, (1) from an area of the catheter covered by a microporous membrane, or (2) from one or more microporous balloons.
- the microporous balloons may either be the same as or in addition to the balloons 116 used to anchor the catheter in place or to block gas or fluid.
- the flowable substances have one of the following functions: (1) to aid in ablation, such as by transmitting RF energy from the electrodes 113 to the body structure to be ablated, as is done by saline or other electrolytic solutions, (2) to rehydrate tissue, as in done by saline or water, or (3) to repair tissue, such as by flowing into cysts or fissures or voids, or by covering lesions, as is done by collagen in a soft form which can be hardened by RF energy.
- the electrodes 113 deliver RF energy having a frequency between about 435 megahertz and about 485 megahertz, for a period between about 5 minutes and about 10 minutes.
- the RF energy is received by and heats tissue and other body structures near the electrodes 113 , causing ablation by means of cell death, dehydration, or denaturation.
- the electrodes 113 may deliver other forms of energy, such as heat, microwaves, or infrared or visible laser energy.
- the electrodes 113 are controlled by a feedback technique, using the at least one sensor 119 .
- the feedback technique may be responsive to each sensor 119 .
- the at least one sensor 119 includes a temperature sensor 119 and the feedback technique includes a microprocessor (not shown) disposed in or coupled to the control element 130 and operating under control of application software for maintaining the temperature of the body structure to be ablated at a selected temperature, such as a temperature exceeding between about 90° Celsius and about 120° Celsius.
- the microprocessor also controls delivery of fluids for cooling or hydration, so as to maintain the temperature of surrounding tissue (i.e., other than the tissue selected for ablation) at temperatures less than between about 90° Celsius and about 120° Celsius.
- the at least one sensor 119 also includes an impedance sensor 119 and the feedback technique includes a microprocessor operating to terminate delivery of RF energy when a measured impedance of the body structure to be ablated undergoes a substantial change indicative of dehydration or denaturation.
- One or more sets of electrodes 113 are selected for retraction back from the selected mass of tissue in the region 140 .
- the rotatable element 210 is rotated in the second direction 211 , causing the selected sets of electrodes 113 to retract out of the selected mass of tissue and back into the catheter 110 .
- the catheter 110 is withdrawn from the body at the opening through which it was inserted.
- the balloons 116 are deflated so the catheter 110 is no longer anchored in place, all electrodes 113 are retracted back into the catheter 110 , and the catheter 113 is configured to no longer provide flowable substances or energy for ablation.
- the catheter and electrode assembly 100 may also be used for treatments in addition to, or instead of, ablation of body structures or tissue.
- operation of the catheter and electrode assembly 100 includes at least the following steps:
- the catheter 110 is inserted into a natural body lumen, such as the urethra.
- the natural body lumen comprises a normally tubular body structure which has prolapsed, is spasmodic, or is otherwise subject to blockage (partial or complete) or damage (such as to a wall of the natural body lumen).
- the catheter 110 infuses a hardenable substance into the natural body lumen, so as to coat at least one selected section of the wall of the natural body lumen.
- the hardenable substance includes a collagen which is capable of being flowed onto the wall of the natural body lumen and which is capable of being hardened by application of RF energy, heat, or another agent to be provided by the catheter and electrode assembly 100 .
- the electrodes 113 are advanced and deliver energy to the hardenable substance to harden it.
- the holes 112 provide saline and the electrodes 113 deliver RF energy to the collagen to harden it, so as to form a hard covering to the wall of the natural body lumen. If appropriate, more than one layer of collagen is applied, so as to provide a hard covering having a thickness exceeding a selected threshold, such as 0.1 inch (0.25 cm). The particular selected threshold will of course depend on the preferred diameter of the natural body lumen.
- the catheter 110 is inserted and pushed through a region where the muscle has prolapsed or blocked the rectum, colon, large intestine, or small intestine, (2) the prolapsed or spasmodic muscle is partially ablated, and (3) collagen is infused and hardened to strengthen the muscle wall.
- the collagen may be infused before ablation in one or more boluses deposited within the muscle (or on the muscle or near the muscle), so that the steps of muscle ablation and collagen hardening will occur substantially simultaneously.
- the catheter 110 is inserted into a region where the fissure has occurred, (2) a suspension of collagen and saline is infused and fills the fissure, and (3) the collagen is hardened while the saline is removed from the suspension.
- the isolated region between the distal balloon 116 and the proximal balloon 116 is maintained at a positive differential pressure with respect to the rest of the rectum, so that the collagen infuses into the fissure; this procedure or a similar procedure is also followed for treatment of diverticulosus and diverticulitus.
- the catheter 110 is inserted into a region where the uterus has prolapsed, (2) the prolapsed uterus is partially ablated, and (3) collagen is infused and hardened to strengthen, the muscle wall.
- the collagen may be infused before ablation, so that the steps of muscle ablation and collagen hardening will occur substantially simultaneously.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Cardiology (AREA)
- Surgical Instruments (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
The invention provides an apparatus and system for ablation of body structures or tissue in the region of the rectum. A catheter is inserted into the rectum, and an electrode is disposed thereon for emitting energy. The environment for an ablation region is isolated or otherwise controlled by blocking gas or fluid using a pair of inflatable balloons at upstream and downstream locations. Inflatable balloons also serve to anchor the catheter in place. A plurality of electrodes are disposed on the catheter and at least one such electrode is selected and advanced out of the catheter to penetrate and ablate selected tissue inside the body in the region of the rectum. The electrodes are coupled to sensors to determine control parameters of the body structure or tissue, and which are used by feedback technique to control delivery of energy for ablation or fluids for cooling or hydration. The catheter includes an optical path disposed for coupling to an external view piece, so as to allow medical personnel to view or control positioning of the catheter and operation of the electrodes. The catheter is disposed to deliver flowable substances for aiding in ablation, or for aiding in repair of tissue, such as collagen or another substance for covering lesions or for filling fissures. The flowable substances are delivered using at least one lumen in the catheter, either from at least one hole in the catheter, from an area of the catheter covered by a microporous membrane, or from microporous balloons.
Description
- This application is a continuation of U.S. application Ser. No. 09/557,993, filed Apr. 25, 2000 (Attorney Docket No. STUA0012C).
- 1. Field of the Invention
- This invention relates to ablation of rectal and other internal body structures.
- 2. Description of Related Art
- Human beings are subject to a number of disorders in the area of the rectum and colon, including hemorrhoids (external and internal), prolapse of the rectal muscles, rectal muscle spasms, anal fissures, polyps, diverticulosus and diverticulitus, and pilonital cysts. Other internal disorders in nearby regions of the body include (in men) prostate cancer, (in women) incontinence, vaginal bleeding, vaginal cysts, vaginal fibroids, prolapse of the uterus, and related tumors or cancerous tissue.
- Although there are treatments available for these disorders, such as surgery, systemic or topical medication, these treatments suffer from various drawbacks, including (for surgery) their relative invasiveness and expense, and (for medicinal approaches) their relative ineffectiveness and the causation of serious side-effects. Accordingly, it would be advantageous to provide methods and apparatus for treatment which are not subject to the drawbacks of surgery and medicinal approaches.
- Although it is known to use RF energy to ablate tissue in the body (such as heart muscle tissue) to treat disorders, one problem which has arisen in the art is accounting for the flow of bodily fluids and gases while ablating tissue. Bodily fluids can dissipate, and can detrimentally absorb, energy to be applied to tissue.
- Accordingly, it would be advantageous to provide improved techniques for treatment of disorders in the area of the rectum and colon. This advantage is achieved by a method and system according to the present invention in which a catheter is inserted into the rectum, and at least one electrode is disposed thereon for emitting energy to ablate body structures or other tissue in an ablation region in or near the rectum, such as the sphincter, rectum, colon, or prostate.
- The invention provides a method and system for ablation of body structures or tissue in an ablation region in or near the rectum (such as the sphincter, rectum, colon, or prostate). A catheter is inserted into the rectum, and at least one electrode is disposed thereon for emitting energy to ablate body structures or other tissue, such as by cell death, dehydration, or denaturation. The environment for the ablation region is isolated or otherwise controlled, such as by blocking gas or fluid using a pair of inflatable balloons at upstream and downstream locations from the ablation region. In a preferred embodiment, inflatable balloons also serve to anchor the catheter in place and prevent the catheter from being expelled from the body.
- In preferred embodiments, the catheter is flexible for reaching a selected internal organ or region, a plurality of electrodes are disposed on the catheter and at least one such electrode is selected and advanced out of the catheter to penetrate and ablate selected tissue inside the body in ablation region in or near the rectum, such as an individual cyst, hemorrhoid, polyp, tumor, or other selected lesion or tissue. The electrodes are coupled to sensors to determine control parameters of the body structure or tissue, such as impedance or temperature, and which are used by feedback technique to control delivery of energy for ablation or fluids for cooling or hydration. In a preferred embodiment, the catheter includes an optical path disposed for coupling to an external view piece, so as to allow medical personnel to view or control positioning of the catheter and operation of the electrodes.
- In further preferred embodiments, the catheter is disposed to deliver flowable substances for aiding in ablation, such as saline or antibiotics, or for aiding in repair of tissue (either before or after ablation), such as collagen or another substance for covering lesions or for filling fissures in or near the ablation region, or for other medicinal effects, such as anesthetic, anti-inflammatory, or antispasmodic substances. The flowable substances are delivered using at least one lumen in the catheter, either from at least one hole in the catheter, from an area of the catheter covered by a microporous membrane, or from microporous balloons (either the same as or in addition to balloons used to anchor the catheter in place or to block gas or fluid).
- FIGS. 1 and 1a show a side view of a catheter and electrode assembly.
- FIGS. 2 and 2a show a cut-away view of a catheter and electrode, taken along a
line 2--2 in FIG. 1. - FIG. 3 shows a method of treatment of a hemorrhoid.
- FIG. 4 shows a method of treatment of a prolapsed or spasmodic muscle.
- FIG. 5 shows a method of treatment of an anal fissure.
- FIG. 6 shows a method of treatment of a tumor in the prostate.
- Catheter and Electrode Assembly
- FIG. 1 shows a side view of a catheter and electrode assembly.
- An assembly100 for ablating rectal and other internal body structures includes a
catheter 110, a control anddelivery linkage 120, and acontrol element 130. - The
catheter 110 is coupled to the control anddelivery linkage 120 using agearing element 121, which allows thecatheter 110 to be rotated with respect to the control anddelivery linkage 120 by an operator using thecontrol element 130. - The
catheter 110 includes abase 111, having a substantially cylindrical shape, coupled at a proximal end to thegearing element 121, and having a distal end. Thecatheter 110 is preferably disposed for insertion into the rectum at an angle to the control anddelivery linkage 120, preferably an angle between about 30° and about 45° less than a right angle. Thecatheter 110 is between about 1 inch (2.54 cm) and about 2 inches (5.08 cm) in diameter, and between about 6 inches (15.24 cm) and about 8 inches (20.32 cm) in length. - The
catheter 110 includes a plurality ofholes 112, and a plurality ofelectrodes 113 which may be extended from at least some of theholes 112. Theholes 112 are spaced regularly around the circumference and along the length of thecatheter 110, having a spacing of about 0.25 inches (0.64 cm) betweenadjacent holes 112. Theelectrodes 113 are spaced regularly to occupy about one-half of theholes 112, and are between about 0.5 cm and about 1.0 cm in length. - The
electrodes 113 each include ametallic tube 114 defining ahollow lumen 115, shaped similarly to an injection needle, so as to be disposed to deliver at least one flowable substance to aregion 140 near thecatheter 110. In a preferred embodiment, the deliverable flowable substance includes saline with a concentration of less than about 10% NaCl, which aids in both hydration of body structures and other tissue, and in delivery of RF energy to theregion 140. However, in alternative embodiments, the deliverable flowable substance includes other substances, including saline with other concentrations, systemic or topical antibiotics, collagen or another hardenable substance, or other bioactive, chemoactive, or radioactive substances (including anesthetic, anti-inflammatory, or antispasmodic substances, or tracer materials). - The
catheter 110 includes at least oneballoon 116, disposed for inflation so as to block gas or fluid from the body from entering theregion 140. In a preferred embodiment, there is adistal balloon 116 disposed at the distal end of thecatheter 110 and there is aproximal balloon 116 disposed at the proximal end of thecatheter 110. Thedistal balloon 116 and theproximal balloon 116 preferably each comprise ring-shaped balloons, disposed so that when inflated each surrounds thecatheter 110 and makes a gas-tight or fluid-tight seal, both with thecatheter 110 and with awall 141 of the rectum or other body structure into which thecatheter 110 is inserted. However, in alternative embodiments, thedistal balloon 116 may comprise a spherical or ellipsoidal balloon disposed at the distal end of thecatheter 110 in such manner that when inflated it surrounds thecatheter 110 and makes a gas-tight or fluid-tight seal with thewall 141. - The
catheter 110 also includes at least oneballoon 116 disposed to anchor thecatheter 110 at a selected location within the rectum or other body structure into which thecatheter 110 is inserted. In a preferred embodiment, theballoon 116 used to anchor thecatheter 110 is theproximal balloon 116, which when inflated prevents thecatheter 110 from being expelled from the body in like manner as the operation of a Foley catheter. However, in alternative embodiments, theballoon 116 used to anchor thecatheter 110 may comprise an additional or alternative balloon which is disposed solely or primarily for the purpose of anchoring thecatheter 110 into its selected place, again in like manner as the operation of a Foley catheter. - The
catheter 110 includes afluid circulation system 117, including at least one fluid outlet port and at least one fluid inlet port. Thefluid circulation system 117 is disposed for providing fluid in the region near thecatheter 110, such as for delivering fluid for cooling theregion 140 and for removing other fluid for aspirating theregion 140. - The
catheter 110 includes anoptical view port 118, possibly including a lens or other transparent or translucent covering, disposed to allow inflow of light (visible or infrared) for transmission to an operator for viewing and control of the operation of thecatheter 110. - The
catheter 110 includes at least onesensor 119, such as asensor 119 for impedance or temperature. In a preferred embodiment, thetemperature sensor 119 includes a thermocouple, but in alternative embodiments, thetemperature sensor 119 may include a thermistor or other device for sensing temperature and providing signals responsive to temperature near thecatheter 110. - The control and
delivery linkage 120 includes ametallic tube 223 defining ahollow lumen 224, and is further described with reference to FIG. 2. - In a preferred embodiment, the control and
delivery linkage 120 is between about ½ inch (1.27 cm) and about ⅝ inches (1.59 cm) in diameter, and between about 6 inches (15.24 cm) and about 8 inches (20.32 cm) in length. - The
control element 130 includes anelectrode actuation element 131 for advancing theelectrodes 113 out from thecatheter 110, a electrode retraction element 132 for retracting theelectrodes 113 into from thecatheter 110, and anoperation element 133 for controlling operation of thecatheter 110, including delivery of flowable substances using theholes 112 and delivery of energy using theelectrodes 113. - Advancing and Retracting Electrodes
- FIG. 2 shows a cut-away view of a catheter, taken along a
line 2--2 in FIG. 1. - The
catheter 110 comprises a rotatable element 210 which is disposed for rotation in afirst direction 211 to advance theelectrodes 113 out of thecatheter 110 and in asecond direction 212 opposite thefirst direction 211 to retract theelectrodes 113 back into thecatheter 110. - In a preferred embodiment, the rotatable element210 is coupled to a spring (not shown) or other device which holds the rotatable element 210 in a steady state with the
electrodes 113 retracted into thecatheter 110. - The rotatable element210 is coupled to the
electrode actuation element 131, which forces the rotatable element 210 to rotate in thefirst direction 211 so as to advance theelectrodes 113 out of thecatheter 110. When the actuator element is not actuated, the spring causes the rotatable element 210 to rotate in thesecond direction 212 so as to retract theelectrodes 113 back into thecatheter 110. - Each
electrode 113 is coupled to anelectrode carrier 220. In a preferred embodiment, eachelectrode carrier 220 is substantially bar-shaped (but is shown end-on in the figure) and is coupled to a plurality ofelectrodes 113, such as about between about three and about sixelectrodes 113, so as to substantially simultaneously advance that plurality ofelectrodes 113 out of thecatheter 110 and retract that plurality ofelectrodes 113 back into the catheter. A plurality ofelectrode carriers 220 are each disposed in a set of lines corresponding to lines ofelectrodes 113 disposed for advancement out of thecatheter 110 and retraction back into thecatheter 110. - In a preferred embodiment, the
electrodes 113 may be disposed so that when advanced, theelectrodes 113 extend to selected depths within the body structure to be ablated. These selected depths may be the same depth for allelectrodes 113 which are advanced, or may include a first depth for a first set ofelectrodes 113 and a second depth for a second set ofelectrodes 113. - In a preferred embodiment, the
electrode carriers 220 are coupled to a set of controls (not shown) in thecontrol element 130 for selecting one ormore electrode carriers 220 independently using one ormore actuation levers 221, so as to be able to independently advance one or more sets ofelectrodes 113 coupled thereto out of thecatheter 110 and to independently retract one or more sets ofelectrodes 113 back into thecatheter 110. - Each
electrode carrier 220 is coupled to the rotatable element 210 using abearing 222, in such manner so as to translate rotation of the rotatable element 210 into linear radial movement of theelectrodes 113. When the rotatable element 210 is rotated in thefirst direction 211, the electrodes are advanced in a firstlinear movement 223, while when the rotatable element 210 is rotated in thesecond direction 212, the electrodes are retracted in a secondlinear movement 224. - An interior230 of the rotatable element 210 includes a
lumen 225 through which fluids and other flowable substances are provided, and in which conductors providing control signals and sensor signals are disposed. - Operation of the Catheter and Electrode Assembly
- Operation of the catheter and electrode assembly100 includes at least the following steps:
- The
catheter 110 is inserted into the body at an opening, such as the rectum. - In a preferred embodiment, the opening is the rectum. A region of the rectum is first infused with a lubricant, such as K-Y jelly, and with an anesthetic, such as lidocaine. An anti-inflammatory, antispasmodic, or other condign medication would also be applied as appropriate. Thereafter, the
catheter 110 is inserted into the lubricated region of the rectum. Due to the potential pain induced by the presence of thecatheter 110 orelectrodes 113, during operation thecatheter 110 infuses a mixture of saline and lidocaine into theregion 140 to be ablated. - In alternative embodiments, the opening may be another opening into the body, such as a natural orifice such as the vagina or the urethra, or an opening which has been made surgically, such as an incision which allows the
catheter 110 to be inserted into a blood vessel. - The preferred size of the
catheter 110 will of course be responsive to the size of the opening if other than the rectum. The choice of medicinal elements to be infused prior to or coeval with thecatheter 110 will of course be responsive to judgments by medical personnel, and may include lubricants, anesthetics, antispasmodics, antiinflammatories, antibiotics, or other materials with bioactive, chemoactive, or radio-active effect. - The
catheter 110 is positioned within the body at a selected orientation and location, such as a position near a hemorrhoid. - In one preferred embodiment, the
catheter 110 is positioned in the rectum near an eternal or internal hemorrhoid, in a manner as shown in FIG. 3. In this preferred embodiment, theelectrodes 113 are ultimately advanced into the hemorrhoid to ablate the hemorrhoid. - In another preferred embodiment, the
catheter 110 is positioned in the rectum near a prolapsed or spasmodic muscle, in a manner as shown in FIG. 4. In this preferred embodiment, theelectrodes 113 are ultimately advanced into the prolapsed or spasmodic muscle to ablate selected portions of the prolapsed or spasmodic muscle. - In another preferred embodiment, the
catheter 110 is positioned in the rectum near an anal fissure, in a manner as shown in FIG. 5. In this preferred embodiment, collagen is deposited into the fissure and theelectrodes 113 are ultimately advanced into a region near the collagen to harden the collagen for filling the fissure. - In another preferred embodiment, the
catheter 110 is positioned in the colon near a polyp, in a manner similar to that shown in FIG. 3. In this preferred embodiment, theelectrodes 113 are ultimately advanced into the polyp to ablate the polyp. - In another preferred embodiment, the
catheter 110 is positioned in the rectum near a pilonital cyst, in a manner similar to that shown in FIG. 3. In this preferred embodiment, theelectrodes 113 are ultimately advanced into the cyst to ablate the cyst. - In another preferred embodiment, the
catheter 110 is positioned in the rectum, colon, large intestine, or small intestine, near a cyst or tumor, in a manner similar to that shown in FIG. 3. In this preferred embodiment, theelectrodes 113 are ultimately advanced into the cyst or tumor to ablate the cyst or tumor. - In another preferred embodiment, the
catheter 110 is positioned in a male patient, in the rectum near the prostate, in a manner as shown in FIG. 6. In this preferred embodiment, theelectrodes 113 are ultimately advanced into a tumor in the prostate to ablate the tumor. - In another preferred embodiment, the
catheter 110 is positioned in a female patient, in the vagina, near a cyst or fibroid, in a manner similar to that shown in FIG. 3. In this preferred embodiment, theelectrodes 113 are ultimately advanced into the cyst or fibroid to ablate the cyst or fibroid. - In another preferred embodiment, the
catheter 110 is positioned in a female patient, in the vagina, near a prolapsed uterus, in a manner similar to that shown in FIG. 4. - In this preferred embodiment, the
electrodes 113 are ultimately advanced into the prolapsed uterus selected portions of the prolapsed uterus. - The
catheter 110 is anchored into place at the selected orientation and location by inflating aballoon 116, such as thedistal balloon 116 and theproximal balloon 116. - In embodiments where the
catheter 110 is positioned in the rectum, thecatheter 110 is anchored into place using theproximal balloon 116 and theproximal balloon 116 operates in similar manner as a Foley catheter. - In alternative embodiments, the
catheter 110 includes astop balloon 116, such as a ring balloon (as shown in FIG. 3), disposed outside the body so as to prevent thecatheter 110 from being inserted “too far”, i.e., beyond its selected location. - The
region 140 near thecatheter 110 is isolated from the rest of the body by inflating thedistal balloon 116 and theproximal balloon 116. In a preferred embodiment, this step uses the samedistal balloon 116 and theproximal balloon 116 as the step of anchoring thecatheter 110 into place. - Isolation of the
region 140 near thecatheter 110 from the rest of the body need not be absolute. In a preferred embodiment, thedistal balloon 116 and theproximal balloon 116 are microporous, are inflated using saline or water, and thus are disposed to provide saline or water into theregion 140 near thecatheter 110. However, in such an embodiment, gas and fluids from the rest of the body are allowed to leak into one or more of theballoons 116 and from there are allowed to leak into theregion 140 near thecatheter 110. - Moreover, while in a preferred embodiment the seal made with the
wall 141 of theregion 140 by theballoon 116 is gas-tight, in alternative embodiments, that seal is allowed to be simply fluid-tight, and might allow gas to leak from the rest of the body into theregion 140 near thecatheter 110. - One or more sets of
electrodes 113 are selected for advancement into a selected mass of tissue in theregion 140. The rotatable element 210 is rotated in thefirst direction 211, causing the selected sets ofelectrodes 113 to advance out of thecatheter 110 and into the selected mass of tissue. - The selected set of
electrodes 113 are just thoseelectrodes 113 which are needed to penetrate the selected mass of tissue for ablation. - In a preferred embodiment where the selected mass of tissue for ablation is a hemorrhoid, the selected set of
electrodes 113 are just thoseelectrodes 113 which are needed to penetrate the hemorrhoid. If a plurality of hemorrhoids are selected for ablation, either (1)electrodes 113 needed to penetrate the plurality of hemorrhoids are selected, or (2)electrodes 113 needed to penetrate one of the hemorrhoids are selected, and the operation is repeated for each individual one of the hemorrhoids. - Similarly, in preferred embodiments where the selected body structure for ablation is an individual cyst, fibroid, polyp, or tumor, the selected set of
electrodes 113 are just thoseelectrodes 113 which are needed to penetrate the selected body structure. If there is more than one such selected body structure, either (1) more than one set ofelectrodes 113 may be selected, or (2) just one set ofelectrodes 113 may be selected and the operation is repeated for each individual such body structure. - Similarly, in preferred embodiments where the selected body structure for ablation is muscle tissue or other tissue which is part of a larger body structure, such as a prolapsed or spasmodic muscle, the selected set of
electrodes 113 are just those one or more sets ofelectrodes 113 which are needed to penetrate the portion of the body structure which has been selected for ablation. - Flowable substances are provided using the
holes 112, and energy is provided to theelectrodes 113, so as to ablate the mass of tissue in theregion 140. - In a preferred embodiment, the flowable substances are provided using the
holes 112 to theregion 140 near thecatheter 110. - In alternative embodiments, the flowable substances may be provided, in addition or instead, (1) from an area of the catheter covered by a microporous membrane, or (2) from one or more microporous balloons. The microporous balloons may either be the same as or in addition to the
balloons 116 used to anchor the catheter in place or to block gas or fluid. - In preferred embodiments, the flowable substances have one of the following functions: (1) to aid in ablation, such as by transmitting RF energy from the
electrodes 113 to the body structure to be ablated, as is done by saline or other electrolytic solutions, (2) to rehydrate tissue, as in done by saline or water, or (3) to repair tissue, such as by flowing into cysts or fissures or voids, or by covering lesions, as is done by collagen in a soft form which can be hardened by RF energy. - In a preferred embodiment, the
electrodes 113 deliver RF energy having a frequency between about 435 megahertz and about 485 megahertz, for a period between about 5 minutes and about 10 minutes. The RF energy is received by and heats tissue and other body structures near theelectrodes 113, causing ablation by means of cell death, dehydration, or denaturation. - In alternative embodiments, the
electrodes 113 may deliver other forms of energy, such as heat, microwaves, or infrared or visible laser energy. - The
electrodes 113 are controlled by a feedback technique, using the at least onesensor 119. In embodiments where there is more than onesensor 119, the feedback technique may be responsive to eachsensor 119. - In one preferred embodiment, the at least one
sensor 119 includes atemperature sensor 119 and the feedback technique includes a microprocessor (not shown) disposed in or coupled to thecontrol element 130 and operating under control of application software for maintaining the temperature of the body structure to be ablated at a selected temperature, such as a temperature exceeding between about 90° Celsius and about 120° Celsius. In this preferred embodiment, the microprocessor also controls delivery of fluids for cooling or hydration, so as to maintain the temperature of surrounding tissue (i.e., other than the tissue selected for ablation) at temperatures less than between about 90° Celsius and about 120° Celsius. - In another preferred embodiment, the at least one
sensor 119 also includes animpedance sensor 119 and the feedback technique includes a microprocessor operating to terminate delivery of RF energy when a measured impedance of the body structure to be ablated undergoes a substantial change indicative of dehydration or denaturation. - One or more sets of
electrodes 113 are selected for retraction back from the selected mass of tissue in theregion 140. The rotatable element 210 is rotated in thesecond direction 211, causing the selected sets ofelectrodes 113 to retract out of the selected mass of tissue and back into thecatheter 110. - The
same electrodes 113 which were advanced out of thecatheter 110 are retracted back into thecatheter 110. - The
catheter 110 is withdrawn from the body at the opening through which it was inserted. - Before removal, the
balloons 116 are deflated so thecatheter 110 is no longer anchored in place, allelectrodes 113 are retracted back into thecatheter 110, and thecatheter 113 is configured to no longer provide flowable substances or energy for ablation. - Particular Methods and Apparatus for Treatments
- In preferred embodiments, the catheter and electrode assembly100 may also be used for treatments in addition to, or instead of, ablation of body structures or tissue.
- In one preferred embodiment, operation of the catheter and electrode assembly100 includes at least the following steps:
- The
catheter 110 is inserted into a natural body lumen, such as the urethra. - In a preferred embodiment, the natural body lumen comprises a normally tubular body structure which has prolapsed, is spasmodic, or is otherwise subject to blockage (partial or complete) or damage (such as to a wall of the natural body lumen).
- The
catheter 110 infuses a hardenable substance into the natural body lumen, so as to coat at least one selected section of the wall of the natural body lumen. - In a preferred embodiment, the hardenable substance includes a collagen which is capable of being flowed onto the wall of the natural body lumen and which is capable of being hardened by application of RF energy, heat, or another agent to be provided by the catheter and electrode assembly100.
- The
electrodes 113 are advanced and deliver energy to the hardenable substance to harden it. - In a preferred embodiment, the
holes 112 provide saline and theelectrodes 113 deliver RF energy to the collagen to harden it, so as to form a hard covering to the wall of the natural body lumen. If appropriate, more than one layer of collagen is applied, so as to provide a hard covering having a thickness exceeding a selected threshold, such as 0.1 inch (0.25 cm). The particular selected threshold will of course depend on the preferred diameter of the natural body lumen. - In a preferred embodiment for treatment of a prolapsed or spasmodic muscle, (1) the
catheter 110 is inserted and pushed through a region where the muscle has prolapsed or blocked the rectum, colon, large intestine, or small intestine, (2) the prolapsed or spasmodic muscle is partially ablated, and (3) collagen is infused and hardened to strengthen the muscle wall. In alternative embodiments, the collagen may be infused before ablation in one or more boluses deposited within the muscle (or on the muscle or near the muscle), so that the steps of muscle ablation and collagen hardening will occur substantially simultaneously. - In a preferred embodiment for treatment of an anal fissure, (1) the
catheter 110 is inserted into a region where the fissure has occurred, (2) a suspension of collagen and saline is infused and fills the fissure, and (3) the collagen is hardened while the saline is removed from the suspension. In this preferred embodiment, the isolated region between thedistal balloon 116 and theproximal balloon 116 is maintained at a positive differential pressure with respect to the rest of the rectum, so that the collagen infuses into the fissure; this procedure or a similar procedure is also followed for treatment of diverticulosus and diverticulitus. - In a preferred embodiment for treatment, in a female patient, of a prolapsed uterus, (1) the
catheter 110 is inserted into a region where the uterus has prolapsed, (2) the prolapsed uterus is partially ablated, and (3) collagen is infused and hardened to strengthen, the muscle wall. Similarly to treatment of a prolapsed muscle, in alternative embodiments, the collagen may be infused before ablation, so that the steps of muscle ablation and collagen hardening will occur substantially simultaneously. - Although preferred embodiments are disclosed herein, many variations are possible which remain within the concept, scope, and spirit of the invention, and these variations would become clear to those skilled in the art after perusal of this application.
Claims (39)
1. A method for ablating a structure within a body, said method including the steps of:
inserting a catheter into a region of said body;
isolating said region from gas or fluid from outside said region;
emitting, from an electrode coupled to said catheter into said region, an effective amount of energy to ablate said structure.
2. A method as in claim 1 , wherein said region is in or near the sphincter, rectum, colon, or prostate.
3. A method as in claim 1 , wherein said structure includes a cyst, hemorrhoid, polyp, tumor, or lesion.
4. A method as in claim 1 , wherein said energy includes RF energy having a frequency between about 435 megahertz and about 485 megahertz.
5. A method as in claim 1 , wherein said step of emitting is conducted for less than about 10 minutes.
6. A method as in claim 1 , including the step of advancing said electrode from within said catheter to a point inside a selected mass of tissue within said region.
7. A method as in claim 1 , wherein said step of isolating includes the step of blocking gas or fluid from entering said region using at least one balloon.
8. A method as in claim 7 , wherein said at least one balloon includes a balloon disposed at an upstream location or disposed at a downstream locations from said region.
9. A method as in claim 7 , wherein said step of isolating includes the step of inflating said at least one balloon.
10. A method as in claim 7 , including the step of anchoring said catheter in a selected location using said at least one balloon.
11. A method as in claim 1 , including the step of anchoring said catheter in a selected location.
12. A method as in claim 11 , wherein said step of anchoring includes the step of disposing at least one balloon against a wall of said region.
13. A method as in claim 1 , including the steps of:
sensing at least one control parameter of said region; and
controlling said step of emitting using a feedback technique including said control parameter.
14. A method as in claim 1 , including the step of delivering a flowable substance to said region.
15. A method as in claim 14 , including the steps of:
sensing at least one control parameter of said region; and
controlling said step of delivering using a feedback technique including said control parameter.
16. A method as in claim 14 , wherein said flowable substance includes an effective amount of fluid to cool said region to a selected temperature.
17. A method as in claim 14 , wherein said flowable substance includes an effective amount of fluid to rehydrate a selected mass of tissue in said region.
18. A method as in claim 14 , wherein said flowable substance includes saline.
19. A method as in claim 14 , wherein said flowable substance includes an antibiotic.
20. A method as in claim 14 , wherein said flowable substance includes collagen.
21. A method as in claim 14 , wherein said flowable substance includes a substance for covering or filling a selected structure within said region.
22. A method as in claim 14 , wherein said step of delivering includes exuding said flowable substance from at least one hole in said catheter.
23. A method as in claim 14 , wherein said step of delivering includes exuding said flowable substance from a microporous membrane.
24. A method as in claim 14 , wherein said step of delivering includes exuding said flowable substance from a balloon having a microporous membrane.
25. A method as in claim 1 , including the step of coupling light from said region to a point outside the body, whereby an operator is able to view said region.
26. A method as in claim 1 , including the steps of:
receiving light from said region representative of a view of said region; and
controlling an orientation or position of said catheter responsive to said view.
27. A method for treatment of a sphincter in a body, comprising the following steps:
providing RF energy from a source coupled to a catheter;
disposing said catheter in a region of said body near said sphincter;
delivering said RF energy from said catheter to a tissue of said sphincter in an amount effective for treatment of said tissue.
28. A method as in claim 27 , wherein said sphincter is a lower esophogeal sphincter, a GI sphincter, a rectum, a colon, a blood vessel, an organ, a urethra, a vagina, a prostate.
29. A method as in claim 27 , wherein at least a portion of said region is a cavity in said body.
30. A method as in claim 29 , wherein said cavity is an element of a gastrointestinal tract, a vascular system, a circulatory tract, a uro-genital tract, a pulmonary system, a lymphatic tract, or an organ.
31. A method as in claim 27 , wherein at least a portion of said tissue is an esophogeal varice, a hemorrhoid, a cyst, a polyp, a tumor, or a lesion.
32. A method as in claim 27 , wherein said effective amount of RF is effective to heat at least a portion of said tissue, to ablate at least a portion of said tissue, to destroy at least a portion of said tissue, or to contract at least a portion of said tissue.
33. A method as in claim 27 , including:
providing a substance effective to treat said tissue;
providing said substance from a source coupled to said catheter; and
delivering said substance from said catheter to said tissue in an amount effective to treat said tissue.
34. A method as in claim 33 , wherein said substance comprises a flowable substance, a medicament, a saline solution, an astringent, a collagenous fluid or other bulking agent, a bio-active substance, a chemo-active substance, a radioactive substance, or a sclerosing agent.
35. A method as in claim 1 , wherein said region is in or near a ligament, bone or cartilage.
36. A method as in claim 1 , wherein said energy includes microwave, infrared, ultraviolet, visible and invisible laser, visible and invisible light.
37. A method as in claim 27 , wherein said sphincter is in or near ligament, bone or cartilage.
38. A method as in claim 27 , wherein at least a portion of said tissue is a ligament, bone or cartilage.
39. A method as in claim 29 , wherein said cavity is an element of a ligament, bone or cartilage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/196,504 US20020183735A1 (en) | 2000-04-25 | 2002-07-15 | Ablation of rectal and other internal body structures |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/557,993 US6419673B1 (en) | 1996-05-06 | 2000-04-25 | Ablation of rectal and other internal body structures |
US10/196,504 US20020183735A1 (en) | 2000-04-25 | 2002-07-15 | Ablation of rectal and other internal body structures |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/557,993 Continuation US6419673B1 (en) | 1996-05-06 | 2000-04-25 | Ablation of rectal and other internal body structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020183735A1 true US20020183735A1 (en) | 2002-12-05 |
Family
ID=24227709
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/557,993 Expired - Fee Related US6419673B1 (en) | 1996-05-06 | 2000-04-25 | Ablation of rectal and other internal body structures |
US10/196,504 Abandoned US20020183735A1 (en) | 2000-04-25 | 2002-07-15 | Ablation of rectal and other internal body structures |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/557,993 Expired - Fee Related US6419673B1 (en) | 1996-05-06 | 2000-04-25 | Ablation of rectal and other internal body structures |
Country Status (3)
Country | Link |
---|---|
US (2) | US6419673B1 (en) |
AU (1) | AU2001257192A1 (en) |
WO (1) | WO2001080723A2 (en) |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040089313A1 (en) * | 1998-02-19 | 2004-05-13 | Curon Medical, Inc. | Systems and methods for treating obesity and other gastrointestinal conditions |
US20040215181A1 (en) * | 2003-04-25 | 2004-10-28 | Medtronic, Inc. | Delivery of fluid during transurethral prostate treatment |
US20050131446A1 (en) * | 2003-12-16 | 2005-06-16 | Medtronic Vascular, Inc. | Catheter with protected occlusion balloon |
US20050183732A1 (en) * | 1999-05-18 | 2005-08-25 | Edwards Stuart D. | Surgical weight control device |
US20060271032A1 (en) * | 2005-05-26 | 2006-11-30 | Chin Albert K | Ablation instruments and methods for performing abalation |
US20070270717A1 (en) * | 2005-09-30 | 2007-11-22 | Cornova, Inc. | Multi-faceted optical reflector |
WO2008080121A1 (en) * | 2006-12-22 | 2008-07-03 | Cornova, Inc. | Fluid media for bio-sensitive applications |
US20100049192A1 (en) * | 2008-08-20 | 2010-02-25 | Ionix Medical, Inc. | Catheter for Treating Tissue with Non-Thermal Ablation |
US20100174196A1 (en) * | 2007-06-21 | 2010-07-08 | Cornova, Inc. | Systems and methods for guiding the analysis and treatment of a body lumen |
US20100191235A1 (en) * | 2009-01-23 | 2010-07-29 | Angiodynamics, Inc. | Therapeutic energy delivery device with rotational mechanism |
WO2010093603A1 (en) * | 2009-02-11 | 2010-08-19 | Boston Scientific Scimed, Inc. | Insulated ablation catheter devices and methods of use |
US7815571B2 (en) | 2006-04-20 | 2010-10-19 | Gynesonics, Inc. | Rigid delivery systems having inclined ultrasound and needle |
US20100286531A1 (en) * | 2005-09-30 | 2010-11-11 | Cornova, Inc. | Systems and methods for analysis and treatment of a body lumen |
US7874986B2 (en) | 2006-04-20 | 2011-01-25 | Gynesonics, Inc. | Methods and devices for visualization and ablation of tissue |
US7918795B2 (en) | 2005-02-02 | 2011-04-05 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US20110125131A1 (en) * | 2004-11-18 | 2011-05-26 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US20110257646A1 (en) * | 1999-07-14 | 2011-10-20 | Mederi Therapeutics Inc. | Method for treating fecal incontinence |
US8088072B2 (en) | 2007-10-12 | 2012-01-03 | Gynesonics, Inc. | Methods and systems for controlled deployment of needles in tissue |
US8206300B2 (en) | 2008-08-26 | 2012-06-26 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US8262574B2 (en) | 2009-02-27 | 2012-09-11 | Gynesonics, Inc. | Needle and tine deployment mechanism |
US20130190738A1 (en) * | 2010-09-24 | 2013-07-25 | Fotona D.D. | Laser system for the treatment of body tissue |
WO2013160772A2 (en) | 2012-04-22 | 2013-10-31 | Omry Ben-Ezra | Bladder tissue modification for overactive bladder disorders |
US8600494B2 (en) | 1999-04-09 | 2013-12-03 | Ionix Medical Inc. | Method and device for treating abnormal tissue growth with electrical therapy |
US8696661B2 (en) | 1998-02-19 | 2014-04-15 | Mederi Therapeutics Inc. | Systems and methods for treating dysfunctions in the intestines and rectum that adapt to the anatomic form and structure of different individuals |
US8702697B2 (en) | 2011-04-12 | 2014-04-22 | Thermedical, Inc. | Devices and methods for shaping therapy in fluid enhanced ablation |
US8961511B2 (en) * | 2006-02-07 | 2015-02-24 | Viveve, Inc. | Vaginal remodeling device and methods |
US8961551B2 (en) | 2006-12-22 | 2015-02-24 | The Spectranetics Corporation | Retractable separating systems and methods |
US9028520B2 (en) | 2006-12-22 | 2015-05-12 | The Spectranetics Corporation | Tissue separating systems and methods |
US9033972B2 (en) | 2013-03-15 | 2015-05-19 | Thermedical, Inc. | Methods and devices for fluid enhanced microwave ablation therapy |
WO2015079322A2 (en) | 2013-11-26 | 2015-06-04 | Newuro, B.V. | Bladder tissue modification for overactive bladder disorders |
US9271785B2 (en) | 2009-09-18 | 2016-03-01 | Viveve, Inc. | Vaginal remodeling device and methods |
US9283040B2 (en) | 2013-03-13 | 2016-03-15 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9291663B2 (en) | 2013-03-13 | 2016-03-22 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US9357977B2 (en) | 2006-01-12 | 2016-06-07 | Gynesonics, Inc. | Interventional deployment and imaging system |
US9413896B2 (en) | 2012-09-14 | 2016-08-09 | The Spectranetics Corporation | Tissue slitting methods and systems |
US9415235B2 (en) | 2012-03-16 | 2016-08-16 | Viveve, Inc. | Vaginal remodeling device and method |
USD765243S1 (en) | 2015-02-20 | 2016-08-30 | The Spectranetics Corporation | Medical device handle |
US9456872B2 (en) | 2013-03-13 | 2016-10-04 | The Spectranetics Corporation | Laser ablation catheter |
USD770616S1 (en) | 2015-02-20 | 2016-11-01 | The Spectranetics Corporation | Medical device handle |
US9598691B2 (en) | 2008-04-29 | 2017-03-21 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US9603618B2 (en) | 2013-03-15 | 2017-03-28 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9610396B2 (en) | 2013-03-15 | 2017-04-04 | Thermedical, Inc. | Systems and methods for visualizing fluid enhanced ablation therapy |
US9668765B2 (en) | 2013-03-15 | 2017-06-06 | The Spectranetics Corporation | Retractable blade for lead removal device |
US9743984B1 (en) | 2016-08-11 | 2017-08-29 | Thermedical, Inc. | Devices and methods for delivering fluid to tissue during ablation therapy |
US9757196B2 (en) | 2011-09-28 | 2017-09-12 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US9883885B2 (en) | 2013-03-13 | 2018-02-06 | The Spectranetics Corporation | System and method of ablative cutting and pulsed vacuum aspiration |
CN107693109A (en) * | 2017-09-28 | 2018-02-16 | 马延婷 | A kind of gynaecology's tumor of breast finely cuts off and promotes prosthetic device |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
US9925366B2 (en) | 2013-03-15 | 2018-03-27 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US9980743B2 (en) | 2013-03-15 | 2018-05-29 | The Spectranetics Corporation | Medical device for removing an implanted object using laser cut hypotubes |
US9999461B2 (en) | 2011-12-09 | 2018-06-19 | Metavention, Inc. | Therapeutic denervation of nerves surrounding a hepatic vessel |
US10022176B2 (en) | 2012-08-15 | 2018-07-17 | Thermedical, Inc. | Low profile fluid enhanced ablation therapy devices and methods |
US10058342B2 (en) | 2006-01-12 | 2018-08-28 | Gynesonics, Inc. | Devices and methods for treatment of tissue |
US10117707B2 (en) | 2008-04-29 | 2018-11-06 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US10136913B2 (en) | 2013-03-15 | 2018-11-27 | The Spectranetics Corporation | Multiple configuration surgical cutting device |
US10154874B2 (en) | 2008-04-29 | 2018-12-18 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
EP2810613B1 (en) * | 2007-01-02 | 2019-03-20 | AquaBeam LLC | Minimally invasive devices for the treatment of prostate diseases |
US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US10245105B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Electroporation with cooling to treat tissue |
US10251665B2 (en) | 2007-01-02 | 2019-04-09 | Aquabeam, Llc | Multi fluid tissue resection methods and devices |
US10272178B2 (en) | 2008-04-29 | 2019-04-30 | Virginia Tech Intellectual Properties Inc. | Methods for blood-brain barrier disruption using electrical energy |
US10292755B2 (en) | 2009-04-09 | 2019-05-21 | Virginia Tech Intellectual Properties, Inc. | High frequency electroporation for cancer therapy |
US10342615B2 (en) | 2008-03-06 | 2019-07-09 | Aquabeam, Llc | Tissue ablation and cautery with optical energy carried in fluid stream |
US10383691B2 (en) | 2013-03-13 | 2019-08-20 | The Spectranetics Corporation | Last catheter with helical internal lumen |
US10405924B2 (en) | 2014-05-30 | 2019-09-10 | The Spectranetics Corporation | System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port |
US10448999B2 (en) | 2013-03-15 | 2019-10-22 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US10470822B2 (en) | 2008-04-29 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US10471254B2 (en) | 2014-05-12 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US10524859B2 (en) | 2016-06-07 | 2020-01-07 | Metavention, Inc. | Therapeutic tissue modulation devices and methods |
US10524684B2 (en) | 2014-10-13 | 2020-01-07 | Boston Scientific Scimed Inc | Tissue diagnosis and treatment using mini-electrodes |
CN110678138A (en) * | 2017-03-17 | 2020-01-10 | 埃尼奥·查维斯·德·奥利维拉 | Apparatus, system and method for treating swollen vascular structures |
US10595819B2 (en) | 2006-04-20 | 2020-03-24 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US10603105B2 (en) | 2014-10-24 | 2020-03-31 | Boston Scientific Scimed Inc | Medical devices with a flexible electrode assembly coupled to an ablation tip |
US10610294B2 (en) | 2012-04-22 | 2020-04-07 | Newuro, B.V. | Devices and methods for transurethral bladder partitioning |
US10694972B2 (en) | 2014-12-15 | 2020-06-30 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
US10702326B2 (en) | 2011-07-15 | 2020-07-07 | Virginia Tech Intellectual Properties, Inc. | Device and method for electroporation based treatment of stenosis of a tubular body part |
CN111787890A (en) * | 2017-12-19 | 2020-10-16 | 塞比卡有限公司 | Low-temperature treatment device capable of preventing nerve injury |
US10835279B2 (en) | 2013-03-14 | 2020-11-17 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US10842532B2 (en) | 2013-03-15 | 2020-11-24 | Spectranetics Llc | Medical device for removing an implanted object |
US10993770B2 (en) | 2016-11-11 | 2021-05-04 | Gynesonics, Inc. | Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data |
US11083871B2 (en) | 2018-05-03 | 2021-08-10 | Thermedical, Inc. | Selectively deployable catheter ablation devices |
US11224474B2 (en) | 2018-02-28 | 2022-01-18 | Prostacare Pty Ltd | System for managing high impedance changes in a non-thermal ablation system for BPH |
US11254926B2 (en) | 2008-04-29 | 2022-02-22 | Virginia Tech Intellectual Properties, Inc. | Devices and methods for high frequency electroporation |
US11259825B2 (en) | 2006-01-12 | 2022-03-01 | Gynesonics, Inc. | Devices and methods for treatment of tissue |
US11272979B2 (en) | 2008-04-29 | 2022-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US11311329B2 (en) | 2018-03-13 | 2022-04-26 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for immunotherapy based treatments using non-thermal ablation techniques |
US11382681B2 (en) | 2009-04-09 | 2022-07-12 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of high frequency electrical pulses for non-thermal ablation |
US11406438B2 (en) * | 2011-09-23 | 2022-08-09 | Alan N. Schwartz | Instrument for therapeutically cytotoxically ablating parathyroidal tissue within a parathyroid gland |
US11453873B2 (en) | 2008-04-29 | 2022-09-27 | Virginia Tech Intellectual Properties, Inc. | Methods for delivery of biphasic electrical pulses for non-thermal ablation |
US11457975B2 (en) | 2017-11-27 | 2022-10-04 | Prostacare Pty Ltd | Apparatus and a method for the treatment of a prostatic disease |
US11464536B2 (en) | 2012-02-29 | 2022-10-11 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
US11511110B2 (en) | 2018-06-27 | 2022-11-29 | Viveve, Inc. | Methods for treating urinary stress incontinence |
US11607537B2 (en) | 2017-12-05 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | Method for treating neurological disorders, including tumors, with electroporation |
US11638603B2 (en) | 2009-04-09 | 2023-05-02 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US11707629B2 (en) | 2009-05-28 | 2023-07-25 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US11723710B2 (en) | 2016-11-17 | 2023-08-15 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
US11896823B2 (en) | 2017-04-04 | 2024-02-13 | Btl Healthcare Technologies A.S. | Method and device for pelvic floor tissue treatment |
US11918277B2 (en) | 2018-07-16 | 2024-03-05 | Thermedical, Inc. | Inferred maximum temperature monitoring for irrigated ablation therapy |
US11925405B2 (en) | 2018-03-13 | 2024-03-12 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation |
US11931096B2 (en) | 2010-10-13 | 2024-03-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
US11950835B2 (en) | 2019-06-28 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy |
US12011212B2 (en) | 2013-06-05 | 2024-06-18 | Medtronic Ireland Manufacturing Unlimited Company | Modulation of targeted nerve fibers |
US12053203B2 (en) | 2014-03-03 | 2024-08-06 | Spectranetics, Llc | Multiple configuration surgical cutting device |
US12102376B2 (en) | 2012-02-08 | 2024-10-01 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
US12108964B2 (en) | 2007-01-02 | 2024-10-08 | Aquabeam, Llc | Minimally invasive tissue treatment device |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6091995A (en) * | 1996-11-08 | 2000-07-18 | Surx, Inc. | Devices, methods, and systems for shrinking tissues |
US6923803B2 (en) * | 1999-01-15 | 2005-08-02 | Gyrus Medical Limited | Electrosurgical system and method |
US6645201B1 (en) * | 1998-02-19 | 2003-11-11 | Curon Medical, Inc. | Systems and methods for treating dysfunctions in the intestines and rectum |
US20050255039A1 (en) * | 1998-06-26 | 2005-11-17 | Pro Surg, Inc., A California Corporation | Gel injection treatment of breast, fibroids & endometrial ablation |
US7001380B2 (en) * | 1999-01-15 | 2006-02-21 | Gyrus Medical Limited | Electrosurgical system and method |
US20040030333A1 (en) * | 1999-01-15 | 2004-02-12 | Gyrus Medical Ltd. | Electrosurgical system and method |
US7422586B2 (en) * | 2001-02-28 | 2008-09-09 | Angiodynamics, Inc. | Tissue surface treatment apparatus and method |
US7008421B2 (en) * | 2002-08-21 | 2006-03-07 | Resect Medical, Inc. | Apparatus and method for tissue resection |
AUPR790901A0 (en) * | 2001-09-25 | 2001-10-18 | Mccloskey, Jenny Colleen | Inactivation of papillomavirus |
EP1334699A1 (en) * | 2002-02-11 | 2003-08-13 | Led S.p.A. | Apparatus for electrosurgery |
US8313760B2 (en) | 2002-05-24 | 2012-11-20 | Angiotech International Ag | Compositions and methods for coating medical implants |
NZ536308A (en) * | 2002-05-24 | 2009-01-31 | Angiotech Int Ag | Compositions and methods for coating medical implants |
US20040082859A1 (en) | 2002-07-01 | 2004-04-29 | Alan Schaer | Method and apparatus employing ultrasound energy to treat body sphincters |
US7238182B2 (en) * | 2003-04-25 | 2007-07-03 | Medtronic, Inc. | Device and method for transurethral prostate treatment |
US7160294B2 (en) * | 2003-09-02 | 2007-01-09 | Curon Medical, Inc. | Systems and methods for treating hemorrhoids |
US8388671B2 (en) * | 2004-07-15 | 2013-03-05 | Medtronic Vascular, Inc. | Methods for treatment of aneurysmal tissue |
US7803142B2 (en) | 2005-02-02 | 2010-09-28 | Summit Access Llc | Microtaper needle and method of use |
US20070005049A1 (en) * | 2005-06-30 | 2007-01-04 | Comben Richard H | Apparatus and Method of Treating Urinary Incontinence by Heating Urethra |
US20070161905A1 (en) * | 2006-01-12 | 2007-07-12 | Gynesonics, Inc. | Intrauterine ultrasound and method for use |
US20100056926A1 (en) * | 2008-08-26 | 2010-03-04 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
EP2021846B1 (en) | 2006-05-19 | 2017-05-03 | Koninklijke Philips N.V. | Ablation device with optimized input power profile |
US20090287081A1 (en) * | 2008-04-29 | 2009-11-19 | Gynesonics , Inc | Submucosal fibroid ablation for the treatment of menorrhagia |
US8105335B1 (en) | 2008-08-11 | 2012-01-31 | Burton Bentley | Fecal impaction removal tool |
WO2010022278A1 (en) * | 2008-08-20 | 2010-02-25 | Ionix Medical, Inc. | Catheter for treating tissue with non-thermal ablation |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
WO2010042461A1 (en) | 2008-10-06 | 2010-04-15 | Sharma Virender K | Method and apparatus for tissue ablation |
EP2376011B1 (en) | 2009-01-09 | 2019-07-03 | ReCor Medical, Inc. | Apparatus for treatment of mitral valve insufficiency |
EP3132828B1 (en) | 2009-10-30 | 2017-10-11 | ReCor Medical, Inc. | Apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
WO2012075112A1 (en) * | 2010-12-01 | 2012-06-07 | Enable Urology, Llc | Method and apparatus for remodeling/profiling a tissue lumen, particularly in the urethral lumen in the prostate gland |
US9055951B2 (en) | 2011-05-23 | 2015-06-16 | Covidien Lp | Endovascular tissue removal device |
JP2014529427A (en) | 2011-08-19 | 2014-11-13 | クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc | Cautery cap |
WO2013028381A1 (en) | 2011-08-19 | 2013-02-28 | Cook Medical Technologies Llc | Cap for attachment to an endoscope |
US9056191B2 (en) | 2012-04-11 | 2015-06-16 | Covidien Lp | Apparatus and method for removing occlusive tissue |
US9526570B2 (en) | 2012-10-04 | 2016-12-27 | Cook Medical Technologies Llc | Tissue cutting cap |
EP3964151A3 (en) | 2013-01-17 | 2022-03-30 | Virender K. Sharma | Apparatus for tissue ablation |
CN106178294B (en) | 2013-03-14 | 2018-11-20 | 瑞蔻医药有限公司 | A kind of endovascular ablation system based on ultrasound |
US9918786B2 (en) * | 2013-10-06 | 2018-03-20 | Hongkui WANG | Spinal disk herniation repositioning and radiofrequency ablation (RFA) device and method for treating vertebral disc herniation |
US10531907B2 (en) * | 2015-11-20 | 2020-01-14 | Covidien Lp | Devices, systems, and methods for treating ulcerative colitis and other inflammatory bowel diseases |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
US11497507B2 (en) | 2017-02-19 | 2022-11-15 | Orpheus Ventures, Llc | Systems and methods for closing portions of body tissue |
JP7323257B2 (en) | 2017-12-05 | 2023-08-08 | ジェニー コリーン マクロスキー, | Devices for treating body vessels and adjacent surfaces |
CA3102080A1 (en) | 2018-06-01 | 2019-12-05 | Santa Anna Tech Llc | Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems |
US11103260B2 (en) | 2019-07-18 | 2021-08-31 | Medline Industries, Inc. | Fecal impaction removal device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5588960A (en) * | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
US5599294A (en) * | 1992-08-12 | 1997-02-04 | Vidamed, Inc. | Microwave probe device and method |
US5643335A (en) * | 1993-07-08 | 1997-07-01 | Urologix, Inc. | Benign prostatic hyperplasia treatment catheter with urethral cooling |
US5938660A (en) * | 1997-06-27 | 1999-08-17 | Daig Corporation | Process and device for the treatment of atrial arrhythmia |
US6006755A (en) * | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
US6009877A (en) * | 1994-06-24 | 2000-01-04 | Edwards; Stuart D. | Method for treating a sphincter |
US6044846A (en) * | 1994-06-24 | 2000-04-04 | Edwards; Stuart D. | Method to treat esophageal sphincters |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5334193A (en) * | 1992-11-13 | 1994-08-02 | American Cardiac Ablation Co., Inc. | Fluid cooled ablation catheter |
US5575788A (en) * | 1994-06-24 | 1996-11-19 | Stuart D. Edwards | Thin layer ablation apparatus |
US5505730A (en) | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
US5688267A (en) * | 1995-05-01 | 1997-11-18 | Ep Technologies, Inc. | Systems and methods for sensing multiple temperature conditions during tissue ablation |
US5709224A (en) * | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US6077257A (en) | 1996-05-06 | 2000-06-20 | Vidacare, Inc. | Ablation of rectal and other internal body structures |
-
2000
- 2000-04-25 US US09/557,993 patent/US6419673B1/en not_active Expired - Fee Related
-
2001
- 2001-04-24 AU AU2001257192A patent/AU2001257192A1/en not_active Abandoned
- 2001-04-24 WO PCT/US2001/013144 patent/WO2001080723A2/en active Application Filing
-
2002
- 2002-07-15 US US10/196,504 patent/US20020183735A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5599294A (en) * | 1992-08-12 | 1997-02-04 | Vidamed, Inc. | Microwave probe device and method |
US5643335A (en) * | 1993-07-08 | 1997-07-01 | Urologix, Inc. | Benign prostatic hyperplasia treatment catheter with urethral cooling |
US6006755A (en) * | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
US6009877A (en) * | 1994-06-24 | 2000-01-04 | Edwards; Stuart D. | Method for treating a sphincter |
US6044846A (en) * | 1994-06-24 | 2000-04-04 | Edwards; Stuart D. | Method to treat esophageal sphincters |
US5588960A (en) * | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
US5938660A (en) * | 1997-06-27 | 1999-08-17 | Daig Corporation | Process and device for the treatment of atrial arrhythmia |
US6235025B1 (en) * | 1997-06-27 | 2001-05-22 | Daig Corporation | Process and device for the treatment of atrial arrhythmia |
Cited By (244)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040089313A1 (en) * | 1998-02-19 | 2004-05-13 | Curon Medical, Inc. | Systems and methods for treating obesity and other gastrointestinal conditions |
US7468060B2 (en) * | 1998-02-19 | 2008-12-23 | Respiratory Diagnostic, Inc. | Systems and methods for treating obesity and other gastrointestinal conditions |
US9204926B2 (en) | 1998-02-19 | 2015-12-08 | Mederi Therapeutics, Inc. | Systems and methods for treating dysfunctions in the intestines and rectum that adapt to the anatomic form and structure of different individuals |
US8696661B2 (en) | 1998-02-19 | 2014-04-15 | Mederi Therapeutics Inc. | Systems and methods for treating dysfunctions in the intestines and rectum that adapt to the anatomic form and structure of different individuals |
US8600494B2 (en) | 1999-04-09 | 2013-12-03 | Ionix Medical Inc. | Method and device for treating abnormal tissue growth with electrical therapy |
US7326207B2 (en) | 1999-05-18 | 2008-02-05 | Curon Medical, Inc. | Surgical weight control device |
US20110224768A1 (en) * | 1999-05-18 | 2011-09-15 | Mederi Therapeutics Inc. | Surgical weight control systems and methods |
US7947038B2 (en) | 1999-05-18 | 2011-05-24 | Mederi Therapeutics Inc. | Obesity treatment system including inflatable balloon structures with micropores for transport of liquid |
US20080108988A1 (en) * | 1999-05-18 | 2008-05-08 | Edwards Stuart D | Surgical weight control systems and methods |
US20050183732A1 (en) * | 1999-05-18 | 2005-08-25 | Edwards Stuart D. | Surgical weight control device |
US8740894B2 (en) | 1999-05-18 | 2014-06-03 | Mederi Therapeutics Inc. | Surgical weight control systems and methods |
US20110257646A1 (en) * | 1999-07-14 | 2011-10-20 | Mederi Therapeutics Inc. | Method for treating fecal incontinence |
US8597290B2 (en) * | 1999-07-14 | 2013-12-03 | Mederi Therapeutics | Method for treating fecal incontinence |
US9125665B2 (en) * | 1999-07-14 | 2015-09-08 | Mederi Therapeutics, Inc | Method for treating fecal incontinence |
US20140107483A1 (en) * | 1999-07-14 | 2014-04-17 | Mederi Therapeutics Inc | Method for treating fecal incontinence |
US20040215181A1 (en) * | 2003-04-25 | 2004-10-28 | Medtronic, Inc. | Delivery of fluid during transurethral prostate treatment |
US20050131446A1 (en) * | 2003-12-16 | 2005-06-16 | Medtronic Vascular, Inc. | Catheter with protected occlusion balloon |
US9295817B2 (en) | 2004-11-18 | 2016-03-29 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US10828460B2 (en) | 2004-11-18 | 2020-11-10 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US10328232B2 (en) | 2004-11-18 | 2019-06-25 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US8308709B2 (en) * | 2004-11-18 | 2012-11-13 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US12053590B2 (en) | 2004-11-18 | 2024-08-06 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US9669183B2 (en) | 2004-11-18 | 2017-06-06 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US20110125131A1 (en) * | 2004-11-18 | 2011-05-26 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US9987080B2 (en) | 2005-02-02 | 2018-06-05 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US10182862B2 (en) | 2005-02-02 | 2019-01-22 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US11950837B2 (en) | 2005-02-02 | 2024-04-09 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US7918795B2 (en) | 2005-02-02 | 2011-04-05 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US9808310B2 (en) * | 2005-02-02 | 2017-11-07 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US20110087100A1 (en) * | 2005-02-02 | 2011-04-14 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
US11419668B2 (en) | 2005-02-02 | 2022-08-23 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
WO2006127241A3 (en) * | 2005-05-26 | 2007-07-26 | Cardiothoracic Sys Inc | Ablation instruments and methods for performing abalation |
US20060271032A1 (en) * | 2005-05-26 | 2006-11-30 | Chin Albert K | Ablation instruments and methods for performing abalation |
WO2006127241A2 (en) * | 2005-05-26 | 2006-11-30 | Cardiothoracic Systems, Inc. | Ablation instruments and methods for performing abalation |
US20070270717A1 (en) * | 2005-09-30 | 2007-11-22 | Cornova, Inc. | Multi-faceted optical reflector |
US20100286531A1 (en) * | 2005-09-30 | 2010-11-11 | Cornova, Inc. | Systems and methods for analysis and treatment of a body lumen |
US9517047B2 (en) | 2006-01-12 | 2016-12-13 | Gynesonics, Inc. | Interventional deployment and imaging system |
US9357977B2 (en) | 2006-01-12 | 2016-06-07 | Gynesonics, Inc. | Interventional deployment and imaging system |
US10058342B2 (en) | 2006-01-12 | 2018-08-28 | Gynesonics, Inc. | Devices and methods for treatment of tissue |
US11259825B2 (en) | 2006-01-12 | 2022-03-01 | Gynesonics, Inc. | Devices and methods for treatment of tissue |
US10376307B2 (en) | 2006-02-07 | 2019-08-13 | Viveve, Inc. | Vaginal remodeling device and methods |
US10980596B2 (en) | 2006-02-07 | 2021-04-20 | Viveve, Inc. | Vaginal remodeling device and methods |
US8961511B2 (en) * | 2006-02-07 | 2015-02-24 | Viveve, Inc. | Vaginal remodeling device and methods |
US7815571B2 (en) | 2006-04-20 | 2010-10-19 | Gynesonics, Inc. | Rigid delivery systems having inclined ultrasound and needle |
US10595819B2 (en) | 2006-04-20 | 2020-03-24 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US8506485B2 (en) | 2006-04-20 | 2013-08-13 | Gynesonics, Inc | Devices and methods for treatment of tissue |
US10610197B2 (en) | 2006-04-20 | 2020-04-07 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US7874986B2 (en) | 2006-04-20 | 2011-01-25 | Gynesonics, Inc. | Methods and devices for visualization and ablation of tissue |
US12048583B2 (en) | 2006-04-20 | 2024-07-30 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US9808275B2 (en) | 2006-12-22 | 2017-11-07 | The Spectranetics Corporation | Retractable separating systems and methods |
US9028520B2 (en) | 2006-12-22 | 2015-05-12 | The Spectranetics Corporation | Tissue separating systems and methods |
US10869687B2 (en) | 2006-12-22 | 2020-12-22 | Spectranetics Llc | Tissue separating systems and methods |
US9801650B2 (en) | 2006-12-22 | 2017-10-31 | The Spectranetics Corporation | Tissue separating systems and methods |
WO2008080121A1 (en) * | 2006-12-22 | 2008-07-03 | Cornova, Inc. | Fluid media for bio-sensitive applications |
US8961551B2 (en) | 2006-12-22 | 2015-02-24 | The Spectranetics Corporation | Retractable separating systems and methods |
US10537354B2 (en) | 2006-12-22 | 2020-01-21 | The Spectranetics Corporation | Retractable separating systems and methods |
US9113785B2 (en) | 2006-12-22 | 2015-08-25 | Cornova, Inc. | Fluid media for bio-sensitive applications |
US9289226B2 (en) | 2006-12-22 | 2016-03-22 | The Spectranetics Corporation | Retractable separating systems and methods |
US20100049182A1 (en) * | 2006-12-22 | 2010-02-25 | Cornova, Inc. | Fluid media for bio-sensitive applications |
US11478269B2 (en) | 2007-01-02 | 2022-10-25 | Aquabeam, Llc | Minimally invasive methods for multi-fluid tissue ablation |
US11350964B2 (en) | 2007-01-02 | 2022-06-07 | Aquabeam, Llc | Minimally invasive treatment device for tissue resection |
US10321931B2 (en) | 2007-01-02 | 2019-06-18 | Aquabeam, Llc | Minimally invasive methods for multi-fluid tissue ablation |
EP4238519A3 (en) * | 2007-01-02 | 2023-11-29 | AquaBeam LLC | Minimally invasive methods and devices for the treatment of prostate diseases |
EP3510959A1 (en) * | 2007-01-02 | 2019-07-17 | AquaBeam LLC | Minimally invasive methods and devices for the treatment of prostate diseases |
US12108964B2 (en) | 2007-01-02 | 2024-10-08 | Aquabeam, Llc | Minimally invasive tissue treatment device |
EP3868323A1 (en) * | 2007-01-02 | 2021-08-25 | AquaBeam LLC | Minimally invasive devices for the treatment of prostate diseases |
EP2810613B1 (en) * | 2007-01-02 | 2019-03-20 | AquaBeam LLC | Minimally invasive devices for the treatment of prostate diseases |
US10251665B2 (en) | 2007-01-02 | 2019-04-09 | Aquabeam, Llc | Multi fluid tissue resection methods and devices |
US20100174196A1 (en) * | 2007-06-21 | 2010-07-08 | Cornova, Inc. | Systems and methods for guiding the analysis and treatment of a body lumen |
US8262577B2 (en) | 2007-10-12 | 2012-09-11 | Gynesonics, Inc. | Methods and systems for controlled deployment of needles in tissue |
US11096760B2 (en) | 2007-10-12 | 2021-08-24 | Gynesonics, Inc. | Methods and systems for controlled deployment of needles in tissue |
US11826207B2 (en) | 2007-10-12 | 2023-11-28 | Gynesonics, Inc | Methods and systems for controlled deployment of needles in tissue |
US11096761B2 (en) | 2007-10-12 | 2021-08-24 | Gynesonics, Inc. | Methods and systems for controlled deployment of needles in tissue |
US8088072B2 (en) | 2007-10-12 | 2012-01-03 | Gynesonics, Inc. | Methods and systems for controlled deployment of needles in tissue |
US11925512B2 (en) | 2007-10-12 | 2024-03-12 | Gynesonics, Inc. | Methods and systems for controlled deployment of needles in tissue |
US11759258B2 (en) | 2008-03-06 | 2023-09-19 | Aquabeam, Llc | Controlled ablation with laser energy |
US11033330B2 (en) | 2008-03-06 | 2021-06-15 | Aquabeam, Llc | Tissue ablation and cautery with optical energy carried in fluid stream |
US11172986B2 (en) | 2008-03-06 | 2021-11-16 | Aquabeam Llc | Ablation with energy carried in fluid stream |
US10342615B2 (en) | 2008-03-06 | 2019-07-09 | Aquabeam, Llc | Tissue ablation and cautery with optical energy carried in fluid stream |
US12102383B2 (en) | 2008-03-06 | 2024-10-01 | Aquabeam, Llc | Tissue resection device with motors and control circuitry |
US10828085B2 (en) | 2008-04-29 | 2020-11-10 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
US10959772B2 (en) | 2008-04-29 | 2021-03-30 | Virginia Tech Intellectual Properties, Inc. | Blood-brain barrier disruption using electrical energy |
US11890046B2 (en) | 2008-04-29 | 2024-02-06 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US11254926B2 (en) | 2008-04-29 | 2022-02-22 | Virginia Tech Intellectual Properties, Inc. | Devices and methods for high frequency electroporation |
US10828086B2 (en) | 2008-04-29 | 2020-11-10 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
US9598691B2 (en) | 2008-04-29 | 2017-03-21 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US11952568B2 (en) | 2008-04-29 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of biphasic electrical pulses for non-thermal ablation |
US11974800B2 (en) | 2008-04-29 | 2024-05-07 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US11737810B2 (en) | 2008-04-29 | 2023-08-29 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using electroporation |
US11272979B2 (en) | 2008-04-29 | 2022-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US10537379B2 (en) | 2008-04-29 | 2020-01-21 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US10154874B2 (en) | 2008-04-29 | 2018-12-18 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
US11453873B2 (en) | 2008-04-29 | 2022-09-27 | Virginia Tech Intellectual Properties, Inc. | Methods for delivery of biphasic electrical pulses for non-thermal ablation |
US11655466B2 (en) | 2008-04-29 | 2023-05-23 | Virginia Tech Intellectual Properties, Inc. | Methods of reducing adverse effects of non-thermal ablation |
US12059197B2 (en) | 2008-04-29 | 2024-08-13 | Virginia Tech Intellectual Properties, Inc. | Blood-brain barrier disruption using reversible or irreversible electroporation |
US11607271B2 (en) | 2008-04-29 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US10470822B2 (en) | 2008-04-29 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US10117707B2 (en) | 2008-04-29 | 2018-11-06 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US10286108B2 (en) | 2008-04-29 | 2019-05-14 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US10272178B2 (en) | 2008-04-29 | 2019-04-30 | Virginia Tech Intellectual Properties Inc. | Methods for blood-brain barrier disruption using electrical energy |
US10245098B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Acute blood-brain barrier disruption using electrical energy based therapy |
US10245105B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Electroporation with cooling to treat tissue |
US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US10736689B2 (en) | 2008-08-20 | 2020-08-11 | Prostacare Pty Ltd | Low-corrosion electrode for treating tissue |
US10842555B2 (en) * | 2008-08-20 | 2020-11-24 | Prostacare Pty Ltd | Catheter for treating tissue with non-thermal ablation |
US10085800B2 (en) | 2008-08-20 | 2018-10-02 | Prostacare Pty Ltd | Non-thermal ablation system for treating tissue |
US10939957B2 (en) | 2008-08-20 | 2021-03-09 | Prostacare Pty Ltd | Non-thermal ablation system for treating tissue |
US10575899B2 (en) | 2008-08-20 | 2020-03-03 | Prostacare Pty Ltd | Non-thermal ablation system for treating BPH and other growths |
US9211155B2 (en) | 2008-08-20 | 2015-12-15 | Prostacare Pty Ltd. | Non-thermal ablation system for treating BPH and other growths |
US9597145B2 (en) | 2008-08-20 | 2017-03-21 | Prostacare Pty Ltd | Non-thermal ablation system for treating tissue |
US20100049192A1 (en) * | 2008-08-20 | 2010-02-25 | Ionix Medical, Inc. | Catheter for Treating Tissue with Non-Thermal Ablation |
US8206300B2 (en) | 2008-08-26 | 2012-06-26 | Gynesonics, Inc. | Ablation device with articulated imaging transducer |
US8753335B2 (en) * | 2009-01-23 | 2014-06-17 | Angiodynamics, Inc. | Therapeutic energy delivery device with rotational mechanism |
US20150320488A1 (en) * | 2009-01-23 | 2015-11-12 | Angiodynamics, Inc. | Therapeutic energy delivery device with rotational mechanism |
US20100191235A1 (en) * | 2009-01-23 | 2010-07-29 | Angiodynamics, Inc. | Therapeutic energy delivery device with rotational mechanism |
WO2010093603A1 (en) * | 2009-02-11 | 2010-08-19 | Boston Scientific Scimed, Inc. | Insulated ablation catheter devices and methods of use |
US11684416B2 (en) | 2009-02-11 | 2023-06-27 | Boston Scientific Scimed, Inc. | Insulated ablation catheter devices and methods of use |
US11992258B2 (en) | 2009-02-27 | 2024-05-28 | Gynesonics, Inc. | Needle and tine deployment mechanism |
US10321951B2 (en) | 2009-02-27 | 2019-06-18 | Gynesonics, Inc. | Needle and tine deployment mechanism |
US8262574B2 (en) | 2009-02-27 | 2012-09-11 | Gynesonics, Inc. | Needle and tine deployment mechanism |
US11564735B2 (en) | 2009-02-27 | 2023-01-31 | Gynesonics, Inc. | Needle and fine deployment mechanism |
US11638603B2 (en) | 2009-04-09 | 2023-05-02 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US11382681B2 (en) | 2009-04-09 | 2022-07-12 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of high frequency electrical pulses for non-thermal ablation |
US10448989B2 (en) | 2009-04-09 | 2019-10-22 | Virginia Tech Intellectual Properties, Inc. | High-frequency electroporation for cancer therapy |
US10292755B2 (en) | 2009-04-09 | 2019-05-21 | Virginia Tech Intellectual Properties, Inc. | High frequency electroporation for cancer therapy |
US11707629B2 (en) | 2009-05-28 | 2023-07-25 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
US9271785B2 (en) | 2009-09-18 | 2016-03-01 | Viveve, Inc. | Vaginal remodeling device and methods |
US11154349B2 (en) | 2009-09-18 | 2021-10-26 | Viveve, Inc. | Vaginal remodeling device and methods |
US20130190738A1 (en) * | 2010-09-24 | 2013-07-25 | Fotona D.D. | Laser system for the treatment of body tissue |
US11931096B2 (en) | 2010-10-13 | 2024-03-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
US11135000B2 (en) | 2011-04-12 | 2021-10-05 | Thermedical, Inc. | Methods and devices for use of degassed fluids with fluid enhanced ablation devices |
US10881443B2 (en) | 2011-04-12 | 2021-01-05 | Thermedical, Inc. | Devices and methods for shaping therapy in fluid enhanced ablation |
US10448987B2 (en) | 2011-04-12 | 2019-10-22 | Thermedical, Inc. | Methods and devices for controlling ablation therapy |
US11871979B2 (en) | 2011-04-12 | 2024-01-16 | Thermedical, Inc. | Methods and devices for controlling ablation therapy |
US8702697B2 (en) | 2011-04-12 | 2014-04-22 | Thermedical, Inc. | Devices and methods for shaping therapy in fluid enhanced ablation |
US9877768B2 (en) | 2011-04-12 | 2018-01-30 | Thermedical, Inc. | Methods and devices for heating fluid in fluid enhanced ablation therapy |
US8945121B2 (en) | 2011-04-12 | 2015-02-03 | Thermedical, Inc. | Methods and devices for use of degassed fluids with fluid enhanced ablation devices |
US9730748B2 (en) | 2011-04-12 | 2017-08-15 | Thermedical, Inc. | Devices and methods for shaping therapy in fluid enhanced ablation |
US9138288B2 (en) | 2011-04-12 | 2015-09-22 | Thermedical, Inc. | Methods and devices for use of degassed fluids with fluid enhanced ablation devices |
US11950829B2 (en) | 2011-04-12 | 2024-04-09 | Thermedical, Inc. | Methods and devices for use of degassed fluids with fluid enhanced ablation devices |
US9445861B2 (en) | 2011-04-12 | 2016-09-20 | Thermedical, Inc. | Methods and devices for controlling ablation therapy |
US9937000B2 (en) | 2011-04-12 | 2018-04-10 | Thermedical, Inc. | Methods and devices for controlling ablation therapy |
US9138287B2 (en) | 2011-04-12 | 2015-09-22 | Thermedical, Inc. | Methods and devices for heating fluid in fluid enhanced ablation therapy |
US11583330B2 (en) | 2011-04-12 | 2023-02-21 | Thermedical, Inc. | Devices and methods for remote temperature monitoring in fluid enhanced ablation therapy |
US10307201B2 (en) | 2011-04-12 | 2019-06-04 | Thermedical, Inc. | Methods and devices for use of degassed fluids with fluid enhanced ablation devices |
US10548654B2 (en) | 2011-04-12 | 2020-02-04 | Thermedical, Inc. | Devices and methods for remote temperature monitoring in fluid enhanced ablation therapy |
US10702326B2 (en) | 2011-07-15 | 2020-07-07 | Virginia Tech Intellectual Properties, Inc. | Device and method for electroporation based treatment of stenosis of a tubular body part |
US11406438B2 (en) * | 2011-09-23 | 2022-08-09 | Alan N. Schwartz | Instrument for therapeutically cytotoxically ablating parathyroidal tissue within a parathyroid gland |
US11779395B2 (en) | 2011-09-28 | 2023-10-10 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
US9757196B2 (en) | 2011-09-28 | 2017-09-12 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
US9999461B2 (en) | 2011-12-09 | 2018-06-19 | Metavention, Inc. | Therapeutic denervation of nerves surrounding a hepatic vessel |
US10617460B2 (en) | 2011-12-09 | 2020-04-14 | Metavention, Inc. | Neuromodulation for metabolic conditions or syndromes |
US10070911B2 (en) | 2011-12-09 | 2018-09-11 | Metavention, Inc. | Neuromodulation methods to alter glucose levels |
US10543034B2 (en) | 2011-12-09 | 2020-01-28 | Metavention, Inc. | Modulation of nerves innervating the liver |
US10856926B2 (en) | 2011-12-09 | 2020-12-08 | Metavention, Inc. | Neuromodulation for metabolic conditions or syndromes |
US12029466B2 (en) | 2011-12-09 | 2024-07-09 | Medtronic Ireland Manufacturing Unlimited Company | Neuromodulation for metabolic conditions or syndromes |
US10064674B2 (en) | 2011-12-09 | 2018-09-04 | Metavention, Inc. | Methods of modulating nerves of the hepatic plexus |
US12102376B2 (en) | 2012-02-08 | 2024-10-01 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
US11737776B2 (en) | 2012-02-29 | 2023-08-29 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
US11464536B2 (en) | 2012-02-29 | 2022-10-11 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
US9415235B2 (en) | 2012-03-16 | 2016-08-16 | Viveve, Inc. | Vaginal remodeling device and method |
WO2013160772A2 (en) | 2012-04-22 | 2013-10-31 | Omry Ben-Ezra | Bladder tissue modification for overactive bladder disorders |
US9179963B2 (en) | 2012-04-22 | 2015-11-10 | Newuro, B.V. | Bladder tissue modification for overactive bladder disorders |
US10610294B2 (en) | 2012-04-22 | 2020-04-07 | Newuro, B.V. | Devices and methods for transurethral bladder partitioning |
US9883906B2 (en) | 2012-04-22 | 2018-02-06 | Newuro, B.V. | Bladder tissue modification for overactive bladder disorders |
US10022176B2 (en) | 2012-08-15 | 2018-07-17 | Thermedical, Inc. | Low profile fluid enhanced ablation therapy devices and methods |
US9763692B2 (en) | 2012-09-14 | 2017-09-19 | The Spectranetics Corporation | Tissue slitting methods and systems |
US11596435B2 (en) | 2012-09-14 | 2023-03-07 | Specrtranetics Llc | Tissue slitting methods and systems |
US9949753B2 (en) | 2012-09-14 | 2018-04-24 | The Spectranetics Corporation | Tissue slitting methods and systems |
US9413896B2 (en) | 2012-09-14 | 2016-08-09 | The Spectranetics Corporation | Tissue slitting methods and systems |
US10531891B2 (en) | 2012-09-14 | 2020-01-14 | The Spectranetics Corporation | Tissue slitting methods and systems |
US10368900B2 (en) | 2012-09-14 | 2019-08-06 | The Spectranetics Corporation | Tissue slitting methods and systems |
US9724122B2 (en) | 2012-09-14 | 2017-08-08 | The Spectranetics Corporation | Expandable lead jacket |
US9937005B2 (en) | 2013-03-13 | 2018-04-10 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9883885B2 (en) | 2013-03-13 | 2018-02-06 | The Spectranetics Corporation | System and method of ablative cutting and pulsed vacuum aspiration |
US10485613B2 (en) | 2013-03-13 | 2019-11-26 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9925371B2 (en) | 2013-03-13 | 2018-03-27 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US9456872B2 (en) | 2013-03-13 | 2016-10-04 | The Spectranetics Corporation | Laser ablation catheter |
US9291663B2 (en) | 2013-03-13 | 2016-03-22 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US10799293B2 (en) | 2013-03-13 | 2020-10-13 | The Spectranetics Corporation | Laser ablation catheter |
US9283040B2 (en) | 2013-03-13 | 2016-03-15 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US10265520B2 (en) | 2013-03-13 | 2019-04-23 | The Spetranetics Corporation | Alarm for lead insulation abnormality |
US10383691B2 (en) | 2013-03-13 | 2019-08-20 | The Spectranetics Corporation | Last catheter with helical internal lumen |
US10835279B2 (en) | 2013-03-14 | 2020-11-17 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US11925380B2 (en) | 2013-03-14 | 2024-03-12 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US11925334B2 (en) | 2013-03-15 | 2024-03-12 | Spectranetics Llc | Surgical instrument for removing an implanted object |
US10849603B2 (en) | 2013-03-15 | 2020-12-01 | Spectranetics Llc | Surgical instrument for removing an implanted object |
US9668765B2 (en) | 2013-03-15 | 2017-06-06 | The Spectranetics Corporation | Retractable blade for lead removal device |
US10314615B2 (en) | 2013-03-15 | 2019-06-11 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9918737B2 (en) | 2013-03-15 | 2018-03-20 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9610396B2 (en) | 2013-03-15 | 2017-04-04 | Thermedical, Inc. | Systems and methods for visualizing fluid enhanced ablation therapy |
US10842532B2 (en) | 2013-03-15 | 2020-11-24 | Spectranetics Llc | Medical device for removing an implanted object |
US10219819B2 (en) | 2013-03-15 | 2019-03-05 | The Spectranetics Corporation | Retractable blade for lead removal device |
US10136913B2 (en) | 2013-03-15 | 2018-11-27 | The Spectranetics Corporation | Multiple configuration surgical cutting device |
US9033972B2 (en) | 2013-03-15 | 2015-05-19 | Thermedical, Inc. | Methods and devices for fluid enhanced microwave ablation therapy |
US10058385B2 (en) | 2013-03-15 | 2018-08-28 | Thermedical, Inc. | Methods and devices for fluid enhanced microwave ablation therapy |
US10052129B2 (en) | 2013-03-15 | 2018-08-21 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9603618B2 (en) | 2013-03-15 | 2017-03-28 | The Spectranetics Corporation | Medical device for removing an implanted object |
US10524817B2 (en) | 2013-03-15 | 2020-01-07 | The Spectranetics Corporation | Surgical instrument including an inwardly deflecting cutting tip for removing an implanted object |
US9925366B2 (en) | 2013-03-15 | 2018-03-27 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US11160579B2 (en) | 2013-03-15 | 2021-11-02 | Spectranetics Llc | Multiple configuration surgical cutting device |
US10448999B2 (en) | 2013-03-15 | 2019-10-22 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US9956399B2 (en) | 2013-03-15 | 2018-05-01 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9980743B2 (en) | 2013-03-15 | 2018-05-29 | The Spectranetics Corporation | Medical device for removing an implanted object using laser cut hypotubes |
US12011212B2 (en) | 2013-06-05 | 2024-06-18 | Medtronic Ireland Manufacturing Unlimited Company | Modulation of targeted nerve fibers |
US11957405B2 (en) | 2013-06-13 | 2024-04-16 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
WO2015079322A2 (en) | 2013-11-26 | 2015-06-04 | Newuro, B.V. | Bladder tissue modification for overactive bladder disorders |
US12053203B2 (en) | 2014-03-03 | 2024-08-06 | Spectranetics, Llc | Multiple configuration surgical cutting device |
US10471254B2 (en) | 2014-05-12 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US11406820B2 (en) | 2014-05-12 | 2022-08-09 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US10405924B2 (en) | 2014-05-30 | 2019-09-10 | The Spectranetics Corporation | System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
US10524684B2 (en) | 2014-10-13 | 2020-01-07 | Boston Scientific Scimed Inc | Tissue diagnosis and treatment using mini-electrodes |
US11589768B2 (en) | 2014-10-13 | 2023-02-28 | Boston Scientific Scimed Inc. | Tissue diagnosis and treatment using mini-electrodes |
US10603105B2 (en) | 2014-10-24 | 2020-03-31 | Boston Scientific Scimed Inc | Medical devices with a flexible electrode assembly coupled to an ablation tip |
US11903690B2 (en) | 2014-12-15 | 2024-02-20 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
US10694972B2 (en) | 2014-12-15 | 2020-06-30 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
USD770616S1 (en) | 2015-02-20 | 2016-11-01 | The Spectranetics Corporation | Medical device handle |
USD854682S1 (en) | 2015-02-20 | 2019-07-23 | The Spectranetics Corporation | Medical device handle |
USD819204S1 (en) | 2015-02-20 | 2018-05-29 | The Spectranetics Corporation | Medical device handle |
USD806245S1 (en) | 2015-02-20 | 2017-12-26 | The Spectranetics Corporation | Medical device handle |
USD765243S1 (en) | 2015-02-20 | 2016-08-30 | The Spectranetics Corporation | Medical device handle |
US10524859B2 (en) | 2016-06-07 | 2020-01-07 | Metavention, Inc. | Therapeutic tissue modulation devices and methods |
US11013555B2 (en) | 2016-08-11 | 2021-05-25 | Thermedical, Inc. | Devices and methods for delivering fluid to tissue during ablation therapy |
US9743984B1 (en) | 2016-08-11 | 2017-08-29 | Thermedical, Inc. | Devices and methods for delivering fluid to tissue during ablation therapy |
US10993770B2 (en) | 2016-11-11 | 2021-05-04 | Gynesonics, Inc. | Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data |
US11419682B2 (en) | 2016-11-11 | 2022-08-23 | Gynesonics, Inc. | Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data |
US11723710B2 (en) | 2016-11-17 | 2023-08-15 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
CN110678138A (en) * | 2017-03-17 | 2020-01-10 | 埃尼奥·查维斯·德·奥利维拉 | Apparatus, system and method for treating swollen vascular structures |
US11896823B2 (en) | 2017-04-04 | 2024-02-13 | Btl Healthcare Technologies A.S. | Method and device for pelvic floor tissue treatment |
CN107693109A (en) * | 2017-09-28 | 2018-02-16 | 马延婷 | A kind of gynaecology's tumor of breast finely cuts off and promotes prosthetic device |
US11457975B2 (en) | 2017-11-27 | 2022-10-04 | Prostacare Pty Ltd | Apparatus and a method for the treatment of a prostatic disease |
US11607537B2 (en) | 2017-12-05 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | Method for treating neurological disorders, including tumors, with electroporation |
EP3730100A4 (en) * | 2017-12-19 | 2021-10-06 | Cebika Inc. | Low-temperature treatment device capable of preventing neural damage |
CN111787890A (en) * | 2017-12-19 | 2020-10-16 | 塞比卡有限公司 | Low-temperature treatment device capable of preventing nerve injury |
US11224474B2 (en) | 2018-02-28 | 2022-01-18 | Prostacare Pty Ltd | System for managing high impedance changes in a non-thermal ablation system for BPH |
US11311329B2 (en) | 2018-03-13 | 2022-04-26 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for immunotherapy based treatments using non-thermal ablation techniques |
US11925405B2 (en) | 2018-03-13 | 2024-03-12 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation |
US11083871B2 (en) | 2018-05-03 | 2021-08-10 | Thermedical, Inc. | Selectively deployable catheter ablation devices |
US11511110B2 (en) | 2018-06-27 | 2022-11-29 | Viveve, Inc. | Methods for treating urinary stress incontinence |
US11918277B2 (en) | 2018-07-16 | 2024-03-05 | Thermedical, Inc. | Inferred maximum temperature monitoring for irrigated ablation therapy |
US11950835B2 (en) | 2019-06-28 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy |
Also Published As
Publication number | Publication date |
---|---|
WO2001080723A2 (en) | 2001-11-01 |
AU2001257192A1 (en) | 2001-11-07 |
WO2001080723A3 (en) | 2002-04-04 |
US6419673B1 (en) | 2002-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6419673B1 (en) | Ablation of rectal and other internal body structures | |
US6077257A (en) | Ablation of rectal and other internal body structures | |
US8412318B2 (en) | Treatment of tissue in sphincters, sinuses, and orifices | |
US6425853B1 (en) | Treating body tissue by applying energy and substances with a retractable catheter and contained cooling element | |
US8740846B2 (en) | Treatment of tissue in sphincters, sinuses, and orifices | |
US6425877B1 (en) | Treatment of tissue in the digestive circulatory respiratory urinary and reproductive systems | |
US6743197B1 (en) | Treatment of discrete tissues in respiratory, urinary, circulatory, reproductive and digestive systems | |
US7184827B1 (en) | Shrinkage of dilatations in the body | |
US6746465B2 (en) | Catheter based balloon for therapy modification and positioning of tissue | |
US7306588B2 (en) | Devices and methods for directed, interstitial ablation of tissue | |
JP4362373B2 (en) | Method and apparatus for treatment of tissue adjacent to a body vessel with heat compression and drugs | |
AU657235B2 (en) | Medical probe device and method | |
EP1087714B1 (en) | Apparatus for application of energy and substances in the treatment of uro-genital disorders | |
US20030199860A1 (en) | Devices and methods for directed, interstitial ablation of tissue | |
US20010029393A1 (en) | Thermotherapy probe | |
EP0601025A1 (en) | Balloon-catheter | |
JP2002539887A (en) | Hyperthermia catheter | |
CN108013932A (en) | A kind of interior cooled microwave conduit and system of monitoring temperature in real time | |
EP1281366B1 (en) | Treatment of sphincters with electrosurgery and active substances | |
Norberto et al. | Perendoscopic Nd: YAG laser therapy of colorectal neoplasms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |