US20020153448A1 - Precision guidance system for aircraft launched bombs - Google Patents

Precision guidance system for aircraft launched bombs Download PDF

Info

Publication number
US20020153448A1
US20020153448A1 US09/862,843 US86284301A US2002153448A1 US 20020153448 A1 US20020153448 A1 US 20020153448A1 US 86284301 A US86284301 A US 86284301A US 2002153448 A1 US2002153448 A1 US 2002153448A1
Authority
US
United States
Prior art keywords
nozzles
force
control
accordance
airframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/862,843
Other versions
US6460801B1 (en
Inventor
Joseph Mayersak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Corp
Original Assignee
Lockheed Martin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/154,767 external-priority patent/US5463036A/en
Priority claimed from US08/295,108 external-priority patent/US5507452A/en
Application filed by Lockheed Martin Corp filed Critical Lockheed Martin Corp
Priority to US09/862,843 priority Critical patent/US6460801B1/en
Assigned to LOCKHEED MARTIN CORPORATION reassignment LOCKHEED MARTIN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAYERSAK, JOSEPH A.
Application granted granted Critical
Publication of US6460801B1 publication Critical patent/US6460801B1/en
Publication of US20020153448A1 publication Critical patent/US20020153448A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust
    • F42B10/663Steering by varying intensity or direction of thrust using a plurality of transversally acting auxiliary nozzles, which are opened or closed by valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/007Preparatory measures taken before the launching of the guided missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes

Definitions

  • This application relates generally to the field of maneuverable vehicle guidance. It relates to the guidance of space vehicles operating in an exoatmospheric environment and to guidance of air vehicles operating in an endoatmospheric environment.
  • the application relates, in particular to the guidance of airframe ordinance which is released from a platform, typically a bomber or fighter aircraft.
  • Such vehicles are commonly guided to the target with improved delivery accuracy using a variety of jet propulsion means powered by an onboard gas generator which is placed in operation at the time of launch and remains operational up to the point of impact.
  • the propulsion means may be in the form of discrete solid propulsion thrusters.
  • the valve plate element includes four pairs of solenoid operated poppet valves, one for each nozzle, which are cycled at rapid periodic intervals to vent the system of excess pressure and to change the force states being generated by the bi-directional nozzles to in turn control the air vehicle angle of attack and side slip.
  • the present invention relates to an improved method of using the above described construction which produces far more sensitive control of the vehicle on its path of flight to the target. Because there are eight nozzles arranged in four oppositely directed pairs, each capable of independent operation, it is possible to generate an increased number of force states which are instantaneously available to meet any given thrust requirement, which may include adjustment of pitch, yaw, as well as speed of axial rotation.
  • the system can produce force in the pitch and yaw plane by firing nozzles opposite from each other in the same direction which generates a control force which and be represented by a force of 2 F through the centerline of the air vehicle and two canceling roll torques.
  • FIG. 1 is a schematic perspective view showing resultant force when two adjacent nozzles are fired and neutral force concepts used in an embodiment of the invention.
  • FIG. 2 is a schematic diagram showing plural thrust states selectively available using the disclosed embodiment.
  • FIG. 3 is a schematic view showing force states developed at 45 degrees by firing opposite nozzles in the same direction which results in a resultant force through the centerline of the air vehicle with two canceling torques in defining the directional states.
  • FIG. 4 is a schematic view showing combined force states with null states for one bi-directional nozzle.
  • FIG. 5 is a schematic view illustrating a constant jet pressure concept with four nozzles operating at all times..
  • FIG. 6 is a schematic view illustrating thirteen possible force levels for alpha and beta control.
  • FIG. 7 is a schematic view showing the disclosed system 33 force states employed for alpha and beta control with roll control to including processional movement.
  • FIG. 8 is a schematic view showing four valve constant pressure state without bi-directional null.
  • FIG. 9 is a schematic view showing a nose insert for a bomb and lateral acceleration obtained.
  • FIG. 10 is a graph illustrating a typical bomb trajectory in expressed in terms of angle of attack.
  • FIG. 11 is a graph illustrating the ability of the device to track the required angle of attack when the force states are changed at a 50 ms/cycle time of the valving of the device.
  • FIG. 12 is a graph illustrates the ability of the device to track the required angle of attack when the force states are changed at a 25 ms/cycle time with the same valve displacement.
  • FIG. 13 depicts the five force states for a two dimensional control of a trajectory in the vertical plane.
  • FIG. 14 describes the ability of the device to track the required angle of attack using five firing states associated with a two dimension control of the trajectory in the vertical plane including a null state in both up and down firings and a summary of the percentage a particular force state is used.
  • FIG. 15 defines the 33 force states for a valve plate geometry using four bi-directional nozzles located on the periphery of the valve plate
  • FIG. 16 defines an alternate nozzle geometry obtained by rotating each of the nozzles 45 degrees to form a bi-directional nozzle with the nozzles positioned such that there is a 90 degree included angle between the nozzles making up the original bi-directional nozzle.
  • Each nozzle is controlled by a solenoids as before with the difference being the direction the nozzles are positioned relative to the valve plate.
  • FIG. 17 depicts the 33 force states for the alternate nozzle geometry with the nozzles controlled by a single dual solenoid being positioned to form a 90 degree angle between the nozzles demonstrating that the force states for this configuration are identical to the bi-directional nozzle force states.
  • FIG. 18 defines the generalized nozzle configuration where the nozzles are positioned in pair about the valve plate with two nozzles controlled by a single dual acting solenoid with an example case for twenty four nozzles shown.
  • FIG. 19 describes the possible placement of the jet reaction control system on a bomb to include nose control, center of gravity control and tail control concepts.
  • the device in accordance with the invention, includes a cylindrical tube 11 adapted to be inserted into the fuse well 12 of a conventional aircraft launched bomb 13 . It includes a relatively larger cylindrical housing 14 forming a propellant canister 15 , and mounting a valve-like cover 16 enclosing a valve plate assembly 17 .
  • the assembly 17 includes first and second parallel plates 20 and 21 defining a channel 22 interconnecting the propellant canister 15 with a valve seat 23 , in turn communicating with each of a plurality of bi-directional nozzles 24 which provide thrust in a selective manner in each of two opposite directions.
  • Poppet valves 25 control gas flow to each of the valve orifices, and are moved from opened to closed position by electrical fifteen solenoids 26 .
  • the solenoid when activated, picks up on a level arm (not shown) having its pivot between the solenoid and the poppet valve. The lift on the level arm located under the solenoid by the solenoid depresses the poppet valve opening the valve to allow gas to flow to the nozzle.
  • valves are typically one-quarter inch in diameter at the seating surface, and are of a very low mass, so as to be cyclable in periods as small as 10 milliseconds. Total valve excursion can be as little as. 0.7 to 0.1 inch.
  • FIG. 1 depicts the case where adjacent nozzles are opened which provides a resultant force which passes through the centerline of the assembly. The case where opposite nozzles are opened which provides a resultant force through the centerline of the assembly with two equal but opposite torques is shown. In addition the null state where both poppet vales in a bi-directional nozzle are opened with no net resultant force is pictured.
  • the valve plate cover 16 is adapted to override the valve plate assembly, and includes an end wall 28 as well as a cylindrical side wall 29 having four openings 50 which overlay the jet orifices.
  • FIG. 2 there is illustrated schematically an adjacent nozzle pitch plane, and the thruster states which are selectively obtainable using the four bi-directional nozzles.
  • the thrust plane 40 mounts a first pair of nozzles 41 , a second pair of nozzles 42 , a third pair of nozzles 43 and a fourth pair of nozzles 44 , each pair being disposed at 90 degrees with respect to adjacent pairs of nozzles.
  • a one orifice of an adjacent pair of bi-directional nozzles illustrates two forces disposed at a mutual 90 degree angle to provide a resultant force which passes through the longitudinal axis of the bomb normal to the thrust plane.
  • normally four orifices will be open at any one instant in order to maintain a substantially constant gas pressure emanating from the gas generator.
  • FIG. 2 b illustrates the use of four orifices, one orifice in each of the four bi-directional nozzles facing rightwardly to provide a lateral resultant thrust force twice of that illustrated in FIG. 2 a.
  • FIG. 2 c illustrates a similar situation where a thrust force is directed 180 degrees opposite to that seen in FIG. 2 b.
  • FIG. 2 d corresponds to an oppositely directed force with respect to that shown in FIG. 2 a.
  • FIG. 2 e illustrates two nozzle orifices facing leftwardly, and two nozzle orifices facing rightwardly so that the thrust forces cancel each other and a null force level is obtained. This can also be accomplished by using all eight nozzles orifices as shown in FIG. 2 F.
  • FIG. 3 there is illustrated a group of conventional thruster states located at 45 degree angles from the normal bi-directional states.
  • a thrust is delivered in a leftward upward direction using two nozzle orifices.
  • An oppositely directed force is illustrated in FIG. 3 b.
  • FIG. 3 c shows the orifices employed in FIGS. 3 a and 3 b together to achieve a null force state.
  • FIG. 3 d illustrates how the combined forces in FIG. 3 b result in a resultant force through the centerline of the air vehicle or the longitudinal axis of the bomb with two torques of equal magnitude but opposite direction canceling each other so that no torque or roll component is generated.
  • FIG. 4 illustrates pitch plane force levels where four nozzles are open at all times to provide the ability to operate with constant propellant pressure. This approach eliminates the need for feed back control, pressure regulators or pressure relief valves in the solid gas generator.
  • FIG. 4 a illustrates two orifice openings which provide a rightward thrust in the plane with two other orifices providing thrust which mutually cancel each other.
  • FIG. 4 b shows essentially a corresponding state where leftward thrust is desired.
  • FIG. 4 c shows a an alternate four nozzle null state where the pitch plane up force is cancelled by the pitch plan down force.
  • FIG. 4 d details an alternate null state with all of four parallel forces canceling each other.
  • FIG. 5 further illustrates the concept of keeping four nozzles open at all times to maintain constant pressure from the gas generator while generating forces in a control plane rotated 45 degrees from the pitch plane described in FIG. 4.
  • FIG. 5 a shows a pair of immediately adjacent nozzle orifices each providing a thrust force disposed at a mutual right angle. As a result, two of the forces cancel each other leaving an effective thrust force at 120 degrees.
  • FIG. 5 b illustrates a null state with forces canceling each other
  • FIG. 5 c illustrates the corresponding state shown in FIG. 5 a with the effective force being directed leftwardly and upwardly at 320 degrees.
  • FIG. 6 illustrates thirteen possible force levels for alpha and beta control. While thirteen possible force levels are illustrated, it will be understood that there are thirty three possible valve states capable of selectively imparting thrust at each of 45 degree intervals with single or double force.
  • FIG. 7 illustrates the force states when the pitch and yaw force states include roll force states.
  • Roll control is possible using any of the eight valve nozzles in correct combination. It is possible to use each of four orifices to impart torque without other thrust force. It is also possible to use two orifices to impart torque and the other two orifices to impart lateral thrust. This combination may be employed such that the lateral thrust is possible in each of eight directions located at 45 degree intervals around the center of the thrust plane. There are five roll force states available. There are thirty three possible force states possible when roll control is included.
  • FIG. 8 illustrates alternate control states without employing the null nozzle concept, where desired.
  • FIG. 9 a there is illustrated the installation of the system in the nose fuse well of the bomb, FIG. 9 a, with the fuse system being provided at the tail of the bomb, so that the resulting overall length of the bomb is at acceptable limits.
  • This permits the bomb to be used within existing bomb bays of aircraft without substantial modification. It also permit the use of existing bomb inventory without any modification to the bomb itself to yield a GPS inverse guided bomb concept.
  • FIG. 10 illustrates a typical inverse guidance law trajectory executed by a bomb over a time of flights slightly over one minute.
  • the data is provided in terms of angle of attack plotted against time where the angle of attack is determined for a vertical plane trajectory for ease of explanation. It may be observed that the bomb has a variety of angles of attack at either a positive or negative angle, either of which provides body lift which may be utilized to provide force to supplement that provided by the jet nozzle combination used at any given instant.
  • FIG. 11 illustrates the cycle time of the poppet valve at a 50 millisecond cycle rate. It illustrates the fact that the jet reaction control system changing force states twenty times a second can not track the require angle of attack to the required accuracy.
  • FIG. 12 illustrates a 25 millisecond cycle rate with the force states changing 40 times a second.
  • the angle of attack required is achieved with excellent accuracy.
  • the response time of the poppet valve is of the order of 10 milliseconds.
  • the length of stoke of the poppet valves in these simulations were all 0.10 inches..
  • FIG. 13 illustrates the five force states employed in determining the usage of the states in a example trajectory. These force states all employ a four nozzle open configuration. The example assumes the usage rate of the various valve states for a pitch plane with no roll control. The five firing states generated for the valves are employed where the valve orifices are used for vertical pitch control. It is noted that two levels of force are available for each of upward and downward lateral thrust. In the case of the first level of thrust only two nozzle orifices are used with the other pair of orifices providing neutral thrust.
  • FIG. 14 illustrates a predictive firing scheme utilized over a period of approximately two seconds during the trajectory of a bomb showing the percentage of use of each of the firing states shown in FIG. 13.
  • the most common force state employed during the trajectory is one which pitches the nose up which is employed in this simulation 36 per-cent of the time.
  • a neutral state is used 7 per-cent of the time indicating the importance of being able to generate a neutral state with four valves open so that a constant pressure solid gas generator system can be used...
  • FIG. 15 again displays the four bi-directional nozzle case having 5 roll force states and 33 possible force states and depicted.
  • FIG. 16 describes a concept where the poppet valves remain in identical positions in the valve plate but the nozzles are rotated forty-five degrees from their current positions.
  • the nozzles which are controlled by a single dual solenoid are at ninety degrees one to the other.
  • the system employs eight poppet valves with four dual solenoids and, like the concept previously discussed, has four nozzles open at all times to allow a constant pressure working fluid supply to be employed eliminating the need for feedback control, venting or pressure relief valves in the system.
  • FIG. 17 describes the force states for the alternate nozzle geometry where each of the two bi-direction nozzles are rotated 45 degrees so that the nozzles controlled by a dual solenoid are at 90 degrees to each other. This configuration generates 5 roll force states and 33 force states identical to the concept previously discussed which employed four bi-directional nozzles.
  • FIG. 18 details the logic associated with either a eight bi-directional nozzle or eight 90-degree relative nozzle configuration which have been shown to have the ability to generate identical force states.
  • the relationship on the nozzles can be defined in simple terms. If the number of nozzles is eight then the angle between nozzles is 360 degrees divided by 4 where 4 is equal to N and the number of nozzles is equal to 2N. A general case can be described where an integer, N, is selected and the number of nozzles determined to be 2N. The angular spacing between nozzles is 360 degrees divided by N. In the example N was taken to be 12 so that the number of nozzles required will be twenty-four. The number of dual solenoids would be 12.
  • the angle between nozzles would be 360 degrees divided by 12 or 30 degrees.
  • the jet reaction control system is capable of putting force into four control planes separated one from the other by 90 degrees.
  • the jet reaction control system is capable of putting force into twelve separate control planes separated by 15 degrees.
  • FIG. 19 depicts the concept just discussed where the jet reaction control is used for nose control.
  • the concept can also be used for tail control and for center of gravity control.
  • FIG. 19 describes a concept where the jet reaction control system is moved to the center of gravity of the air vehicle. It can be used to control the vehicle in much the same way as the previously described concept with the exception that the maneuver now does not benefit from the lift force generated by cross flow drag over the air vehicle. In this case the nozzles and propellant supply have to be provided to generate sufficient force to move the total weight of the air vehicle.
  • a tail control concept similar to the nose control concept can be defined.
  • the body lift would provide the maneuver force but the body lift would be decreased by the amount of force generated by the jet reaction control system. That is to say, in order to push the air vehicle nose up to generate body lift up the tail has to be pushed down or the opposite direction so the total force would be less than if a nose control concept was employed where the force is additive.
  • valve control is accomplished by electric solenoid actuation, commands in terms of electrical signal may be obtained by using non-navigational systems.
  • the concept which I have invented can be used in jet reaction nose control concepts as well as concepts which employ tail control and control through the center of gravity of the air vehicle. While the force levels may vary in each implementation the concept to be employed remains the same. The ability to change the force states up to 50 times, or more, per second allows precise control of space vehicles or vehicle maneuver outside the atmosphere as well as endoatmospheric vehicles. Clearly, the concept which I have invented has application in control of vehicles in atmospheric flight as well as space flight.

Abstract

A jet bomb guidance system in which bi-directional nozzles are fired in a manner to produce force state changes resulting in improved level of control, greater force compatibility and greater efficiency in propellant fuel usage The system includes four bi-directional nozzles spaced at 90 degree intervals which at least four single nozzles are open at any given instant to maintain a substantially constant gas pressure. The system may be positioned at the nose portion, tail portion, or center of gravity of the bomb.

Description

    RELATED APPLICATION
  • Reference is made to my co-pending application Ser. No. 08/154,767 filed Aug. 28, 1998, the present application being a continuation in part thereof Said application is a continuation in part of application Ser. No. 08/953,607 filed Apr. 9, 1997, which, in turn, is a continuation in part of application Ser. No. 08/512,426 filed Apr. 4, 1995, in turn a continuation in part of [0001] application 10 Ser. No. 08/295,108 filed Aug. 24, 1994.
  • BACKGROUND OF THE INVENTION
  • This application relates generally to the field of maneuverable vehicle guidance. It relates to the guidance of space vehicles operating in an exoatmospheric environment and to guidance of air vehicles operating in an endoatmospheric environment. The application relates, in particular to the guidance of airframe ordinance which is released from a platform, typically a bomber or fighter aircraft. Such vehicles are commonly guided to the target with improved delivery accuracy using a variety of jet propulsion means powered by an onboard gas generator which is placed in operation at the time of launch and remains operational up to the point of impact. In the alternative, the propulsion means may be in the form of discrete solid propulsion thrusters. [0002]
  • As disclosed, for example, in the U.S. Pat. No. 5,076,511, to stein et al where a gas generation system is used, there must be a feedback control to avoid excess manifold pressure or provision must be made for venting of at least one jet valve to continuously relieve at least some of the continuously generated gas. Neutral propulsion or zero propulsion is produced by opening two opposing valves simultaneously. The use of adjustable control surfaces is also possible, but because of necessary mechanical linkages, they are not practical for minor and continuous adjustments. [0003]
  • It is also known to provide a separately attachable modular booster to the tail of the vehicle as disclosed in the U.S. Pat. No. 4,364,530 to Ripley-Lotee et al. [0004]
  • In the above mentioned co-pending application Ser. No. 08/1154,767, there is disclosed a relatively simple jet reaction control means of size sufficiently small to permit it to be installed in a forwardly positioned fuse well, wherein laterally oriented forces are imparted to the nose of the vehicle rather than through the center of gravity, so as to act as control forces to place the air vehicle at a desired angle of attack and side slip to magnify the control force by taking advantage of vehicle lift generated by cross flow drag at a given angle of attack and yaw. The system includes compact gas generating means feeding each of four bi-directional nozzles located on the periphery of a valve plate positioned [0005] 90 degrees one from the other on a valve plate element fed by the gas generating means. The valve plate element includes four pairs of solenoid operated poppet valves, one for each nozzle, which are cycled at rapid periodic intervals to vent the system of excess pressure and to change the force states being generated by the bi-directional nozzles to in turn control the air vehicle angle of attack and side slip.
  • SUMMARY OF THE INVENTION
  • The present invention relates to an improved method of using the above described construction which produces far more sensitive control of the vehicle on its path of flight to the target. Because there are eight nozzles arranged in four oppositely directed pairs, each capable of independent operation, it is possible to generate an increased number of force states which are instantaneously available to meet any given thrust requirement, which may include adjustment of pitch, yaw, as well as speed of axial rotation. The system can produce force in the pitch and yaw plane by firing nozzles opposite from each other in the same direction which generates a control force which and be represented by a force of [0006] 2F through the centerline of the air vehicle and two canceling roll torques. When two adjacent nozzles are opened to produce a control force of 2 F cos 45° and two equal but opposite forces of F sine 45°, the resultant force again passes through the centerline of the missile. The force vector generated in the two cases both pass through the centerline of the missile to preclude inducing roll and the results forces are positioned at 45 degrees. When used for pitch and yaw correction the resultant forces pass through the center line of the vehicle. As a result, the disclosed system provides three unique modes of operation, not available in prior art construction. It is possible to fire two adjacent nozzles to generate a force level of 2 F cos 45°; or four adjacent nozzles to generate a force level of 4 F cost 45°; or two opposite nozzles to generate a force of 2 F, or combinations of these nozzles to generate 33 different force states. In addition, it is possible to fire a single bi-directional nozzle in both directions simultaneously to generate a neutral force state for that nozzle which is useful in venting the system of excess gas pressure, and also to control the force obtained using one or more remaining nozzles for lateral propulsion without the necessity of varying the effective size of the nozzles. Thus, by firing adjacent nozzles together so that the resultant is a control force which passes through the center line of the vehicle an increased number of force states in the pitch or yaw plane is made possible.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, to which reference will be made in the specification, similar reference characters have been employed to designate corresponding parts throughout the several views. FIG. 1 is a schematic perspective view showing resultant force when two adjacent nozzles are fired and neutral force concepts used in an embodiment of the invention. [0007]
  • FIG. 2 is a schematic diagram showing plural thrust states selectively available using the disclosed embodiment. FIG. 3 is a schematic view showing force states developed at 45 degrees by firing opposite nozzles in the same direction which results in a resultant force through the centerline of the air vehicle with two canceling torques in defining the directional states. [0008]
  • FIG. 4 is a schematic view showing combined force states with null states for one bi-directional nozzle. [0009]
  • FIG. 5 is a schematic view illustrating a constant jet pressure concept with four nozzles operating at all times.. [0010]
  • FIG. 6 is a schematic view illustrating thirteen possible force levels for alpha and beta control. [0011]
  • FIG. 7 is a schematic view showing the disclosed [0012] system 33 force states employed for alpha and beta control with roll control to including processional movement.
  • FIG. 8 is a schematic view showing four valve constant pressure state without bi-directional null. [0013]
  • FIG. 9 is a schematic view showing a nose insert for a bomb and lateral acceleration obtained. [0014]
  • FIG. 10 is a graph illustrating a typical bomb trajectory in expressed in terms of angle of attack. [0015]
  • FIG. 11 is a graph illustrating the ability of the device to track the required angle of attack when the force states are changed at a 50 ms/cycle time of the valving of the device. [0016]
  • FIG. 12 is a graph illustrates the ability of the device to track the required angle of attack when the force states are changed at a 25 ms/cycle time with the same valve displacement. [0017]
  • FIG. 13 depicts the five force states for a two dimensional control of a trajectory in the vertical plane. [0018]
  • FIG. 14 describes the ability of the device to track the required angle of attack using five firing states associated with a two dimension control of the trajectory in the vertical plane including a null state in both up and down firings and a summary of the percentage a particular force state is used. [0019]
  • FIG. 15 defines the [0020] 33 force states for a valve plate geometry using four bi-directional nozzles located on the periphery of the valve plate FIG. 16 defines an alternate nozzle geometry obtained by rotating each of the nozzles 45 degrees to form a bi-directional nozzle with the nozzles positioned such that there is a 90 degree included angle between the nozzles making up the original bi-directional nozzle. Each nozzle is controlled by a solenoids as before with the difference being the direction the nozzles are positioned relative to the valve plate.
  • FIG. 17 depicts the 33 force states for the alternate nozzle geometry with the nozzles controlled by a single dual solenoid being positioned to form a 90 degree angle between the nozzles demonstrating that the force states for this configuration are identical to the bi-directional nozzle force states.. [0021]
  • FIG. 18 defines the generalized nozzle configuration where the nozzles are positioned in pair about the valve plate with two nozzles controlled by a single dual acting solenoid with an example case for twenty four nozzles shown. [0022]
  • FIG. 19 describes the possible placement of the jet reaction control system on a bomb to include nose control, center of gravity control and tail control concepts. [0023]
  • DETAILED DESCRIPTION OF THE DISCLOSED EMBODIMENT
  • With reference to FIG. 9 in the drawings, in accordance with the invention, the device, generally indicated by [0024] reference character 10 includes a cylindrical tube 11 adapted to be inserted into the fuse well 12 of a conventional aircraft launched bomb 13. It includes a relatively larger cylindrical housing 14 forming a propellant canister 15, and mounting a valve-like cover 16 enclosing a valve plate assembly 17.
  • As best seen in FIG. 1 in the drawings, the [0025] assembly 17 includes first and second parallel plates 20 and 21 defining a channel 22 interconnecting the propellant canister 15 with a valve seat 23, in turn communicating with each of a plurality of bi-directional nozzles 24 which provide thrust in a selective manner in each of two opposite directions. Poppet valves 25 control gas flow to each of the valve orifices, and are moved from opened to closed position by electrical fifteen solenoids 26. The solenoid, when activated, picks up on a level arm (not shown) having its pivot between the solenoid and the poppet valve. The lift on the level arm located under the solenoid by the solenoid depresses the poppet valve opening the valve to allow gas to flow to the nozzle.
  • As will more fully appear, the valves are typically one-quarter inch in diameter at the seating surface, and are of a very low mass, so as to be cyclable in periods as small as 10 milliseconds. Total valve excursion can be as little as. 0.7 to 0.1 inch. FIG. 1 depicts the case where adjacent nozzles are opened which provides a resultant force which passes through the centerline of the assembly. The case where opposite nozzles are opened which provides a resultant force through the centerline of the assembly with two equal but opposite torques is shown. In addition the null state where both poppet vales in a bi-directional nozzle are opened with no net resultant force is pictured. [0026]
  • The valve plate cover [0027] 16 is adapted to override the valve plate assembly, and includes an end wall 28 as well as a cylindrical side wall 29 having four openings 50 which overlay the jet orifices.
  • Referring to FIG. 2 in the drawing, there is illustrated schematically an adjacent nozzle pitch plane, and the thruster states which are selectively obtainable using the four bi-directional nozzles. [0028]
  • Referring to FIG. 2[0029] a., the thrust plane 40 mounts a first pair of nozzles 41, a second pair of nozzles 42, a third pair of nozzles 43 and a fourth pair of nozzles 44, each pair being disposed at 90 degrees with respect to adjacent pairs of nozzles. In FIG. 2a one orifice of an adjacent pair of bi-directional nozzles illustrates two forces disposed at a mutual 90 degree angle to provide a resultant force which passes through the longitudinal axis of the bomb normal to the thrust plane. As will become more clearly apparent, normally four orifices will be open at any one instant in order to maintain a substantially constant gas pressure emanating from the gas generator. FIG. 2b illustrates the use of four orifices, one orifice in each of the four bi-directional nozzles facing rightwardly to provide a lateral resultant thrust force twice of that illustrated in FIG. 2a. FIG. 2c illustrates a similar situation where a thrust force is directed 180 degrees opposite to that seen in FIG. 2b. FIG. 2d corresponds to an oppositely directed force with respect to that shown in FIG. 2a. FIG. 2e illustrates two nozzle orifices facing leftwardly, and two nozzle orifices facing rightwardly so that the thrust forces cancel each other and a null force level is obtained. This can also be accomplished by using all eight nozzles orifices as shown in FIG. 2F.
  • Referring to FIG. 3, there is illustrated a group of conventional thruster states located at 45 degree angles from the normal bi-directional states. In FIG. 3[0030] a a thrust is delivered in a leftward upward direction using two nozzle orifices. An oppositely directed force is illustrated in FIG. 3b. FIG. 3c shows the orifices employed in FIGS. 3a and 3 b together to achieve a null force state. FIG. 3d illustrates how the combined forces in FIG. 3b result in a resultant force through the centerline of the air vehicle or the longitudinal axis of the bomb with two torques of equal magnitude but opposite direction canceling each other so that no torque or roll component is generated.
  • FIG. 4 illustrates pitch plane force levels where four nozzles are open at all times to provide the ability to operate with constant propellant pressure. This approach eliminates the need for feed back control, pressure regulators or pressure relief valves in the solid gas generator. FIG. 4[0031] a illustrates two orifice openings which provide a rightward thrust in the plane with two other orifices providing thrust which mutually cancel each other. FIG. 4b shows essentially a corresponding state where leftward thrust is desired. FIG. 4c shows a an alternate four nozzle null state where the pitch plane up force is cancelled by the pitch plan down force. FIG. 4d details an alternate null state with all of four parallel forces canceling each other.
  • FIG. 5 further illustrates the concept of keeping four nozzles open at all times to maintain constant pressure from the gas generator while generating forces in a control plane rotated 45 degrees from the pitch plane described in FIG. 4. FIG. 5[0032] a shows a pair of immediately adjacent nozzle orifices each providing a thrust force disposed at a mutual right angle. As a result, two of the forces cancel each other leaving an effective thrust force at 120 degrees. FIG. 5b illustrates a null state with forces canceling each other, while FIG. 5c illustrates the corresponding state shown in FIG. 5a with the effective force being directed leftwardly and upwardly at 320 degrees.
  • FIG. 6 illustrates thirteen possible force levels for alpha and beta control. While thirteen possible force levels are illustrated, it will be understood that there are thirty three possible valve states capable of selectively imparting thrust at each of 45 degree intervals with single or double force. [0033]
  • FIG. 7 illustrates the force states when the pitch and yaw force states include roll force states. Roll control is possible using any of the eight valve nozzles in correct combination. It is possible to use each of four orifices to impart torque without other thrust force. It is also possible to use two orifices to impart torque and the other two orifices to impart lateral thrust. This combination may be employed such that the lateral thrust is possible in each of eight directions located at 45 degree intervals around the center of the thrust plane. There are five roll force states available. There are thirty three possible force states possible when roll control is included. [0034]
  • FIG. 8 illustrates alternate control states without employing the null nozzle concept, where desired. [0035]
  • Referring again to FIG. 9, there is illustrated the installation of the system in the nose fuse well of the bomb, FIG. 9[0036] a, with the fuse system being provided at the tail of the bomb, so that the resulting overall length of the bomb is at acceptable limits. This permits the bomb to be used within existing bomb bays of aircraft without substantial modification. It also permit the use of existing bomb inventory without any modification to the bomb itself to yield a GPS inverse guided bomb concept.
  • FIG. 10 illustrates a typical inverse guidance law trajectory executed by a bomb over a time of flights slightly over one minute. The data is provided in terms of angle of attack plotted against time where the angle of attack is determined for a vertical plane trajectory for ease of explanation.. It may be observed that the bomb has a variety of angles of attack at either a positive or negative angle, either of which provides body lift which may be utilized to provide force to supplement that provided by the jet nozzle combination used at any given instant. [0037]
  • FIG. 11 illustrates the cycle time of the poppet valve at a 50 millisecond cycle rate. It illustrates the fact that the jet reaction control system changing force states twenty times a second can not track the require angle of attack to the required accuracy. [0038]
  • FIG. 12 illustrates a 25 millisecond cycle rate with the force states changing [0039] 40 times a second. The angle of attack required is achieved with excellent accuracy. The response time of the poppet valve is of the order of 10 milliseconds. The length of stoke of the poppet valves in these simulations were all 0.10 inches..
  • FIG. 13 illustrates the five force states employed in determining the usage of the states in a example trajectory. These force states all employ a four nozzle open configuration. The example assumes the usage rate of the various valve states for a pitch plane with no roll control. The five firing states generated for the valves are employed where the valve orifices are used for vertical pitch control. It is noted that two levels of force are available for each of upward and downward lateral thrust. In the case of the first level of thrust only two nozzle orifices are used with the other pair of orifices providing neutral thrust. [0040]
  • FIG. 14 illustrates a predictive firing scheme utilized over a period of approximately two seconds during the trajectory of a bomb showing the percentage of use of each of the firing states shown in FIG. 13. As might be expected, the most common force state employed during the trajectory is one which pitches the nose up which is employed in this [0041] simulation 36 per-cent of the time. It is also noted that a neutral state is used 7 per-cent of the time indicating the importance of being able to generate a neutral state with four valves open so that a constant pressure solid gas generator system can be used...
  • FIG. 15 again displays the four bi-directional nozzle case having 5 roll force states and 33 possible force states and depicted. [0042]
  • FIG. 16 describes a concept where the poppet valves remain in identical positions in the valve plate but the nozzles are rotated forty-five degrees from their current positions. The nozzles which are controlled by a single dual solenoid are at ninety degrees one to the other. The system employs eight poppet valves with four dual solenoids and, like the concept previously discussed, has four nozzles open at all times to allow a constant pressure working fluid supply to be employed eliminating the need for feedback control, venting or pressure relief valves in the system. [0043]
  • FIG. 17 describes the force states for the alternate nozzle geometry where each of the two bi-direction nozzles are rotated 45 degrees so that the nozzles controlled by a dual solenoid are at 90 degrees to each other. This configuration generates [0044] 5 roll force states and 33 force states identical to the concept previously discussed which employed four bi-directional nozzles.
  • FIG. 18 details the logic associated with either a eight bi-directional nozzle or eight 90-degree relative nozzle configuration which have been shown to have the ability to generate identical force states. The relationship on the nozzles can be defined in simple terms. If the number of nozzles is eight then the angle between nozzles is 360 degrees divided by 4 where 4 is equal to N and the number of nozzles is equal to 2N. A general case can be described where an integer, N, is selected and the number of nozzles determined to be 2N. The angular spacing between nozzles is 360 degrees divided by N. In the example N was taken to be 12 so that the number of nozzles required will be twenty-four. The number of dual solenoids would be 12. The angle between nozzles would be 360 degrees divided by 12 or 30 degrees. In the case discussed in FIG. 17 the jet reaction control system is capable of putting force into four control planes separated one from the other by 90 degrees. In the example at hand, where N is 12, the jet reaction control system is capable of putting force into twelve separate control planes separated by 15 degrees. [0045]
  • FIG. 19 depicts the concept just discussed where the jet reaction control is used for nose control. The concept can also be used for tail control and for center of gravity control. FIG. 19 describes a concept where the jet reaction control system is moved to the center of gravity of the air vehicle. It can be used to control the vehicle in much the same way as the previously described concept with the exception that the maneuver now does not benefit from the lift force generated by cross flow drag over the air vehicle. In this case the nozzles and propellant supply have to be provided to generate sufficient force to move the total weight of the air vehicle. In the same sense a tail control concept, similar to the nose control concept can be defined. In the tail control concept the body lift would provide the maneuver force but the body lift would be decreased by the amount of force generated by the jet reaction control system. That is to say, in order to push the air vehicle nose up to generate body lift up the tail has to be pushed down or the opposite direction so the total force would be less than if a nose control concept was employed where the force is additive. [0046]
  • It may thus be seen that I have invented a novel and highly useful improvements in a system for obtaining an extremely precise guidance of an airframe, typically a bomb, after launch from an aircraft, over its trajectory to a designated target. By providing a combination of four bi-directional nozzles each capable of thrust mutually opposite directions, which are spaced at 90 degree intervals about the longitudinal axis of the airframe, and disposed in the nose portion of the airframe, it is possible to obtain guidance forces in small increments on a continuous basis reducing the possibility of over correction with each lateral deviation. By providing a mode of operation in which half of the nozzle orifices at any instant are opened it is possible to maintain a substantially constant gas pressure from a gas generating device, thus eliminating the need for separate pressure venting means and any control systems associated therewith. Since valve control is accomplished by electric solenoid actuation, commands in terms of electrical signal may be obtained by using non-navigational systems. [0047]
  • It may thus also be seen that I have invented a novel and highly useful variant of the concept which allows 2N nozzles, where N is an integer, to be defined in such a way to place forces in N control planes separated one from the other by 360 degrees divided by 2N in a generalized embodiment of my invention. This provides the ability to change force states in N control planes at a high rate insuring very precise control of an air vehicle. [0048]
  • Further, the concept which I have invented can be used in jet reaction nose control concepts as well as concepts which employ tail control and control through the center of gravity of the air vehicle. While the force levels may vary in each implementation the concept to be employed remains the same. The ability to change the force states up to 50 times, or more, per second allows precise control of space vehicles or vehicle maneuver outside the atmosphere as well as endoatmospheric vehicles. Clearly, the concept which I have invented has application in control of vehicles in atmospheric flight as well as space flight. [0049]
  • I wish it to be understood that I do not consider the invention to be limited to the precise details of structure shown and described in the specification, for obvious modifications will occur to those skilled in the art to which the invention pertains. [0050]

Claims (16)

I claim:
1. A system for guiding an airframe during flight to a target comprising: a generally planar plate element having an actuate peripheral edge, a plurality of bi-directional jet nozzle elements positioned at said peripheral edge of said plate element, a gas generator element supplying gas to said plate element, said plate element supplying gas to said jet nozzle elements; each of said bi-directional valve elements having a pair of solenoids and dual action solenoid controlled poppet valves for directing gas flow through said bi-directional nozzle elements; means for controlling said puppet valves to present a constant exit area to gas generated to allow said generator to operate without pressure regulation, said means simultaneously opening certain of said valve elements to provide lateral incremental directional thrust.
2. A system in accordance with claim 1 in which said valves are cycled over time increments of 10 to 100 milliseconds to allow the force states generated by the valves to be changed to provide precision control of the system.
3. A system in accordance with claim 1, in which said valves are operated in both open and closed direction by electric solenoids.
4. A system in accordance with claim 1, in combination with a vehicle having a principal longitudinal axis and nose and tail sections, said system being installed at said nose section, wherein the total vehicle guidance force includes the sum of jet reaction force and air vehicle aerodynamic lift.
5. A system for guiding an airframe, having a principal longitudinal axis and having nose and tail portions, over a guided trajectory from a point of launch to a target in which guiding forces are applied to said nose portion, said system comprising: four bi-directional jet nozzles arranged substantially in a plane normal to a said longitudinal axis, and positioned laterally in said plane from said axis at right angles relative to each adjacent bi-directional nozzle and each of said jet nozzles having first and second oppositely disposed orifices; gas generating means communicating with said nozzles, each of said orifices being controlled in such manner that four of said orifices are opened at any given instant to maintain substantially constant gas pressure.
6. A system for guiding an airframe, having a principal longitudinal axis and having nose and tail portions, over a guided trajectory from a point of launch to a target in which guiding forces are applied to said nose portion, said system comprising; four sets of bi-directional jet nozzles each arranged substantially in a plane normal to a said longitudinal axis, to form a 90 degree angle between adjacent nozzles, each bi-directional jet nozzle being controlled by a single dual action solenoid with each of said nozzle sets having the ability to generate a force at ninety degrees from the other, and capable of operating selectively one or the other or both nozzles to generate forces, when operated with the other nozzle sets, in N control planes; gas generating means communicating with said nozzles, each of said orifices being controlled in such manner that four of said orifices are opened at any given instant to maintain substantially constant gas pressure.
7. A system for guiding an airframe, having a principal longitudinal axis and having nose and tail portions, over a guided trajectory from a point of launch to a target, said system comprising an arbitrary even number of sets of nozzles, 2N, arranged substantially in a plane normal to said longitudinal axis, with adjacent nozzles forming an angle equal to 360 degrees divided by N between any two sets of nozzles and controlled by a single dual action solenoid with each of said jet nozzle sets having the ability to generate force at 360 degrees divided by N from the other nozzle sets and being capable of selectively operating one or the other or both nozzles at the same time to place control forces, operating with other nozzle sets in N control planes; gas generating means communicating with said nozzles, each of said nozzles being controlled in such manner that four of said nozzles are opened at any given instant to maintain substantially constant gas pressure.
8. A system in accordance with claim 7, in which said orifices are opened and closed by means including reciprocating solenoid controlled poppet valves at high rates to allow the control states to be changed many times per second..
9. A system in accordance with claim 7, in which oppositely directed nozzles, are selectively opened to provide a null force state, with the remaining nozzles providing a laterally directed thrust.
10. A system in accordance with claim 7, in which all nozzles are capable of being simultaneously opened to provide a neutral thrust state.
11. A system in accordance with claim 7, in which said nozzles may be selectively opened to provide a net thrust left or right in N control planes.
12. A system in accordance with claim 7, in which at least two nozzles can be opened to provide a net roll force level for forced roll or roll control to a specified angular airframe control scheme.
13. A system in accordance with claim 9, in which a second additional pair of nozzles provides a neutral thrust state.
14. A system in accordance with claim 7, said system being positioned at the tail portion of said airframe wherein the control force generated is the difference between the airframe lift and the jet reaction force.
15. A system in accordance with claim 7, said system being positioned at the center of gravity of the airframe to provide control force guidance without body lift.
16. A system in accordance with claim 7, said system being positioned at the nose portion of said airframe, wherein the control force generated is the sum of the airframe lift and he jet reaction force.
US09/862,843 1993-11-18 2001-05-23 Precision guidance system for aircraft launched bombs Expired - Lifetime US6460801B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/862,843 US6460801B1 (en) 1993-11-18 2001-05-23 Precision guidance system for aircraft launched bombs

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/154,767 US5463036A (en) 1992-11-25 1993-11-18 Carboxymethylcellulose and its use in textile printing
US08/295,108 US5507452A (en) 1994-08-24 1994-08-24 Precision guidance system for aircraft launched bombs
US51242695A 1995-08-08 1995-08-08
US95360797A 1997-10-19 1997-10-19
US09/862,843 US6460801B1 (en) 1993-11-18 2001-05-23 Precision guidance system for aircraft launched bombs

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US08/154,767 Continuation-In-Part US5463036A (en) 1992-11-25 1993-11-18 Carboxymethylcellulose and its use in textile printing
US95360797A Continuation-In-Part 1993-11-18 1997-10-19

Publications (2)

Publication Number Publication Date
US6460801B1 US6460801B1 (en) 2002-10-08
US20020153448A1 true US20020153448A1 (en) 2002-10-24

Family

ID=27496154

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/862,843 Expired - Lifetime US6460801B1 (en) 1993-11-18 2001-05-23 Precision guidance system for aircraft launched bombs

Country Status (1)

Country Link
US (1) US6460801B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688702A1 (en) * 2005-02-04 2006-08-09 Rheinmetall Waffe Munition GmbH Device for improving the accuracy of tail-fin stabilised ammunition
US20110029160A1 (en) * 2009-07-30 2011-02-03 Raytheon Company Methods and apparatus for a tandem divert and attitude control system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141169A1 (en) * 2001-08-22 2003-03-13 Diehl Munitionssysteme Gmbh artillery rocket
FR2975481B1 (en) * 2011-05-19 2017-09-01 Snecma Propulsion Solide SYSTEM FOR FORCE DRIVING AND ATTITUDE CONTROL IN FLIGHT OF A VEHICLE AND A VEHICLE COMPRISING SUCH A SYSTEM
US10184331B2 (en) * 2012-01-13 2019-01-22 Los Alamos National Security, Llc Explosive assembly and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085909A (en) * 1976-10-04 1978-04-25 Ford Motor Company Combined warm gas fin and reaction control servo
FR2504085A1 (en) * 1981-04-21 1982-10-22 Thomson Brandt DEVICE FOR STEAMING BY GAS JETS AND PROJECTILE COMPRISING SUCH A DEVICE
US4662581A (en) * 1985-07-15 1987-05-05 The United States Of America As Represented By The Secretary Of The Navy Modified null flow modulator
GB8611406D0 (en) * 1986-05-09 1986-08-20 Lucas Ind Plc Missile flight control system
US4826104A (en) * 1986-10-09 1989-05-02 British Aerospace Public Limited Company Thruster system
DE3801795C1 (en) * 1988-01-22 1989-08-17 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
GB8803164D0 (en) * 1988-02-11 1988-08-24 British Aerospace Reaction control system
USH1098H (en) * 1991-02-20 1992-09-01 Hallum Charles E Integrated valve assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688702A1 (en) * 2005-02-04 2006-08-09 Rheinmetall Waffe Munition GmbH Device for improving the accuracy of tail-fin stabilised ammunition
US20110029160A1 (en) * 2009-07-30 2011-02-03 Raytheon Company Methods and apparatus for a tandem divert and attitude control system
WO2011014271A1 (en) * 2009-07-30 2011-02-03 Raytheon Company Methods and apparatus for a tandem divert and attitude control system
US8800913B2 (en) 2009-07-30 2014-08-12 Raytheon Company Methods and apparatus for a tandem divert and attitude control system

Also Published As

Publication number Publication date
US6460801B1 (en) 2002-10-08

Similar Documents

Publication Publication Date Title
US6254031B1 (en) Precision guidance system for aircraft launched bombs
US5507452A (en) Precision guidance system for aircraft launched bombs
EP2676026B1 (en) Propulsion and maneuvering system with axial thrusters and method for axial divert attitude and control
US4017040A (en) Steerable extraction rocket
US4384690A (en) Thrust vector control for large deflection angles
US4085909A (en) Combined warm gas fin and reaction control servo
US4272040A (en) Aerodynamic control mechanism for thrust vector control
EP0329342B1 (en) Reaction control system
US4967982A (en) Lateral thruster for missiles
GB1591766A (en) Steering arrangement for projectiles of the missile kind and projectiles fitted with this arrangement
EP1960654B1 (en) Hybrid rocket system
WO2006028516A2 (en) Thrust vector control system for a plug nozzle rocket engine
EP3004791B1 (en) Rocket vehicle with integrated attitude control and thrust vectoring
EP0131573A1 (en) Ram air combustion steering system for a guided missile.
US8080771B2 (en) Steering system and method for a guided flying apparatus
Napior et al. Controllable solid propulsion for launch vehicle and spacecraft application
EP0135500B1 (en) Ram air steering system for a guided missile
US6460801B1 (en) Precision guidance system for aircraft launched bombs
US9500456B2 (en) Combined steering and drag-reduction device
WO2020222250A1 (en) Modified re-entry vehicle design with dynamic trajectory glide control system
US3278140A (en) Pure fluid amplifier and pure fluid amplifier attitude control system for missiles
US5158246A (en) Radial bleed total thrust control apparatus and method for a rocket propelled missile
US5028014A (en) Radial bleed total thrust control apparatus and method for a rocket propelled missile
EP0060726A2 (en) Gas thruster systems
US4747568A (en) Missile flight control system

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOCKHEED MARTIN CORPORATION, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAYERSAK, JOSEPH A.;REEL/FRAME:011839/0147

Effective date: 20010516

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12