US20020148597A1 - Method and apparatus for obtaining combustion pages of high calorific value - Google Patents

Method and apparatus for obtaining combustion pages of high calorific value Download PDF

Info

Publication number
US20020148597A1
US20020148597A1 US10/116,038 US11603802A US2002148597A1 US 20020148597 A1 US20020148597 A1 US 20020148597A1 US 11603802 A US11603802 A US 11603802A US 2002148597 A1 US2002148597 A1 US 2002148597A1
Authority
US
United States
Prior art keywords
solid particles
reaction zone
heating zone
bed
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/116,038
Inventor
Thomas Steer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20020148597A1 publication Critical patent/US20020148597A1/en
Priority to US11/060,322 priority Critical patent/US7094264B2/en
Priority to US11/482,626 priority patent/US7507266B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1261Heating the gasifier by pulse burners

Definitions

  • the present invention relates to a method for obtaining combustion gases of high calorific value and to an apparatus for performing the method.
  • An essential advantage of gasification over combustion is that the pollutants contained in the starting substance are converted in a reducing atmosphere into constituents or into relatively simple chemical compounds.
  • the gas volumes are considerably smaller in comparison with combustion, so that gas purification in the case of gasification can be carried out more easily and at lower costs as compared to combustion when the objective is the same.
  • the allothermic steam gasification of solid, paste-like or liquid fuels normally takes place in a fluidized bed for ensuring uniform reaction conditions.
  • steam flows from below to a bed of small solid particles.
  • the inflow rate is here so high that the solid particles are at least kept suspended.
  • the solid particles may be inert, consisting e.g. of quartz sand, limestone, dolomite, corundium, or the like, but they may also consist of the ash of the fuel.
  • the solid particles can accelerate the gasification reactions due to catalytic properties.
  • U.S. Pat. No. 4,154,581 describes a gas generator comprising two reaction zones and having an exothermic reaction environment in the heating portion, so that heat is directly provided. Heat transportation is ensured by using bed material of different grain sizes. A coarse-grained material remains in the exothermic bed, whereas a fine-grained fraction travels from the exothermic into the endothermic region and back. The fine-grained fraction assumes the function of heat transfer.
  • Said method has the drawback that the transportation of the solids between the beds must coincide with the heat balance of the beds, which makes great demands on the control units at high working temperatures and different load conditions Furthermore, as far as the fuels are concerned, there is no separation between the combustion region and the gasification region, so that possible pollutants from the fuel may be found along both the gasification path and the combustion path, which complicates the gas cleaning system.
  • a fluidized bed constitutes a technology which has been tried and tested and often employed for many years. Applications are e.g. the drying and burning of solid materials or of slurries.
  • the basis for each fluidized bed method is a reactor in which a solids content is loosened by inflow from below to such an extent that the individual particles start to float in air, with the solids content being fluidized.
  • DE 28 36 531 A stationary fluidized bed method in which regions of different fluidization are formed by installing a partition so that bed material is circulated in a stationary bed.
  • EP 0 302 849 A circulating fluidized bed which develops DE 28 36 531, but rather reminds of a stationary than a circulating fluidized bed because of its constructional size.
  • DE 33 20 049 A stationary fluidized bed method in which bed material is circulated due to different bed heights.
  • the inventive method and the inventive apparatus are not limited to special heating means, but permit the use of any desired heating means, in particular tubular heat exchangers.
  • no fuel particles pass from the reducing zone into an oxidizing zone.
  • the reaction chamber can be designed independently of the geometrical dimensions predetermined for the heating means, so that the constructional size of the apparatus according to the invention can be optimized.
  • the first descending bed is loosened or slightly fluidized by injecting a gas; advantageously, this prevents an undesired agglomeration of the solid particles and is conducive to the transportation of the bed material.
  • the first descending bed is indirectly heated with the help of a heat exchanger which has a heating medium flowing therethrough.
  • the heating medium may here flow in pulsating fashion in the heat exchanger upon heat emission to the first descending bed. Heat transfer from the heat exchanger to the first descending bed is thereby improved.
  • gasification may take place under pressure or under atmospheric conditions.
  • the carbonaceous materials may consist of liquid, paste-like or solid materials, in particular of coke, crude oil, biomass or waste materials.
  • the method according to the invention advantageously permits the processing of the most different carbonaceous materials.
  • steam is used as the gasifying agent.
  • the heating zone and the reaction zone may be separated by way of different fluidization of the fluidized bed, the different fluidization effecting a circulation of the bed material about one or several substantially horizontal axes.
  • the substantially horizontal axes may be closed in the form of a ring.
  • Said embodiment of the apparatus according to the invention is particularly characterized by a compact construction.
  • the heating zone and the reaction zone are separated by a wall.
  • the heating zone and the reaction zone may each be formed in a separate reactor. Said two embodiments offer the advantage of a reliable separation of the heating zone from the reaction zone by constructional measures.
  • the means for transferring the heated solid particles may be a wall opening or a pipe.
  • said means for transferring the heated solid particles may be provided in a lower region of the heating zone.
  • said means comprises a nozzle bottom with the help of which the solid particles can be slightly fluidized in the heating zone.
  • the indirect heat supply means is at least one heat exchanger through which a heating medium can flow and which is provided in or at the heating zone.
  • the heat exchanger may comprise at least one resonant tube in which the heating medium flows in pulsating fashion upon heat emission to the heating zone.
  • the heat transfer from the heat exchanger to the heating zone is thereby improved.
  • the resonant tube may be connected to a combustion chamber for resonance generation. The generation of the desired resonance may also be achieved with the help of an acoustic resonator which is arranged such that it is separated from the combustion chamber.
  • the means for producing the ascending fluidized bed is a nozzle bottom provided in a lower portion of the reaction zone.
  • a nozzle bottom offers the advantage of a uniform injection of the fluidizing medium into the reaction zone.
  • the means for separating the gases produced during gasification from the solid particles may be a cyclone.
  • the separating means comprises baffles for producing a sharp deflection of the gas flow, whereby the gas flow and the solid particle flow are separated; the baffles are here followed by a channel for gas discharge and by the heating zone.
  • a means for transferring the solid particles from the reaction zone into the heating zone may be provided for circulating the solid particles.
  • Said means may be a wall opening or a pipe.
  • said means is provided in an upper portion of the reaction zone.
  • the supply region for carbonaceous materials may terminate in the heating zone. Moreover, a supply means for the carbonaceous materials may also terminate in the reaction zone.
  • FIG. 1 is a cross section through an embodiment of the apparatus of the invention, where the means for separating the gases from the solid particles comprises baffles; and
  • FIG. 2 is a cross section through another embodiment of the apparatus of the invention, where the means for separating the gases from the solid particles is a cyclone
  • the embodiment of the apparatus of the invention as shown in FIG. 1 comprises a reaction zone 3 in which carbonaceous materials are gasified.
  • the carbonaceous materials are positioned in an ascending fluidized bed 2 which is produced with the help of means 4 in the reaction zone 3 .
  • the means 4 provided in the lower area of the reaction zone 3 may e.g. be an open or closed nozzle bottom through which the fluidizing medium steam is blown into the zone.
  • the steam may be mixed with gases.
  • the nozzle bottom 15 defines the reaction zone 3 in which the fluidized bed 2 is formed.
  • an outlet not shown in FIG. 1 from which e.g.
  • the illustrated embodiment comprises a heating zone 6 which is separated from the reaction zone 3 by a device 9 .
  • a descending bed 1 of solid particles is formed in the heating zone 6 .
  • the lower portion of the heating zone 6 may have disposed therein a nozzle bottom 22 for the inflow of steams the steam loosening or slightly fluidizing the bed material of the heating zone for improving transportation of the material.
  • a means 8 for indirectly supplying heat is arranged in the heating zone 6 .
  • Said heat supply means 8 may e.g. be composed of one or several heat exchangers. It is clear that the present invention is not limited to the special arrangement of the heat exchanger 12 shown in FIG. 1, but other arrangements are also possible, e.g. on the wall of the heating zone 6 . Moreover, instead of the illustrated tubular heat exchanger 12 , a planar heat exchanger may be used that is e.g. integrated into the wall of the heating zone 6 .
  • the heat exchanger 12 provided in the heating zone may partly consist of resonant tubes 13 in which the heating medium flows in pulsating fashion into the heating zone 6 upon heat emission.
  • the resonant tubes 13 are connected to a combustion chamber (not shown) or another resonance generator for generating the resonant oscillation.
  • the heating medium is directly heated by combustion of a combustible substance with oxygen-containing gas.
  • the solid particles are thus heated separately with respect to the gasification taking place in the reaction chamber 3 .
  • a slowly descending bed 1 is formed in said zone, whereas due to the strong fluidization of the reaction zone 3 a rapidly ascending fluidized bed 2 is formed in said zone.
  • the arrangement of the heat exchanger 12 in the slowly descending bed 1 reduces the great mechanical wear of the heat exchanger that has so far been observed in the prior art.
  • the heat exchanger 12 in the heating zone is subjected to less corrosive effects than in the reaction zone 6 . This means that the reactor has a longer service life.
  • the heating zone 6 is connected to the reaction zone 3 via a means 7 with the help of which the solid particles heated in the heating zone 6 are transferred into the reaction zone 3 .
  • said means 7 is shaped as a wall opening 10 .
  • Said means 7 may e.g. also be designed as a pipe.
  • the means 7 for transferring the heated solid particles may comprise a nozzle bottom 11 . With the help of said nozzle bottom 11 it is possible to loosen or slightly fluidize the solid particles.
  • the nozzle bottom 15 used for producing the ascending fluidized bed 2 may be used as the nozzle bottom 11 . Attention must here paid that the fluidizing action is more pronounced in the reaction zone 3 than in the heating zone 6 .
  • a means 16 is provided in the upper area of the reaction zone 3 for returning the solid particles from the reaction zone 3 into the heating zone 6 .
  • said means 16 may be a wall opening 17 . It is also possible to design said means 16 as a pipe.
  • the means 6 for separating the gases produced during gasification from the solid particles and for discharging said gases are baffles 18 and 19 in the embodiment shown in FIG. 1.
  • the baffles 18 and 19 effect a strong deflection of the flow which cannot be followed by the solid particles. Gas flow and solid particle flow are thus separated at the baffles.
  • the gas flow is discharged via the gas path 20 by which the baffles 18 and 19 are separated.
  • the solid particle flow showers into the heating zone 6 positioned below the baffles 18 and 19 .
  • a feed means 21 for carbonaceous materials terminates in the heating zone 6 .
  • the fuel can either be pressed into said zone in the area of bed 1 or discharged from above onto bed 1 .
  • a further feed means which terminates in the reaction zone 3 .
  • the bed material is separated in a cyclone from the gas flow and fed again via the descending bed 1 to the lower portion of the ascending bed 2 .
  • the gas flow passes via pipe 23 in tangential fashion into the separating chamber 5 which is designed as a cyclone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a method for obtaining combustion gases of high calorific value, wherein carbonaceous materials are allothermically gasified in a fluidized layer containing solid particles, using a gaseous gasifying agent and by supply of heat, and the gases thus produced are separated from the solid particles and withdrawn. Said method is characterized in that the solid particles are indirectly heated in a first descending bed and supplied to a second ascending fluidized bed in which the fluidized layer is formed and gasification takes place for the greatest part. The method further relates to an apparatus for performing said method.

Description

  • The present invention relates to a method for obtaining combustion gases of high calorific value and to an apparatus for performing the method. [0001]
  • Careful use of resources becomes more and more the central objective of society. Energy generation from waste materials and regenerative substances such as biogenic fuels during first or consecutive use is thus of special importance. Furthermore, towards the end of the 20[0002] th century the generation of hydrogen becomes more and more the center of interest, not least due to the beginning exploitation of hydrogen in fuel cells.
  • The energetic exploitation of solid, paste-like or liquid fuels is most of the time carried out by way of combustion with subsequent use of the previously chemically bound heat released during combustion. [0003]
  • Apart from this, there have been approaches for a long time to establish gasification processes for generating combustion gases of high calorific value from solid, paste-like or liquid fuels. The combustible part of the crude gas during each gasification consists for the greatest part of hydrogen and carbon monoxide; smaller amounts are methane and higher hydrocarbons. Each type of gasification thus generates hydrogen. [0004]
  • An essential advantage of gasification over combustion is that the pollutants contained in the starting substance are converted in a reducing atmosphere into constituents or into relatively simple chemical compounds. The gas volumes are considerably smaller in comparison with combustion, so that gas purification in the case of gasification can be carried out more easily and at lower costs as compared to combustion when the objective is the same. [0005]
  • There are three basic types of gasification methods: [0006]
  • 1. Gasification of solid, paste-like or liquid fuels with the gasification medium air is in technical terms the simplest method and leads to partial oxidation. The calorific value of the gas produced thereby is lower than that of the fuel used. The gasification temperatures are typically within the range of 600° C. to 900° C. Tars are produced at said temperatures to a considerable extent. A large-scale use of the method has so far not been possible because so far the removal of tars from the gas could not be sufficiently controlled technically for small gasifiers. [0007]
  • 2. Like air gasification, the gasification of solid, paste-like or liquid fuels with the gasification medium oxygen results in partial oxidation with a decrease in the calorific value. The gasification temperatures are typically at 1600° C. so that the formation of tar is ruled out. A large-scale use has so far not been possible because the generation of the necessary oxygen entails high costs and excessively burdens economic calculations in industry. In comparison with air gasification, oxygen gasification leads to smaller gas amounts because the gasification medium does not introduce an inert nitrogen amount. [0008]
  • 3. The gasification of solid, paste-like or liquid fuels with the gasification medium steam leads to a gas of a higher calorific value than the fuel used originally. Therefore, heat must be supplied to the gasification reactor from the outside. The gasification temperatures are typically between 600° and 900° C. Tar might be formed. However, its potential is lower than in air gasification. A large-scale use has so far not been possible because the problem of heat input into the reactor has, in particular, not been solved in a satisfactory way. The gas amounts of the steam gasification lie between those of air and oxygen gasification. This is due to the fact that during steam gasification the carbon of the fuel is oxidized by the oxygen of the steam into carbon monoxide or carbon dioxide, whereby additional hydrogen is formed. The potential of the steam gasification to generate hydrogen is thus considerably higher than that of air or oxygen gasification. [0009]
  • Gasification methods in which the reaction heat needed is supplied by partial oxidation are called autothermic, whereas those in which the reaction heat needed is supplied from the outside are called allothermic. [0010]
  • The allothermic steam gasification of solid, paste-like or liquid fuels normally takes place in a fluidized bed for ensuring uniform reaction conditions. In this process, steam flows from below to a bed of small solid particles. The inflow rate is here so high that the solid particles are at least kept suspended. One talks about a stationary fluidized bed when the solid particles form a fixedly defined surface with ascending gas bubbles, whereas in a circulating fluidized bed the main part of the solid particles is discharged with the gas flow from the fluidized bed reactor and is separated from the gas flow and then supplied again via a down path to the lower part of the fluidized bed reactor proper. The solid particles may be inert, consisting e.g. of quartz sand, limestone, dolomite, corundium, or the like, but they may also consist of the ash of the fuel. The solid particles can accelerate the gasification reactions due to catalytic properties. [0011]
  • U.S. Pat. No. 4,154,581 describes a gas generator comprising two reaction zones and having an exothermic reaction environment in the heating portion, so that heat is directly provided. Heat transportation is ensured by using bed material of different grain sizes. A coarse-grained material remains in the exothermic bed, whereas a fine-grained fraction travels from the exothermic into the endothermic region and back. The fine-grained fraction assumes the function of heat transfer. [0012]
  • Said method has the drawback that the transportation of the solids between the beds must coincide with the heat balance of the beds, which makes great demands on the control units at high working temperatures and different load conditions Furthermore, as far as the fuels are concerned, there is no separation between the combustion region and the gasification region, so that possible pollutants from the fuel may be found along both the gasification path and the combustion path, which complicates the gas cleaning system. [0013]
  • It is known from EP 0 329 673 and U.S. Pat. No. 5,059,404 that heat input is realized with the help of heat exchangers which are provided in the fluidized bed, i.e. in the reaction zone. The drawback of such a concept is that the arrangement of the heat exchangers in the reaction zone predetermines the dimension of the reaction zone and the fluidized bed, respectively, because of the heat exchange surfaces required. Moreover, the heat exchange surfaces are directly exposed to the corrosive effects of harmful constituents of the fuel, which makes extreme demands on the material at surface temperatures of from 600° C. to more than 900° C. [0014]
  • Finally, a combination of autothermic and allothermic methods is known from DE 197 36 867 A1. The necessary reaction heat is here supplied via hot steam and flue gases from a partial combustion of the product gas. [0015]
  • The combination of an autothermic and allothermic method has the effect that the gas amount increases considerably due to the nitrogen amount which is supplied with the air for partial combustion. Thus the partial pressures of the industrial gases decrease, which has a negative effect on the subsequent gas cleaning and the aftertreatment of the gas. [0016]
  • A fluidized bed constitutes a technology which has been tried and tested and often employed for many years. Applications are e.g. the drying and burning of solid materials or of slurries. The basis for each fluidized bed method is a reactor in which a solids content is loosened by inflow from below to such an extent that the individual particles start to float in air, with the solids content being fluidized. [0017]
  • A distinction is made between two coarse types: When a solid surface of the fluidized solids content is formed, one talks about a stationary fluidized bed. When the particles are discharged with the gas flow from the reactor, one talks about a circulating fluidized bed. Further essential features of every circulating fluidized bed are an apparatus for separating the discharged solid particles from the gas flow and a further means for returning the separated solid particles into the reactor. [0018]
  • In the course of time many constructional forms have been used for both basic types in the attempt to avoid the drawbacks of the one type and to exploit the benefits of the other. [0019]
  • The following documents should be mentioned by way of example: [0020]
  • DE 28 36 531: A stationary fluidized bed method in which regions of different fluidization are formed by installing a partition so that bed material is circulated in a stationary bed. [0021]
  • EP 0 302 849: A circulating fluidized bed which develops DE 28 36 531, but rather reminds of a stationary than a circulating fluidized bed because of its constructional size. [0022]
  • DE 33 20 049: A stationary fluidized bed method in which bed material is circulated due to different bed heights. [0023]
  • It is an object of the present invention to indicate a method and an apparatus for obtaining combustion gases of high calorific value for eliminating the above-mentioned problems at least in part. [0024]
  • Said object is achieved by a method according to the invention with the features of [0025] claim 1 and by an apparatus according to the invention with the features of claim 10.
  • Advantageously, there is no heating means in the reaction chamber in the method according to the invention and in the apparatus according to the invention. Corrosion problems that have so far existed are thereby avoided. Moreover, the inventive method and the inventive apparatus are not limited to special heating means, but permit the use of any desired heating means, in particular tubular heat exchangers. Advantageously, no fuel particles pass from the reducing zone into an oxidizing zone. Moreover, the reaction chamber can be designed independently of the geometrical dimensions predetermined for the heating means, so that the constructional size of the apparatus according to the invention can be optimized. [0026]
  • In a preferred embodiment of the method of the invention, the first descending bed is loosened or slightly fluidized by injecting a gas; advantageously, this prevents an undesired agglomeration of the solid particles and is conducive to the transportation of the bed material. In another embodiment, the first descending bed is indirectly heated with the help of a heat exchanger which has a heating medium flowing therethrough. The heating medium may here flow in pulsating fashion in the heat exchanger upon heat emission to the first descending bed. Heat transfer from the heat exchanger to the first descending bed is thereby improved. [0027]
  • Furthermore, gasification may take place under pressure or under atmospheric conditions. The carbonaceous materials may consist of liquid, paste-like or solid materials, in particular of coke, crude oil, biomass or waste materials. Thus, the method according to the invention advantageously permits the processing of the most different carbonaceous materials. In a further preferred embodiment of the method according to the invention, steam is used as the gasifying agent. [0028]
  • In a preferred embodiment of the apparatus according to the invention, the heating zone and the reaction zone may be separated by way of different fluidization of the fluidized bed, the different fluidization effecting a circulation of the bed material about one or several substantially horizontal axes. The substantially horizontal axes may be closed in the form of a ring. Said embodiment of the apparatus according to the invention is particularly characterized by a compact construction. In another embodiment of the apparatus according to the invention, the heating zone and the reaction zone are separated by a wall. Moreover, the heating zone and the reaction zone may each be formed in a separate reactor. Said two embodiments offer the advantage of a reliable separation of the heating zone from the reaction zone by constructional measures. The means for transferring the heated solid particles may be a wall opening or a pipe. Furthermore, said means for transferring the heated solid particles may be provided in a lower region of the heating zone. In a preferred embodiment, said means comprises a nozzle bottom with the help of which the solid particles can be slightly fluidized in the heating zone. [0029]
  • In a preferred embodiment of the apparatus according to the invention, the indirect heat supply means is at least one heat exchanger through which a heating medium can flow and which is provided in or at the heating zone. The use of heat exchangers as heat supply means simplifies the construction of the reactor. Moreover, the heat exchanger may comprise at least one resonant tube in which the heating medium flows in pulsating fashion upon heat emission to the heating zone. Advantageously, the heat transfer from the heat exchanger to the heating zone is thereby improved. The resonant tube may be connected to a combustion chamber for resonance generation. The generation of the desired resonance may also be achieved with the help of an acoustic resonator which is arranged such that it is separated from the combustion chamber. [0030]
  • In another embodiment, the means for producing the ascending fluidized bed is a nozzle bottom provided in a lower portion of the reaction zone. Such a nozzle bottom offers the advantage of a uniform injection of the fluidizing medium into the reaction zone. [0031]
  • The means for separating the gases produced during gasification from the solid particles may be a cyclone. In another preferred embodiment the separating means comprises baffles for producing a sharp deflection of the gas flow, whereby the gas flow and the solid particle flow are separated; the baffles are here followed by a channel for gas discharge and by the heating zone. Furthermore, a means for transferring the solid particles from the reaction zone into the heating zone may be provided for circulating the solid particles. Said means may be a wall opening or a pipe. Preferably, said means is provided in an upper portion of the reaction zone. [0032]
  • The supply region for carbonaceous materials may terminate in the heating zone. Moreover, a supply means for the carbonaceous materials may also terminate in the reaction zone.[0033]
  • The invention shall now be explained in more detail with reference to embodiments taken in conjunction with the drawing, in which: [0034]
  • FIG. 1 is a cross section through an embodiment of the apparatus of the invention, where the means for separating the gases from the solid particles comprises baffles; and [0035]
  • FIG. 2 is a cross section through another embodiment of the apparatus of the invention, where the means for separating the gases from the solid particles is a cyclone[0036]
  • The embodiment of the apparatus of the invention as shown in FIG. 1 comprises a [0037] reaction zone 3 in which carbonaceous materials are gasified. The carbonaceous materials are positioned in an ascending fluidized bed 2 which is produced with the help of means 4 in the reaction zone 3. The means 4 provided in the lower area of the reaction zone 3 may e.g. be an open or closed nozzle bottom through which the fluidizing medium steam is blown into the zone. The steam may be mixed with gases. The nozzle bottom 15 defines the reaction zone 3 in which the fluidized bed 2 is formed. Next to or below the nozzle bottom 15, there is provided an outlet (not shown in FIG. 1) from which e.g. bed material, undesired materials arising from the fuel, ash and non-reacted fuel components can be withdrawn. Steam may be injected into the outlet, said steam facilitating a withdrawal on the one hand and ensuring a post-reaction of remaining constituents of the fuel on the other hand. Furthermore, the illustrated embodiment comprises a heating zone 6 which is separated from the reaction zone 3 by a device 9. During operation of the reactor, a descending bed 1 of solid particles is formed in the heating zone 6. The lower portion of the heating zone 6 may have disposed therein a nozzle bottom 22 for the inflow of steams the steam loosening or slightly fluidizing the bed material of the heating zone for improving transportation of the material.
  • As shown in FIG. 1, a means [0038] 8 for indirectly supplying heat is arranged in the heating zone 6. Said heat supply means 8 may e.g. be composed of one or several heat exchangers. It is clear that the present invention is not limited to the special arrangement of the heat exchanger 12 shown in FIG. 1, but other arrangements are also possible, e.g. on the wall of the heating zone 6. Moreover, instead of the illustrated tubular heat exchanger 12, a planar heat exchanger may be used that is e.g. integrated into the wall of the heating zone 6.
  • The [0039] heat exchanger 12 provided in the heating zone may partly consist of resonant tubes 13 in which the heating medium flows in pulsating fashion into the heating zone 6 upon heat emission. The resonant tubes 13 are connected to a combustion chamber (not shown) or another resonance generator for generating the resonant oscillation. The heating medium is directly heated by combustion of a combustible substance with oxygen-containing gas.
  • As can be seen in FIG. 1, the solid particles are thus heated separately with respect to the gasification taking place in the [0040] reaction chamber 3. Due to the weak fluidization of the heating zone, a slowly descending bed 1 is formed in said zone, whereas due to the strong fluidization of the reaction zone 3 a rapidly ascending fluidized bed 2 is formed in said zone. The arrangement of the heat exchanger 12 in the slowly descending bed 1 reduces the great mechanical wear of the heat exchanger that has so far been observed in the prior art. Moreover, the heat exchanger 12 in the heating zone is subjected to less corrosive effects than in the reaction zone 6. This means that the reactor has a longer service life.
  • The [0041] heating zone 6 is connected to the reaction zone 3 via a means 7 with the help of which the solid particles heated in the heating zone 6 are transferred into the reaction zone 3. As shown in FIG. 1, said means 7 is shaped as a wall opening 10. Said means 7, however, may e.g. also be designed as a pipe. For promoting the transportation of the heated solid particles from the heating zone 6 into the reaction zone 3, the means 7 for transferring the heated solid particles may comprise a nozzle bottom 11. With the help of said nozzle bottom 11 it is possible to loosen or slightly fluidize the solid particles. The nozzle bottom 15 used for producing the ascending fluidized bed 2 may be used as the nozzle bottom 11. Attention must here paid that the fluidizing action is more pronounced in the reaction zone 3 than in the heating zone 6.
  • For circulating the solid particles, a [0042] means 16 is provided in the upper area of the reaction zone 3 for returning the solid particles from the reaction zone 3 into the heating zone 6. As shown in FIG. 1, said means 16 may be a wall opening 17. It is also possible to design said means 16 as a pipe. The means 6 for separating the gases produced during gasification from the solid particles and for discharging said gases are baffles 18 and 19 in the embodiment shown in FIG. 1. The baffles 18 and 19 effect a strong deflection of the flow which cannot be followed by the solid particles. Gas flow and solid particle flow are thus separated at the baffles. The gas flow is discharged via the gas path 20 by which the baffles 18 and 19 are separated. The solid particle flow showers into the heating zone 6 positioned below the baffles 18 and 19.
  • In the embodiment shown in FIG. 1, a feed means [0043] 21 for carbonaceous materials terminates in the heating zone 6. The fuel can either be pressed into said zone in the area of bed 1 or discharged from above onto bed 1. Moreover, it is possible to provide a further feed means which terminates in the reaction zone 3.
  • In the embodiment shown in FIG. 2, the bed material is separated in a cyclone from the gas flow and fed again via the descending [0044] bed 1 to the lower portion of the ascending bed 2. In this instance the gas flow passes via pipe 23 in tangential fashion into the separating chamber 5 which is designed as a cyclone.

Claims (29)

1. A method for obtaining combustion gases of high calorific value, wherein carbonaceous materials are allothermically gasified in a fluidized layer containing solid particles, using a gaseous gasifying agent and by supply of heat, and the gases thus produced are separated from said solid particles and withdrawn, said solid particles being indirectly heated in a first descending bed (1) and supplied to a second ascending fluidized bed (2) in which said fluidized layer is formed and gasification takes place for the greatest part.
2. The method according to claim 1, characterized in that said first descending bed (1) is loosened by injecting a gas.
3. The method according to claim 1, characterized in that said first descending bed (1) is slightly fluidized.
4. The method according to at least one of the preceding claims, characterized in that said first descending bed (1) is indirectly heated with the help of a heat exchanger having a heating medium flowing therethrough.
5. The method according to claim 4, characterized in that said heating medium flows in pulsating fashion upon heat emission to said first descending bed (1).
6. The method according to at least one of the preceding claims, characterized in that said gasification process is carried out under pressure.
7. The method according to at least one of claims 1 to 5, characterized in that said gasification process takes place under atmospheric conditions.
8. The method according to at least one of the preceding claims, characterized in that said carbonaceous materials consist of liquid, paste-like or solid materials in particular of coke, crude oil, biomass or waste materials.
9. The method according to at least one of the preceding claims, characterized in that said gasifying agent is steam.
10. An apparatus for performing the method according to claim 1, comprising:
a reaction zone (3) for gasifying said carbonaceous materials,
a means (4) for producing said ascending fluidized bed (2) in said reaction zone (3),
a means (5) for separating the gases produced during gasification from said solid particles and for discharging said gases,
a heating zone (6) for heating said solid particles in said descending bed (1), said heating zone (6) being substantially separated from said reaction zone (3),
a means (7) for transferring the heated solid particles from said heating zone (6) into said reaction zone (3), and
an indirect heat supply means (8) assigned to said heating zone (6).
11. The apparatus according to claim 10, characterized in that said heating zone (6) and said reaction zone (3) are separated by different fluidization of said fluidized bed, said different fluidization effecting a circulation of the bed material about one or several substantially horizontal axes.
12. The apparatus according to claim 11, characterized in that said substantially horizontal axes are closed in the form of a ring.
13. The apparatus according to claim 10, characterized in that said heating zone (6) and said reaction zone (3) are separated by a wall (9).
14. The apparatus according to claim 10, characterized in that said heating zone (6) and said reaction zone (3) are each formed in a separate reactor.
15. The apparatus according to any one of claims 13 or 14, characterized in that said means (7) for transferring said heated solid particles is a wall opening (10) or a pipe.
16. The apparatus according to at least one of claims 13 to 15, characterized in that said means (7) for transferring said heated solid particles is provided in a lower portion of said heating zone (6).
17. The apparatus according to at least one of claims 10 to 16, characterized in that said means (7) for transferring said heated solid particles comprises a nozzle bottom (11) for slightly fluidizing said solid particles.
18. The apparatus according to at least one of claims 10 to 17, characterized in that said indirect heat supply means (8) is at least one heat exchanger (12) through which a heating medium can flow and which is provided in or on said heating zone (6).
19. The apparatus according to claim 18, characterized in that said heat exchanger (12) comprises at least one resonant tube (13) in which said heating medium flows in pulsating fashion upon heat emission to said heating zone (6).
20. The apparatus according to claim 19, characterized in that said resonant tube (13) is connected to a combustion chamber for generating resonance.
21. The apparatus according to claim 18, characterized in that an acoustic resonator is provided for generating resonance, said resonator being separated from a combustion chamber.
22. The apparatus according to at least one of claims 10 to 21, characterized in that said means for producing said ascending fluidized bed (2) is a nozzle bottom (15) provided in a lower portion of said reaction zone (3).
23. The apparatus according to at least one of claims 10 to 22, characterized in that said means for separating the gases produced during gasification from said solid particles is a cyclone.
24. The apparatus according to at least one of claims 10 to 24, characterized in that a vertical outflow of said gases produced in said ascending bed is blocked by baffles (18, 19) which effect a multiple deflection of the gas flow, and said multiple deflection results in a substantial separation of said solid particles from said gas flow.
25. The apparatus according to at least one of claims 10 to 24, characterized in that for circulating said solid particles a means (16) is provided for transferring said solid particles from said reaction zone (3) into said heating zone (6).
26. The apparatus according to claim 25, characterized in that said means (16) for transferring said solid particles from said reaction zone (3) into said heating zone (6) is a wall opening (17) or a pipe.
27. The apparatus according to at least one of claims 25 and 26, characterized in that said means (16) for transferring said solid particles is provided in an upper portion of said reaction zone (3).
28. The apparatus according to at least one of claims 10 to 22, characterized in that a feed means (21) for said carbonaceous materials terminates in said heating zone (6).
29. The apparatus according to at least one of claims 10 to 28, characterized in that a feed means for said carbonaceous materials terminates in said reaction zone (3).
US10/116,038 1999-10-07 2002-04-05 Method and apparatus for obtaining combustion pages of high calorific value Abandoned US20020148597A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/060,322 US7094264B2 (en) 1999-10-07 2005-02-18 Apparatus for obtaining combustion gases of high calorific value
US11/482,626 US7507266B2 (en) 1999-10-07 2006-07-07 Method for obtaining combustion gases of high calorific value

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19948332.9 1999-10-07
DE19948332A DE19948332B4 (en) 1999-10-07 1999-10-07 Method and apparatus for obtaining high calorific fuels
PCT/EP2000/009767 WO2001025371A1 (en) 1999-10-07 2000-10-05 Method and device for extracting combustion gases with a high calorific value

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009767 Continuation WO2001025371A1 (en) 1999-10-07 2000-10-05 Method and device for extracting combustion gases with a high calorific value

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2000/009767 Continuation WO2001025371A1 (en) 1999-10-07 2000-10-05 Method and device for extracting combustion gases with a high calorific value
US11/060,322 Continuation US7094264B2 (en) 1999-10-07 2005-02-18 Apparatus for obtaining combustion gases of high calorific value

Publications (1)

Publication Number Publication Date
US20020148597A1 true US20020148597A1 (en) 2002-10-17

Family

ID=7924827

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/116,038 Abandoned US20020148597A1 (en) 1999-10-07 2002-04-05 Method and apparatus for obtaining combustion pages of high calorific value
US11/060,322 Expired - Fee Related US7094264B2 (en) 1999-10-07 2005-02-18 Apparatus for obtaining combustion gases of high calorific value
US11/482,626 Expired - Fee Related US7507266B2 (en) 1999-10-07 2006-07-07 Method for obtaining combustion gases of high calorific value

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/060,322 Expired - Fee Related US7094264B2 (en) 1999-10-07 2005-02-18 Apparatus for obtaining combustion gases of high calorific value
US11/482,626 Expired - Fee Related US7507266B2 (en) 1999-10-07 2006-07-07 Method for obtaining combustion gases of high calorific value

Country Status (9)

Country Link
US (3) US20020148597A1 (en)
EP (1) EP1218471B1 (en)
AT (1) ATE288466T1 (en)
AU (1) AU7915000A (en)
DE (2) DE19948332B4 (en)
DK (1) DK1218471T3 (en)
ES (1) ES2235961T3 (en)
PT (1) PT1218471E (en)
WO (1) WO2001025371A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058218A1 (en) * 2009-11-10 2011-05-19 Foster Wheeler Energia Oy Method and arrangement for feeding fuel into a circulating fluidized bed boiler
US20120237883A1 (en) * 2009-11-10 2012-09-20 Foster Wheeler Energia Oy Method of and Arrangement for Feeding Fuel Into a Circulating Fluidized Bed Boiler

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842110B2 (en) * 2002-09-10 2010-11-30 Thermochem Recovery International, Inc. Steam reforming process and apparatus
CA2496839A1 (en) 2004-07-19 2006-01-19 Woodland Chemical Systems Inc. Process for producing ethanol from synthesis gas rich in carbon monoxide
EP1922050A2 (en) * 2005-08-08 2008-05-21 Eli Lilly And Company Assembly for filling a container of a delivery device with a pharmaceutical
KR20080108605A (en) 2006-04-05 2008-12-15 우드랜드 바이오퓨엘스 인크. System and method for converting biomass to ethanol via syngas
US8690977B2 (en) * 2009-06-25 2014-04-08 Sustainable Waste Power Systems, Inc. Garbage in power out (GIPO) thermal conversion process
DE102009039920A1 (en) 2009-09-03 2011-03-10 Karl-Heinz Tetzlaff Method and apparatus for using oxygen in the steam reforming of biomass
DE102009039837A1 (en) * 2009-09-03 2011-03-10 Karl-Heinz Tetzlaff Electric heater for a fluidized bed reactor for the production of synthesis gas
DE102009039836A1 (en) * 2009-09-03 2011-03-10 Karl-Heinz Tetzlaff Synthesis gas reactor with heated coke cloud
FI123548B (en) * 2010-02-26 2013-06-28 Foster Wheeler Energia Oy Arrangement in a fluidized bed reactor
DE102011015807A1 (en) 2011-04-01 2012-10-04 H S Reformer Gmbh Increase the efficiency of heating allothermal reactors
US8968693B2 (en) * 2012-08-30 2015-03-03 Honeywell International Inc. Internal cyclone for fluidized bed reactor
WO2014116203A1 (en) 2013-01-22 2014-07-31 Thermochem Recovery International, Inc. Integrated two-stage thermochemical heat pipe reactor having a partitioned vessel
ITUA20162165A1 (en) * 2016-04-04 2016-07-04 Enrico Bocci Internal Circulating Dual Bubbling Fluidized Bed Gasifier
IT202200007628A1 (en) 2022-04-15 2023-10-15 Walter Tosto S P A INTEGRATED GASIFIER/CARBONATOR, COMBUSTOR/CALCINATOR AND AIR CONDITIONING SYSTEM FOR THE PRODUCTION FROM SYNGAS SOLID FUELS WITH HIGH HYDROGEN CONTENT FOR LOW TEMPERATURE USES WITH NEUTRAL/NEGATIVE CO2 EMISSIONS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154581A (en) * 1978-01-12 1979-05-15 Battelle Development Corporation Two-zone fluid bed combustion or gasification process
US4515659A (en) * 1982-09-30 1985-05-07 Ford Motor Company Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts
US4541841A (en) * 1982-06-16 1985-09-17 Kraftwerk Union Aktiengesellschaft Method for converting carbon-containing raw material into a combustible product gas
US4796546A (en) * 1986-08-14 1989-01-10 Gotaverken Energy Systems Ab Combustion plant including a circulation fluid bed
US5634950A (en) * 1994-02-24 1997-06-03 The Babcock & Wilcox Company Black liquor gasifier

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2588075A (en) * 1945-12-18 1952-03-04 Standard Oil Dev Co Method for gasifying carbonaceous fuels
US2560356A (en) * 1947-07-01 1951-07-10 Shell Dev Fluidized powder flow and control
US2591595A (en) * 1949-09-29 1952-04-01 Standard Oil Dev Co Method for controlling the temperature of exothermic reactions such as the gasification of carbonaceous solids
JPS501700B1 (en) * 1969-06-21 1975-01-21
GB1577717A (en) * 1976-03-12 1980-10-29 Mitchell D A Thermal reactors incorporating fluidised beds
FI67619C (en) * 1977-08-19 1985-04-10 Flameless Furnaces Ltd FOERBRAENNINGSKAMMARE MED FLUIDISERAD BAEDD
DE3320049C2 (en) * 1983-06-03 1987-01-08 Inter Power Technologie GmbH, 6600 Saarbrücken Fluidized bed combustion plant
DE3635215A1 (en) * 1986-10-16 1988-04-28 Bergwerksverband Gmbh METHOD FOR ALLOTHERMAL CARBON GASIFICATION AND FLUID BED GAS GENERATOR FOR CARRYING OUT THE METHOD
AT401419B (en) * 1987-07-21 1996-09-25 Sgp Va Energie Umwelt FLUIDIZED LAYER METHOD FOR THE GASIFICATION AND COMBUSTION OF FUELS AND DEVICE FOR IMPLEMENTING IT
EP0324957A1 (en) * 1987-12-22 1989-07-26 Waagner-Biro Aktiengesellschaft Process and apparatus for the thermal production of chemical raw materials
DK633488D0 (en) * 1988-11-11 1988-11-11 Risoe Forskningscenter REACTOR
US5059404A (en) * 1989-02-14 1991-10-22 Manufacturing And Technology Conversion International, Inc. Indirectly heated thermochemical reactor apparatus and processes
DE19736867C2 (en) * 1997-08-25 2003-01-16 Montan Tech Gmbh Process for the allothermal gasification of organic substances and mixtures of substances
EP1187892B1 (en) * 1999-06-09 2004-12-29 Technische Universität München Lehrstuhl für Thermische Kraftanlagen Device for the gasification of carbonaceous feedstock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154581A (en) * 1978-01-12 1979-05-15 Battelle Development Corporation Two-zone fluid bed combustion or gasification process
US4541841A (en) * 1982-06-16 1985-09-17 Kraftwerk Union Aktiengesellschaft Method for converting carbon-containing raw material into a combustible product gas
US4515659A (en) * 1982-09-30 1985-05-07 Ford Motor Company Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts
US4796546A (en) * 1986-08-14 1989-01-10 Gotaverken Energy Systems Ab Combustion plant including a circulation fluid bed
US5634950A (en) * 1994-02-24 1997-06-03 The Babcock & Wilcox Company Black liquor gasifier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058218A1 (en) * 2009-11-10 2011-05-19 Foster Wheeler Energia Oy Method and arrangement for feeding fuel into a circulating fluidized bed boiler
US20120237883A1 (en) * 2009-11-10 2012-09-20 Foster Wheeler Energia Oy Method of and Arrangement for Feeding Fuel Into a Circulating Fluidized Bed Boiler
US20120251959A1 (en) * 2009-11-10 2012-10-04 Foster Wheeler Energia Oy Method of and Arrangement for Feeding Fuel Into a Circulating Fluidized Bed Boiler
CN102725587A (en) * 2009-11-10 2012-10-10 福斯特韦勒能源股份公司 Method and arrangement for feeding fuel into a circulating fluidized bed boiler
JP2013510288A (en) * 2009-11-10 2013-03-21 フォスター ホイーラー エナージア オサケ ユキチュア Method and apparatus for supplying fuel to a circulating fluidized bed boiler
KR101378739B1 (en) * 2009-11-10 2014-03-27 포스터 휠러 에너지아 오와이 Method and arrangement for feeding fuel into a circulating fluidized bed boiler

Also Published As

Publication number Publication date
US20050166457A1 (en) 2005-08-04
ATE288466T1 (en) 2005-02-15
DK1218471T3 (en) 2005-03-14
US20060265955A1 (en) 2006-11-30
US7094264B2 (en) 2006-08-22
DE19948332A1 (en) 2001-05-03
ES2235961T3 (en) 2005-07-16
EP1218471A1 (en) 2002-07-03
PT1218471E (en) 2005-05-31
US7507266B2 (en) 2009-03-24
DE50009434D1 (en) 2005-03-10
EP1218471B1 (en) 2005-02-02
DE19948332B4 (en) 2005-09-22
AU7915000A (en) 2001-05-10
WO2001025371A1 (en) 2001-04-12

Similar Documents

Publication Publication Date Title
US7507266B2 (en) Method for obtaining combustion gases of high calorific value
EP2598616B1 (en) A method of gasifying carbonaceous material and a gasification system
CA2376483C (en) Facility for the gasification of carbon-containing feed materials
US6613111B2 (en) Small scale high throughput biomass gasification system and method
EP1348011B1 (en) Multi-faceted gasifier and related methods
US9616403B2 (en) Systems and methods for converting carbonaceous fuels
US4400181A (en) Method for using fast fluidized bed dry bottom coal gasification
US9101900B2 (en) Gasification system and method
AU2002216717A1 (en) Small scale high throughput biomass gasification system and method
US9353321B2 (en) Method and apparatus for reduction of tar in gasification of carbonaceous materials
JPS5921915B2 (en) Hydrogen gasification method
JP4085239B2 (en) Gasification method and gasification apparatus
US20140161676A1 (en) Seal pot design
US7258841B1 (en) Reactor for gasifying granular fuels that form a fixed bed
JPS6045935B2 (en) Fluidized bed pyrolysis gasification method and device that circulates powder using an inner cylinder with a partition plate
EP0629176A1 (en) Process for producing a gaseous product
AU2002230588B2 (en) Multi-faceted gasifier and related methods
AU2002230588A1 (en) Multi-faceted gasifier and related methods

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION