US20020143164A1 - Ras activator nucleic acid molecules, polypeptides and methods of use - Google Patents

Ras activator nucleic acid molecules, polypeptides and methods of use Download PDF

Info

Publication number
US20020143164A1
US20020143164A1 US09/911,826 US91182601A US2002143164A1 US 20020143164 A1 US20020143164 A1 US 20020143164A1 US 91182601 A US91182601 A US 91182601A US 2002143164 A1 US2002143164 A1 US 2002143164A1
Authority
US
United States
Prior art keywords
grf4
leu
ser
glu
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/911,826
Inventor
Daniela Rotin
Nam Pham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20020143164A1 publication Critical patent/US20020143164A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to isolated nucleic acid molecules encoding Ras activator polypeptides.
  • the invention also includes methods of using the polypeptides and nucleic acid molecules and proteins for treatment of cancer and neuronal diseases, disorders and abnormal physical states.
  • Ras signaling pathway controls numerous cellular functions, most notably those regulating cell proliferation, differentiation and transformation. Ras is involved in many aspects of cellular metabolism, so modulation of Ras activity and concentration provides a mechanism to control many cellular disease, disorders and abnormal physical states, such as cancer.
  • GEFs/GRFs Guanine Nucleotide Exchange/Releasing Factors
  • SOS which binds Grb2 and connects growth factor receptors to Ras
  • Ras GRF1 ⁇ 2 which contains an IQ motif and is activated in response Ca2+/calmodulin
  • RasGRP which contains a diacylglycerol binding domain and an EF hand, and is activated by diacylglycerol and Ca2+.
  • the invention relates to a Ras activator, GRF4.
  • This activator contains several domains, including CDC25, REM, RA, PDZ and a cNMP (cAMP/cGMP) binding domain (cNMP-BD), 2 PY motifs and a C terminal SxV sequence.
  • GRF4 can activate Ras in vitro or in vivo. It binds CAMP directly via its cNMP-BD.
  • GRF4 directly connects CAMP-generating (e.g. G protein coupled receptors) or cGMP-generating pathways to Ras.
  • GRF4 is expressed mainly in the brain, and is localized at the plasma membrane, a localization dependent on the presence of intact PDZ domain.
  • a CDC25 homology domain (most similar to yeast CDC25 and SDC25, Ras GRF1 ⁇ 2 and SOS), a PDZ domain, a cNMP binding domain (preferably cAMP-BD or cGMP-BD), a REM (Ras exchange motif) domain, a RA (Ras associating) domain, 2 PY motifs and a C terminal SAV sequence conforming to PDZ binding motif (SxV*, where * denotes STOP codon).
  • the CDC25 of GRF4 domain has an approximately 40 amino acid insert, which includes a PKA phosphorylation site.
  • the invention includes nucleic acid molecules and polypeptides (capable of activating ras) having this domain organization.
  • GRF4 activates Ras in vitro and in living cells. In cells, GRF4 activates Ras in response to elevation of intracellular cAMP or cGMP.
  • GRF4 mRNA is expressed mainly in the brain (most brain regions) and GRF4 protein is expressed in brain lysates and synaptosomes.
  • cNMP-BD The function of the cNMP-BD of GRF4 is to entrance activation of GRF4 following cAMP or cGMP binding.
  • a mutant GRF4 in which the cNMP-binding domain (cNMP-BD) or the CDC25 domain is deleted fails to activate Ras.
  • GRF4 dimerizes or folds over itself.
  • the PDZ domain of GRF4 can bind its own SAV sequence.
  • GRF4 is localized to the plasma membrane (where Ras is located), but is mislocalized in PDZ-mutated GRF4.
  • the PDZ domain is responsible for targeting/localization of GRF4 at the plasma membrane. Inhibition of GRF4 or Ras can reduce cellulose proliferation and cancer.
  • GRF4 is a target for Nedd4 ubiquitination, as it binds Nedd4.
  • GRF4 connects G protein coupled receptors to Ras and thus to downstream signaling effectors of Ras, such as Raf-MAPK pathway, PI-3 kinase, raIGEF and possibly other effectors.
  • G protein coupled receptors a number of which contain a C terminal PDZ binding motif, activate adenylate cyclase via heterotrimeric G proteins, leading to increased cAMP.
  • GRF4 binds via its PDZ to these receptors at the plasma membrane and the released cAMP directly activates GRF4 and thus stimulate Ras activation.
  • RasGRF may directly connect upstream activators of cGMP release (e.g. nitric oxide) to Ras.
  • cGMP release e.g. nitric oxide
  • Nedd4 may regulate the stability of this protein by ubiquitination, and thus suppress GRF4 activity by regulating its stability and degradation.
  • the invention includes an isolated nucleic acid molecule encoding a polypeptide having GRF4 activity, preferably including all or part of the nucleic acid molecule of [SEQ ID NO: 1].
  • the invention includes an isolated nucleic molecule having at least 40% sequence identity to all or part of the nucleic acid molecule of [SEQ ID NO: 1], wherein the nucleic acid molecule encodes a polypeptide having GRF4 activity.
  • Another embodiment is a nucleic acid molecule encoding all or part of the amino acid sequence of [SEQ ID NO: 2].
  • the invention also includes a nucleic acid molecule that encodes all or part of a GRF4 polypeptide or a polypeptide having GRF4 activity, wherein the sequence hybridizes to the nucleic acid molecule of all or part of [SEQ ID NO: 1] under high stringency conditions.
  • the invention includes an isolated polypeptide having GRF4 activity and a CDC25 domain, preferably, comprising all or part of the sequence of [SEQ ID NO: 2].
  • the polypeptide preferably comprising at least 40% sequence identity to all or part of the polypeptide of [SEQ ID NO: 2], wherein the polypeptide has GRF4 activity.
  • the invention includes a mimetic of the isolated polypeptide of any of claims 8 to 10 , wherein the mimetic has GRF4 activity.
  • Another aspect relates to a recombinant nucleic acid molecule comprising a nucleic acid molecule of the invention and a promoter region, operatively linked so that the promoter enhances transcription of the nucleic acid molecule in a host cell.
  • the invention also includes a system for the expression of GRF4, comprising an expression vector and a nucleic acid molecule of the invention molecule inserted in the expression vector.
  • the invention also includes a cell transformed by the expression vector of the invention.
  • Another aspect of the invention relates to a method for expressing polypeptide by transforming an expression host with an expression vector including and culturing the expression host.
  • the invention also includes a pharmaceutical composition, including all or part of the polypeptide or mimetic of the invention, and a pharmaceutically acceptable carrier, auxiliary or excipient.
  • a pharmaceutical composition including all or part of the polypeptide or mimetic of the invention, and a pharmaceutically acceptable carrier, auxiliary or excipient.
  • Another aspect of the invention relates to a GRF4 specific antibody targeted to a region selected from the group consisting of the C-terminus, the CDC25 domain and the PDZ domain.
  • the invention includes a method of medical treatment of a disease, disorder or abnormal physical state, characterized by excessive GRF4 expression, concentration or activity, comprising administering a product that reduces or inhibits GRF4 polypeptide expression, concentration or activity.
  • the invention also includes a method of medical treatment of a disease, disorder or abnormal physical state, characterized by inadequate GRF4 expression, concentration or activity, comprising administering a product that increases GRF4 polypeptide expression, concentration or activity.
  • FIG. 1 Domain organization of Rat Nedd4.
  • FIG. 2 Protein sequence of Clone 7.7, the homolog of human clone KIAA0313.
  • FIG. 3A Schematic Diagram of GRF4.
  • FIG. 3B Shows the nucleic acid molecule that is [SEQ ID NO: 1] and the polypeptide that is [SEQ ID NO:2]. In a preferred embodiment, the figure shows GRF4.
  • FIG. 4A Protein sequence alignment of CDC25 domains from several RasGEF/GRF including GRF4.
  • the CDC25 domain of human GRF4 (hGRF4) was aligned with those of Drosophila GRF4 (dGRF4, identified from genomic DNA sequence [Accession number. AC005285, nucleotide sequence 122129-174319]), human Epac (hEpac), mouse RasGRF2 (mRasGRF2), Drosophila SOS (dSOS) and RasGRP (hRasGRP).
  • hEpac human Epac
  • mRasGRF2 mouse RasGRF2
  • dSOS Drosophila SOS
  • RasGRP hRasGRP
  • hGRF4 (AB002311), dGRF4(AC005285), hEpac(AF103905), mRasGRF2(U67326), dSOS(M83931), hRasGRP(AF106071), rLin-7-C(AF090136), hPTP-BAS-1(D21209), hDig(U61843), hPRKAR1B(M65066), hPSD-95 (AF1 56495), hPKGII(CAA76073), mEAG(U04294).
  • FIG. 4B Comparison of CDC25 domain of GRF4 with RasGRF2 revealing the insert in GRF4.
  • FIG. 5 Protein sequence of alignment of Ras GRF4-REM domain.
  • FIG. 6A Overall structure comparison between GRF4 and other known mammalian GRFs/GEFs which activate Ras.
  • FIG. 6B An example of the most well known Ras signaling pathway.
  • FIG. 7 Sequence alignment of GRF4-PDZ domain.
  • the PDZ domains of hGRF4 and dGRF4 were aligned with those of rat Lin-7-C (rLin-7-C), human PTP-BAS type 1 (hPTP-BAS-1), human Dig (hDig) and human PSD-95 (hPSD-95).
  • the sequences corresponding the GLGF motif present in prototypic PDZ domains are lighter.
  • GRF4 Alignments were created using the program Clustal W(1.7).
  • FIG. 8 Sequence alignment of GRF4-cNMP-BD.
  • the cNMP-BD of hGRF4 was aligned with those of dGRF4, hEpac, human cAMP-dependent protein kinase regulatory subunit type 1b (hPRKAR1 B), human cGMP dependent protein kinase (hPKGII), and mouse cyclic nucleotide gated potassium channel (mEAG).
  • the conserved motifs RAA present in hPRKAR1B and hEpac that confers cAMP binding specificity are shaded in blue.
  • the conserved motifs RTA present in hPKGII and mEAG that confers cGMP binding specificity are lighter. Alignments were created using the program Clustal W(1.7).
  • FIG. 9 Protein sequence alignment of GRF4-RA domain.
  • FIG. 10 Tissue Distribution of GRF4.
  • FIG. 11 Co-precipitation of endogenous Nedd4 in Hek 293T cells by a GST-fusion 30 protein of the C-terminal last 150 aa of GRF4 which contains the two PY motifs.
  • FIG. 12 Co-immunoprecipitation of GRF4 with endogenous Nedd4 in Hek 293T cells transiently transfected with Flag-tagged GRF4.
  • FIG. 13 Method used for the in vitro GEF assay.
  • FIG. 14 In vitro GEF assay using immunoprecipitated full-length GRF4 demonstrating activation of Ras by GRF4 (additional data in FIG. 23( e )).
  • FIG. 16 GRF4 induces foci formation in Rat2 fibroblasts.
  • FIG. 17 GST-fusion protein of GRF4-PDZ domain binds full-length GRF4 expressed in Hek 293T cells.
  • FIG. 18 Biotinylated peptide of the last 15 amino acid sequence of GRF4 containing a PDZ-binding motif (SAV*) binds full-length GRF4.
  • FIG. 19 (a) Nucleic acid molecule sequence [SEQ ID NO: 1] and amino acid sequence [SEQ ID NO: 2]; (b) The figure shows the nucleic acid molecule sequence that is [SEQ ID NO: 3] and amino acid sequences [SEQ ID NOS: 4,5,6].
  • [SEQ ID NO: 3] is the Clone 7.7 DNA nucleic acid molecule sequence
  • FIG. 20 Plasma membrane localization of GRF4.
  • FIG. 21 GRF4 domain organization and expression.
  • GRF4 depicting its cNMP (cAMP/cGMP) binding domain (cNMP-BD), a Ras Exchange Motif (REM), a PDZ domain, a Ras Association (RA) domain, a CDC25 domain which contains an insert region (white box) and a C terminus which includes 2 PY motifs (PPxY) that bind Nedd4 WW domain(s). The COOH terminus ends with the sequence SAV, conforming to a PDZ binding motif. Sequence alignment of the CDC25, cNMP-BD and PDZ domains is provided in the Supplementary material.
  • FIG. 22 Binding of cAMP to the cNMP-binding domain (cNMP-BD) of GRF4.
  • FIG. 23 cAMP/cGMP-mediated activation of Ras, but not Rap1, by GRF4 in living cells.
  • HEK-293T cells were transfected (or not) with Flag-tagged GRF4, serum-staved overnight, pre-treated (or not) with the PKA inhibitors H-89 (10 ⁇ M) or Rp-cAMPS (50 ⁇ M) for 30 min., and then treated (or not) with the cAMP analogue 8-Br-cAMP (500 ⁇ M) for 15 min.
  • Cells were then lysed and lysate incubated with immobilized Ras binding domain (RBD) of Raf1 (GST-Raf1-RBD), which binds activated (GTP-bound) Ras. Co-precipitated activated ras was then detected with anti Ras antibodies (Quality Biotech) (upper panel). Lower 2 panels depict the amounts of total endogenous Ras and of the transfected GRF4 (detected with anti Ras and anti Flag antibodies, respectively).
  • Cells were transfected (or not) with Flag-GRF4 and serum-starved overnight as in (a) above, pre-treated (or not) with the PKG inhibitors H8 (5 ⁇ M) or Rp-cGMPS (25 ⁇ M) and then treated (or not) with the cGMP analogue 8-Br-cGMP (500 ⁇ M), as in (a) above.
  • Activated Ras was then precipitated with GST-Raf1-RBD (upper panel), as in (a).
  • Lower panels show total endogenous Ras and GRF4 expressed in the cells.
  • Cells were transfected as in (a), and were then treated (for 15 min) with either Forskolin (50 ⁇ M) plus the cAMP phosphodiesterase inhibitor IBMX (100 ⁇ M), to elevate intracellular cAMP, or with YC-1 (100 ⁇ M) plus the cGMP phosphodiesterase inhibitor DiPy (10 ⁇ M), to elevate intracellular cGMP.
  • Parallel treatments with 8-Br-cAMP or 8-Br-cGMP were used as positive controls. Lysates of treated cells were then incubated with GST-Raf1-RBD to precipitate activated Ras, and immunoblotted with anti Ras antibodies, as above (upper panel). Lower panels are as in (a) and (b) above.
  • HEK-293T cells were transfected with vector alone, GRF4 (WT), GRF4 lacking its cNMP-BD ( ⁇ cNMP-BD) or its CDC25 domain ( ⁇ CDC25), and then treated (or not) with 8-Br-cAMP.
  • Cell lysates were then incubated with GST-Raf1-RBD to precipitate active Ras, and immunobloited with anti Ras antibodies as above (upper panel).
  • Lower panels are controls for total endogenous Ras and transfected GRF4 or its mutants.
  • YC-1 3-(5′-Hydroxymethyl-2′-furyl)-1-benzylindazole; DiPy, Di-Pyridamole; Rp-8-Br-cAMPS, Adenosine 3′,5′-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer; Rp-8-Br-cGMPS, Guanosine 3′,5′-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer; IBMX, 3-isobutol-1-methylxanthine; H-89, N-[2-((Pbromocinnamyi)amino)ethyl]-5-isoquinoiinesulfonamide; H-8, N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide. Autoradiograms are representative of 2-8 independent experiments.
  • FIG. 24 GRF4 is localized to the plasma membrane and this localization is dependent on intact PDZ domain but not the SaV C-terminal sequence.
  • Wild type (WT) GRF4 (panel a), GRF4 lacking the PLPF sequence (-PLPF) of its PDZ domain (equivalent to the hallmark GLGF sequence in numerous PDZ domains) (panel b), or GRF4 in which its final 3 amino acids (SAV), which conform to a PDZ binding motif, were mutated to triple Ala (SAV ⁇ AAA)(panel c), were transfected into HEK-293T cells. Transfected cells were fixed and stained with anti GRF4 antibodies followed by FITC-conjugated goat anti rabbit IgG. Images shown represent total cellular fluorescence. Cell diameter ⁇ 6 ⁇ m.
  • the invention includes an isolated Guanine Nucleotide Releasing Factor 4 (GRF4) polypeptide Ras activator.
  • the polypeptide is preferably mammalian, and more preferably human.
  • the invention also includes a recombinant isolated GRF4 protein produced by a cell including a nucleic acid molecule encoding a GRF4 operably linked to a promoter.
  • the invention also includes an isolated nucleic acid molecule encoding a GRF4 polypeptide.
  • GRF4 was isolated as a PY (xPPxY) motif-containing polypeptide.
  • a 450 nucleotide murine fragment encoding two PY motifs was initially isolated. At the amino acid level this fragment was 75% identical (95% similar) to the hypothetical gene product of the human Genbank entry KIAA0313.
  • GRF4 also known as RasGRF4
  • RasGRF4 Ras guanine nucleotide exchange factor
  • GRF4 polypeptides were unknown prior to this invention.
  • the hypothetical polypeptide based on KIAA0313 DNA sequence information cannot predict if a polypeptide is translated, its sequence, activity or the extent of post-translational modifications.
  • the invention includes GRF4 nucleic acid molecules and molecules having sequence identity or which hybridize to the GRF4 sequence which encode a protein capable of activating Ras (preferred percentages for sequence identity are described below) as well as vectors including these molecules.
  • the invention also includes GRF4 or proteins having sequence identity (preferred percentages described below) or which are capable of activating Ras.
  • the nucleic acid molecules and proteins of the invention may be from lung, brain or the neuronal system and they may be isolated from a native source, synthetic or recombinant.
  • the invention includes GRF4 or proteins having sequence identity which are capable of activating Ras, as prepared by the processes described in this application.
  • FIG. 3 is a schematic diagram of GRF4.
  • the structural features of GRF4 show a multifunctional role that regulates several aspects of cell physiology, including cell proliferation, morphology, membrane transport, cell survival and cellular transformation.
  • GRF4 expression, concentration and activity may be manipulated in methods of medical treatment of excessive cell proliferation, such as in cancer (for example, brain cancer, lung cancer).
  • GRF4 is composed of several recognizable sequence motifs and domains.
  • GRF4 contains, in amino to carboxyl order, a cyclic nucleotide monophosphate (cAMP/cGMP)-Binding domain (cNMP-BD), a Ras exchange motif (REM), PDZ and Ras association (RA) domains, CDC25-related GEF domain, two PY motifs responsible for binding to the Nedd4-WW domain, and a COOH-terminal SaV sequence conforming to PDZ binding motif.
  • the Cdc25 domain is similar to the Ras GEF regions in Sos1 ⁇ 2, GRF1 ⁇ 2 and GRP, as well as in Rap GEFs such as Epac (H.
  • the GRF4-Cdc25 domain contains a unique insertion, located on the carboxyl side of the third structurally conserved region (SCR3; see alignment) (P. A. Boriack-Sjodin et al., 1998).
  • the PDZ domain of GRF4 appears most similar to the PDZ domains of Lin7, PTP-BAS, PSD-95 and Dig (see alignment). PDZ domains have been shown to be involved in intracellular targeting and clustering of plasma membrane proteins and signaling complexes (S. E. Craven et al., 1998).
  • the cNMP-BD of GRF4 is similar to the cAMP binding region of protein kinase A (PKA) and cAMP-GEFs (H. Kawasaki, et al., 1998; J. de Rooij, et al., 1998) and to the cGMP binding region of protein kinase G (PKG) and cyclic nucleotide gated K + channels although it lacks the conserved RAA motif found in PKA and cAMP-GEFs, and the conserved RTA motif found in PKG and cyclic nucleotide gated K + channel (see alignment). These conserved motifs were shown to play a role in conferring specificity for binding of cAMP or cGMP, respectively (Y.
  • GRF4 mRNA is expressed predominantly in the brain, with widespread distribution (FIG. 21 b ). Accordingly, the ⁇ 180 kDa GRF4 protein is detected in the brain, including embryonic and adult rat brain synaptosomes, but not in several fibroblasts cell lines, or the human epithelial (embryonic kidney) cell line HEK-293T (FIG. 21 c ).
  • GRF4 is activated by distinct signaling pathways that involve a G-coupled receptor signaling pathway (FIG. 19).
  • GRF4 can be activated by a G-protein coupled receptor via an association of GRF4-PDZ domain and its binding motif present in many such receptor. This activation process depends on the activation state of the receptor. Binding of GRF4 to such a receptor leads to activation of GRF4 as a result of conformational changes or membrane recruitment of GRF4 (or both).
  • activation of a G-coupled receptor leads to elevation of cAMP which modulates GRF4 activity by directly binding to GRF4-cAMP-BD.
  • the SAV* motif of GRF4 can be involved in an intramolecular interaction with GRF4-PDZ domain and this interaction may have regulatory roles in GRF4 activity. Likewise, this motif can bind to other PDZ-containing proteins associating with the plasma membrane. GRF4 binds preferentially to nucleotide-free and GTP-bound Ras. The RA domain of GRF4 mediates GRF4 binding to Ras-GTP. In so doing, GRF4 functions as a downstream Ras effector. The ubiquitin protein ligase Nedd4 interacts with GRF4 through WW domain-PY motif interaction and ubiquitinates GRF4 and targets it for degradation.
  • Ras and Rap1 have distinct subcellular localizations and interact with an overlapping set of effector proteins and signaling pathways (reviewed in J. L. Bos, 1998).
  • GRF4 activates both Rap1 and Ras, and the activation of Ras, but not Rap1, is stimulated by cAMP or cGMP binding to GRF4. Elevation of intracellular cAMP or cGMP levels causes a switch from Rap1 to Ras activation by GRF4.
  • a plasma membrane protein such as a G protein-coupled receptor which causes elevation of cAMP upon activation, or ion channels enriched in synaptosomes (several of which possess a PDZ-binding motif, are activators of GRF4.
  • GRF4 was identified in this study as a Nedd4-interacting protein, and our recent work has detected Nedd4 at the plasma membrane and in endosomes.
  • GRF4 plasma membrane-associated GRF4, possibly in complex with its cell surface activator and/or Nedd4, provides a mechanism to regulate GRF4 interactions with Ras at the plasma membrane and Rapi in the endocytic compartment.
  • GRF4 contains two PY-motifs near the C-terminus which bind to Nedd4-WW domains leading to its identification as a Nedd4-WW domain interacting protein in the expression library screen.
  • Preferable protein hybridization conditions use TBS-Tween (about: 137 mM NaCl, 27 mM KCl, 25 mM tris, pH 8.0, 0.1% Tween 20).
  • the screen used to identify Clone 7.7 was based on protein:protein interactions (i.e. a labeled GST Nedd4-WW domain protein was used as a probe to screen an expression library.
  • cDNA of the library was induced to express proteins. Washes were done with TBS-Tween). These conditions can be used in a method to identify other GRF proteins similar to GRF4 which preferably have GRF4 activity or similar activity.
  • GRF4 harbours a central catalytic region called CDC25 domain, named for the prototypic Ras activator in Saccharomyces cerevisiae ( 21 ), from which the function of GRF4 was deduced.
  • CDC25 domains catalyze guanine-nucleotide exchange/release activity on Ras family GTPases.
  • the CDC25 of GRF4 is 48-52% similar to those of yeast CDC25, SOS and RasGRF/RasGRF2.
  • FIG. 4 shows the alignment of CDC25 domains from various proteins including GRF4. From the mutagenesis studies of yeast CDC25, several conserved arginine residues were proposed to be critical for its activity ( 22 ). These conserved arginine residues are also conserved in GRF4. Similar to CDC25, SDC25, RasGRF1 ⁇ 2 and SOS, GRF4 contains blocks of highly conserved sequences (FIG.
  • the GRF4-CDC25 domain also contains an insert (about 40 amino acids) not found in SOS, RasGRF2 or other RasGRF3 (FIG. 3B).
  • GRF4 also has a REM (Ras exchange motif) domain ( 24 ) which is present in all known mammalian RasGRFs.
  • FIG. 5 shows the alignment of REM domains from several proteins including GRF4. Mammalian RasGRFs all share this REM domain which is likely important for their activities. Recently, it was reported that the REM domain of SOS contributes to the activity of the CDC25 domain by stabilizing the active structure of the catalytic region ( 23 ).
  • each mammalian RasGRF has its own unique domains which are important for regulation of its activity.
  • SOS is activated by various growth factors, a process involving binding of activated receptor-tyrosine kinase to Grb2-SH2 domain and Grb2-SH3 domain to the proline-rich region of SOS-( 25 ).
  • RasGRF1 and RasGRF2 are activated by elevation of intracellular calcium, a process involving the binding of Ca2+-bound calmodulin to the IQ motif present in these RasGRFs ( 23 , 26 ).
  • RasGRP harbours a DAG (diacylglycerol) binding domain and a pair of EF hands, a Ca2+ binding motif and accordingly, it is activated by elevated level of DAG and calcium ( 27 ). These unique domains allow RasGRFs to activate Ras in response to distinct signaling pathways.
  • the small GTPase Ras controls the MAPK pathway, (as well as PI-3 kinase, raIGEF and likely other effectors). In so doing, Ras exerts its effects on many cellular processes such as cellular proliferation and differentiation (FIG. 6B).
  • PDZ domains also known as DHR (Disc-large homology region) or GLGF domains (conserved stretch of amino acids in the domain) are 80-100 amino acid protein-protein interaction modules which are found in membrane-associating proteins and intracellular signaling proteins (Ref. 28 ).
  • PDZ domains are important for membrane targeting, clustering of receptors/channels and forming scaffold of networks of signaling proteins at the plasma membrane. Examples include PSD-95 which binds the NMDA receptors, as well as the InaD which binds to the TRP, components of photo-transduction cascades in the Drosophila eyes ( 29 - 30 ).
  • PDZ domains bind to C-terminal three or four residues in a sequence specific context.
  • One class of PDZ domains including those of Disc-large protein, binds to C-terminal Valine residue in a context of S/T ⁇ V* (* denotes a stop codon). While other classes of PDZ domains were shown to bind C-terminal three residues with hydrophobic or aromatic side chains ( 31 ).
  • the alignment of PDZ domains of several proteins including GRF4 is given in FIG. 7.
  • the PDZ domain of GRF4 is similar to a class of PDZ domains binding S/T ⁇ V* motif. GRF4 itself has such a motif (SAV*) at its C-terminus (FIG. 3), so there is interaction between GRF4-PDZ domain and its own PDZ-binding motif.
  • GRF4 has a cNMP-binding domain that preferably binds cAMP or cGMP. It shares 50% sequence similarity to that of the regulatory subunits of PKA.
  • FIG. 8 shows the alignment of cNMP-binding domains. Since a conformational change is often accompanied by binding of cNMP to a protein, GRF4 activity may be regulated by conformational changes. By having a cAMP-binding domain, GRF4 is involved in a G-coupled receptor pathway and connects this pathway to the Ras signaling pathway. Many G-protein coupled receptors contain PDZ-binding motifs which bind and regulate activities of PDZ- domain containing proteins.
  • GRF4 is regulated by a G-coupled receptor system coupling to the adenylyl cyclase enzyme.
  • RasGRF directly connects upstream activators of cGMP release (e.g. nitric oxide) to Ras.
  • GRF4 also has a RA (Ras associating) domain. This type of domain was initially identified in two Ras effector proteins, including RaIGDS and AF-6/Canoe, and later in numerous Ras binding proteins. RA domains have been assumed to bind to Ras-GTP and the solved tertiary structure of RaIGDS-RA domain was found to be similar to that of the Ras binding domain of Raf kinase which binds to Ras-GTP ( 32 ). However, recent evidence shows that not all RA domains bind to Ras-GTP. The alignment of RA domains from several proteins including GRF4 is given in FIG. 9.
  • GRF4 has two PEST sequences which are after found in unstable proteins. GRF4 also has a coiled-coil region which participates in protein-protein interaction through interactions of multiple amphipathic alpha helices ( 33 ). The PY motifs serve as attachment sites for the Nedd4-WW domain, thereby facilitating ubiquitination and degradation of GRF4.
  • the invention includes nucleic acid molecules that are functional equivalents of all or part of the sequence in [SEQ ID NO: 1].
  • a nucleic acid molecule may also be referred to as a DNA sequence or nucleotide sequence in this application. All these terms have the same meaning as nucleic acid molecule and may be used to refer, for example, to a cDNA, complete gene or a gene fragment.
  • Functionally equivalent nucleic acid molecules are DNA and RNA (such as genomic DNA, cDNA, synthetic DNA, and mRNA nucleic acid molecules), that encode peptides, proteins, and polypeptides having the same or similar GRF4 activity as the GRF4 polypeptide shown in (SEQ ID NO: 23.
  • Functionally equivalent nucleic acid molecules can encode peptides, polypeptides and proteins that contain a region having sequence identity to a region of a GRF4 polypeptide or more preferably to the entire GRF4 polypeptide.
  • the CDC25 is a preferred region because it is the central catalytic region.
  • the invention includes nucleic acid molecules that have a region with sequence identity to the CDC25 coding region of [SEQ ID NO: 1] which is represented by about nucleotide no. 2194 (2131+63) to nucleotide no. 3082 (preferred percentages of identity are below).
  • the invention includes nucleic acid molecules about: ⁇ 1000 nucleotides (preferably about 888 nucleotides), ⁇ 1500 nucleotides, ⁇ 2000 nucleotides, ⁇ 3000 nucleotides or ⁇ 5000 nucleotides which encode a region having sequence identity to the CDC25 coding region and having CDC25 activity or CDC25-ike activity.
  • Nucleic acid molecules may encode conservative amino acid changes in GRF4 polypeptide.
  • the invention includes functionally equivalent nucleic acid molecules that encode conservative amino acid changes within a GRF4 amino acid sequence and produce silent amino acid changes in GRF4.
  • Nucleic acid molecules may encode non-conservative amino acid substitutions, additions or deletions in GRF4 polypeptide.
  • the invention includes functionally equivalent nucleic acid molecules that make non conservative amino acid changes within the GRF4 amino acid sequence in [SEQ ID NO: 2].
  • Functionally equivalent nucleic acid molecules include DNA and RNA that encode peptides, polypeptides and proteins having non-conservative amino acid substitutions (preferably substitution of a chemically similar amino acid), additions, or deletions but which also retain the same or similar GRF4 activity as the GRF4 polypeptide shown in [SEQ ID NO: 2].
  • the DNA or RNA can encode fragments or variants of GRF4. Fragments are useful as imminogens and in immunogenic compositions (U.S. Pat.
  • fragments and variants of GRF4 encompassed by the present invention should preferably have at least about 40%, 60%, 80% or 95% sequence identity or preferably at least about 96%, 97%, 98%, 99%, 99.5%, 99.9% or more preferably at least about 99.95% sequence identity to the naturally occurring GRF4 nucleic acid molecule (preferably measured between the coding region of the sequence nucleotides 63 to 4562), or a region of the sequence, such as the coding sequence or one of the conserved domains of the nucleic acid molecule, without being identical to the sequence in [SEQ ID NO: 1].
  • sequences preferably encode all the GRF4 domains and motifs described above. One or more domain or motif may be omitted to obtain desired activity.
  • the CDC25 domain is preferably conserved in the nucleic acid molecule and polypeptide in order to preserve GRF4 activity.
  • Sequence identity is preferably measured with the Clustal W program (preferably using default parameters) [Thompson, J D et al., Nucleic Acid Res. 22:4673-4680.].
  • the Gap program may be used.
  • the algorithm of Needleman and Wunsch (1970 J. Mol. Biol. 48:443-453) is used in the Gap program. BestFit may also be used to measure sequence identity. It aligns the best segment of similarity between two sequences.
  • Alignments are made using the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482-489. Most preferably, 1, 2, 3, 4, 5, 5-10, 10-15, 15-25, 25-50, 50-100 or 100-600 nucleotides are modified. One would be able to make more changes to the nucleotide and amino acid sequences (such as substitutions, deletions) in regions outside of the conserved regions of GRF4 described above.
  • nucleic acid molecules functionally equivalent to the GRF4 in [SEQ ID NO: 1] will be apparent from the following description.
  • the sequence shown in [SEQ ID NO: 1] may have its length altered by natural or artificial mutations such as partial nucleotide insertion or deletion, so that when the entire length of the coding sequence within [SEQ ID NO: 1], is taken as 100%, the functional equivalent nucleic acid molecule preferably has a length of about 60-120% thereof, more preferably about 80-110% thereof. Fragments may be less than 60%.
  • the mutated DNAs created in this manner should preferably encode a polypeptide having at least about 40%, preferably at least about 60%, at least about 80%, and more preferably at least about 90% or 95%, and most preferably at least about 97%, 98%, 99%, 99.5%, 99.9%, or 99.95% sequence identity to the amino acid sequence of the GRF4 polypeptide in [SEQ ID NO: 2]. Sequence identity is preferably assessed by the Clustal W program.
  • nucleic acid sequence in [SEQ ID NO: 1] is not the only sequence which may code for a polypeptide having GRF4 activity.
  • This invention includes nucleic acid molecules that have the same essential genetic information as the nucleic acid molecule described in [SEQ ID NO: 1] or a domain or motif of this region. Nucleic acid molecules (including RNA) having one or more nucleic acid changes compared to the sequences described in this application and which result in production of a polypeptide shown in [SEQ ID NO: 2] are within the scope of the invention.
  • GRF4-encoding nucleic acids can be isolated using conventional DNA-DNA or DNA-RNA hybridization techniques.
  • the present invention also includes nucleic acid molecules that hybridize to one or more of the sequences in [SEQ ID NO: 1] or its complementary sequence, and that encode expression for peptides, polypeptides and proteins exhibiting the same or similar activity as that of the GRF4 polypeptide produced by the DNA in [SEQ ID NO: 1] or its variants.
  • Such nucleic acid molecules preferably hybridize to the sequence in [SEQ ID NO: 1] under moderate to high stringency conditions (see Sambrook et al. Molecular Cloning: A Laboratory Manual, Most Recent Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).
  • High stringency washes have low salt (preferably about 0.2% SSC), and low stringency washes have high salt (preferably about 2% SSC).
  • a temperature of about 37° C. or about 42° C. is considered low stringency, and a temperature of about 50-65° C. is high stringency.
  • the invention also includes a method of identifying nucleic acid molecules encoding a GRF4 activator polypeptide (preferably a mammalian polypeptide), including contacting a sample containing nucleic acid molecules including all or part of [SEQ ID NO: 1] (preferably at least about 15 or 30 nucleotides of [SEQ ID NO: 1]) under moderate or high stringency hybridization conditions and identifying nucleic acid molecules which hybridize to the nucleic acid molecules including all or part of [SEQ ID NO: 1].).
  • [SEQ ID NO: 3] may be used in a similar manner. Similar methods are described in U.S. Pat. No. 5,851,788 which is incorporated by reference in its entirety.
  • the invention also includes methods of using all or part of the nucleic acid molecules which hybridize to all or part of [SEQ ID NO: 1 or 3], for example as probes or in assays to identify antagonists or inhibitors of the polypeptides produced by the nucleic acid molecules (described below).
  • the invention also includes methods of using nucleic acid molecules having sequence identity to the GRF4 nucleic acid molecule (as described below) in similar methods. Polypeptides based on all or part of [SEQ ID NOS: 2, 4, 5, or 6] are also useful as probes.
  • the invention also includes a nucleic acid molecule detection kit including, preferably in a suitable container means or attached to a surface, a nucleic acid molecule of the invention encoding GRF4 or a polypeptide having GRF4 activity and a detection reagent (such as a detectable label).
  • a detection reagent such as a detectable label
  • Hybridization solution 1 is low stringency: about: >50% formamide, >5 ⁇ denhardt's, >1% SDS, >5 ⁇ SSC, >42° C.
  • Hybridization solution 2 is high stringency: about: >1% BSA, >1 mM EDTA, >0.5 M NaHPO4, pH 7.2, >7% SDS, >65° C.
  • a preferable high stringency wash consists of about: >0.2 ⁇ SSC, >0.1% SDS.
  • a preferable low stringency wash has about: >2 ⁇ SSC, >0.1% SDS).
  • the present invention also includes nucleic acid molecules that hybridize to genomic DNA, cDNA, or synthetic DNA molecules that encode the amino acid sequence of the GRF4 polypeptide, or genetically degenerate forms, under salt and temperature conditions equivalent to those described in this application, and that encode a peptide, polypeptide or polypeptide that has the same or similar activity as the GRF4 polypeptide.
  • the invention includes DNA that hybridizes to all or part of the CDC25 coding region of [SEQ ID NO: 1] which is represented by about nucleotide no. 2194 (2131+63) to nucleotide no. 3082, under moderate to high stringency conditions.
  • a nucleic acid molecule described above is considered to have a function substantially equivalent to the GRF4 nucleic acid molecules of the present invention if the polypeptide produced by the nucleic acid molecule has GRF4 activity.
  • a polypeptide has GRF4 activity if it can activate Ras. Activation of Ras is shown where a polypeptide is active in catalyzing guanine-nucleotide exchange on small GTPase Ras using the in vitro GEF assay.
  • the nucleic acid molecules of the invention may be obtained from a cDNA library.
  • the nucleotide molecules can also be obtained from other sources known in the art such as expressed sequence tag analysis or in vitro synthesis.
  • the DNA described in this application (including variants that are functional equivalents) can be introduced into and expressed in a variety of eukaryotic and prokaryotic host cells.
  • a recombinant nucleic acid molecule for the GRF4 contains suitable operatively linked transcriptional or translational regulatory elements. Suitable regulatory elements are derived from a variety of sources, and they may be readily selected by one with ordinary skill in the art (Sambrook, J, Fritsch, E. E. & Maniatis, T. (Most Recent Edition).
  • promoters can be inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific. Transcription is enhanced with promoters known in the art for expression.
  • the CMV and SV40 promoters are commonly used to express desired polypeptide in mammalian cells. Other promoters known in the art may also be used (many suitable promoters and vectors are described in the applications and patents referenced in this application).
  • nucleic acid molecule may be either isolated from a native source (in sense or antisense orientations), synthesized, or it may be a mutated native or synthetic sequence or a combination of these.
  • regulatory elements include a transcriptional promoter and enhancer or RNA polymerase binding sequence, a ribosomal binding sequence, including a translation initiation signal. Additionally, depending on the vector employed, other genetic elements, such as selectable markers, may be incorporated into the recombinant molecule. Other regulatory regions that may be used include an enhancer domain and a termination region. The regulatory elements may be from animal, plant, yeast, bacterial, fungal, viral, avian, insect or other sources, including synthetically produced elements and mutated elements.
  • the polypeptide may be expressed by inserting a recombinant nucleic acid molecule in a known expression system derived from bacteria, viruses, yeast, mammals, insects, fungi or birds.
  • the recombinant molecule may be introduced into the cells by techniques such as Agrobacterium tumefaciens -mediated transformation, particle-bombardment-mediated transformation, direct uptake, microinjection, coprecipitation, transfection and electroporation depending on the cell type.
  • Retroviral vectors, adenoviral vectors, Adeno Associated Virus (AAV) vectors, DNA virus vectors and liposomes may be used.
  • Suitable constructs are inserted in an expression vector, which may also include markers for selection of transformed cells. The construct may be inserted at a site created by restriction enzymes.
  • a cell is transfected with a nucleic acid molecule of the invention inserted in an expression vector to produce cells expressing a polypeptide encoded by the nucleic acid molecule.
  • Another embodiment of the invention relates to a method of transfecting a cell with a nucleic acid molecule of the invention, inserted in an expression vector to produce a cell expressing the GRF4 polypeptide or other polypeptide of the invention.
  • the invention also relates to a method of expressing the polypeptides of the invention in a cell.
  • a preferred process would include culturing a cell including a recombinant DNA vector including a nucleic acid molecule encoding GRF4 (or another nucleic acid molecule of the invention) in a culture medium so that the polypeptide is expressed.
  • the process preferably further includes recovering the polypeptide from the cells or culture medium.
  • the invention also includes oligonucleotide probes made from the cloned GRF4 nucleic acid molecules described in this application or other nucleic acid molecules of the invention, such as Clone 7.7 (see materials and methods section).
  • the probes may be 15 to 30 nucleotides in length and are preferably at least 30 or more nucleotides.
  • a preferred probe is at least 15 nucleotides of GRF4 in [SEQ ID NO: 1] or the Clone 7.7 sequence.
  • the invention also includes at least 30 consecutive nucleotides of [SEQ ID NO: 1] or the Clone 7.7 sequence.
  • the probes are useful to identify nucleic acids encoding GRF4 peptides, polypeptides and polypeptides other than those described in the application, as well as peptides, polypeptides and polypeptides functionally equivalent to GRF4.
  • the oligonucleotide probes are capable of hybridizing to the sequence shown in [SEQ ID NO: 1] under stringent hybridization conditions.
  • a nucleic acid molecule encoding a polypeptide of the invention may be isolated from other organisms by screening a library under moderate to high stringency hybridisation conditions with a labeled probe. The activity of the polypeptide encoded by the nucleic acid molecule is assessed by cloning and expression of the DNA. After the expression product is isolated the polypeptide is assayed for GRF4 activity as described in this application.
  • GRF4 nucleic acid molecules from other cells can also be isolated by amplification using Polymerase Chain Reaction (PCR) methods.
  • Oligonucleotide primers such as degenerate primers, based on [SEQ ID NO: 2] can be prepared and used with PCR and reverse transcriptase (E. S. Kawasaki (1990), In innis et al., Eds., PCR Protocols, Academic Press, San Diego, Chapter 3, p. 21) to amplify functional equivalent DNAs from genomic or cDNA libraries of other organisms.
  • the oligonucleotides can also be used as probes to screen cDNA libraries.
  • the present invention includes not only the polypeptides encoded by the sequences of the invention, but also functionally equivalent peptides, polypeptides and proteins that exhibit the same or similar GRF4 polypeptide activity.
  • a polypeptide is considered to possess a function substantially equivalent to that of the GRF4 polypeptide if it has GRF4 activity.
  • Functionally equivalent peptides, polypeptides and proteins include peptides, polypeptides and proteins that have the same or similar protein activity as GRF4 when assayed, i.e. they are able to activate Ras.
  • a polypeptide has GRF4 activity if it is active in catalyzing guanine-nucleotide exchange on small GTPase Ras using the in-vitro GEF assay. (Where only one or two of the terms peptides, polypeptides and proteins is referred to, it will be clear to one skilled in the art whether the other types of amino acid sequences also would be useful.)
  • These peptides, polypeptides and proteins can contain a region or moiety exhibiting sequence identity to a corresponding region or moiety of the GRF4 polypeptide described in the application, but this is not required as long as they exhibit the same or similar GRF4 activity.
  • Identity refers to the similarity of two polypeptides or proteins that are aligned so that the highest order match is obtained. Identity is calculated according to methods known in the art, such as the Clustal W program. For example, if a polypeptide (called “Sequence A”) has 90% identity to a portion of the polypeptide in [SEQ ID NO: 2], then Sequence A will be identical to the referenced portion of the polypeptide in [SEQ ID NO: 2], except that Sequence A may include up to 10 point mutations, such as substitutions with other amino acids, per each 100 amino acids of the referenced portion of the polypeptide in sequence (a) in [SEQ ID NO: 2]. Peptides, polypeptides and proteins functional equivalent to the GRF4 polypeptides can occur in a variety of forms as described below.
  • Peptides, polypeptides and proteins biologically functional equivalent to GRF4 polypeptide include amino acid sequences containing amino acid changes in the GRF4 sequence.
  • the functional equivalent peptides, polypeptides and proteins have at least about 40% sequence identity, preferably at least about 60%, at least about 75%, at least about 80%, at least about 90% or at least about 95% sequence identity, to the naturally GRF4 polypeptide or a corresponding region.
  • the functional equivalent peptides, polypeptides and proteins have at least about 97%, 98%, 99%, 99.5%, 99.9% or 99.95% sequence identity to the naturally occurring GRF4 polypeptide or a region of the sequence (such as one of the conserved domains of the polypeptide), without being identical to the sequence in [SEQ ID NO: 2].
  • sequence identity is preferably determined by the Clustal W program. Most preferably, 1, 2, 3, 4, 5, 5-10, 10-15, 15-25 or 25-50 amino acids are modified.
  • the sequences preferably include all the GRF4 domains and motifs described above. One or more domain or motif may be omitted to obtain desired activity.
  • the CDC25 domain is preferably conserved in the polypeptide in order to preserve GRF4 activity.
  • Structurally conserved regions 1, 2 and 3 are critical for CDC25 structure and activity.
  • conserved amino acids in these regions would not be altered.
  • the CDC25 region of the polypeptide includes amino acid no. 712 to amino acid no. 1006 (preferred percentages of identity are below).
  • the invention includes polypeptides about: ⁇ 350 amino acids (preferably about 294 amino acids), ⁇ 500 amino acids, ⁇ 750 amino acids, ⁇ 1000 amino acids, ⁇ 1250 amino acids, ⁇ 1500 amino acids or ⁇ 2000 amino acids which have sequence identity to the CDC25 region and have CDC25 activity or CDC25-like activity (preferably Ras activation).
  • the invention includes peptides, proteins or proteins which retain the same or similar activity as all or part of GRF4.
  • Such peptides preferably consist of at least 5 amino acids. In preferred embodiments, they may consist of 6 to 10, 11 to 15, 16 to 25 or 26 to 50, 50 to 150, 150 to 250, 250 to 500, 500 to 750 or 750 to 1250 amino acids of GRF4.
  • Fragments of the GRF4 polypeptide can be created by deleting one or more amino acids from the N-terminus, C-terminus or an internal region of the polypeptide (or combinations of these), so long as the fragments retain the same or similar GRF4 activity as all or part of the GRF4 polypeptide disclosed in the application.
  • fragments can be generated by restriction nuclease treatment of an encoding nucleic acid molecule.
  • the fragments may be natural mutants of the GRF4.
  • Fragments of the polypeptide may be used in an assay to identify compounds that bind the polypeptide. Methods known in the art may be used to identify agonists and antagonists of the fragments.
  • Variants of the GRF4 polypeptide may also be created by splicing.
  • a combination of techniques known in the art may be used to substitute, delete or add amino acids.
  • a hydrophobic residue such as methionine can be substituted for another hydrophobic residue such as alanine.
  • An alanine residue may be substituted with a more hydrophobic residue such as leucine, valine or isoleucine.
  • An aromatic residue such as phenylalanine may be substituted for tyrosine.
  • An acidic, negatively charged amino acid such as aspartic acid may be substituted for glutamic acid.
  • a positively charged amino acid such as lysine may be substituted for another positively charged amino acid such as arginine.
  • Modifications of the polypeptides of the invention may also be made by treating a polypeptide of the invention with an agent that chemically alters a side group, for example, by converting a hydrogen group to another group such as a hydroxy or amino group.
  • Peptides having one or more D-amino acids are contemplated within the invention. Also contemplated are peptides where one or more amino acids are acetylated at the N-terminus.
  • peptide mimetics i.e. a modified peptide or polypeptide or protein
  • characteristics such as solubility, stability, andlor susceptibility to hydrolysis and proteolysis. See for example, Morgan and Gainor, Ann. Rep. Med. Chem., 24:243-252 (1989).
  • the invention also includes hybrid nucleic acid molecules and peptides, for example where a nucleic acid molecule from the nucleic acid molecule of the invention is combined with another nucleic acid molecule to produce a nucleic acid molecule which expresses a fusion peptide.
  • a preferred fusion polypeptide includes all or part of the active as CDC25 Domain of GRF4.
  • One or more of the other domains of GRF4 described in this application could also be used to make fusion polypeptides.
  • a nucleotide domain from a molecule of interest may be ligated to all or part of a nucleic acid molecule encoding GRF4 polypeptide (or a molecule having sequence identity) described in this application.
  • Fusion nucleic acid molecules and peptides can also be chemically synthesized or produced using other known techniques.
  • the invention includes a nucleic acid molecule encoding a fusion polypeptide or a recombinant vector including the sequence of [SEQ ID NO: 1] or [SEQ ID NO: 3].
  • the invention also includes a fusion polypeptide including the sequence of [SEQ ID NO: 2] or a polypeptide encoded by [SEQ ID NO: 3].
  • the variants preferably retain the same or similar GRF4 activity as the naturally occurring GRF4.
  • The, GRF4 activity of such variants can be assayed by techniques described in this application and known in the art.
  • Variants produced by combinations of the techniques described above but which retain the same or similar GRF4 activity as naturally occurring GRF4 are also included in the invention (for example, combinations of amino acid additions, deletions, and substitutions).
  • Fragments and variants of GRF4 encompassed by the present invention preferably have at least about 40% sequence identity, preferably at least about 60%, 75%, 80%, 90% or 95% sequence identity, to the naturally occurring polypeptide, or corresponding region or moiety. Most preferably, the fragments have at least about 97%, 98% or 99%, 99.5%, 99.9% or 99.99% sequence identity to the naturally occurring GRF4 polypeptide, or corresponding region. Sequence identity is preferably measured with the Clustal W.
  • the invention also includes fragments of the polypeptides of the invention which do not retain the same or similar activity as the complete polypeptides but which can be used as a research tool to characterize the polypeptides of the invention.
  • the activity of the GRF4 polypeptide is increased by carrying out selective site-directed mutagenesis.
  • protein modeling and other prediction methods we characterize the binding domain and other critical amino acid residues in the polypeptide that are candidates for mutation, insertion andlor deletion.
  • a DNA plasmid or expression vector containing the GRF4 nucleic acid molecule or a nucleic acid molecule having sequence identity is preferably used for these studies using the U.S.E. (Unique site elimination) mutagenesis kit from Pharmacia Biotech or other mutagenesis kits that are commercially available, or using PCR. Once the mutation is created and confirmed by DNA sequence analysis, the mutant polypeptide is expressed using an expression system and its activity is monitored.
  • This approach is useful not only to enhance activity, but also to engineer some functional domains for other properties useful in the purification or application of the polypeptides or the addition of other biological functions. It is also possible to synthesize a DNA fragment based on the sequence of the polypeptides that encodes smaller polypeptides that retain activity and are easier to express. It is also possible to modify the expression of the cDNA so that it is induced under desired environmental conditions or in response to different chemical inducers or hormones. It is also possible to modify the DNA sequence so that the polypeptide is targeted to a different location. All these modifications of the DNA sequences presented in this application and the polypeptides produced by the modified sequences are encompassed by the present invention.
  • the GRF4 nucleic acid molecule or its polypeptide and functional equivalent nucleic acid molecules or polypeptides are also useful when combined with a carrier in a pharmaceutical composition. Suitable examples of vectors for GRF4 are described above.
  • the compositions are useful when administered in methods of medical treatment of a disease, disorder or abnormal physical state characterized by insufficient GRF4 expression or inadequate levels or activity of GRF4 polypeptide by increasing expression, concentration or activity.
  • the invention also includes methods of medical treatment of a disease, disorder or abnormal physical state characterized by excessive GRF4 expression or levels or activity of GRF4 polypeptide, for example by administering a pharmaceutical composition including a carrier and a vector that expresses GRF4 antisense DNA.
  • Cancer is one example of a disease which can be treated by antagonizing GRF4.
  • An agent that upregulates GRF4 gene expression or GRF4 polypeptide activity may be combined with a carrier to form a pharmaceutical composition.
  • An agent that downregulates GRF4 expression or GRF4 polypeptide activity may be combined with a carrier to form a pharmaceutical composition.
  • the pharmaceutical compositions of this invention are used to treat patients having degenerative diseases, disorders or abnormal physical states such as cancer.
  • cancer can be treated by antagonizing GRF4, by blocking CDC25 activity.
  • the following U.S. patents deal with the use of compounds that modulate Ras in order to treat diseases, disorders or abnormal physical states: 5856439, 5852034, 5843941, 5840683, 5807853, 5801175, 5789438, 5776902, 5756528, 5712280, 5710171, 5672611, 5668171, 5663193, 5661128, 5627202, 5624936, 5585359, 5582995, 5576293, 5571835, 5567729, 5536750, 5523456, 5491164, 5480893, 5468733, 5238922, 5185248, 5523456, 5491164, 5480893, 5468733, 5238922 and 5185248 which are incorporated by reference in their entirety.
  • compositions can be administered to humans or animals by methods such as tablets, aerosol administration, intratracheal instillation and intravenous injection in methods of medical treatment involving upregulating or downregulating GRF4 gene or polypeptide to upregulate or downregulate Ras activity. Dosages to be administered depend on patient needs, on the desired effect and on the chosen route of administration.
  • Nucleic acid molecules and polypeptides may be introduced into cells using in vivo delivery vehicles such as liposomes. They may also be introduced into these cells using physical techniques such as microinjection and electroporation or chemical methods such as coprecipitation or using liposomes.
  • compositions can be prepared by known methods for the preparation of pharmaceutically acceptable compositions which can be administered to patients, and such that an effective quantity of the nucleic acid molecule or polypeptide is combined in a mixture with a pharmaceutically acceptable vehicle.
  • suitable vehicles are described, for example in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA).
  • the pharmaceutical compositions could include an active compound or substance, such as a GRF4 nucleic acid molecule or polypeptide, in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and isoosmotic with the physiological fluids.
  • an active compound or substance such as a GRF4 nucleic acid molecule or polypeptide
  • the methods of combining the active molecules with the vehicles or combining them with diluents is well known to those skilled in the art.
  • the composition could include a targeting agent for the transport of the active compound to specified sites within tissue.
  • GRF4 Since persons suffering from disease, disorder or abnormal physical state can be treated by either up or down regulation of GRF4, gene therapy to increase or reduce GRF4 expression is useful to modify the development/progression of disease. For example, to treat cancer, GRF4 could be modulated to suppress Ras activity (inhibiting GRF4 prevents Ras activation).
  • the invention also includes methods and compositions for providing gene therapy for treatment of diseases, disorders or abnormal physical states characterized by insufficient GRF4 expression or inadequate levels or activity of GRF4 polypeptide (see the discussion of phamaceutical compositions, above) involving administration of a pharmaceutical composition of the invention.
  • the invention also includes methods and compositions for providing gene therapy for treatment of diseases, disorders or abnormal physical states characterized by excessive GRF4 expression or levels of activity of GRF4 polypeptide involving administration of a pharmaceutical composition.
  • the invention includes methods and compositions for providing a nucleic acid molecule encoding GRF4 or functional equivalent nucleic acid molecule to the cells of an individual such that expression of GRF4 in the cells provides the biological activity or phenotype of GRF4 polypeptide to those cells (preferably Ras activation). Sufficient amounts of the nucleic acid molecule are administered and expressed at sufficient levels to provide the biological activity or phenotype of GRF4 polypeptide to the cells.
  • the method can preferably involve a method of delivering a nucleic acid molecule encoding GRF4 to the cells of an individual having a disease, disorder or abnormal physical state, comprising administering to the individual a vector comprising DNA encoding GRF4.
  • the method may also relate to a method for providing an individual having a disease, disorder or abnormal physical state with biologically active GRF4 polypeptide by administering DNA encoding GRF4.
  • the method may be performed ex vivo or in vivo.
  • Methods and compositions for administering GRF4 are explained, for example, in U.S. Pat. Nos. 5,672,344, 5,645,829, 5,741,486, 5,656,465, 5,547,932, 5,529,774, 5,436,146, 5,399,346 and 5,670,488, 5,240,846 which are incorporated by reference in their entirety.
  • the method also relates to a method for producing a stock of recombinant virus by producing virus suitable for gene therapy comprising DNA encoding GRF4.
  • This method preferably involves transfecting cells permissive for virus replication (the virus containing the nucleic acid molecule) and collecting the virus produced.
  • the invention also includes methods and compositions for providing a nucleic acid molecule encoding an antisense sequence to GRF4 or a Nedd4 nucleic acid molecule sequence to the cells of an individual such that expression of the sequence prevents GRF4 ybiological activity or phenotype or reduces GRF4.
  • the methods and compositions can be used in vivo or in vitro. Sufficient amounts of the nucleic acid molecule are administered and expressed at sufficient levels to reduce the biological activity or phenotype of GRF4 polypeptide in the cells. Similar methods as described in the preceding paragraph may be used with appropriate modifications.
  • compositions can be used in vivo or in vitro.
  • the invention also includes compositions (preferably pharmaceutical compositions for gene therapy).
  • the compositions include a vector containing GRF4. Nedd4 or a functional equivalent molecule or antisense DNA.
  • the carrier may be a pharmaceutical carrier or a host cell transformant including the vector.
  • Vectors known in the art include adenovirus, adeno associated virus (AAV), herpes virus vectors, such as vaccinia virus vectors, and plasmids.
  • the invention also includes packaging cell lines that produce the vector. Methods of producing the vector and methods of gene therapy using the vector are also included with the invention.
  • the invention also includes a transformed cell, such as a brain cell or a lung cell containing the vector and recombinant GRF4 nucleic acid molecule antisense sequence, Nedd4 or a functionally equivalent molecule.
  • a transformed cell such as a brain cell or a lung cell containing the vector and recombinant GRF4 nucleic acid molecule antisense sequence, Nedd4 or a functionally equivalent molecule.
  • Expression vectors are useful to provide high levels of polypeptide expression.
  • Cell cultures transformed with the nucleic acid molecules of the invention are useful as research tools particularly for studies of GRF4 interactions with Ras. Novel pathways to activate Ras are identified.
  • Cell cultures are used in overexpression and research according to numerous techniques known in the art.
  • a cell line (either an immortalized cell culture or a primary cell culture) may be transfected with a vector containing a GRF4 nucleic acid molecule (or molecule having sequence identity) to measure levels of expression of the nucleic acid molecule and the activity of the nucleic acid molecule and polypeptide.
  • a polypeptide of the invention may be used in an assay to identify compounds that bind the polypeptide.
  • Methods known in the art may be used to identify agonists and antagonists of the polypeptides.
  • One may obtain cells that do not express GRF4 endogenously and use them in experiments to assess ectopoic GRF4 nucleic acid molecule expression.
  • Experimental groups of cells may be transfected with vectors containing different types of GRF4 nucleic acid molecules (or nucleic acid molecules having sequence identity to GRF4 or fragments of GRF4 nucleic acid molecule) to assess the levels of polypeptide produced, its functionality and the phenotype of the cells produced.
  • Other expression systems can also be utilized to overexpress the GRF4 in recombinant systems.
  • the polypeptides are also useful for in vitro analysis of GRF4 activity.
  • the polypeptide produced can be used for microscopy or X-ray crystallography studies, and the tertiary structure of individual domains may be analyzed by NMR spectroscopy.
  • Nedd4 binding to GRF4 can be studied. For example, Nedd4 binding could be blocked to study the effects on GRF4 stability. Another example is blocking the PDZ domain to prevent membrane localization of GRF4. Similar approaches could be taken to study other polypeptide domains or motifs.
  • the GRF4 polypeptide is also useful as an antigen for the preparation of antibodies that can be used to purify or detect other GRF4like polypeptides.
  • To recognize the polypeptide preferably target to the C-terminus.
  • Antibodies recognizing GRF4 can be employed to screen organisms or tissues containing GRF4 polypeptide or GRF4-like polypeptides. The antibodies are also valuable for immuno-purification of GRF4 or GRF4-like polypeptides from crude extracts.
  • An antibody (preferably the antibody described above) may be used to detect GRF4 or a similar polypeptide, for example, by contacting a biological sample with the antibody under conditions allowing the formation of an immunological complex between the antibody and a polypeptide recognized by the antibody and detecting the presence or absence of the immunological complex whereby the presence of GRF4 or a similar polypeptide is detected in the sample.
  • the invention also includes compositions preferably including the antibody, a medium suitable for the formation of an immunological complex between the antibody and a polypeptide recognized by the antibody and a reagent capable of detecting the immunolgical complex to ascertain the presence of GRF4 or a similar polypeptide.
  • the invention also includes a kit for the in vitro detection of the presence or absence of GRF4 or a similar polypeptide in a biological sample, wherein the kit preferably includes an antibody, a medium suitable for the formation of an immunological complex between the antibody and a polypeptide recognized by the antibody and a reagent capable of detecting the immunological complex to ascertain the presence of GRF4 or a similar polypeptide in a biological sample.
  • the kit preferably includes an antibody, a medium suitable for the formation of an immunological complex between the antibody and a polypeptide recognized by the antibody and a reagent capable of detecting the immunological complex to ascertain the presence of GRF4 or a similar polypeptide in a biological sample.
  • Ras is aberrantly expressed or is mutated. It is likely that in some cancers, GRF4 is mutated as well, so GRF4 is useful as a screening tool for the detection of cancer or to monitor its progression. For example, GRF4 may be sequenced to determine if a cancer-causing mutation is present. Levels of GRF4 may also be measured to determine whether GRF4 is upregulated. A cancer causing mutation or upregulated levels are indicative of cancer.
  • Inhibitors are preferably directed towards specific domains of GRF4 to block Ras activation.
  • inhibitors should target the unique sequences of GRF4. For example, (i) they should block the cNMP-BD of GRF4 but not the cAMP binding site of protein kinase A (PKA) or protein kinase G (PKG), (ii) they could interfere with targeting of the PDZ domain to the plasma membrane, where Ras (the GRF4 substrate) is located or (iii) they could target the unique insert sequence within the CDC25 (catalytic) domain of GRF4.
  • PKA protein kinase A
  • PKG protein kinase G
  • a method of identifying a compound which modulates the interaction of GRF4 with Ras can include:
  • a Ras-binding fragment of GRF4 eg, the CDC25-BD, or part of the domain, such as a part including the unique 40 amino acid insert
  • Modulation can include increasing or decreasing the interaction between (i) and (ii).
  • a GRF4 or Ras inhibitor inhibits the interaction between (i) and (ii).
  • the method preferably includes identifying a compound that blocks the cNMP-BD of GRF4 but not the cAMP binding site of protein kinase A (PKA) or protein kinase G (PKG).
  • the method may alternatively include identifying a compound that interferes with targeting of the PDZ domain to the plasma membrane, where Ras (the GRF4 substrate) is located.
  • the method may alternatively include identifying a compound that interferes with the unique insert sequence within the CDC25 (catalytic) domain of GRF4.
  • a similar approach can be used to search for compounds that may enhance Ras activation by GRF4. More detailed methods of screening are described below.
  • the invention includes a method of identifying a compound which modulates the interaction of GRF4 with Ras, including contacting the compound with a domain of GRF4 (such as cNMP-BD, PDZ or CDC25 domain), or a fragment or derivative thereof and determining the ability of the compound to bind to the GRF4, fragment or derivative, thereby indicating that the compound modulates the interaction of GRF4 and Ras.
  • a domain of GRF4 such as cNMP-BD, PDZ or CDC25 domain
  • One may preferably target the unique sequence in the CDC25 domain of GRF4 rather than the sequences that are common to other CDC25 domains.
  • portions of GRF4 similar to other CDC25 sequences eg.
  • a method may also be performed to determine whether the compound modulates the interaction of GRF4 with Ras, including: a) contacting (i) GRF4, a Ras-binding fragment of GRF4 or a derivative of either of the foregoing with (ii) Ras, a GRF4-binding fragment of Ras or a derivative of either of the foregoing in the presence of the compound; and b) determining whether the interaction between (i) and (ii) is modulated, thereby indicating that the compound modulates the interaction of GRF4 and Ras.
  • the ability to interfere with the interaction of GRF4 with Ras indicates that the compound is useful in preventing Ras activation and cell proliferation.
  • the compound is also useful in treatment of cancer. Similar screening methods may be performed with Rap1.
  • Each of the domains of GRF4 (especially the cNMP-BD, PDZ and CDC25 domain), expressed as GST fusion proteins (which we have already generated) can be incubated with such peptide libraries, to identify sequences required for binding. Again, specificity can be obtained by looking for sequences which uniquely recognize GRF4 domains (for example, peptides recognizing the cNMP-BD of GRF4 but not the cAMP-BD of PKA or the cGMP-BD of PKG or of cyclic nucleotide-gated K+ channels).
  • Ras plays a key role in regulation of cell proliferation, differentiation and transformation, so regulating its activity has fundamental implications for the regulation of these processes, especially in cancer development and progression.
  • GRF4 is useful in a pharmaceutical preparation to treat cancer and other diseases disorders and abnormal physical states.
  • Nedd4 preferably all or part of Nedd4, such as the GRF4 binding domain of Nedd4
  • cAMP and cGMP are agents which increase GRF4 activity.
  • GRF4 is also useful as a target. Modulation of GRF4 expression is commercially useful for identification and development of drugs to inhibit and/or enhance GRF4 function directly. Such drugs would preferably be targeted to any of the following sites: CDC25 domain, PDZ domain, cNMP-BD.
  • Chemical libraries are used to identify pharmacophores which can specifically interact with GRF4 either in an inhibitory or stimulatory mode.
  • the GRF4 targets that would be used in drug design include the CDC25 domain, in order to inhibit its catalytic activity.
  • nucleotide analogues which stabilize the Ras-analogue complex thus preventing replacement of the nucleotide analogue by Ras, could interfere with activation of GRF4.
  • other compounds directed against the binding site of Ras on GRF4 could be useful as well.
  • the insert in the CDC25 domain in GRF4 is unique and is useful as a target.
  • the PDZ domain is necessary for proper localization of GRF4 to the plasma membrane and is useful as a target.
  • the cNMP binding domain is useful to disconnect GRF4 from upstream signaling.
  • the invention also includes methods of screening a test compound to determine whether it antagonizes or agonizes GRF4 polypeptide activity.
  • the invention also includes methods of screening a test compound to determine whether it induces or inhibits GRF4 nucleic acid molecule expression.
  • the invention includes an assay for evaluating whether test compounds are capable of acting as agonists or antagonists for GRF4, or a polypeptide having GRF4 functional activity, including culturing cells containing DNA which expresses GRF4, or a polypeptide having GRF4 activity so that the culturing is carried out in the presence of at least one compound whose ability to modulate GRF4 activity (preferably Ras activating activity or CDC25 domain activity) is sought to be determined and thereafter monitoring the cells for either an increase or decrease in the level of GRF4 or GRF4 activity.
  • GRF4 activity preferably Ras activating activity or CDC25 domain activity
  • Other assays will be apparent from the description of this invention and techniques such as those disclosed in U.S. Pat. No. 5,851,788, 5,736,337and 5,767,075 which are incorporated by reference in their entirety.
  • the test compound levels may be either fixed or increase.
  • GRF4 specific probes were used to probe a Rat multiple.tissue mRNA blot (Clonetech). Two messages, of 8.5 and 7.5 Kb, are present in rat brain; the 8.5 Kb message is also present in rat lung (FIG. 10). We determine the polypeptide's distribution in neuronal tissue. The finding of GRF4 message in rat brain is consistent with the fact that its cDNA was initially isolated from a human brain cDNA library. Using human GRF4 specific probes on the human brain multiple region mRNA blots (Clonetech), GRF4 messages (8.5 and 7.5 Kb) are found widespread (FIG. 10).
  • the two messages may correspond to splicing variants or isoforms of GRF4.
  • SOS is ubiquitously expressed
  • RasGRF1, RasGRF2 and RasGRP are expressed primarily in the brain (23,26,27).
  • mouse GRF4 was isolated from the expression library screen using Nedd4-WW2 domain as a probe, further characterization of their interaction was studied.
  • Nedd4 is endogenously expressed in Hek 293T cells and can be detected in 293T lysates using Nedd4 antibodies (FIG. 11).
  • Nedd4 was found to bind specifically to this polypeptide, showing that the two PY motifs of GRF4 are sufficient to interact with full-length Nedd4.
  • Nedd4 and GRF4 were also demonstrated in living cells by co-immunoprecipitation.
  • Flag-epitope tagged GRF4 was constructed in a mammalian expression vector (pCMV5).
  • the co-immunoprecipitation experiment was performed using endogenous Nedd4 and transiently transfected Flag-tagged GRF4 in Hek 293T cells.
  • Flag-tagged GRF4 was immunoprecipitated from transfected lysates using anti-Flag gel affinity (Sigma). When this immunocomplex containing GRF4 was resolved on SDS-PAGE and subsequently immunoblotted with Nedd4 antibodies, Nedd4 was detected in this immunocomplex.
  • Nedd4 was not found in the immunocomplex that did not have GRF4 when lysates of cells transfected with empty vector were used (FIG. 12). Therefore, Nedd4 is co-immunoprecipitating with GRF4, showing that they interact in living cells.
  • GRF4 also contains PEST sequences.
  • GRF4 is an unstable protein which is ubiquitinated by Nedd4 and targeted for degradation via the ubiquitin-dependent proteolytic pathway.
  • GRF4 has a RasGRF(GEF) activity/function.
  • GEF RasGRF
  • FIG. 13 The schematic outline of the in-vitro GEF assay protocol (described in Ref. 24 ) is given in FIG. 13. Briefly, GST-Ras was added alone (tubes 1 and 2 ) or along with GST-CDC25, or immunoprecipitated full-length of GRF4 (tubes 3 and 4 ). All tubes contained assay mixture including cold GTP and P32 alpha GTP. The exchange reactions were stopped at the indicated times. The stopped reaction mixtures were passed through nitrocellulose filters which were then washed with stop buffer to separate bound and unbound nucleotides.
  • FIG. 2 a shows that cAMP immobilized on agarose beads was able to bind the GST-cNMP-BD of GRF4 in vitro, showing a direct interaction between cAMP and GRF4-cNMP-BD.
  • Binding of cAMP to the GRF4-cNMP-BD was also effectively competed by cGMP (not shown), showing that cGMP can also bind to the GRF4-cNMP-BD. This is consistent with lack of conservation of the RAA and RTA sequences (described above) in the cNMP-BD, which dictates specificity towards cAMP or cGMP, respectively (Y. Su, et al., 1998).
  • GRF4 contains a CDC25 domain homologous to those of GEF/GRFs for Ras and Rap families of small GTPases
  • Flag-tagged GRF4 was expressed in HEK-293T cells and its ability to activate Ras or Rap1 was analyzed by a previously described method employing activation specific probes for these GTPases: the Ras binding domain of Raf-1 that specifically binds the active, GTP-bound form of Ras, and the Rap1 binding domain of Ral-GDS which binds the GTP-bound form of Rap1 (C. Herrmann et al., 1995, J.
  • RasGRF2 bound strongly to EDTA-treated Ras (EDTA chelates Mg2+ which is important for binding of nucleotides to Ras, thus keeps Ras in nucleotide-free form) and Ras-GTP, but bound weakly to Ras-GDP (FIG. 15).
  • RasGRF2 was shown to bind only to EDTA-treated Ras ( 23 ).
  • a mutant GRF4 in which the cNMP-binding domain (cNMP-BD) is deleted activates Ras and MAPK constitutively, indicating that the normal function of the cNMP-BD is to suppress the activity of the CDC25 domain, an inhibition relieved by cNMP binding or by deletion of the cNMP-BD.
  • the small GTPase Ras functions as a molecular switch in cells by switching between its inactive form when it is bound to GDP and its active formn when it is bound to GTP.
  • RasGRFs activate Ras by promoting nucleotide exchange from GDP (inactive) to GTP (active) on Ras.
  • Active Ras activates the MAPK pathway and other signaling pathways to control normal cellular events such as cellular proliferation and differentiation.
  • Ras activity can not be deactivated as in the case of mutant oncogenic Ras, Ras becomes oncogenic and its transforming ability is the underlying mechanism of cellular transformation and is the cause of many human cancers (Ref 41 - 44 ).
  • GRF4 can transform cells overexpressing this protein. Transformation assays were performed using Rat 2 fibroblasts, a suitable cell type for this assay. Rat 2 cells were transiently transfected with empty vector, GRF4 construct, or mutant RasV12 construct (a transforming form of Ras used as a positive control). After transfection, cells were cultured over a period of three weeks with routine changes of media, and were routinely examined for morphology changes under a light microscope. FIG. 16 shows the result of the assay. Rat 2 cells transfected with empty vector grew at moderate rate and maintained a monolayer state of normal saturation density, as seen with non-transfected cells.
  • Rat 2 cells transfected with the GRF4 construct grew faster, achieved much higher saturation density as compared to cells transfected with empty vector; more importantly, GRF4 induced foci formation in these transfected cells.
  • a focus is the site where a single transformed cell proliferates and forms a prolific mass of transformed cells; foci formation shows a loss of cell-cell contact inhibition, a hallmark of cellular transformation.
  • a similar phenotype was also observed with Rat 2 cells transfected with RasV12 construct. The finding that GRF4 induces foci formation in Rat 2 fibroblasts shows that GRF4 is oncogenic as well as highlights the physiological importance of this protein.
  • GRF4 harbours a PDZ domain and a PDZ-binding motif in context of SAV* and thus, it is involved in potential intramolecular interaction or intermolecular homotypic interaction.
  • GRF4 PDZ domain of GRF4 binds to its own SAV* motif and thus gives rise to either intramolecular interaction or intermolecular homotypic interaction.
  • a GST-fusion protein of GRF4-PDZ domain (GST-PDZ) was generated and used in a pull-down experiment. Lysates of 293T cells transfected with Flag-tagged full-length GRF4 were incubated with agarose beads bound to GST alone or GST-PDZ. Beads were washed and resolved on SDS-PAGE and subsequently immunoblotted with anti-Flag antibodies to detect bound GRF4. As shown in FIG.
  • the full-length GRF4 binds specifically to GST-PDZ, showing that the interaction is mediated by binding of GST-PDZ to the SAV* motif present in the full-length GRF4.
  • the streptavidin agarose beads bound to biotinylated peptide corresponding the last 15 amino acids of GRF4 were shown to bind to the full-length GRF4 also, thus showing again an interaction between the PDZ domain and the SAV* motif of GRF4 (FIG. 18).
  • GRF4 exhibits plasma-membrane staining and is localized at the plasma membrane where Ras, its substrate, is located. This plasma membrane localization is mediated by the PDZ domain because the protein is localized diffusely in the cytosol upon mutation (eg. deletion of the PLPF domain) of the PDZ domain.
  • Ras is localized at the plasma membrane and activation of SOS, GRF1 ⁇ 2 and GRP involves to some extent their translocation from the cytosol to the plasma membrane. Sos translocates to the plasma membrane following activation of tyrosine kinase (L. Buday, 1993), GRP in response to diacylglycerol production (J. O. Ebinu, et al., 1998, C. E. Tognon et al., 1998), and GRF2 in response to elevation of intracellular Ca 2+ (N. Fam et al, 1997).
  • GRF4 has a REM domain which is present in all mammalian RasGRFs and therefore, we believe that GRF4 is a Ras-specific GRF.
  • GRF4-CDC25 domain was determined whether the GRF4-CDC25 domain is necessary and sufficient for its activity.
  • a mutant GRF4 construct lacking the CDC25 domain which can be expressed in mammalian cells and used in in-vitro GEF assays.
  • This mutant construct, along with the full-length GRF4 which was already shown to be active on Ras, is measured for its activity or loss of activity.
  • a GST-fusion protein of GRF4-CDC25 domain is generated and used in an in-vitro GEF assay to show that GRF4-CDC25 domain is sufficient for the GRF4 activity.
  • GRF4 lacking the CDC25 domain will lose its ability to modulate Ras.
  • Ras-binding domain Raf is an immediate downstream kinase of Ras in MAPK pathway.
  • Raf-RBD binds to Ras-GTP (active Ras) and thus is useful to assay levels of active Ras in cells.
  • GST-RBD is incubated with lysates of cells transfected with GRF4 or empty vector. Active Ras in lystates is precipitated by GST-RBD beads and detected by anti-Ras antibodies on Western blot. In cells transfected with GRF4, we show more active Ras being pulled down by GST-RBD. This in vivo Ras activation assay also allows us to test effects of various treatments to cells of GRF4 activity.
  • the small GTPase Ras controls the MAPK pathway and exerts its effects on cellular processes primarily through this pathway.
  • MAPK is a downstream kinase of Ras and thus, Ras activation leads to MAPK activation (FIG. 6A). Therefore, we show the GRF4 effects on MAPK activation using assays in which levels of active MAPK in cells is determined using antibodies recognizing phosphorylated (active) MAPK.
  • RasGRFs are activated by different signals arising from distinct signaling pathways (FIG. 6B), they all appear to employ similar activation mechanisms once they are recruited to the plasma membrane (where Ras is localized) in response to activating signals. Thus, membrane recruitment is a necessary step (however, it may not be sufficient) for activation of RasGRFs.
  • GRF4 Global System for Microwave Activation Factor 4
  • GRF4 has a PDZ domain and a PDZ-binding motif.
  • PDZ domains have been known to be important in targeting proteins to the plasma membrane. Therefore, the PDZ domain of GRF4 targets K to the plasma membrane by likely binding to transmembrane receptors or ion channels which harbour its binding sites.
  • the PDZ-binding motif of GRF4 does not mediate membrane targeting.
  • GRF4 has a cNMP-binding domain it shows that cNMP (preferably cAMP or cGMP) has regulatory roles on GRF4 activity and our recent work has shown activation of Ras/MAPK pathway by GRF4 in response to cAMP or cGMP analogues.
  • Cyclic AMP is a secondary messenger for G-protein coupled receptors which activate adenylyl cyclases by coupling to G-proteins. Many of these G-coupled receptors have PDZ-binding motifs in their intracellular C-terminal ends which potentially bind to PDZ-containing proteins.
  • GRF4 may be involved in G-coupled receptor signaling pathways.
  • a receptor/receptors which bind specifically to the PDZ domain of GRF4 as binding leads to membrane targeting of GRF4 and to changes in GRF4 activity.
  • G-coupled receptors such as beta-adrenergic receptors, Dopamine receptor and others. The later two are neuronal receptors and GRF4 was shown to be expressed strongly in the central nervous systems.
  • Nedd4 is a ubiquitin protein ligase, which we showed binds GRF4, it ubiquitinates and targets GRF4 for degradation.
  • the mSOS2 was shown to be regulated by ubiquitination ( 46 ).
  • Concurrently, stability studies (pulse-chase experiments) are also carried out to measure stability of GRF4.
  • Nedd4 has a C2 domain which is a Ca2+-dependent lipid binding domain, we measure the effects of calcium on the localization and activity of GRF4.
  • the method of identifying GRF4 is as follows. An expression library screen was used to identify proteins interacting with Nedd4-WW domains. GST-fusion proteins of individual WW domains of Nedd4 were constructed in pGEX2TK which contains a PKA phosphorylation site allowing radiolabeling of the fusion proteins with P32-ATP. The radiolabeled GST-fusion protein of Nedd4-WW2 domain was used as a probe to screen a 16-day mouse embryo expression library. About one million cDNA clones were screened. A total of 17 independent positive clones were isolated and sequenced using dideoxy sequencing method. All isolated clones contained at least one PY motif and thus are biochemically true positives.
  • Clone 7.7 is a novel protein, the partial amino sequence of which exhibits 75% identity and 95% similarity of that of the novel human brain cDNA called KIAA0313. Because of this remarkable high sequence similarity between them, Clone 7.7 is the mouse homologue of KIAA0313 and obtained the full-length cDNA of KIAA0313.
  • a 16-day mouse embryo expression library (Novagen) was plated at a density of 3.5 ⁇ 10 5 plaques per 150 mm plate and plaque-lifted onto isopropyl ⁇ -D-thiogalactoside-saturated nitrocellulose filters. Filters were then probed with the radiolabeled GST-Nedd4-WW2 fusion proteins.
  • Flag, HA or myc tags was added to the N-terminus of full length GRF4 using PCR, and subcloned into the mammalian expression vector pCMV5 (Invitrogen). Mutants GRF4 with deletion of the CDC25 domain (residue 711 - 1007 , GRF4DCDC25 or DCDC25 for short), the cNMP-BD (residue 134 - 254 , DcNMP-BD), the PLPF motif in the PDZ domain (residue 396 - 399 , -PLPF), or bearing mutations in the PDZ-binding motif (SAV to AAA), were generated using PCR.
  • the GST-GRF4-cNMP-BD (residue 101 - 303 ) and GST-Carboxy-terminus (residue 1348 - 1499 ) were PCR-generated and cloned into pGEX-2T ( Pharmacia). The latter construct was used to generate a fusion protein (GST-GRF4C terminus) which was used to immunize rabbits for the generation of polyclonal anti GRF4 antibodies.
  • a 335 bp cDNA fragment corresponding to nucleotides 4286 - 4620 of KIAA0313 was labeled with [ ⁇ 32 P]dCTP by random priming using Random Primers DNA Labeling kit (Life Technologies). Both Rat Multiple Tissue and Human Brain Multiple Region blots (Clonetech) were probed in hybridization condition as previously described . The blots were washed for 30 min at 42° C. in 2 ⁇ SSC/0.1% SDS and for 45 min at 55° C. in 0.1 ⁇ SSC/0.1% SDS.
  • HEK-293T cells were maintained in Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum, 100 Units of penicillin plus 100 ⁇ g of streptomycin per ml. Cells were transfected using the calcium phosphate precipitation method as described.
  • DMEM Dulbecco's modified Eagle medium
  • Activators of Adenylyl Cyclase, Forskolin (Sigma), and activator of Guanylyl Cyclase, YC-1 (CalBiochem), were used at 50 ⁇ M and 100 ⁇ M, respectively, for 15 min.
  • Inhibitors of cAMP and cGMP phosphodiesterase (IBMX and Dipyrimidazole (CalBiochem)) were used at 100 ⁇ M and 10 ⁇ M, respectively, for 15 min.
  • HEK-293T cells were transfected as above, serum starved overnight and then subjected to various treatments, as described in the text.
  • Cells were lysed with lysis buffer (25 mM Hepes, pH 7.5, 150 mM NaCl, 1% NP-40, 0.25% Na deoxycholate, 10% glycerol, 25 mM NaF, 10 mM MgCl 2 , 1 mM EDTA, 1 mM NaVO 4 , 10 mg/ml leupeptin, 10 mg/ml aprotinin, 250 mM PMSF) and the level of Ras.GTP or Rap.
  • GTP in the lysates was determined using activation specific probes as described.
  • Ras-GTP active Ras
  • Transfected HEK-293T cells were fixed with 10% buffered Formalin phosphate (Fisher Scientific) for 30 min at 37° C., washed three times with PBS, permeabilized in TBS containing 1% Triton-X-100 for 10 min and blocked with blocking solution (TBS containing 5% goat serum (Gibco)) for 30 min. Fixed and permeabilized cells were then incubated with anti-GRF4 antibodies diluted in blocking solution for 1 h followed by four washes with TBS and incubation with FITC-conjugared goat anti-rabbit IgG. Stained cells were then visualized with a fluorescence microscope.
  • cAMP-agarose (Sigma) was pre-incubated with PES containing 5 mg/ml BSA followed by incubation with either GST-GRF4-cNMP-BD or GST alone for in vitro binding assays, or with HEK-293T cell lysate expressing GRF4 or GRF4 lacking its cNMP binding domain (GRF4 ⁇ cNMP-BD) for the pull down experiments.
  • Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396, 474-7.
  • nRap GEP A Novel Neural GDP/GTP Exchange Protein for Rap1 Small G. Protein That Interacts with Synaptic Scaffolding Molecule (S-SCAM). Biochem Biophys Res Commun 1999, 265, 38-44.
  • RasGRP Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 1998, 280, 1082-6.

Abstract

The invention is a GRF4 nucleic acid molecule and its corresponding protein which has an important role in cell signaling. The invention also includes biologically functional equivalent nucleic acid molecules and proteins. The invention also relates to methods of using these nucleic acid sequences and proteins in medical treatments and drug screening.

Description

    FIELD OF THE INVENTION
  • The invention relates to isolated nucleic acid molecules encoding Ras activator polypeptides. The invention also includes methods of using the polypeptides and nucleic acid molecules and proteins for treatment of cancer and neuronal diseases, disorders and abnormal physical states. [0001]
  • BACKGROUND OF THE INVENTION
  • Activation of the Ras signaling pathway controls numerous cellular functions, most notably those regulating cell proliferation, differentiation and transformation. Ras is involved in many aspects of cellular metabolism, so modulation of Ras activity and concentration provides a mechanism to control many cellular disease, disorders and abnormal physical states, such as cancer. [0002]
  • To date, 3 classes of Guanine Nucleotide Exchange/Releasing Factors (GEFs/GRFs) which activate Ras have been identified: (i) SOS, which binds Grb2 and connects growth factor receptors to Ras, (ii) Ras GRF½, which contains an IQ motif and is activated in response Ca2+/calmodulin, and (iii) RasGRP, which contains a diacylglycerol binding domain and an EF hand, and is activated by diacylglycerol and Ca2+. [0003]
  • None of the known classes of Ras activators have been satisfactorily modulated to control human cellular pathology. There is a clear need to identify new ways to control Ras concentration and activity. [0004]
  • SUMMARY OF THE INVENTION
  • The invention relates to a Ras activator, GRF4. This activator contains several domains, including CDC25, REM, RA, PDZ and a cNMP (cAMP/cGMP) binding domain (cNMP-BD), 2 PY motifs and a C terminal SxV sequence. GRF4 can activate Ras in vitro or in vivo. It binds CAMP directly via its cNMP-BD. GRF4 directly connects CAMP-generating (e.g. G protein coupled receptors) or cGMP-generating pathways to Ras. GRF4 is expressed mainly in the brain, and is localized at the plasma membrane, a localization dependent on the presence of intact PDZ domain. [0005]
  • Using an expression library screen of mouse embryonic library with the second WW domain of Nedd4 as a bait, we identified Clone 7.7, encoding about 150 amino acids, which bear 75% identity and 95% similarity to KIAA0313, a human Clone (encoding an approximately 1500 amino acid protein) deposited in Genbank. The segment we isolated contained 2 PY motifs (xPPxY) which are responsible for the binding to the Nedd4-WW domain. We identified the following domains (by sequence alignment) in clone KIAA0313, and hence renamed it GRF4, because it represents the fourth class of Ras activators: a CDC25 homology domain (most similar to yeast CDC25 and SDC25, Ras GRF½ and SOS), a PDZ domain, a cNMP binding domain (preferably cAMP-BD or cGMP-BD), a REM (Ras exchange motif) domain, a RA (Ras associating) domain, 2 PY motifs and a C terminal SAV sequence conforming to PDZ binding motif (SxV*, where * denotes STOP codon). The CDC25 of GRF4 domain has an approximately 40 amino acid insert, which includes a PKA phosphorylation site. [0006]
  • GRF4 schematic domain organization: [0007]
  • --cNMP-BD---REM---PDZ---RA---CDC25---PY-PY---SxV [0008]
  • The invention includes nucleic acid molecules and polypeptides (capable of activating ras) having this domain organization. [0009]
  • We have so far demonstrated: [0010]
  • (i) GRF4 binds cAMP (and cGMP) directly. [0011]
  • (ii) GRF4 activates Ras in vitro and in living cells. In cells, GRF4 activates Ras in response to elevation of intracellular cAMP or cGMP. [0012]
  • (iii) GRF4 forms a stable complex with Ras in vitro. [0013]
  • (iv) GRF4 mRNA is expressed mainly in the brain (most brain regions) and GRF4 protein is expressed in brain lysates and synaptosomes. [0014]
  • (v) The function of the cNMP-BD of GRF4 is to entrance activation of GRF4 following cAMP or cGMP binding. Treatment of HEK-293T cells transfected with GRF4 with membrane permeant analogues of cAMP (8-bromo-cAMP) and cGMP (8-bromo-cGMP), or with agents that lead to elevation of intracellular levels of cAMP (Forskolin and IBnx) or cAMP (YC-1 and dipyridamole) leads to activation of Ras in GRF4-expressing cells but not in untransfected cells, demonstrating that these cNMP analogues can activate Ras via GRF4. Moreover, a mutant GRF4 in which the cNMP-binding domain (cNMP-BD) or the CDC25 domain is deleted fails to activate Ras. [0015]
  • (vi) GRF4 dimerizes or folds over itself. The PDZ domain of GRF4 can bind its own SAV sequence. [0016]
  • (vii) GRF4 is localized to the plasma membrane (where Ras is located), but is mislocalized in PDZ-mutated GRF4. The PDZ domain is responsible for targeting/localization of GRF4 at the plasma membrane. Inhibition of GRF4 or Ras can reduce cellulose proliferation and cancer. [0017]
  • (viii) GRF4 is a target for Nedd4 ubiquitination, as it binds Nedd4. [0018]
  • Due the presence of both cNMP-BD and a PDZ domain in GRF4, GRF4 connects G protein coupled receptors to Ras and thus to downstream signaling effectors of Ras, such as Raf-MAPK pathway, PI-3 kinase, raIGEF and possibly other effectors. G protein coupled receptors, a number of which contain a C terminal PDZ binding motif, activate adenylate cyclase via heterotrimeric G proteins, leading to increased cAMP. Thus, GRF4 binds via its PDZ to these receptors at the plasma membrane and the released cAMP directly activates GRF4 and thus stimulate Ras activation. When cGMP is the compound binding and activating GRF4, RasGRF may directly connect upstream activators of cGMP release (e.g. nitric oxide) to Ras. Nedd4 may regulate the stability of this protein by ubiquitination, and thus suppress GRF4 activity by regulating its stability and degradation. [0019]
  • The invention includes an isolated nucleic acid molecule encoding a polypeptide having GRF4 activity, preferably including all or part of the nucleic acid molecule of [SEQ ID NO: 1]. In another embodiment, the invention includes an isolated nucleic molecule having at least 40% sequence identity to all or part of the nucleic acid molecule of [SEQ ID NO: 1], wherein the nucleic acid molecule encodes a polypeptide having GRF4 activity. [0020]
  • Another embodiment is a nucleic acid molecule encoding all or part of the amino acid sequence of [SEQ ID NO: 2]. The invention also includes a nucleic acid molecule that encodes all or part of a GRF4 polypeptide or a polypeptide having GRF4 activity, wherein the sequence hybridizes to the nucleic acid molecule of all or part of [SEQ ID NO: 1] under high stringency conditions. [0021]
  • The invention includes an isolated polypeptide having GRF4 activity and a CDC25 domain, preferably, comprising all or part of the sequence of [SEQ ID NO: 2]. The polypeptide preferably comprising at least 40% sequence identity to all or part of the polypeptide of [SEQ ID NO: 2], wherein the polypeptide has GRF4 activity. [0022]
  • The invention includes a mimetic of the isolated polypeptide of any of [0023] claims 8 to 10, wherein the mimetic has GRF4 activity. Another aspect relates to a recombinant nucleic acid molecule comprising a nucleic acid molecule of the invention and a promoter region, operatively linked so that the promoter enhances transcription of the nucleic acid molecule in a host cell. The invention also includes a system for the expression of GRF4, comprising an expression vector and a nucleic acid molecule of the invention molecule inserted in the expression vector. The invention also includes a cell transformed by the expression vector of the invention. Another aspect of the invention relates to a method for expressing polypeptide by transforming an expression host with an expression vector including and culturing the expression host.
  • The invention also includes a pharmaceutical composition, including all or part of the polypeptide or mimetic of the invention, and a pharmaceutically acceptable carrier, auxiliary or excipient. Another aspect of the invention relates to a GRF4 specific antibody targeted to a region selected from the group consisting of the C-terminus, the CDC25 domain and the PDZ domain. [0024]
  • The invention includes a method of medical treatment of a disease, disorder or abnormal physical state, characterized by excessive GRF4 expression, concentration or activity, comprising administering a product that reduces or inhibits GRF4 polypeptide expression, concentration or activity. The invention also includes a method of medical treatment of a disease, disorder or abnormal physical state, characterized by inadequate GRF4 expression, concentration or activity, comprising administering a product that increases GRF4 polypeptide expression, concentration or activity.[0025]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments of the invention will be described in relation to the drawings in which: [0026]
  • FIG. 1. Domain organization of Rat Nedd4. [0027]
  • FIG. 2. Protein sequence of Clone 7.7, the homolog of human clone KIAA0313. [0028]
  • FIG. 3A. Schematic Diagram of GRF4. [0029]
  • FIG. 3B. Shows the nucleic acid molecule that is [SEQ ID NO: 1] and the polypeptide that is [SEQ ID NO:2]. In a preferred embodiment, the figure shows GRF4. [0030]
  • FIG. 4A. Protein sequence alignment of CDC25 domains from several RasGEF/GRF including GRF4. The CDC25 domain of human GRF4 (hGRF4) was aligned with those of Drosophila GRF4 (dGRF4, identified from genomic DNA sequence [Accession number. AC005285, nucleotide sequence 122129-174319]), human Epac (hEpac), mouse RasGRF2 (mRasGRF2), Drosophila SOS (dSOS) and RasGRP (hRasGRP). The three structurally conserved regions present in CDC25 domains are lighter. Both hGRF4 and dGRF4 contain a unique insertion shown in blue. Alignments were created using the program Clustal W(1.7). [0031]
  • Accession numbers. [0032]
  • hGRF4 (AB002311), dGRF4(AC005285), hEpac(AF103905), mRasGRF2(U67326), dSOS(M83931), hRasGRP(AF106071), rLin-7-C(AF090136), hPTP-BAS-1(D21209), hDig(U61843), hPRKAR1B(M65066), hPSD-95 (AF1 56495), hPKGII(CAA76073), mEAG(U04294). [0033]
  • FIG. 4B. Comparison of CDC25 domain of GRF4 with RasGRF2 revealing the insert in GRF4. [0034]
  • FIG. 5. Protein sequence of alignment of Ras GRF4-REM domain. [0035]
  • FIG. 6A. Overall structure comparison between GRF4 and other known mammalian GRFs/GEFs which activate Ras. [0036]
  • FIG. 6B. An example of the most well known Ras signaling pathway. [0037]
  • FIG. 7. Sequence alignment of GRF4-PDZ domain. The PDZ domains of hGRF4 and dGRF4 were aligned with those of rat Lin-7-C (rLin-7-C), human PTP-BAS type 1 (hPTP-BAS-1), human Dig (hDig) and human PSD-95 (hPSD-95). The sequences corresponding the GLGF motif present in prototypic PDZ domains are lighter. GRF4 Alignments were created using the program Clustal W(1.7). [0038]
  • FIG. 8. Sequence alignment of GRF4-cNMP-BD. The cNMP-BD of hGRF4 was aligned with those of dGRF4, hEpac, human cAMP-dependent protein kinase regulatory subunit type 1b (hPRKAR1 B), human cGMP dependent protein kinase (hPKGII), and mouse cyclic nucleotide gated potassium channel (mEAG). The conserved motifs RAA present in hPRKAR1B and hEpac that confers cAMP binding specificity are shaded in blue. The conserved motifs RTA present in hPKGII and mEAG that confers cGMP binding specificity are lighter. Alignments were created using the program Clustal W(1.7). [0039]
  • FIG. 9. Protein sequence alignment of GRF4-RA domain. [0040]
  • FIG. 10. Tissue Distribution of GRF4. [0041]
  • FIG. 11. Co-precipitation of endogenous Nedd4 in Hek 293T cells by a GST-[0042] fusion 30 protein of the C-terminal last 150 aa of GRF4 which contains the two PY motifs.
  • FIG. 12. Co-immunoprecipitation of GRF4 with endogenous Nedd4 in Hek 293T cells transiently transfected with Flag-tagged GRF4. [0043]
  • FIG. 13. Method used for the in vitro GEF assay. [0044]
  • FIG. 14. In vitro GEF assay using immunoprecipitated full-length GRF4 demonstrating activation of Ras by GRF4 (additional data in FIG. 23([0045] e)).
  • FIG. 15. GRF4 forms stable complex with GST-Ras in vitro. [0046]
  • FIG. 16. GRF4 induces foci formation in Rat2 fibroblasts. [0047]
  • FIG. 17. GST-fusion protein of GRF4-PDZ domain binds full-length GRF4 expressed in Hek 293T cells. [0048]
  • FIG. 18. Biotinylated peptide of the last 15 amino acid sequence of GRF4 containing a PDZ-binding motif (SAV*) binds full-length GRF4. [0049]
  • FIG. 19. (a) Nucleic acid molecule sequence [SEQ ID NO: 1] and amino acid sequence [SEQ ID NO: 2]; (b) The figure shows the nucleic acid molecule sequence that is [SEQ ID NO: 3] and amino acid sequences [SEQ ID NOS: 4,5,6]. In a preferred embodiment, [SEQ ID NO: 3] is the Clone 7.7 DNA nucleic acid molecule sequence [0050]
  • FIG. 20. Plasma membrane localization of GRF4. [0051]
  • FIG. 21. GRF4 domain organization and expression. (a) GRF4, depicting its cNMP (cAMP/cGMP) binding domain (cNMP-BD), a Ras Exchange Motif (REM), a PDZ domain, a Ras Association (RA) domain, a CDC25 domain which contains an insert region (white box) and a C terminus which includes 2 PY motifs (PPxY) that bind Nedd4 WW domain(s). The COOH terminus ends with the sequence SAV, conforming to a PDZ binding motif. Sequence alignment of the CDC25, cNMP-BD and PDZ domains is provided in the Supplementary material. [0052]
  • (b) Northern blot analysis of GRF4 mRNA in multiple regions of human brain, probed with the radiolabelled cDNA corresponding to the 3′ region of human GRF4 (nucleotides 4286-4620 of KIAA0313), and depicting expression of ˜7.5 and ˜8.5 kb size transcripts. (blot purchased from Clontech). A multiple rat tissue Northern blot (from Clontech) probed with GRF4 cDNA revealed strong expression primarily in the brain (not shown). [0053]
  • (c) Western blots depicting characterization of anti GRF4 antibodies and expression of the GRF4 protein in synaptosomes. Polyclonal anti GRF4 antibodies were raised against a GST-fusion protein encompassing the C terminus (amino acids 1350-1499) of GRF4, and recognize the ˜180 kDa GRF4 protein either heterologousiy expressed in HEK-293T cells (epitope-tagged with HA, Flag (Fl) or myc tags) (left panel), or endogenously expressed in synaptosomes from adult (Ad) or embryonic (Emb) rat brain (right panel). No protein was detected with the pre-immune (pre-imm) serum. tfxn, transfection; IP, immunoprecipitation; aGRF4, anti GRF4 antibodies. [0054]
  • FIG. 22. Binding of cAMP to the cNMP-binding domain (cNMP-BD) of GRF4. [0055]
  • (a) In vitro binding of GST-GRF4-cNMP-BD, but not GST alone, to immobilized cAMP. cAMP-agarose beads were incubated with soluble GST-GRF4-cNMP-BD or GST alone, washed, proteins separated on 10% SDS-PAGE and immunoblotted with anti GST antibodies (upper panel). Total amount of proteins incubated with the cAMP beads is shown in the lower panel (coomassie). [0056]
  • (b) Precipitation of transfected GRF4, but not mutant GRF4 lacking its CNMP-BD (ΔcNMP-BD), with cAMP agarose beads. cAMP agarose beads were incubated with cell lysates from HEK-293T cells expressing either GRF4 or ΔcNMP-BD, followed by washing of beads, SDS-PAGE, and immunoblotting with anti GRF4 antibodies (upper panels). Expression of full length and mutant GRF4 was verified by immunoblotting aliquots of the respective cell lysates with the same antibodies (bottom panels). Right and left panels in (b) represent two separate experiments. [0057]
  • FIG. 23 cAMP/cGMP-mediated activation of Ras, but not Rap1, by GRF4 in living cells. (a) cAMP-dependent and PKA-independent activation of ras by GRF4. [0058]
  • HEK-293T cells were transfected (or not) with Flag-tagged GRF4, serum-staved overnight, pre-treated (or not) with the PKA inhibitors H-89 (10 μM) or Rp-cAMPS (50 μM) for 30 min., and then treated (or not) with the cAMP analogue 8-Br-cAMP (500 μM) for 15 min. Cells were then lysed and lysate incubated with immobilized Ras binding domain (RBD) of Raf1 (GST-Raf1-RBD), which binds activated (GTP-bound) Ras. Co-precipitated activated ras was then detected with anti Ras antibodies (Quality Biotech) (upper panel). Lower 2 panels depict the amounts of total endogenous Ras and of the transfected GRF4 (detected with anti Ras and anti Flag antibodies, respectively). [0059]
  • (b) cGMP-dependent and PKG-independent activation of ras by GRF4. [0060]
  • Cells were transfected (or not) with Flag-GRF4 and serum-starved overnight as in (a) above, pre-treated (or not) with the PKG inhibitors H8 (5 μM) or Rp-cGMPS (25 μM) and then treated (or not) with the cGMP analogue 8-Br-cGMP (500 μM), as in (a) above. Activated Ras was then precipitated with GST-Raf1-RBD (upper panel), as in (a). Lower panels show total endogenous Ras and GRF4 expressed in the cells. [0061]
  • (c) Activation of Ras via GRF4 following elevation of intracellular levels of cAMP or cGMP. [0062]
  • Cells were transfected as in (a), and were then treated (for 15 min) with either Forskolin (50 μM) plus the cAMP phosphodiesterase inhibitor IBMX (100 μM), to elevate intracellular cAMP, or with YC-1 (100 μM) plus the cGMP phosphodiesterase inhibitor DiPy (10 μM), to elevate intracellular cGMP. Parallel treatments with 8-Br-cAMP or 8-Br-cGMP were used as positive controls. Lysates of treated cells were then incubated with GST-Raf1-RBD to precipitate activated Ras, and immunoblotted with anti Ras antibodies, as above (upper panel). Lower panels are as in (a) and (b) above. [0063]
  • (d) Requirement of the cNMP-BD and the CDC25 domain of GRF4 for cAMP-mediated Ras activation. [0064]
  • HEK-293T cells were transfected with vector alone, GRF4 (WT), GRF4 lacking its cNMP-BD (ΔcNMP-BD) or its CDC25 domain (ΔCDC25), and then treated (or not) with 8-Br-cAMP. Cell lysates were then incubated with GST-Raf1-RBD to precipitate active Ras, and immunobloited with anti Ras antibodies as above (upper panel). Lower panels are controls for total endogenous Ras and transfected GRF4 or its mutants. [0065]
  • (e) In vitro activation of Ras by GRF4. [0066]
  • Full length (GRF4) or CDC25-deleted (ΔCDC25) GRF4, or GRF2, each Flag-tagged, were immunoprecipitated from transfected Hek-293T cells using anti Flag antibodies. Equal amounts of immunoprecipitates were washed with GEF lysis buffer, equilibrated with GEF assay buffer and incubated with 32P-α-GTP (diluted in cold GTP) plus 100 ng of Ras for 30 min. Bound and unbound radiolabelled GTP were then separated by filtration, and the amount of bound GTP determined by scintillation counting, as detailed in the Method section. Fold Ras activation was compared to the activation of Ras in the absence of GRFs (which was set to 1). The number of independent experiments (n), each carried out in duplicates, is indicated in the figure. [0067]
  • Abbreviations: YC-1, 3-(5′-Hydroxymethyl-2′-furyl)-1-benzylindazole; DiPy, Di-Pyridamole; Rp-8-Br-cAMPS, [0068] Adenosine 3′,5′-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer; Rp-8-Br-cGMPS, Guanosine 3′,5′-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer; IBMX, 3-isobutol-1-methylxanthine; H-89, N-[2-((Pbromocinnamyi)amino)ethyl]-5-isoquinoiinesulfonamide; H-8, N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide. Autoradiograms are representative of 2-8 independent experiments.
  • FIG. 24. GRF4 is localized to the plasma membrane and this localization is dependent on intact PDZ domain but not the SaV C-terminal sequence. [0069]
  • Wild type (WT) GRF4 (panel a), GRF4 lacking the PLPF sequence (-PLPF) of its PDZ domain (equivalent to the hallmark GLGF sequence in numerous PDZ domains) (panel b), or GRF4 in which its final 3 amino acids (SAV), which conform to a PDZ binding motif, were mutated to triple Ala (SAV→AAA)(panel c), were transfected into HEK-293T cells. Transfected cells were fixed and stained with anti GRF4 antibodies followed by FITC-conjugated goat anti rabbit IgG. Images shown represent total cellular fluorescence. Cell diameter˜6 μm. [0070]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Identification and characterization of GRF4 [0071]
  • The invention includes an isolated Guanine Nucleotide Releasing Factor 4 (GRF4) polypeptide Ras activator. The polypeptide is preferably mammalian, and more preferably human. The invention also includes a recombinant isolated GRF4 protein produced by a cell including a nucleic acid molecule encoding a GRF4 operably linked to a promoter. The invention also includes an isolated nucleic acid molecule encoding a GRF4 polypeptide. [0072]
  • GRF4 was isolated as a PY (xPPxY) motif-containing polypeptide. A 450 nucleotide murine fragment encoding two PY motifs was initially isolated. At the amino acid level this fragment was 75% identical (95% similar) to the hypothetical gene product of the human Genbank entry KIAA0313. We characterized the human polypeptide, which we named GRF4 (also known as RasGRF4), because it is a fourth class of Ras guanine nucleotide exchange factor (GEF). GRF4 polypeptides were unknown prior to this invention. The hypothetical polypeptide based on KIAA0313 DNA sequence information cannot predict if a polypeptide is translated, its sequence, activity or the extent of post-translational modifications. [0073]
  • The invention includes GRF4 nucleic acid molecules and molecules having sequence identity or which hybridize to the GRF4 sequence which encode a protein capable of activating Ras (preferred percentages for sequence identity are described below) as well as vectors including these molecules. The invention also includes GRF4 or proteins having sequence identity (preferred percentages described below) or which are capable of activating Ras. The nucleic acid molecules and proteins of the invention may be from lung, brain or the neuronal system and they may be isolated from a native source, synthetic or recombinant. The invention includes GRF4 or proteins having sequence identity which are capable of activating Ras, as prepared by the processes described in this application. [0074]
  • This GRF represents a fourth class of RasGRFs. FIG. 3 is a schematic diagram of GRF4. The structural features of GRF4 show a multifunctional role that regulates several aspects of cell physiology, including cell proliferation, morphology, membrane transport, cell survival and cellular transformation. GRF4 expression, concentration and activity may be manipulated in methods of medical treatment of excessive cell proliferation, such as in cancer (for example, brain cancer, lung cancer). [0075]
  • GRF4 is composed of several recognizable sequence motifs and domains. GRF4 contains, in amino to carboxyl order, a cyclic nucleotide monophosphate (cAMP/cGMP)-Binding domain (cNMP-BD), a Ras exchange motif (REM), PDZ and Ras association (RA) domains, CDC25-related GEF domain, two PY motifs responsible for binding to the Nedd4-WW domain, and a COOH-terminal SaV sequence conforming to PDZ binding motif. The Cdc25 domain is similar to the Ras GEF regions in Sos½, GRF½ and GRP, as well as in Rap GEFs such as Epac (H. Kawasaki, et al., 1998; J. de Rooij, et al., 1998). The GRF4-Cdc25 domain contains a unique insertion, located on the carboxyl side of the third structurally conserved region (SCR3; see alignment) (P. A. Boriack-Sjodin et al., 1998). The PDZ domain of GRF4 appears most similar to the PDZ domains of Lin7, PTP-BAS, PSD-95 and Dig (see alignment). PDZ domains have been shown to be involved in intracellular targeting and clustering of plasma membrane proteins and signaling complexes (S. E. Craven et al., 1998). The cNMP-BD of GRF4 is similar to the cAMP binding region of protein kinase A (PKA) and cAMP-GEFs (H. Kawasaki, et al., 1998; J. de Rooij, et al., 1998) and to the cGMP binding region of protein kinase G (PKG) and cyclic nucleotide gated K[0076] + channels although it lacks the conserved RAA motif found in PKA and cAMP-GEFs, and the conserved RTA motif found in PKG and cyclic nucleotide gated K+ channel (see alignment). These conserved motifs were shown to play a role in conferring specificity for binding of cAMP or cGMP, respectively (Y. Su, et al., 1998). GRF4 mRNA is expressed predominantly in the brain, with widespread distribution (FIG. 21b). Accordingly, the ˜180 kDa GRF4 protein is detected in the brain, including embryonic and adult rat brain synaptosomes, but not in several fibroblasts cell lines, or the human epithelial (embryonic kidney) cell line HEK-293T (FIG. 21c).
  • GRF4 activity and effects on Ras and Rap1 [0077]
  • GRF4 is activated by distinct signaling pathways that involve a G-coupled receptor signaling pathway (FIG. 19). GRF4 can be activated by a G-protein coupled receptor via an association of GRF4-PDZ domain and its binding motif present in many such receptor. This activation process depends on the activation state of the receptor. Binding of GRF4 to such a receptor leads to activation of GRF4 as a result of conformational changes or membrane recruitment of GRF4 (or both). In one of the aspects of the inventions, activation of a G-coupled receptor leads to elevation of cAMP which modulates GRF4 activity by directly binding to GRF4-cAMP-BD. The SAV* motif of GRF4 can be involved in an intramolecular interaction with GRF4-PDZ domain and this interaction may have regulatory roles in GRF4 activity. Likewise, this motif can bind to other PDZ-containing proteins associating with the plasma membrane. GRF4 binds preferentially to nucleotide-free and GTP-bound Ras. The RA domain of GRF4 mediates GRF4 binding to Ras-GTP. In so doing, GRF4 functions as a downstream Ras effector. The ubiquitin protein ligase Nedd4 interacts with GRF4 through WW domain-PY motif interaction and ubiquitinates GRF4 and targets it for degradation. [0078]
  • Ras and Rap1 have distinct subcellular localizations and interact with an overlapping set of effector proteins and signaling pathways (reviewed in J. L. Bos, 1998). GRF4 activates both Rap1 and Ras, and the activation of Ras, but not Rap1, is stimulated by cAMP or cGMP binding to GRF4. Elevation of intracellular cAMP or cGMP levels causes a switch from Rap1 to Ras activation by GRF4. In view of its strong expression in brain and synaptosomes, activation by cyclic nucleotides, and presence of a PDZ domain, a plasma membrane protein such as a G protein-coupled receptor which causes elevation of cAMP upon activation, or ion channels enriched in synaptosomes (several of which possess a PDZ-binding motif, are activators of GRF4. The presence of GRF4 in the vicinity or even in complex with such proteins shows a direct connection between them and Ras/Rap1 activation. GRF4 was identified in this study as a Nedd4-interacting protein, and our recent work has detected Nedd4 at the plasma membrane and in endosomes. The internalization of plasma membrane-associated GRF4, possibly in complex with its cell surface activator and/or Nedd4, provides a mechanism to regulate GRF4 interactions with Ras at the plasma membrane and Rapi in the endocytic compartment. The association with Nedd4 regulates of stability of GRF4 (or associated proteins) by ubiquitination. [0079]
  • GRF4 domains and motifs [0080]
  • The table below shows the amino acid sequence number (in bracket) and the nucleotide sequence (in square bracket) for the domains and motifs shown in the GRF sequence. [0081]
    TABLE 1
    Full length GRF4:   (1-1499), [1-4500]-the nucleotide sequence
    includes the Stop codon
    (FIG. 3(b)).
    cNMP-BD: (135-253), [403-759]
    REM: (266-322), [796-966]
    PDZ: (386-470), [1156-1410]
    RA: (594-692), [1780-2076]
    CDC25:  (712-1006), [2134-3018]
    Insertion in CDC25: (900-975), [2697-2925]
    First PY motif: (1403-1406), [4207-4218]
    Second PY motif: (1425-1428), [4273-4284]
    SAV motif: (1497-1499), [4489-4497]
  • PY-motifs [0082]
  • GRF4 contains two PY-motifs near the C-terminus which bind to Nedd4-WW domains leading to its identification as a Nedd4-WW domain interacting protein in the expression library screen. Preferable protein hybridization conditions use TBS-Tween (about: 137 mM NaCl, 27 mM KCl, 25 mM tris, pH 8.0, 0.1% Tween 20). The screen used to identify Clone 7.7 was based on protein:protein interactions (i.e. a labeled GST Nedd4-WW domain protein was used as a probe to screen an expression library. cDNA of the library was induced to express proteins. Washes were done with TBS-Tween). These conditions can be used in a method to identify other GRF proteins similar to GRF4 which preferably have GRF4 activity or similar activity. [0083]
  • CDC25 Domains [0084]
  • GRF4 harbours a central catalytic region called CDC25 domain, named for the prototypic Ras activator in [0085] Saccharomyces cerevisiae (21), from which the function of GRF4 was deduced.
  • CDC25 domains catalyze guanine-nucleotide exchange/release activity on Ras family GTPases. The CDC25 of GRF4 is 48-52% similar to those of yeast CDC25, SOS and RasGRF/RasGRF2. FIG. 4 shows the alignment of CDC25 domains from various proteins including GRF4. From the mutagenesis studies of yeast CDC25, several conserved arginine residues were proposed to be critical for its activity ([0086] 22). These conserved arginine residues are also conserved in GRF4. Similar to CDC25, SDC25, RasGRF½ and SOS, GRF4 contains blocks of highly conserved sequences (FIG. 4A) which were recently demonstrated, based on the tertiary structure of SOS bound to Ras, to play a critical role in the activity of the CDC25 domain towards Ras (23). However, unique to GRF4, the GRF4-CDC25 domain also contains an insert (about 40 amino acids) not found in SOS, RasGRF2 or other RasGRF3 (FIG. 3B).
  • Ras Exchange of Motif Domain [0087]
  • GRF4 also has a REM (Ras exchange motif) domain ([0088] 24) which is present in all known mammalian RasGRFs. FIG. 5 shows the alignment of REM domains from several proteins including GRF4. Mammalian RasGRFs all share this REM domain which is likely important for their activities. Recently, it was reported that the REM domain of SOS contributes to the activity of the CDC25 domain by stabilizing the active structure of the catalytic region (23).
  • Diacylqlycerol Binding Domain, EF Hands, Calcium Binding Motif [0089]
  • As shown in FIG. 6A, each mammalian RasGRF has its own unique domains which are important for regulation of its activity. Specifically, SOS is activated by various growth factors, a process involving binding of activated receptor-tyrosine kinase to Grb2-SH2 domain and Grb2-SH3 domain to the proline-rich region of SOS-([0090] 25). RasGRF1 and RasGRF2 are activated by elevation of intracellular calcium, a process involving the binding of Ca2+-bound calmodulin to the IQ motif present in these RasGRFs (23, 26). RasGRP harbours a DAG (diacylglycerol) binding domain and a pair of EF hands, a Ca2+ binding motif and accordingly, it is activated by elevated level of DAG and calcium (27). These unique domains allow RasGRFs to activate Ras in response to distinct signaling pathways. The small GTPase Ras controls the MAPK pathway, (as well as PI-3 kinase, raIGEF and likely other effectors). In so doing, Ras exerts its effects on many cellular processes such as cellular proliferation and differentiation (FIG. 6B).
  • PDZ Domains [0091]
  • PDZ (PSD95/DIg/ZO-1) domains, also known as DHR (Disc-large homology region) or GLGF domains (conserved stretch of amino acids in the domain) are 80-100 amino acid protein-protein interaction modules which are found in membrane-associating proteins and intracellular signaling proteins (Ref. [0092] 28). PDZ domains are important for membrane targeting, clustering of receptors/channels and forming scaffold of networks of signaling proteins at the plasma membrane. Examples include PSD-95 which binds the NMDA receptors, as well as the InaD which binds to the TRP, components of photo-transduction cascades in the Drosophila eyes (29-30). PDZ domains bind to C-terminal three or four residues in a sequence specific context. One class of PDZ domains, including those of Disc-large protein, binds to C-terminal Valine residue in a context of S/T×V* (* denotes a stop codon). While other classes of PDZ domains were shown to bind C-terminal three residues with hydrophobic or aromatic side chains (31). The alignment of PDZ domains of several proteins including GRF4 is given in FIG. 7. The PDZ domain of GRF4 is similar to a class of PDZ domains binding S/T×V* motif. GRF4 itself has such a motif (SAV*) at its C-terminus (FIG. 3), so there is interaction between GRF4-PDZ domain and its own PDZ-binding motif.
  • cNMP Binding Domain [0093]
  • GRF4 has a cNMP-binding domain that preferably binds cAMP or cGMP. It shares 50% sequence similarity to that of the regulatory subunits of PKA. FIG. 8 shows the alignment of cNMP-binding domains. Since a conformational change is often accompanied by binding of cNMP to a protein, GRF4 activity may be regulated by conformational changes. By having a cAMP-binding domain, GRF4 is involved in a G-coupled receptor pathway and connects this pathway to the Ras signaling pathway. Many G-protein coupled receptors contain PDZ-binding motifs which bind and regulate activities of PDZ- domain containing proteins. Having both a PDZ domain and a cAMP binding domain, GRF4 is regulated by a G-coupled receptor system coupling to the adenylyl cyclase enzyme. Altematively, when cGMP is the compound binding and activating (or inhibiting) GRF4, RasGRF directly connects upstream activators of cGMP release (e.g. nitric oxide) to Ras. [0094]
  • Ras Associating Domain [0095]
  • GRF4 also has a RA (Ras associating) domain. This type of domain was initially identified in two Ras effector proteins, including RaIGDS and AF-6/Canoe, and later in numerous Ras binding proteins. RA domains have been assumed to bind to Ras-GTP and the solved tertiary structure of RaIGDS-RA domain was found to be similar to that of the Ras binding domain of Raf kinase which binds to Ras-GTP ([0096] 32). However, recent evidence shows that not all RA domains bind to Ras-GTP. The alignment of RA domains from several proteins including GRF4 is given in FIG. 9.
  • PEST Sequences, coil-coil and PY motifs [0097]
  • In addition to the above domains, GRF4 has two PEST sequences which are after found in unstable proteins. GRF4 also has a coiled-coil region which participates in protein-protein interaction through interactions of multiple amphipathic alpha helices ([0098] 33). The PY motifs serve as attachment sites for the Nedd4-WW domain, thereby facilitating ubiquitination and degradation of GRF4.
  • Functionally equivalent nucleic acid molecules [0099]
  • The invention includes nucleic acid molecules that are functional equivalents of all or part of the sequence in [SEQ ID NO: 1]. (A nucleic acid molecule may also be referred to as a DNA sequence or nucleotide sequence in this application. All these terms have the same meaning as nucleic acid molecule and may be used to refer, for example, to a cDNA, complete gene or a gene fragment. The intended meaning will be clear to a person skilled in the art.) Functionally equivalent nucleic acid molecules are DNA and RNA (such as genomic DNA, cDNA, synthetic DNA, and mRNA nucleic acid molecules), that encode peptides, proteins, and polypeptides having the same or similar GRF4 activity as the GRF4 polypeptide shown in (SEQ ID NO: 23. Functionally equivalent nucleic acid molecules can encode peptides, polypeptides and proteins that contain a region having sequence identity to a region of a GRF4 polypeptide or more preferably to the entire GRF4 polypeptide. The CDC25 is a preferred region because it is the central catalytic region. The invention includes nucleic acid molecules that have a region with sequence identity to the CDC25 coding region of [SEQ ID NO: 1] which is represented by about nucleotide no. 2194 (2131+63) to nucleotide no. 3082 (preferred percentages of identity are below). The invention includes nucleic acid molecules about: <1000 nucleotides (preferably about 888 nucleotides), <1500 nucleotides, <2000 nucleotides, <3000 nucleotides or <5000 nucleotides which encode a region having sequence identity to the CDC25 coding region and having CDC25 activity or CDC25-ike activity. [0100]
  • Identity is calculated according to methods known in the art. The Clustal W program (preferably using default parameters) [Thompson, J D et al., Nucleic Acid Res. 22:4673-4680.], described below, is most preferred. For example, if a nucleic acid molecule (called “Sequence A”) has 90% identity to a portion of the nucleic acid molecule in [SEQ ID NO: 1], then Sequence A will preferably be identical to the referenced portion of the nucleic acid molecule in [SEQ ID NO: 1], except that Sequence A may include up to 10 point mutations, such as substitutions with other nucleotides, per each 100 amino acids of the referenced portion of the nucleic acid molecule in [SEQ ID NO: 1]. Mutations described in this application preferably do not disrupt the reading frame of the coding sequence. Nucleic acid molecules functionally equivalent to the GRF4 sequences can occur in a variety of forms as described below. [0101]
  • Nucleic acid molecules may encode conservative amino acid changes in GRF4 polypeptide. The invention includes functionally equivalent nucleic acid molecules that encode conservative amino acid changes within a GRF4 amino acid sequence and produce silent amino acid changes in GRF4. [0102]
  • Nucleic acid molecules may encode non-conservative amino acid substitutions, additions or deletions in GRF4 polypeptide. The invention includes functionally equivalent nucleic acid molecules that make non conservative amino acid changes within the GRF4 amino acid sequence in [SEQ ID NO: 2]. Functionally equivalent nucleic acid molecules include DNA and RNA that encode peptides, polypeptides and proteins having non-conservative amino acid substitutions (preferably substitution of a chemically similar amino acid), additions, or deletions but which also retain the same or similar GRF4 activity as the GRF4 polypeptide shown in [SEQ ID NO: 2]. The DNA or RNA can encode fragments or variants of GRF4. Fragments are useful as imminogens and in immunogenic compositions (U.S. Pat. No. 5,837,472). The GRF4 or GRF4 -like activity of such fragments and variants is identified by assays as described below. Fragments and variants of GRF4 encompassed by the present invention should preferably have at least about 40%, 60%, 80% or 95% sequence identity or preferably at least about 96%, 97%, 98%, 99%, 99.5%, 99.9% or more preferably at least about 99.95% sequence identity to the naturally occurring GRF4 nucleic acid molecule (preferably measured between the coding region of the [0103] sequence nucleotides 63 to 4562), or a region of the sequence, such as the coding sequence or one of the conserved domains of the nucleic acid molecule, without being identical to the sequence in [SEQ ID NO: 1]. These sequences preferably encode all the GRF4 domains and motifs described above. One or more domain or motif may be omitted to obtain desired activity. The CDC25 domain is preferably conserved in the nucleic acid molecule and polypeptide in order to preserve GRF4 activity. Sequence identity is preferably measured with the Clustal W program (preferably using default parameters) [Thompson, J D et al., Nucleic Acid Res. 22:4673-4680.]. In another embodiment, the Gap program may be used. The algorithm of Needleman and Wunsch (1970 J. Mol. Biol. 48:443-453) is used in the Gap program. BestFit may also be used to measure sequence identity. It aligns the best segment of similarity between two sequences. Alignments are made using the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482-489. Most preferably, 1, 2, 3, 4, 5, 5-10, 10-15, 15-25, 25-50, 50-100 or 100-600 nucleotides are modified. One would be able to make more changes to the nucleotide and amino acid sequences (such as substitutions, deletions) in regions outside of the conserved regions of GRF4 described above.
  • Nucleic acid molecules functionally equivalent to the GRF4 in [SEQ ID NO: 1] will be apparent from the following description. For example, the sequence shown in [SEQ ID NO: 1] may have its length altered by natural or artificial mutations such as partial nucleotide insertion or deletion, so that when the entire length of the coding sequence within [SEQ ID NO: 1], is taken as 100%, the functional equivalent nucleic acid molecule preferably has a length of about 60-120% thereof, more preferably about 80-110% thereof. Fragments may be less than 60%. [0104]
  • Nucleic acid molecules containing partial (usually 80% or less, preferably 60% or less, more preferably 40% or less of the entire length) natural or artificial mutations so that some codons in these sequences code for different amino acids, but wherein the resulting polypeptide retains the same or similar GRF4 activity as that of a naturally occurring GRF4 polypeptide. The mutated DNAs created in this manner should preferably encode a polypeptide having at least about 40%, preferably at least about 60%, at least about 80%, and more preferably at least about 90% or 95%, and most preferably at least about 97%, 98%, 99%, 99.5%, 99.9%, or 99.95% sequence identity to the amino acid sequence of the GRF4 polypeptide in [SEQ ID NO: 2]. Sequence identity is preferably assessed by the Clustal W program. [0105]
  • Since the genetic code is degenerate, the nucleic acid sequence in [SEQ ID NO: 1] is not the only sequence which may code for a polypeptide having GRF4 activity. This invention includes nucleic acid molecules that have the same essential genetic information as the nucleic acid molecule described in [SEQ ID NO: 1] or a domain or motif of this region. Nucleic acid molecules (including RNA) having one or more nucleic acid changes compared to the sequences described in this application and which result in production of a polypeptide shown in [SEQ ID NO: 2] are within the scope of the invention. [0106]
  • Other functional equivalent forms of GRF4-encoding nucleic acids can be isolated using conventional DNA-DNA or DNA-RNA hybridization techniques. Thus, the present invention also includes nucleic acid molecules that hybridize to one or more of the sequences in [SEQ ID NO: 1] or its complementary sequence, and that encode expression for peptides, polypeptides and proteins exhibiting the same or similar activity as that of the GRF4 polypeptide produced by the DNA in [SEQ ID NO: 1] or its variants. Such nucleic acid molecules preferably hybridize to the sequence in [SEQ ID NO: 1] under moderate to high stringency conditions (see Sambrook et al. Molecular Cloning: A Laboratory Manual, Most Recent Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). High stringency washes have low salt (preferably about 0.2% SSC), and low stringency washes have high salt (preferably about 2% SSC). A temperature of about 37° C. or about 42° C. is considered low stringency, and a temperature of about 50-65° C. is high stringency. The invention also includes a method of identifying nucleic acid molecules encoding a GRF4 activator polypeptide (preferably a mammalian polypeptide), including contacting a sample containing nucleic acid molecules including all or part of [SEQ ID NO: 1] (preferably at least about 15 or 30 nucleotides of [SEQ ID NO: 1]) under moderate or high stringency hybridization conditions and identifying nucleic acid molecules which hybridize to the nucleic acid molecules including all or part of [SEQ ID NO: 1].). [SEQ ID NO: 3] may be used in a similar manner. Similar methods are described in U.S. Pat. No. 5,851,788 which is incorporated by reference in its entirety. [0107]
  • The invention also includes methods of using all or part of the nucleic acid molecules which hybridize to all or part of [SEQ ID NO: 1 or 3], for example as probes or in assays to identify antagonists or inhibitors of the polypeptides produced by the nucleic acid molecules (described below). The invention also includes methods of using nucleic acid molecules having sequence identity to the GRF4 nucleic acid molecule (as described below) in similar methods. Polypeptides based on all or part of [SEQ ID NOS: 2, 4, 5, or 6] are also useful as probes. [0108]
  • The invention also includes a nucleic acid molecule detection kit including, preferably in a suitable container means or attached to a surface, a nucleic acid molecule of the invention encoding GRF4 or a polypeptide having GRF4 activity and a detection reagent (such as a detectable label). Other variants of kits will be apparent from this description and teachings in patents such as U.S. Pat. Nos. 5,837,472 and 5,801,233 which are Incorporated by reference in their entirety. [0109]
  • For example, [0110] Hybridization solution 1 is low stringency: about: >50% formamide, >5×denhardt's, >1% SDS, >5×SSC, >42° C.; Hybridization solution 2 is high stringency: about: >1% BSA, >1 mM EDTA, >0.5 M NaHPO4, pH 7.2, >7% SDS, >65° C. A preferable high stringency wash consists of about: >0.2×SSC, >0.1% SDS. A preferable low stringency wash has about: >2×SSC, >0.1% SDS). These conditions may be varied as known in the art. The present invention also includes nucleic acid molecules that hybridize to genomic DNA, cDNA, or synthetic DNA molecules that encode the amino acid sequence of the GRF4 polypeptide, or genetically degenerate forms, under salt and temperature conditions equivalent to those described in this application, and that encode a peptide, polypeptide or polypeptide that has the same or similar activity as the GRF4 polypeptide. In a preferred embodiment, the invention includes DNA that hybridizes to all or part of the CDC25 coding region of [SEQ ID NO: 1] which is represented by about nucleotide no. 2194 (2131+63) to nucleotide no. 3082, under moderate to high stringency conditions.
  • A nucleic acid molecule described above is considered to have a function substantially equivalent to the GRF4 nucleic acid molecules of the present invention if the polypeptide produced by the nucleic acid molecule has GRF4 activity. A polypeptide has GRF4 activity if it can activate Ras. Activation of Ras is shown where a polypeptide is active in catalyzing guanine-nucleotide exchange on small GTPase Ras using the in vitro GEF assay. [0111]
  • Production of GRF4 in eukaryotic and prokaryotic cells [0112]
  • The nucleic acid molecules of the invention may be obtained from a cDNA library. The nucleotide molecules can also be obtained from other sources known in the art such as expressed sequence tag analysis or in vitro synthesis. The DNA described in this application (including variants that are functional equivalents) can be introduced into and expressed in a variety of eukaryotic and prokaryotic host cells. A recombinant nucleic acid molecule for the GRF4 contains suitable operatively linked transcriptional or translational regulatory elements. Suitable regulatory elements are derived from a variety of sources, and they may be readily selected by one with ordinary skill in the art (Sambrook, J, Fritsch, E. E. & Maniatis, T. (Most Recent Edition). Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press. New York; Ausubel et al. (Most Recent Edition) Current Protocols in Molecular Biology, John Wiley & Sons, Inc.). For example, if one were to upregulate the expression of the nucleic acid molecule, one could insert a sense sequence and the appropriate promoter into the vector. Promoters can be inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific. Transcription is enhanced with promoters known in the art for expression. The CMV and SV40 promoters are commonly used to express desired polypeptide in mammalian cells. Other promoters known in the art may also be used (many suitable promoters and vectors are described in the applications and patents referenced in this application). [0113]
  • If one were to downregulate the expression of the nucleic acid molecule, one could insert the antisense sequence and the appropriate promoter into the vehicle. The nucleic acid molecule may be either isolated from a native source (in sense or antisense orientations), synthesized, or it may be a mutated native or synthetic sequence or a combination of these. [0114]
  • Examples of regulatory elements include a transcriptional promoter and enhancer or RNA polymerase binding sequence, a ribosomal binding sequence, including a translation initiation signal. Additionally, depending on the vector employed, other genetic elements, such as selectable markers, may be incorporated into the recombinant molecule. Other regulatory regions that may be used include an enhancer domain and a termination region. The regulatory elements may be from animal, plant, yeast, bacterial, fungal, viral, avian, insect or other sources, including synthetically produced elements and mutated elements. [0115]
  • In addition to using the expression vectors described above, the polypeptide may be expressed by inserting a recombinant nucleic acid molecule in a known expression system derived from bacteria, viruses, yeast, mammals, insects, fungi or birds. The recombinant molecule may be introduced into the cells by techniques such as [0116] Agrobacterium tumefaciens-mediated transformation, particle-bombardment-mediated transformation, direct uptake, microinjection, coprecipitation, transfection and electroporation depending on the cell type. Retroviral vectors, adenoviral vectors, Adeno Associated Virus (AAV) vectors, DNA virus vectors and liposomes may be used. Suitable constructs are inserted in an expression vector, which may also include markers for selection of transformed cells. The construct may be inserted at a site created by restriction enzymes.
  • In one embodiment of the invention, a cell is transfected with a nucleic acid molecule of the invention inserted in an expression vector to produce cells expressing a polypeptide encoded by the nucleic acid molecule. [0117]
  • Another embodiment of the invention relates to a method of transfecting a cell with a nucleic acid molecule of the invention, inserted in an expression vector to produce a cell expressing the GRF4 polypeptide or other polypeptide of the invention. The invention also relates to a method of expressing the polypeptides of the invention in a cell. A preferred process would include culturing a cell including a recombinant DNA vector including a nucleic acid molecule encoding GRF4 (or another nucleic acid molecule of the invention) in a culture medium so that the polypeptide is expressed. The process preferably further includes recovering the polypeptide from the cells or culture medium. [0118]
  • Probes [0119]
  • The invention also includes oligonucleotide probes made from the cloned GRF4 nucleic acid molecules described in this application or other nucleic acid molecules of the invention, such as Clone 7.7 (see materials and methods section). The probes may be 15 to 30 nucleotides in length and are preferably at least 30 or more nucleotides. A preferred probe is at least 15 nucleotides of GRF4 in [SEQ ID NO: 1] or the Clone 7.7 sequence. The invention also includes at least 30 consecutive nucleotides of [SEQ ID NO: 1] or the Clone 7.7 sequence. The probes are useful to identify nucleic acids encoding GRF4 peptides, polypeptides and polypeptides other than those described in the application, as well as peptides, polypeptides and polypeptides functionally equivalent to GRF4. The oligonucleotide probes are capable of hybridizing to the sequence shown in [SEQ ID NO: 1] under stringent hybridization conditions. A nucleic acid molecule encoding a polypeptide of the invention may be isolated from other organisms by screening a library under moderate to high stringency hybridisation conditions with a labeled probe. The activity of the polypeptide encoded by the nucleic acid molecule is assessed by cloning and expression of the DNA. After the expression product is isolated the polypeptide is assayed for GRF4 activity as described in this application. [0120]
  • Functionally equivalent GRF4 nucleic acid molecules from other cells, or equivalent GRF4 -encoding cDNAs or synthetic DNAs, can also be isolated by amplification using Polymerase Chain Reaction (PCR) methods. Oligonucleotide primers, such as degenerate primers, based on [SEQ ID NO: 2] can be prepared and used with PCR and reverse transcriptase (E. S. Kawasaki (1990), In innis et al., Eds., PCR Protocols, Academic Press, San Diego, [0121] Chapter 3, p. 21) to amplify functional equivalent DNAs from genomic or cDNA libraries of other organisms. The oligonucleotides can also be used as probes to screen cDNA libraries.
  • Functionally equivalent peptides, polypeptides and proteins [0122]
  • The present invention includes not only the polypeptides encoded by the sequences of the invention, but also functionally equivalent peptides, polypeptides and proteins that exhibit the same or similar GRF4 polypeptide activity. A polypeptide is considered to possess a function substantially equivalent to that of the GRF4 polypeptide if it has GRF4 activity. Functionally equivalent peptides, polypeptides and proteins include peptides, polypeptides and proteins that have the same or similar protein activity as GRF4 when assayed, i.e. they are able to activate Ras. A polypeptide has GRF4 activity if it is active in catalyzing guanine-nucleotide exchange on small GTPase Ras using the in-vitro GEF assay. (Where only one or two of the terms peptides, polypeptides and proteins is referred to, it will be clear to one skilled in the art whether the other types of amino acid sequences also would be useful.) [0123]
  • These peptides, polypeptides and proteins can contain a region or moiety exhibiting sequence identity to a corresponding region or moiety of the GRF4 polypeptide described in the application, but this is not required as long as they exhibit the same or similar GRF4 activity. [0124]
  • Identity refers to the similarity of two polypeptides or proteins that are aligned so that the highest order match is obtained. Identity is calculated according to methods known in the art, such as the Clustal W program. For example, if a polypeptide (called “Sequence A”) has 90% identity to a portion of the polypeptide in [SEQ ID NO: 2], then Sequence A will be identical to the referenced portion of the polypeptide in [SEQ ID NO: 2], except that Sequence A may include up to 10 point mutations, such as substitutions with other amino acids, per each 100 amino acids of the referenced portion of the polypeptide in sequence (a) in [SEQ ID NO: 2]. Peptides, polypeptides and proteins functional equivalent to the GRF4 polypeptides can occur in a variety of forms as described below. [0125]
  • Peptides, polypeptides and proteins biologically functional equivalent to GRF4 polypeptide include amino acid sequences containing amino acid changes in the GRF4 sequence. The functional equivalent peptides, polypeptides and proteins have at least about 40% sequence identity, preferably at least about 60%, at least about 75%, at least about 80%, at least about 90% or at least about 95% sequence identity, to the naturally GRF4 polypeptide or a corresponding region. More preferably, the functional equivalent peptides, polypeptides and proteins have at least about 97%, 98%, 99%, 99.5%, 99.9% or 99.95% sequence identity to the naturally occurring GRF4 polypeptide or a region of the sequence (such as one of the conserved domains of the polypeptide), without being identical to the sequence in [SEQ ID NO: 2]. “Sequence identity” is preferably determined by the Clustal W program. Most preferably, 1, 2, 3, 4, 5, 5-10, 10-15, 15-25 or 25-50 amino acids are modified. The sequences preferably include all the GRF4 domains and motifs described above. One or more domain or motif may be omitted to obtain desired activity. The CDC25 domain is preferably conserved in the polypeptide in order to preserve GRF4 activity. Structurally conserved [0126] regions 1, 2 and 3 (FIG. 4A) are critical for CDC25 structure and activity. Preferably, conserved amino acids in these regions would not be altered. One would be able to make more changes to the amino acid sequences in regions outside of the conserved regions of GRF4. The CDC25 region of the polypeptide includes amino acid no. 712 to amino acid no. 1006 (preferred percentages of identity are below). The invention includes polypeptides about: <350 amino acids (preferably about 294 amino acids), <500 amino acids, <750 amino acids, <1000 amino acids, <1250 amino acids, <1500 amino acids or <2000 amino acids which have sequence identity to the CDC25 region and have CDC25 activity or CDC25-like activity (preferably Ras activation).
  • The invention includes peptides, proteins or proteins which retain the same or similar activity as all or part of GRF4. Such peptides preferably consist of at least 5 amino acids. In preferred embodiments, they may consist of 6 to 10, 11 to 15, 16 to 25 or 26 to 50, 50 to 150, 150 to 250, 250 to 500, 500 to 750 or 750 to 1250 amino acids of GRF4. Fragments of the GRF4 polypeptide can be created by deleting one or more amino acids from the N-terminus, C-terminus or an internal region of the polypeptide (or combinations of these), so long as the fragments retain the same or similar GRF4 activity as all or part of the GRF4 polypeptide disclosed in the application. These fragments can be generated by restriction nuclease treatment of an encoding nucleic acid molecule. Alternatively, the fragments may be natural mutants of the GRF4. Fragments of the polypeptide may be used in an assay to identify compounds that bind the polypeptide. Methods known in the art may be used to identify agonists and antagonists of the fragments. [0127]
  • Variants of the GRF4 polypeptide may also be created by splicing. A combination of techniques known in the art may be used to substitute, delete or add amino acids. For example, a hydrophobic residue such as methionine can be substituted for another hydrophobic residue such as alanine. An alanine residue may be substituted with a more hydrophobic residue such as leucine, valine or isoleucine. An aromatic residue such as phenylalanine may be substituted for tyrosine. An acidic, negatively charged amino acid such as aspartic acid may be substituted for glutamic acid. A positively charged amino acid such as lysine may be substituted for another positively charged amino acid such as arginine. Modifications of the polypeptides of the invention may also be made by treating a polypeptide of the invention with an agent that chemically alters a side group, for example, by converting a hydrogen group to another group such as a hydroxy or amino group. [0128]
  • Peptides having one or more D-amino acids are contemplated within the invention. Also contemplated are peptides where one or more amino acids are acetylated at the N-terminus. Those skilled in the art recognize that a variety of techniques are available for constructing peptide mimetics (i.e. a modified peptide or polypeptide or protein) with the same or similar desired biological activity as the corresponding polypeptide of the invention but with more favorable activity than the polypeptide with respect to characteristics such as solubility, stability, andlor susceptibility to hydrolysis and proteolysis. See for example, Morgan and Gainor, [0129] Ann. Rep. Med. Chem., 24:243-252 (1989).
  • The invention also includes hybrid nucleic acid molecules and peptides, for example where a nucleic acid molecule from the nucleic acid molecule of the invention is combined with another nucleic acid molecule to produce a nucleic acid molecule which expresses a fusion peptide. A preferred fusion polypeptide includes all or part of the active as CDC25 Domain of GRF4. One or more of the other domains of GRF4 described in this application could also be used to make fusion polypeptides. For example, a nucleotide domain from a molecule of interest may be ligated to all or part of a nucleic acid molecule encoding GRF4 polypeptide (or a molecule having sequence identity) described in this application. Fusion nucleic acid molecules and peptides can also be chemically synthesized or produced using other known techniques. The invention includes a nucleic acid molecule encoding a fusion polypeptide or a recombinant vector including the sequence of [SEQ ID NO: 1] or [SEQ ID NO: 3]. The invention also includes a fusion polypeptide including the sequence of [SEQ ID NO: 2] or a polypeptide encoded by [SEQ ID NO: 3]. [0130]
  • The variants preferably retain the same or similar GRF4 activity as the naturally occurring GRF4. The, GRF4 activity of such variants can be assayed by techniques described in this application and known in the art. [0131]
  • Variants produced by combinations of the techniques described above but which retain the same or similar GRF4 activity as naturally occurring GRF4 are also included in the invention (for example, combinations of amino acid additions, deletions, and substitutions). [0132]
  • Fragments and variants of GRF4 encompassed by the present invention preferably have at least about 40% sequence identity, preferably at least about 60%, 75%, 80%, 90% or 95% sequence identity, to the naturally occurring polypeptide, or corresponding region or moiety. Most preferably, the fragments have at least about 97%, 98% or 99%, 99.5%, 99.9% or 99.99% sequence identity to the naturally occurring GRF4 polypeptide, or corresponding region. Sequence identity is preferably measured with the Clustal W. [0133]
  • The invention also includes fragments of the polypeptides of the invention which do not retain the same or similar activity as the complete polypeptides but which can be used as a research tool to characterize the polypeptides of the invention. [0134]
  • Enhancement of GRF4 polypeptide activity [0135]
  • The activity of the GRF4 polypeptide is increased by carrying out selective site-directed mutagenesis. Using protein modeling and other prediction methods, we characterize the binding domain and other critical amino acid residues in the polypeptide that are candidates for mutation, insertion andlor deletion. A DNA plasmid or expression vector containing the GRF4 nucleic acid molecule or a nucleic acid molecule having sequence identity is preferably used for these studies using the U.S.E. (Unique site elimination) mutagenesis kit from Pharmacia Biotech or other mutagenesis kits that are commercially available, or using PCR. Once the mutation is created and confirmed by DNA sequence analysis, the mutant polypeptide is expressed using an expression system and its activity is monitored. This approach is useful not only to enhance activity, but also to engineer some functional domains for other properties useful in the purification or application of the polypeptides or the addition of other biological functions. It is also possible to synthesize a DNA fragment based on the sequence of the polypeptides that encodes smaller polypeptides that retain activity and are easier to express. It is also possible to modify the expression of the cDNA so that it is induced under desired environmental conditions or in response to different chemical inducers or hormones. It is also possible to modify the DNA sequence so that the polypeptide is targeted to a different location. All these modifications of the DNA sequences presented in this application and the polypeptides produced by the modified sequences are encompassed by the present invention. [0136]
  • Pharmaceutical compositions [0137]
  • The GRF4 nucleic acid molecule or its polypeptide and functional equivalent nucleic acid molecules or polypeptides are also useful when combined with a carrier in a pharmaceutical composition. Suitable examples of vectors for GRF4 are described above. The compositions are useful when administered in methods of medical treatment of a disease, disorder or abnormal physical state characterized by insufficient GRF4 expression or inadequate levels or activity of GRF4 polypeptide by increasing expression, concentration or activity. The invention also includes methods of medical treatment of a disease, disorder or abnormal physical state characterized by excessive GRF4 expression or levels or activity of GRF4 polypeptide, for example by administering a pharmaceutical composition including a carrier and a vector that expresses GRF4 antisense DNA. Cancer is one example of a disease which can be treated by antagonizing GRF4. An agent that upregulates GRF4 gene expression or GRF4 polypeptide activity may be combined with a carrier to form a pharmaceutical composition. An agent that downregulates GRF4 expression or GRF4 polypeptide activity may be combined with a carrier to form a pharmaceutical composition. [0138]
  • The pharmaceutical compositions of this invention are used to treat patients having degenerative diseases, disorders or abnormal physical states such as cancer. For example, cancer can be treated by antagonizing GRF4, by blocking CDC25 activity. The following U.S. patents deal with the use of compounds that modulate Ras in order to treat diseases, disorders or abnormal physical states: 5856439, 5852034, 5843941, 5840683, 5807853, 5801175, 5789438, 5776902, 5756528, 5712280, 5710171, 5672611, 5668171, 5663193, 5661128, 5627202, 5624936, 5585359, 5582995, 5576293, 5571835, 5567729, 5536750, 5523456, 5491164, 5480893, 5468733, 5238922, 5185248, 5523456, 5491164, 5480893, 5468733, 5238922 and 5185248 which are incorporated by reference in their entirety. The following WIPO PCT patent applications disclose the use of compounds that modulate Ras in order to treat diseases: WO9857990, WO9805786, WO9828980, WO9815556, WO9857970, WO9857964, WO9857963, WO9857949, WO9857948, WO9857947, WO9857946, WO9849194, WO9811106, WO9811098, WO9811097, WO9809641, WO9804545, WO9721820, WO9857950 and WO9737678 which are incorporated by reference in their entirety. Many of these patents and applications describe inhibition of Ras to treat excessive cell proliferation and cancer. The patents and applications disclose research techniques to identify compounds which inhibit Ras or compounds that regulate Ras. [0139]
  • The pharmaceutical compositions can be administered to humans or animals by methods such as tablets, aerosol administration, intratracheal instillation and intravenous injection in methods of medical treatment involving upregulating or downregulating GRF4 gene or polypeptide to upregulate or downregulate Ras activity. Dosages to be administered depend on patient needs, on the desired effect and on the chosen route of administration. [0140]
  • Nucleic acid molecules and polypeptides may be introduced into cells using in vivo delivery vehicles such as liposomes. They may also be introduced into these cells using physical techniques such as microinjection and electroporation or chemical methods such as coprecipitation or using liposomes. [0141]
  • The pharmaceutical compositions can be prepared by known methods for the preparation of pharmaceutically acceptable compositions which can be administered to patients, and such that an effective quantity of the nucleic acid molecule or polypeptide is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA). [0142]
  • On this basis, the pharmaceutical compositions could include an active compound or substance, such as a GRF4 nucleic acid molecule or polypeptide, in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and isoosmotic with the physiological fluids. The methods of combining the active molecules with the vehicles or combining them with diluents is well known to those skilled in the art. The composition could include a targeting agent for the transport of the active compound to specified sites within tissue. [0143]
  • Administration of GRF4 nucleic acid molecule [0144]
  • Since persons suffering from disease, disorder or abnormal physical state can be treated by either up or down regulation of GRF4, gene therapy to increase or reduce GRF4 expression is useful to modify the development/progression of disease. For example, to treat cancer, GRF4 could be modulated to suppress Ras activity (inhibiting GRF4 prevents Ras activation). [0145]
  • The invention also includes methods and compositions for providing gene therapy for treatment of diseases, disorders or abnormal physical states characterized by insufficient GRF4 expression or inadequate levels or activity of GRF4 polypeptide (see the discussion of phamaceutical compositions, above) involving administration of a pharmaceutical composition of the invention. The invention also includes methods and compositions for providing gene therapy for treatment of diseases, disorders or abnormal physical states characterized by excessive GRF4 expression or levels of activity of GRF4 polypeptide involving administration of a pharmaceutical composition. [0146]
  • The invention includes methods and compositions for providing a nucleic acid molecule encoding GRF4 or functional equivalent nucleic acid molecule to the cells of an individual such that expression of GRF4 in the cells provides the biological activity or phenotype of GRF4 polypeptide to those cells (preferably Ras activation). Sufficient amounts of the nucleic acid molecule are administered and expressed at sufficient levels to provide the biological activity or phenotype of GRF4 polypeptide to the cells. For example, the method can preferably involve a method of delivering a nucleic acid molecule encoding GRF4 to the cells of an individual having a disease, disorder or abnormal physical state, comprising administering to the individual a vector comprising DNA encoding GRF4. The method may also relate to a method for providing an individual having a disease, disorder or abnormal physical state with biologically active GRF4 polypeptide by administering DNA encoding GRF4. The method may be performed ex vivo or in vivo. Methods and compositions for administering GRF4 (including in gene therapy) are explained, for example, in U.S. Pat. Nos. 5,672,344, 5,645,829, 5,741,486, 5,656,465, 5,547,932, 5,529,774, 5,436,146, 5,399,346 and 5,670,488, 5,240,846 which are incorporated by reference in their entirety. [0147]
  • The method also relates to a method for producing a stock of recombinant virus by producing virus suitable for gene therapy comprising DNA encoding GRF4. This method preferably involves transfecting cells permissive for virus replication (the virus containing the nucleic acid molecule) and collecting the virus produced. [0148]
  • The invention also includes methods and compositions for providing a nucleic acid molecule encoding an antisense sequence to GRF4 or a Nedd4 nucleic acid molecule sequence to the cells of an individual such that expression of the sequence prevents GRF4 ybiological activity or phenotype or reduces GRF4. The methods and compositions can be used in vivo or in vitro. Sufficient amounts of the nucleic acid molecule are administered and expressed at sufficient levels to reduce the biological activity or phenotype of GRF4 polypeptide in the cells. Similar methods as described in the preceding paragraph may be used with appropriate modifications. [0149]
  • The methods and compositions can be used in vivo or in vitro. The invention also includes compositions (preferably pharmaceutical compositions for gene therapy). The compositions include a vector containing GRF4. Nedd4 or a functional equivalent molecule or antisense DNA. The carrier may be a pharmaceutical carrier or a host cell transformant including the vector. Vectors known in the art include adenovirus, adeno associated virus (AAV), herpes virus vectors, such as vaccinia virus vectors, and plasmids. The invention also includes packaging cell lines that produce the vector. Methods of producing the vector and methods of gene therapy using the vector are also included with the invention. [0150]
  • The invention also includes a transformed cell, such as a brain cell or a lung cell containing the vector and recombinant GRF4 nucleic acid molecule antisense sequence, Nedd4 or a functionally equivalent molecule. [0151]
  • Heterologous expression of GRF4 [0152]
  • Expression vectors are useful to provide high levels of polypeptide expression. Cell cultures transformed with the nucleic acid molecules of the invention are useful as research tools particularly for studies of GRF4 interactions with Ras. Novel pathways to activate Ras are identified. Cell cultures are used in overexpression and research according to numerous techniques known in the art. For example, a cell line (either an immortalized cell culture or a primary cell culture) may be transfected with a vector containing a GRF4 nucleic acid molecule (or molecule having sequence identity) to measure levels of expression of the nucleic acid molecule and the activity of the nucleic acid molecule and polypeptide. A polypeptide of the invention may be used in an assay to identify compounds that bind the polypeptide. Methods known in the art may be used to identify agonists and antagonists of the polypeptides. One may obtain cells that do not express GRF4 endogenously and use them in experiments to assess ectopoic GRF4 nucleic acid molecule expression. Experimental groups of cells may be transfected with vectors containing different types of GRF4 nucleic acid molecules (or nucleic acid molecules having sequence identity to GRF4 or fragments of GRF4 nucleic acid molecule) to assess the levels of polypeptide produced, its functionality and the phenotype of the cells produced. Other expression systems can also be utilized to overexpress the GRF4 in recombinant systems. The polypeptides are also useful for in vitro analysis of GRF4 activity. For example, the polypeptide produced can be used for microscopy or X-ray crystallography studies, and the tertiary structure of individual domains may be analyzed by NMR spectroscopy. [0153]
  • Experiments may be performed with cell cultures or in vivo to identify polypeptides that bind to different domains of GRF4. One could also target cNMP to block upstream activators or inhibitors. Nedd4 binding to GRF4 can be studied. For example, Nedd4 binding could be blocked to study the effects on GRF4 stability. Another example is blocking the PDZ domain to prevent membrane localization of GRF4. Similar approaches could be taken to study other polypeptide domains or motifs. [0154]
  • Preparation of antibodies [0155]
  • The GRF4 polypeptide is also useful as an antigen for the preparation of antibodies that can be used to purify or detect other GRF4like polypeptides. To recognize the polypeptide: preferably target to the C-terminus. To block activity: preferably target to the CDC25 domain, to block aCMP/cGMP-dependent activity, preferably target the CNMP-BD. To block membrane targeting: preferably target to the PDZ domain. [0156]
  • We have already generated polyclonal antibodies against the C-terminal 150 amino acids of GRF4 which is a unique region. Monoclonal and polyclonal antibodies are prepared according to the description in this application and techniques known in the art. For examples of methods of the preparation and uses of monoclonal antibodies, see U.S. Pat. Nos. 5,688,681, 5,688,657, 5,683,693, 5,667,781, 5,665,356, 5,591,628, 5,510,241, 5,503,987, 5,501,988, 5,500,345 and 5,496,705 which are incorporated by reference in their entirety. Examples of the preparation and uses of polyclonal antibodies are disclosed in U.S. Pat. Nos. 5,512,282, 4,828,985, 5,225,331 and 5,124,147 which are incorporated by reference in their entirety. Antibodies recognizing GRF4 can be employed to screen organisms or tissues containing GRF4 polypeptide or GRF4-like polypeptides. The antibodies are also valuable for immuno-purification of GRF4 or GRF4-like polypeptides from crude extracts. [0157]
  • An antibody (preferably the antibody described above) may be used to detect GRF4 or a similar polypeptide, for example, by contacting a biological sample with the antibody under conditions allowing the formation of an immunological complex between the antibody and a polypeptide recognized by the antibody and detecting the presence or absence of the immunological complex whereby the presence of GRF4 or a similar polypeptide is detected in the sample. The invention also includes compositions preferably including the antibody, a medium suitable for the formation of an immunological complex between the antibody and a polypeptide recognized by the antibody and a reagent capable of detecting the immunolgical complex to ascertain the presence of GRF4 or a similar polypeptide. The invention also includes a kit for the in vitro detection of the presence or absence of GRF4 or a similar polypeptide in a biological sample, wherein the kit preferably includes an antibody, a medium suitable for the formation of an immunological complex between the antibody and a polypeptide recognized by the antibody and a reagent capable of detecting the immunological complex to ascertain the presence of GRF4 or a similar polypeptide in a biological sample. Further background on the use of antibodies is provided, for example in U.S. Pat. Nos. 5,695,931 and 5,837,472 which are Incorporated by reference in their entirety. [0158]
  • Diagnostic test [0159]
  • In many cancers, Ras is aberrantly expressed or is mutated. It is likely that in some cancers, GRF4 is mutated as well, so GRF4 is useful as a screening tool for the detection of cancer or to monitor its progression. For example, GRF4 may be sequenced to determine if a cancer-causing mutation is present. Levels of GRF4 may also be measured to determine whether GRF4 is upregulated. A cancer causing mutation or upregulated levels are indicative of cancer. [0160]
  • Screening for agonists and antagonists of GRF4 nucleic acid molecule and enhancers and inhibitors of GRF4 polypeptide [0161]
  • Inhibitors are preferably directed towards specific domains of GRF4 to block Ras activation. To achieve specificity, inhibitors should target the unique sequences of GRF4. For example, (i) they should block the cNMP-BD of GRF4 but not the cAMP binding site of protein kinase A (PKA) or protein kinase G (PKG), (ii) they could interfere with targeting of the PDZ domain to the plasma membrane, where Ras (the GRF4 substrate) is located or (iii) they could target the unique insert sequence within the CDC25 (catalytic) domain of GRF4. A similar approach can be used to search for compounds that may enhance Ras activation by GRF. [0162]
  • A method of identifying a compound which modulates the interaction of GRF4 with Ras, can include: [0163]
  • a) contacting (i) GRF4, a Ras-binding fragment of GRF4 (eg, the CDC25-BD, or part of the domain, such as a part including the unique 40 amino acid insert) or a derivative of either of the foregoing with (ii) Ras, a GRF4-binding fragment of Ras or a derivative of either of the foregoing in the presence of the compound; and b) determining whether the interaction between (i) and (ii) is modulated, thereby indicating that the compound modulates the interaction of GRF4 and Ras. Similar methods may be performed using Rap1. [0164]
  • Modulation can include increasing or decreasing the interaction between (i) and (ii). A GRF4 or Ras inhibitor (anti-cancer or anti-proliferative compound) inhibits the interaction between (i) and (ii). [0165]
  • The method preferably includes identifying a compound that blocks the cNMP-BD of GRF4 but not the cAMP binding site of protein kinase A (PKA) or protein kinase G (PKG). The method may alternatively include identifying a compound that interferes with targeting of the PDZ domain to the plasma membrane, where Ras (the GRF4 substrate) is located. The method may alternatively include identifying a compound that interferes with the unique insert sequence within the CDC25 (catalytic) domain of GRF4. A similar approach can be used to search for compounds that may enhance Ras activation by GRF4. More detailed methods of screening are described below. [0166]
  • Methods of screening [0167]
  • Small molecules or peptides [0168]
  • By way of example, one can screen either (i) synthetic peptide library, as described by Songyang et al, Cell 72:767, 1993 and Songyang et al, Science 275:73, 1997, for the identification of sequences recognized by the SH2 or PDZ domains, respectively or (ii) Phagedispiayed Random library screen, as described in Sparks et al., J. Biol. Chem. 269:23853, 1994 and Cheadle et al, J. Biol. Chem. 269:24034, 1994, used for the identification of sequences which bind to the src-SH3 domain. One could also screen small non-peptide organic molecules. [0169]
  • Thus, the invention includes a method of identifying a compound which modulates the interaction of GRF4 with Ras, including contacting the compound with a domain of GRF4 (such as cNMP-BD, PDZ or CDC25 domain), or a fragment or derivative thereof and determining the ability of the compound to bind to the GRF4, fragment or derivative, thereby indicating that the compound modulates the interaction of GRF4 and Ras. One may preferably target the unique sequence in the CDC25 domain of GRF4 rather than the sequences that are common to other CDC25 domains. To specifically block Ras activation by GRF4, one can target the unique sequences sof GRF4. For more general blocking of Ras (multiple pathways), portions of GRF4 similar to other CDC25 sequences (eg. similar SOS sequences ([0170] 65)) may be blocked. A method may also be performed to determine whether the compound modulates the interaction of GRF4 with Ras, including: a) contacting (i) GRF4, a Ras-binding fragment of GRF4 or a derivative of either of the foregoing with (ii) Ras, a GRF4-binding fragment of Ras or a derivative of either of the foregoing in the presence of the compound; and b) determining whether the interaction between (i) and (ii) is modulated, thereby indicating that the compound modulates the interaction of GRF4 and Ras. The ability to interfere with the interaction of GRF4 with Ras indicates that the compound is useful in preventing Ras activation and cell proliferation. The compound is also useful in treatment of cancer. Similar screening methods may be performed with Rap1.
  • Each of the domains of GRF4 (especially the cNMP-BD, PDZ and CDC25 domain), expressed as GST fusion proteins (which we have already generated) can be incubated with such peptide libraries, to identify sequences required for binding. Again, specificity can be obtained by looking for sequences which uniquely recognize GRF4 domains (for example, peptides recognizing the cNMP-BD of GRF4 but not the cAMP-BD of PKA or the cGMP-BD of PKG or of cyclic nucleotide-gated K+ channels). [0171]
  • Large molecules/proteins [0172]
  • These molecules preferably serve as templates for generation of mimetics. To identify proteins interacting with the different domains of GRF4, several methods may be applied: (i) Expression library screen, as described in this application, (ii) [0173] yeast 2 hybrid screen (Chien et al., Proc. Nati. Acad. Sci USA, 88:9578, 1991), (iii) protein microarray chip screens. The latter will allow, once the human genome project is complete, to identify most, if not all, possible GRF4 interacting proteins in humans.
  • Identification of small (peptide) or large molecules which interact with GRF4 and blocks or enhances its activity and hence Ras activation [0174]
  • Ras plays a key role in regulation of cell proliferation, differentiation and transformation, so regulating its activity has fundamental implications for the regulation of these processes, especially in cancer development and progression. [0175]
  • As described above, GRF4 is useful in a pharmaceutical preparation to treat cancer and other diseases disorders and abnormal physical states. Nedd4 (preferably all or part of Nedd4, such as the GRF4 binding domain of Nedd4) is one agent which reduces GRF4 activity. cAMP and cGMP are agents which increase GRF4 activity. GRF4 is also useful as a target. Modulation of GRF4 expression is commercially useful for identification and development of drugs to inhibit and/or enhance GRF4 function directly. Such drugs would preferably be targeted to any of the following sites: CDC25 domain, PDZ domain, cNMP-BD. Chemical libraries are used to identify pharmacophores which can specifically interact with GRF4 either in an inhibitory or stimulatory mode. The GRF4 targets that would be used in drug design include the CDC25 domain, in order to inhibit its catalytic activity. For example, nucleotide analogues which stabilize the Ras-analogue complex, thus preventing replacement of the nucleotide analogue by Ras, could interfere with activation of GRF4. Similarly, other compounds directed against the binding site of Ras on GRF4 could be useful as well. The insert in the CDC25 domain in GRF4 is unique and is useful as a target. The PDZ domain is necessary for proper localization of GRF4 to the plasma membrane and is useful as a target. The cNMP binding domain is useful to disconnect GRF4 from upstream signaling. The invention also includes methods of screening a test compound to determine whether it antagonizes or agonizes GRF4 polypeptide activity. The invention also includes methods of screening a test compound to determine whether it induces or inhibits GRF4 nucleic acid molecule expression. [0176]
  • In a preferred embodiment, the invention includes an assay for evaluating whether test compounds are capable of acting as agonists or antagonists for GRF4, or a polypeptide having GRF4 functional activity, including culturing cells containing DNA which expresses GRF4, or a polypeptide having GRF4 activity so that the culturing is carried out in the presence of at least one compound whose ability to modulate GRF4 activity (preferably Ras activating activity or CDC25 domain activity) is sought to be determined and thereafter monitoring the cells for either an increase or decrease in the level of GRF4 or GRF4 activity. Other assays (as well as variations of the above assay) will be apparent from the description of this invention and techniques such as those disclosed in U.S. Pat. No. 5,851,788, 5,736,337and 5,767,075 which are incorporated by reference in their entirety. For example, the test compound levels may be either fixed or increase. [0177]
  • Localization of GRF4 [0178]
  • i) Tissue distribution of GRF4 [0179]
  • To show tissue distribution of GRF4, mouse GRF4 specific probes were used to probe a Rat multiple.tissue mRNA blot (Clonetech). Two messages, of 8.5 and 7.5 Kb, are present in rat brain; the 8.5 Kb message is also present in rat lung (FIG. 10). We determine the polypeptide's distribution in neuronal tissue. The finding of GRF4 message in rat brain is consistent with the fact that its cDNA was initially isolated from a human brain cDNA library. Using human GRF4 specific probes on the human brain multiple region mRNA blots (Clonetech), GRF4 messages (8.5 and 7.5 Kb) are found widespread (FIG. 10). The two messages may correspond to splicing variants or isoforms of GRF4. In comparison, SOS is ubiquitously expressed, whereas RasGRF1, RasGRF2 and RasGRP are expressed primarily in the brain (23,26,27). We detect GRF4 polypeptides in cell lines using known techniques. [0180]
  • ii) Characterization of Nedd4-GRF4 interaction [0181]
  • Since mouse GRF4 was isolated from the expression library screen using Nedd4-WW2 domain as a probe, further characterization of their interaction was studied. [0182]
  • A GST-fusion protein of polypeptide corresponding to the last 150 amino acid of GRF4 (about the same length as the partial amino acid sequence isolated from the screen), containing the two PY motifs of GRF4, was generated and used in a pull-down experiment. Nedd4 is endogenously expressed in Hek 293T cells and can be detected in 293T lysates using Nedd4 antibodies (FIG. 11). When 293T lysates were incubated with agarose beads bound to GST or GST-fusion protein of the PY-containing polypeptide, Nedd4 was found to bind specifically to this polypeptide, showing that the two PY motifs of GRF4 are sufficient to interact with full-length Nedd4. [0183]
  • The interaction between Nedd4 and GRF4 was also demonstrated in living cells by co-immunoprecipitation. Flag-epitope tagged GRF4 was constructed in a mammalian expression vector (pCMV5). The co-immunoprecipitation experiment was performed using endogenous Nedd4 and transiently transfected Flag-tagged GRF4 in Hek 293T cells. First, Flag-tagged GRF4 was immunoprecipitated from transfected lysates using anti-Flag gel affinity (Sigma). When this immunocomplex containing GRF4 was resolved on SDS-PAGE and subsequently immunoblotted with Nedd4 antibodies, Nedd4 was detected in this immunocomplex. However, Nedd4 was not found in the immunocomplex that did not have GRF4 when lysates of cells transfected with empty vector were used (FIG. 12). Therefore, Nedd4 is co-immunoprecipitating with GRF4, showing that they interact in living cells. [0184]
  • GRF4 also contains PEST sequences. GRF4 is an unstable protein which is ubiquitinated by Nedd4 and targeted for degradation via the ubiquitin-dependent proteolytic pathway. We perform a ubiquitination assay to show that GRF4 is ubiquitinated protein using the protocol described in Ref. [0185] 34.
  • iii) In-vitro guanine nucleotide exchange activities [0186]
  • GRF4 has a RasGRF(GEF) activity/function. To show its GEF activity, we performed in-vitro GEF assays. The schematic outline of the in-vitro GEF assay protocol (described in Ref. [0187] 24) is given in FIG. 13. Briefly, GST-Ras was added alone (tubes 1 and 2) or along with GST-CDC25, or immunoprecipitated full-length of GRF4 (tubes 3 and 4). All tubes contained assay mixture including cold GTP and P32 alpha GTP. The exchange reactions were stopped at the indicated times. The stopped reaction mixtures were passed through nitrocellulose filters which were then washed with stop buffer to separate bound and unbound nucleotides. Filters were dried and then quantified by scintillation counting to determine bound CPM. The labeled nucleotides trapped on the washed filters were assumed to be Ras-associated. The difference in bound CPM over 30 minute period was determined for reactions where GST-Ras was added alone (it is the difference in bound CPM between tubes 1 and 2) and where GST-Ras was added with a GEF (it is the difference in bound CPM between tubes 3 and 4). The former is the basal level of GTP-binding to Ras and the later is usually increased several folds over the basal activity if the indicated GEF is active.
  • Using the GEF assay described above, the immunoprecipitated full-length GRF4 was shown to be active on Ras (FIG. 14). Additional data on the GEF assays in vitro are summarized in figure (FIG. 23[0188] e). Similar levels of GEF activity were also observed for the immunoprecipitated full-length RasGRF2 used as a positive control in this assay.
  • We perform in-vitro GEF assays using GST-CDC25 of GRF4 to show that this domain is sufficient for activity. [0189]
  • Because GRF4 contains a cNMP-BD, we tested its ability to bind cAMP directly. FIG. 2[0190] a shows that cAMP immobilized on agarose beads was able to bind the GST-cNMP-BD of GRF4 in vitro, showing a direct interaction between cAMP and GRF4-cNMP-BD. These results were substantiated by demonstrating that immobilized cAMP was able to precipitate full length GRF4 from HEK-293T cells expressing GRF4, but not from cell expressing GRF4 in which the cNMP-BD was deleted (ΔcNMP-BD) (FIG. 22b). Binding of cAMP to the GRF4-cNMP-BD was also effectively competed by cGMP (not shown), showing that cGMP can also bind to the GRF4-cNMP-BD. This is consistent with lack of conservation of the RAA and RTA sequences (described above) in the cNMP-BD, which dictates specificity towards cAMP or cGMP, respectively (Y. Su, et al., 1998).
  • As GRF4 contains a CDC25 domain homologous to those of GEF/GRFs for Ras and Rap families of small GTPases, we next tested the ability of GRF4 to activate Ras or Rap1 protein in cells, and whether this activation is dependent on cAMP or cGMP binding. Flag-tagged GRF4 was expressed in HEK-293T cells and its ability to activate Ras or Rap1 was analyzed by a previously described method employing activation specific probes for these GTPases: the Ras binding domain of Raf-1 that specifically binds the active, GTP-bound form of Ras, and the Rap1 binding domain of Ral-GDS which binds the GTP-bound form of Rap1 (C. Herrmann et al., 1995, J. de Rooij et al., 1998, S. J. Taylor et al., 1996). As seen in FIG. 3[0191] a, heterologous expression of GRF4 in HEK-293T cells led to a weak activation of endogenous Ras, which was greatly enhanced following stimulation of cells with the membrane permeable, nonhydrolyzable analogue of cAMP, 8-Br-cAMP. This effect was independent of PKA activity, because cAMP was still able to stimulate GRF4-mediated activation of Ras in the presence of H-89 or Rp8-Br-cAMPS, two known inhibitors of PKA (FIG. 23a). For example, in FIG. 3a, GRF4 stimulation of Ras activation was enhanced 3.9 fold following 8-Br-cAMP treatment and 3.5 fold following 8-Br-cAMP plus H-89 treatment. Similarly, 8-Br-cGMP, the membrane permeable, non-hydrolyzable analogue of cGMP, was able to greatly enhance activation of Ras by GRF4, and this effect was also independent of PKG activity, as determined by lack of effect of H-8 or RP8-Br-cGMPS, two known inhibitors of PKG (FIG. 23b). Moreover, the activation of Ras by GRF4 in cells was also seen following treatment which leads to elevation of intracellular cAMP and cGMP concentrations: namely, treating cells with forskolin plus IBMX, or YC-1 (3-(5′-Hydroxymethyl-2′-furyl)-1-benzylindazole) plus DiPyridamole (DiPy), to elevate intracellular levels of cAMP or cGMP, respectively (FIG. 23c). Thus, these results show that both cAMP and cGMP can stimulate GRF4 to activate Ras in living cells. To verify that this activation is mediated by the CDC25 domain and is dependent on the cNMP-BD of GRF4, we performed similar experiments using GRF4 lacking its CDC25 domain (ACDC25) or its cNMP-BD (ΔcNMP-BD). As seen in FIG. 23d, the 8-Br-cAMP-mediated activation of Ras via wt-GRF4 was almost abolished in the mutant GRF4 lacking its CDC25 domain or its cNMP-BD, demonstrating that the activation of Ras by GRF4 in cells requires both intact CDC25 domain and cNMP-binding domain. In vitro, we were unable to demonstrate significant activation of Ras by the isolated CDC25 domain of GRF4, but immunoprecipitated full length GRF4 (which includes also the REM domain located far upstream of the CDC25 domain, see FIG. 21a) was able to moderately enhance Ras activation (FIG. 23e), with ˜2.9 fold activation in 30 min.; this stimulation was smaller than the 4.5 fold activation conferred by GRF2, used as a control. These results show that in its native conformation in cells, GRF4 becomes fully active in response to elevated cAMP/cGMP levels, likely by direct nucleotide binding, although indirect effect can not be ruled out at present.
  • iv) In-vitro interaction of GRF4 with Ras [0192]
  • In order to show that GRF4 can form a stable complex with Ras in vitro, and which nucleotide-bound forms of Ras it binds preferentially, an in-vitro pulldown experiment was performed as follows: Lysates of 293T cells transiently transfected with Flag-tagged GRF4 were incubated with agarose beads bound to either GST alone or GST-Ras of different nucleotide-bound states. Beads were washed and resolved on SDS-PAGE and subsequently immunoblofted with anti-Flag antibodies to detect Flag-tagged GRF4. The results showed that GRF4 bound specifically to Ras as it failed to bind to GST alone. However, it bound to Ras differentially, depending on the nucleotide-bound states of Ras. GRF4 bound strongly to EDTA-treated Ras (EDTA chelates Mg2+ which is important for binding of nucleotides to Ras, thus keeps Ras in nucleotide-free form) and Ras-GTP, but bound weakly to Ras-GDP (FIG. 15). In similar experiments, RasGRF2 was shown to bind only to EDTA-treated Ras ([0193] 23).
  • v) Activation of Ras and MAPK by cAMP and cAMP analogues: [0194]
  • Treatment of HEK-293T cells transfected with GRF4 with membrane permeant analogues of cAMP (8-bromo-cAMP) and cGMP (8bromo-cGMP) leads to activation of Ras and of MAPK in GRF4-expressing cells but not in untransfected cells, demonstrating that these cNMP analogues activate Ras and its downstream signaling pathway via GRF4. Moreover, a mutant GRF4 in which the cNMP-binding domain (cNMP-BD) is deleted activates Ras and MAPK constitutively, indicating that the normal function of the cNMP-BD is to suppress the activity of the CDC25 domain, an inhibition relieved by cNMP binding or by deletion of the cNMP-BD. [0195]
  • vi) Transformation assay [0196]
  • The small GTPase Ras functions as a molecular switch in cells by switching between its inactive form when it is bound to GDP and its active formn when it is bound to GTP. RasGRFs activate Ras by promoting nucleotide exchange from GDP (inactive) to GTP (active) on Ras. Active Ras activates the MAPK pathway and other signaling pathways to control normal cellular events such as cellular proliferation and differentiation. However, when Ras activity can not be deactivated as in the case of mutant oncogenic Ras, Ras becomes oncogenic and its transforming ability is the underlying mechanism of cellular transformation and is the cause of many human cancers (Ref [0197] 41-44). Several signaling proteins upstream and downstream of Ras, either controlling the activity of Ras or carrying out Ras effects, were also shown to be oncogenic.
  • We showed that GRF4 can transform cells overexpressing this protein. Transformation assays were performed using [0198] Rat 2 fibroblasts, a suitable cell type for this assay. Rat 2 cells were transiently transfected with empty vector, GRF4 construct, or mutant RasV12 construct (a transforming form of Ras used as a positive control). After transfection, cells were cultured over a period of three weeks with routine changes of media, and were routinely examined for morphology changes under a light microscope. FIG. 16 shows the result of the assay. Rat 2 cells transfected with empty vector grew at moderate rate and maintained a monolayer state of normal saturation density, as seen with non-transfected cells. In contrast, Rat 2 cells transfected with the GRF4 construct grew faster, achieved much higher saturation density as compared to cells transfected with empty vector; more importantly, GRF4 induced foci formation in these transfected cells. A focus is the site where a single transformed cell proliferates and forms a prolific mass of transformed cells; foci formation shows a loss of cell-cell contact inhibition, a hallmark of cellular transformation. A similar phenotype was also observed with Rat 2 cells transfected with RasV12 construct. The finding that GRF4 induces foci formation in Rat 2 fibroblasts shows that GRF4 is oncogenic as well as highlights the physiological importance of this protein.
  • vii) PDZ domain of GRF4 interacts with its own PDZ-binding motif, SAV* [0199]
  • GRF4 harbours a PDZ domain and a PDZ-binding motif in context of SAV* and thus, it is involved in potential intramolecular interaction or intermolecular homotypic interaction. [0200]
  • The following experiment indicates that the PDZ domain of GRF4 binds to its own SAV* motif and thus gives rise to either intramolecular interaction or intermolecular homotypic interaction. A GST-fusion protein of GRF4-PDZ domain (GST-PDZ) was generated and used in a pull-down experiment. Lysates of 293T cells transfected with Flag-tagged full-length GRF4 were incubated with agarose beads bound to GST alone or GST-PDZ. Beads were washed and resolved on SDS-PAGE and subsequently immunoblotted with anti-Flag antibodies to detect bound GRF4. As shown in FIG. 17, the full-length GRF4 binds specifically to GST-PDZ, showing that the interaction is mediated by binding of GST-PDZ to the SAV* motif present in the full-length GRF4. Furthermore, in a similar pull-down experiment, the streptavidin agarose beads bound to biotinylated peptide corresponding the last 15 amino acids of GRF4 (therefore, containing the SAV* motif) were shown to bind to the full-length GRF4 also, thus showing again an interaction between the PDZ domain and the SAV* motif of GRF4 (FIG. 18). [0201]
  • viii) Immunofluorescence studies/Localization [0202]
  • We determined that GRF4 exhibits plasma-membrane staining and is localized at the plasma membrane where Ras, its substrate, is located. This plasma membrane localization is mediated by the PDZ domain because the protein is localized diffusely in the cytosol upon mutation (eg. deletion of the PLPF domain) of the PDZ domain. [0203]
  • ix) Rap1 activation [0204]
  • We found that GRF4 mediates activation of Rap1 in cells via its CDC25 domain (FIG. 23[0205] f). Unlike Ras activation by GRF4, however, the activation of Rap1 was not stimulated by 8Br-cAMP (FIG. 23f), showing that GRF4mediated activation of Rap1 is constitutive and independent of cAMP stimulation. This is consistent with Ohtsuka et al. (T. Ohtsuka, et al., 1999).
  • Ras is localized at the plasma membrane and activation of SOS, GRF½ and GRP involves to some extent their translocation from the cytosol to the plasma membrane. Sos translocates to the plasma membrane following activation of tyrosine kinase (L. Buday, 1993), GRP in response to diacylglycerol production (J. O. Ebinu, et al., 1998, C. E. Tognon et al., 1998), and GRF2 in response to elevation of intracellular Ca[0206] 2+ (N. Fam et al, 1997). Immunostaining of GRF4 transfected into HEK-293T cells revealed it is located at the periphery of the cell, showing it is targeted to the plasma membrane (FIG. 24a). This localization was not dependent on cAMP stimulation, showing that the cAMP-dependent activation of GRF4 (FIG. 23) was not related to translocation of the protein to the plasma membrane. Interestingly, this plasma membrane localization was impaired in GRF4 lacking an intact PDZ domain (missing the PLPF sequence, equivalent to the conserved GLGF sequence in many PDZ domains) (FIG. 24b), but not in cells expressing GRF4 bearing mutations in the PDZ-binding motif (SxV* changed to AAA*) (FIG. 24c). The PDZ domain is involved in targeting or tethering GRF4 to a PDZ-binding protein associated with the inner face of the plasma membrane.
  • x) Activation of Ras by GRF4: [0207]
  • We have already demonstrated that full-length GRF4 is active in catalyzing guanine-nucleotide exchange on small GTPase Ras using in-vitro GEF assay. As mentioned earlier, GRF4 has a REM domain which is present in all mammalian RasGRFs and therefore, we believe that GRF4 is a Ras-specific GRF. We test GRF4 activity on other small GTPases of Ras family (Ral, and so on) and those of Rho family (Rho, Rac and Cdc42) and show that GRF4 is a Ras and Rap1 specific GRF. [0208]
  • We also determine whether the GRF4-CDC25 domain is necessary and sufficient for its activity. First, we construct a mutant GRF4 construct lacking the CDC25 domain which can be expressed in mammalian cells and used in in-vitro GEF assays. This mutant construct, along with the full-length GRF4 which was already shown to be active on Ras, is measured for its activity or loss of activity. Furthermore, a GST-fusion protein of GRF4-CDC25 domain is generated and used in an in-vitro GEF assay to show that GRF4-CDC25 domain is sufficient for the GRF4 activity. GRF4 lacking the CDC25 domain will lose its ability to modulate Ras. [0209]
  • Concurrently, we measure the GEF activity on Ras of GRF4 on Ras in living cells, using the method described in Ref [0210] 35. This method employs a GST-fusion protein of Ras-binding domain (RBD) of Raf kinase (Raf is an immediate downstream kinase of Ras in MAPK pathway). Raf-RBD binds to Ras-GTP (active Ras) and thus is useful to assay levels of active Ras in cells. GST-RBD is incubated with lysates of cells transfected with GRF4 or empty vector. Active Ras in lystates is precipitated by GST-RBD beads and detected by anti-Ras antibodies on Western blot. In cells transfected with GRF4, we show more active Ras being pulled down by GST-RBD. This in vivo Ras activation assay also allows us to test effects of various treatments to cells of GRF4 activity.
  • We characterize the activation mechanisms of GRF4 and the signaling pathways employed by GRF4 from these in vivo Ras activation assays. For instance, since GRF4 has a cNMP-binding domain (cAMP-BD or cGMP-BD) we showed that cAMP or cAMP analogues activate GRF4. We construct a GST-fusion protein of this cAMP-BD in order to demonstrate its in-vitro binding affinity towards cAMP or cAMP using protocol previously described in Ref. [0211] 36.
  • We determine the roles of individual domains of GRF4 in Ras activation. We construct various mutant GRF4 constructs lacking individual domains which are tested for their activities on Ras using both in-vitro GEF assay and in vivo Ras activation assay. [0212]
  • The small GTPase Ras controls the MAPK pathway and exerts its effects on cellular processes primarily through this pathway. MAPK is a downstream kinase of Ras and thus, Ras activation leads to MAPK activation (FIG. 6A). Therefore, we show the GRF4 effects on MAPK activation using assays in which levels of active MAPK in cells is determined using antibodies recognizing phosphorylated (active) MAPK. [0213]
  • xi) Transforming ability of GRF4: [0214]
  • We already showed that GRF4 induces [0215] Rat 2 fibroblasts to form foci which are indicative of a loss of cell-cell contact inhibition. We use a mutant GRF4 construct lacking the catalytic domain which is therefore enzymatically inactive in the transformation assays alongside with the full-length GRF4 construct, in order to show that the CDC25 domain is necessary for the observed phenotype.
  • A loss of cell-ll contact inhibition and anchorage-independent growth are the two hallmarks of cellular transformation. These two properties underline the mechanism of tumor formation and metastasis. The oncogenic Ras and other oncogenes were already shown to exhibit these two transforming properties. We perform soft-agar assays to measure GRF4 anchorage-independent growth in [0216] Rat 2 cells transfected with GRF4.
  • We study the transforming ability of GRF4 in living animals. Tumor-formation assay is performed in nude mice ectopically injected with GRF4-induced transformed Rat2 cells. [0217]
  • xii) The activation mechanisms and signaling pathways employed by GRF4: [0218]
  • Although all known mammalian RasGRFs are activated by different signals arising from distinct signaling pathways (FIG. 6B), they all appear to employ similar activation mechanisms once they are recruited to the plasma membrane (where Ras is localized) in response to activating signals. Thus, membrane recruitment is a necessary step (however, it may not be sufficient) for activation of RasGRFs. [0219]
  • Localization studies of GRF4 are important in determining the activation mechanisms of this protein. We have performed immunofluorescence localization studies in Hek 293T cells transiently transfected with GRF4, using GRF4 specific antibodies which we have raised. Our results show that GRF4 is primarily associated with the plasma membrane. GRF4 has a PDZ domain and a PDZ-binding motif. PDZ domains have been known to be important in targeting proteins to the plasma membrane. Therefore, the PDZ domain of GRF4 targets K to the plasma membrane by likely binding to transmembrane receptors or ion channels which harbour its binding sites. The PDZ-binding motif of GRF4 does not mediate membrane targeting. We used mutant constructs either lacking the PDZ domain or having the PDZ-binding motif deleted in immunofluorescence localization studies to characterize their roles in GRF4 localization. We also perform localization studies on cells which are treated with various stimuli such as growth factors, cNMP-elevating agents, intracellular calcium elevating agents and so on, in order to measure each stimuli's effects on the localization of GRF4. [0220]
  • Our previous results from the binding studies with GRF4-PDZ domain show an intramolecular interaction in GRF4 by the association of its PDZ domain and its own PDZ-binding motif. If such an intramolecular interaction in GRF4 is used to regulate its activity, then the mutant constructs, which either lacks the PDZ domain or has the mutated PDZ-binding motif, affects GRF4 activity. [0221]
  • Since GRF4 has a cNMP-binding domain it shows that cNMP (preferably cAMP or cGMP) has regulatory roles on GRF4 activity and our recent work has shown activation of Ras/MAPK pathway by GRF4 in response to cAMP or cGMP analogues. We performed cNMP binding assays to show cAMP and cGMP binding to this domain. Cyclic AMP is a secondary messenger for G-protein coupled receptors which activate adenylyl cyclases by coupling to G-proteins. Many of these G-coupled receptors have PDZ-binding motifs in their intracellular C-terminal ends which potentially bind to PDZ-containing proteins. Having both a PDZ domain and a cAMP-binding domain, GRF4 may be involved in G-coupled receptor signaling pathways. We identify a receptor/receptors which bind specifically to the PDZ domain of GRF4 as binding leads to membrane targeting of GRF4 and to changes in GRF4 activity. We use several known G-coupled receptors such as beta-adrenergic receptors, Dopamine receptor and others. The later two are neuronal receptors and GRF4 was shown to be expressed strongly in the central nervous systems. [0222]
  • xiii) Determine the roles of Nedd4 in GRF4 regulation: [0223]
  • Since Nedd4 is a ubiquitin protein ligase, which we showed binds GRF4, it ubiquitinates and targets GRF4 for degradation. The mSOS2 was shown to be regulated by ubiquitination ([0224] 46). We perform ubiquitination assays to measure GRF4 ubiquitination. Concurrently, stability studies (pulse-chase experiments) are also carried out to measure stability of GRF4.
  • In addition, since Nedd4 has a C2 domain which is a Ca2+-dependent lipid binding domain, we measure the effects of calcium on the localization and activity of GRF4. [0225]
  • MATERIALS AND METHODS [0226]
  • Identification of novel proteins interacting with Nedd4-WW domains [0227]
  • The method of identifying GRF4 is as follows. An expression library screen was used to identify proteins interacting with Nedd4-WW domains. GST-fusion proteins of individual WW domains of Nedd4 were constructed in pGEX2TK which contains a PKA phosphorylation site allowing radiolabeling of the fusion proteins with P32-ATP. The radiolabeled GST-fusion protein of Nedd4-WW2 domain was used as a probe to screen a 16-day mouse embryo expression library. About one million cDNA clones were screened. A total of 17 independent positive clones were isolated and sequenced using dideoxy sequencing method. All isolated clones contained at least one PY motif and thus are biochemically true positives. [0228]
  • Among the positive clones isolated was Clone 7.7. Clone 7.7 is a novel protein, the partial amino sequence of which exhibits 75% identity and 95% similarity of that of the novel human brain cDNA called KIAA0313. Because of this remarkable high sequence similarity between them, Clone 7.7 is the mouse homologue of KIAA0313 and obtained the full-length cDNA of KIAA0313. [0229]
  • Expression Cloning of GRF4 [0230]
  • GST fusion protein encompassing the second WW domain of rat Nedd4 (GST-Nedd4-WW2), expressed in pGEX-2TK, was generated in bacteria. It was phosphorylated in vitro with bovine heart PKA (Sigma) and [[0231] 32Pγ]ATP, as described . A 16-day mouse embryo expression library (Novagen) was plated at a density of 3.5×105 plaques per 150 mm plate and plaque-lifted onto isopropyl β-D-thiogalactoside-saturated nitrocellulose filters. Filters were then probed with the radiolabeled GST-Nedd4-WW2 fusion proteins.
  • GRF4 constructs and antibodies [0232]
  • Flag, HA or myc tags was added to the N-terminus of full length GRF4 using PCR, and subcloned into the mammalian expression vector pCMV5 (Invitrogen). Mutants GRF4 with deletion of the CDC25 domain (residue [0233] 711-1007, GRF4DCDC25 or DCDC25 for short), the cNMP-BD (residue 134-254, DcNMP-BD), the PLPF motif in the PDZ domain (residue 396-399, -PLPF), or bearing mutations in the PDZ-binding motif (SAV to AAA), were generated using PCR. The GST-GRF4-cNMP-BD (residue 101-303) and GST-Carboxy-terminus (residue 1348-1499) were PCR-generated and cloned into pGEX-2T ( Pharmacia). The latter construct was used to generate a fusion protein (GST-GRF4C terminus) which was used to immunize rabbits for the generation of polyclonal anti GRF4 antibodies.
  • Northern Blot Analysis [0234]
  • A 335 bp cDNA fragment corresponding to nucleotides [0235] 4286-4620 of KIAA0313 was labeled with [α32P]dCTP by random priming using Random Primers DNA Labeling kit (Life Technologies). Both Rat Multiple Tissue and Human Brain Multiple Region blots (Clonetech) were probed in hybridization condition as previously described . The blots were washed for 30 min at 42° C. in 2×SSC/0.1% SDS and for 45 min at 55° C. in 0.1×SSC/0.1% SDS.
  • Cell Culture and Transfection [0236]
  • HEK-293T cells were maintained in Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum, 100 Units of penicillin plus 100 μg of streptomycin per ml. Cells were transfected using the calcium phosphate precipitation method as described. [0237]
  • Cell Treatments [0238]
  • The membrane permeable 8-Br-cAMP and 8Br-cGMP analogs (Sigma) were used at a concenreation of 500 μM for 15 min. Inhibitors of PKA: H-89 and Rp-8-Br-cAMPS (CalBiochem) were used at 10 μM and 50 μM, respectively, for 30 min. Inhibitors of PKG: H-8 and Rp-8-Br-cGMPS (CalBiochem) were used at 5 μM and 25 μM, respectively, for 30 min. Activators of Adenylyl Cyclase, Forskolin (Sigma), and activator of Guanylyl Cyclase, YC-1 (CalBiochem), were used at 50 μM and 100 μM, respectively, for 15 min. Inhibitors of cAMP and cGMP phosphodiesterase (IBMX and Dipyrimidazole (CalBiochem)) were used at 100 μM and 10 μM, respectively, for 15 min. [0239]
  • Ras Activation Assay in living cells [0240]
  • HEK-293T cells were transfected as above, serum starved overnight and then subjected to various treatments, as described in the text. Cells were lysed with lysis buffer (25 mM Hepes, pH 7.5, 150 mM NaCl, 1% NP-40, 0.25% Na deoxycholate, 10% glycerol, 25 mM NaF, 10 mM MgCl[0241] 2, 1 mM EDTA, 1 mM NaVO4, 10 mg/ml leupeptin, 10 mg/ml aprotinin, 250 mM PMSF) and the level of Ras.GTP or Rap. GTP in the lysates was determined using activation specific probes as described. Briefly, to determined the levels of active Ras (Ras-GTP) in cell, sepharose-bound GST fusion protein of the Ras-binding domain (RBD) of Raf-1 (GST-Raf1-RBD; Upstate Biotechnology Inc.) was used to precipitate Ras-GTP from cell lysates, and the amount of Ras-GTP determined by immunoblotting with anti Ras antibodies (Quality Biotech). Similarly, to determine the level of Rap1-GTP in cell lysates, sepharose-bound GST fusion proteins of the Rap1-binding domain of RaIGDS (GST-RaIGDS-RBD) were used to precipitate Rap1-GTP, which was then detected on a Western blot using anti-Rap1 antibodies (Transduction Lab).
  • Fluorescence Immunostaining [0242]
  • Transfected HEK-293T cells were fixed with 10% buffered Formalin phosphate (Fisher Scientific) for 30 min at 37° C., washed three times with PBS, permeabilized in TBS containing 1% Triton-X-100 for 10 min and blocked with blocking solution (TBS containing 5% goat serum (Gibco)) for 30 min. Fixed and permeabilized cells were then incubated with anti-GRF4 antibodies diluted in blocking solution for 1 h followed by four washes with TBS and incubation with FITC-conjugared goat anti-rabbit IgG. Stained cells were then visualized with a fluorescence microscope. [0243]
  • cAMP-agarose binding assay [0244]
  • cAMP-agarose (Sigma) was pre-incubated with PES containing 5 mg/ml BSA followed by incubation with either GST-GRF4-cNMP-BD or GST alone for in vitro binding assays, or with HEK-293T cell lysate expressing GRF4 or GRF4 lacking its cNMP binding domain (GRF4ΔcNMP-BD) for the pull down experiments. Following extensive washes in HNTG (20 mM Hepes, pH 7.5, 150 mM NaCl, 0.1% Triton ×100, 10% Glycerol) proteins were eluted off beads with sample buffer, separated on SDS-PAGE and immunoblotted with either anti GST antibodies for the in vitro binding experiments, or with anti GRF4 antibodies for the pull down experiments. [0245]
  • The present invention has been described in detail and with particular reference to the preferred embodiments: however, it will be understood by one having ordinary skill in the art that changes can be made without departing from the spirit and scope thereof. For example, where the application refers to proteins, it is clear that peptides and polypeptides may often be used. Likewise, where a gene is described in the application, it is clear that nucleic acid molecules or gene fragments may often be used. [0246]
  • All publications (including Genbank entries), patents and patent applications are incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety. [0247]
  • REFERENCES
  • 1- Staub, O., et al. The [0248] EMBO Journal 15, 2371-2380 ( 1996).
  • 2- Gawler,D., Zhang, L.-J., Reedijk, M., Tung, P. S. & Moran, M. Oncogene 10, 817-825 (1995). [0249]
  • 3- Perin, M. S., Brose, N., Jahn, R. & Sudof, T. C. Journal of Biological Chemistry 266, 623-629 (1991). [0250]
  • 4- Shirataki, H., et al. Molecular and [0251] Cellular Biology 13, 2061-2068 (1993).
  • 5- Clark, J. D., et al. Cell 65, 1043-1051 (1991). [0252]
  • 6- Ponting, C. P. & Parker, P. J. [0253] Protein Science 5, 162-166 (1996).
  • 7- Plant, P., et al. Journal of Biological Chemistry 272, 32329 (1997). [0254]
  • 8- Andre, B. & Springael, J.-Y. Biochemical and Biophysical Reasearch Communications 205, 1201-1205 (1994). [0255]
  • 9- Bork, P. & Sudol, M. Trends in Biochemical Sciences 19, (1994). [0256]
  • 10- Hofmann, K. & Bucher, P. FEBS Letters 358, 153-157 (1995). [0257]
  • 11- Staub, O. & Rotin, [0258] D. Structure 4, 495-499 (1996).
  • 12- Macias, M. M., et al. Nature 382, 646-649 (1996). [0259]
  • 13- Ranganathan, R., Lu, K., Hunter, T. & Noel, J. P. Cell 89,875-886 (1997). [0260]
  • 14- Chen, H. I. & Sudol, M. Proceedings of the National Academy of Science (USA) 92, 7819-7823 (1995). [0261]
  • 15- Shimkets, R. a., et al. Cell 79, 407-414 (1994). [0262]
  • 16- Hansson, J. H., et al. P.N.A.S. (USA) 92.11495-11499 (1995). [0263]
  • 17- Hansson, J. H., et al. [0264] Nature Genetics 11, 76-82 (1995).
  • 18 Tamura, H., et al. Journal of Clinical investigation 97, 1780-1784 (1996). [0265]
  • 19- Staub, O., et al. The EMBO Journal 16, 6325-6336 (1997). [0266]
  • 20- Jung, D., et al. Journal of Biological Chemistry 270, 27305-27310 (1995). [0267]
  • 21- Broek, D., et al. Cell 48, 789 (1987). [0268]
  • 22- Camus, C., et al. [0269] Oncogene 11, 951-959 (1995).
  • 23- Boriack-Sjodin, P.A., et al. Nature 394, 337-343 (1998). [0270]
  • 24- Fam, N. P., et al. Molecular and Cellular Biology 17, 1396-1406 (1997). [0271]
  • 25- Pawson, T. Nature 373, 573-580 (1995). [0272]
  • 26- Farnsworth, C.L., et al. Nature 376, 524-527 (1995). [0273]
  • 27- Ebinu J. O., et al. Science 280, 1082-1086 (1998). [0274]
  • 28- Christopher P. Ponting, et al. BioEssays 19, 469-479 (1997). [0275]
  • 29- Stephen N. Gomperts. [0276] Cell 84. 659-662 (1996).
  • 30- Chevesich, J., et al. Neuron 18, 95-105 (1997). [0277]
  • 31- Songyang, Z., et al. Science 275, 73-77 (1997). [0278]
  • 32- Huang, L., et al. Nat Struct Biol 4(8), 609-615 (1997). [0279]
  • [0280] 33- Phillip G. N. Protein 14, 425-9 (1992).
  • 34- Trier, M., et at. Cell 78, 787-798 (1994). [0281]
  • 35- Taylor, S. & Shalloway, [0282] D. Current Biology 6, 1621 ( 1996).
  • 36- Doskeland, S. O., et al. Methods Enzymology 159, 147-150 (1988). [0283]
  • 37- Hock, B., et al. [0284] PNAS 95, 9779-9784 (1998).
  • 38- Wu, J., et al. Science 262, 1065-1068 (1993). [0285]
  • 39- Cook, S. J., et al. Science 262, 1069-1071(1993). [0286]
  • 40- Abriel, H., et al. (1998). J. Clin. Invest 103:667-673 (1999). [0287]
  • 41- Bouras, M., et al. Eur. J. Endocrinol. 139, 209-16 (1998). [0288]
  • 42- Matias, G., et al. Virchows Arch 433, 103-111 (1998). [0289]
  • 43- Kressmen, U., et al. Eur. J. Cancer 34, 737-744 (1998). [0290]
  • 44- Abrams, S. I., et al. Semin. Oncology 23, 118-134 (1996). [0291]
  • 45- Chan, David C., et al. The [0292] EMBO Journal 15, 1045-1054 (1996).
  • 46- Nielsen, K. H., et al. Mol. Cell. Biol. 17, 7132-8 (1997). [0293]
  • 47- [0294]
  • 48- Weisskopf, Marc G., et al. Science, Vol. 265,1878-1882 (1994). [0295]
  • 49- Lyengar, Ravi. Science, Vol. 271, 461-463 (1996). [0296]
  • 50- Shabb, John B., et al. The Journal of Biological Chemistry, Vol. 267, No. 9, 5723-5726 (199?). [0297]
  • 51- Taylor, Susan S.. The Journal of Biological Chemistry, Vol. 264, No. 15, 8443-8446 (1989). [0298]
  • 52- Frey, U., et al. Science, Vol. 260, 1661-1664 (1993). [0299]
  • 53- Weber, Irene T., Biochemistry, 26, 343-351 (1987). [0300]
  • 54- Hammerschmidt, Matthias, et al. Genes & Development, 10:647-658 (1996). [0301]
  • 55- Bailey, Craig H., et al. Proc Natl. Acad. Sci. USA, Vol. 93, 13445-13452 (1996). [0302]
  • 56- Downward, J., Nature, Vol. 396, 416-417 (1998). [0303]
  • 57- Kawasaki, Kiroaki, et al. Science, Vol. 282, 2275-2279 (1998). [0304]
  • 58- de Rool, Johan, et al. Nature, Vol. 396, 474-477 (1998). [0305]
  • 59 Weber, et al. Biochemistry, 28:6122-6127. (1989). [0306]
  • 60 Weber, et al. Biochemistry, 26:343-351(1987). [0307]
  • 61 Su, etal. Science, 269:807-813 (1995). [0308]
  • 62 O. Staub, et al., WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. [0309] Embo J 1996, 15, 2371-80.
  • 63 H. Kawasaki, et al., A family of cAMP-binding proteins that directly activate Rap1. Science 1998, 282, 2275-9. [0310]
  • 64 J. de Rooij, et al., Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396, 474-7. [0311]
  • 65 P. A. Boriack-Sjodin, S. M. Margarit, D. Bar-Sagi, J. Kuriyan, The structural basis of the activation of Ras by Sos. Nature 1998, 394, 33743. [0312]
  • 66 S. E. Craven, D. S. Bredt, PDZ proteins organize synaptic signaling pathways. Cell 1998, 93, 495-8. [0313]
  • 67 Y. Su, et al., Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 1995, 269, 807-13. [0314]
  • 68 C. Herrmann, G. A. Martin, A. Wittinghofer, Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 1995, 270, 2901-5. [0315]
  • 69 J. de Rooij, J. L. Bos, Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 1997,14, 623-5. [0316]
  • 70 S. J. Taylor, D. Shalloway, Cell cycle-dependent activation of Ras. [0317] Curr Biol 1996, 6, 1621-7.
  • 71 T. Ohtsuka, et al., nRap GEP: A Novel Neural GDP/GTP Exchange Protein for Rap1 Small G. Protein That Interacts with Synaptic Scaffolding Molecule (S-SCAM). Biochem Biophys Res Commun 1999, 265, 38-44. [0318]
  • 72 L. Buday, J. Downward, Epidermal growth factor regulates p21 ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 1993, 73, 611-620. [0319]
  • 73 J. O. Ebinu, et al., RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 1998, 280, 1082-6. [0320]
  • 74 C. E. Tognon, et al., Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol Cell Biol 1998, 18, 6995-7008. [0321]
  • 75 N. Fam, et al., Cloning and Characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras.. Mol Cell Biol, 1997, 17, 1396-1406. . [0322]
  • 76 J. L. Bos, All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. Embo J 1998, 17, 6776-82. [0323]
  • References for Material and Methods [0324]
  • 1. O. Staub, et al., WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. [0325] Embo J 1996, 15, 2371-80.
  • 2. W. G. Kaelin, Jr., et al., Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 1992, 70, 351-64. [0326]
  • 3. H. I. Chen, M. Sudol, The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci USA 1995, 92, 7819-23. [0327]
  • 4. F. M. Ausubel, Current Protocols in Molecular Biology. 1987. [0328]
  • 5. C. Chen, H. Okayama, High-efficiency transformation of mammalian cells by plasmid DNA. [0329] Mol Cell Biol 1987, 7, 2745-52.
  • 6. N. Fam, et al., Cloning and Characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras., Mol Cell Biol, 1997, 17, 1396-1406.. [0330]
  • 7 S. J. Taylor, D. Shalloway, Cell cycle-dependent activation of Ras. [0331] Curr Biol 1996, 6, 1621-7.
  • 8. J. de Rooij, J. L. Bos, Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 1997, 14, 623-5. [0332]
  • 9. F. J. Zwartkruis, R. M. Wolthuis, N. M. Nabben, B. Franke, J. L. Bos, Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. Embo J 1998,17, 5905-12. [0333]
  • The inclusion of references in this application is not an admission that they are prior art. [0334]
  • 1 27 1 6568 DNA Homo sapiens CDS (63)..(4562) 1 cttgccatcg tgagagattg gtacatgatg tgtaaattca gttcagcata tgtttcttca 60 tt atg aaa cca cta gca atc cca gct aac cat gga gtt atg ggc cag 107 Met Lys Pro Leu Ala Ile Pro Ala Asn His Gly Val Met Gly Gln 1 5 10 15 cag gag aaa cac tca ctt cct gca gat ttc aca aaa ctg cat ctt act 155 Gln Glu Lys His Ser Leu Pro Ala Asp Phe Thr Lys Leu His Leu Thr 20 25 30 gac agt ctc cac cca cag gtg acc cac gtt tct tct agc cat tca gga 203 Asp Ser Leu His Pro Gln Val Thr His Val Ser Ser Ser His Ser Gly 35 40 45 tgt agt atc act agt gat tct ggg agc agc agt ctt tct gat atc tac 251 Cys Ser Ile Thr Ser Asp Ser Gly Ser Ser Ser Leu Ser Asp Ile Tyr 50 55 60 cag gcc aca gaa agc gag gct ggt gat atg gac ctg agt ggg ttg cca 299 Gln Ala Thr Glu Ser Glu Ala Gly Asp Met Asp Leu Ser Gly Leu Pro 65 70 75 gaa aca gca gtg gat tcc gaa gac gac gac gat gaa gaa gac att gag 347 Glu Thr Ala Val Asp Ser Glu Asp Asp Asp Asp Glu Glu Asp Ile Glu 80 85 90 95 aga gca tca gat cct ctg atg agc agg gac att gtg aga gac tgc cta 395 Arg Ala Ser Asp Pro Leu Met Ser Arg Asp Ile Val Arg Asp Cys Leu 100 105 110 gag aag gac cca att gac cgg aca gat gat gac att gaa caa ctc ttg 443 Glu Lys Asp Pro Ile Asp Arg Thr Asp Asp Asp Ile Glu Gln Leu Leu 115 120 125 gaa ttt atg cac cag ttg cct gct ttt gcc aat atg aca atg tca gtg 491 Glu Phe Met His Gln Leu Pro Ala Phe Ala Asn Met Thr Met Ser Val 130 135 140 agg cga gaa ctc tgt gct gtg atg gtg ttc gca gtg gtg gaa aga gca 539 Arg Arg Glu Leu Cys Ala Val Met Val Phe Ala Val Val Glu Arg Ala 145 150 155 ggg acc ata gtg tta aat gat ggt gaa gag ctg gac tcc tgg tca gtg 587 Gly Thr Ile Val Leu Asn Asp Gly Glu Glu Leu Asp Ser Trp Ser Val 160 165 170 175 att ctc aat gga tct gtg gaa gtg act tat cca gat gga aaa gca gaa 635 Ile Leu Asn Gly Ser Val Glu Val Thr Tyr Pro Asp Gly Lys Ala Glu 180 185 190 ata ctg tgc atg gga aat agt ttt ggt gtc tct cct acc atg gac aaa 683 Ile Leu Cys Met Gly Asn Ser Phe Gly Val Ser Pro Thr Met Asp Lys 195 200 205 gaa tac atg aaa gga gtg atg aga aca aag gtg gat gac tgc cag ttt 731 Glu Tyr Met Lys Gly Val Met Arg Thr Lys Val Asp Asp Cys Gln Phe 210 215 220 gtc tgc ata gcc cag caa gat tac tgc cgt att ctc aat caa gta gaa 779 Val Cys Ile Ala Gln Gln Asp Tyr Cys Arg Ile Leu Asn Gln Val Glu 225 230 235 aag aac atg caa aaa gtt gaa gag gaa gga gag att gtt atg gtg aaa 827 Lys Asn Met Gln Lys Val Glu Glu Glu Gly Glu Ile Val Met Val Lys 240 245 250 255 gaa cac cga gaa ctt gat cga act gga aca aga aag gga cac att gtc 875 Glu His Arg Glu Leu Asp Arg Thr Gly Thr Arg Lys Gly His Ile Val 260 265 270 atc aag ggt acc tca gaa agg tta aca atg cat ttg gtg gaa gag cat 923 Ile Lys Gly Thr Ser Glu Arg Leu Thr Met His Leu Val Glu Glu His 275 280 285 tca gta gta gat cca aca ttc ata gaa gac ttt ctg ttg acc tat agg 971 Ser Val Val Asp Pro Thr Phe Ile Glu Asp Phe Leu Leu Thr Tyr Arg 290 295 300 act ttt ctt tct agc cca atg gaa gtg ggc aaa aag tta ttg gag tgg 1019 Thr Phe Leu Ser Ser Pro Met Glu Val Gly Lys Lys Leu Leu Glu Trp 305 310 315 ttt aat gac ccg agc ctc agg gat aag gtt aca cgg gta gta tta ttg 1067 Phe Asn Asp Pro Ser Leu Arg Asp Lys Val Thr Arg Val Val Leu Leu 320 325 330 335 tgg gta aat aat cac ttc aat gac ttt gaa gga gat cct gca atg act 1115 Trp Val Asn Asn His Phe Asn Asp Phe Glu Gly Asp Pro Ala Met Thr 340 345 350 cga ttt tta gaa gaa ttt gaa aac aat ctg gaa aga gag aaa atg ggt 1163 Arg Phe Leu Glu Glu Phe Glu Asn Asn Leu Glu Arg Glu Lys Met Gly 355 360 365 gga cac cta agg ctg ttg aat atc gcg tgt gct gct aaa gca aaa aga 1211 Gly His Leu Arg Leu Leu Asn Ile Ala Cys Ala Ala Lys Ala Lys Arg 370 375 380 aga ttg atg acg tta aca aaa cca tcc cga gaa gct cct ttg cct ttt 1259 Arg Leu Met Thr Leu Thr Lys Pro Ser Arg Glu Ala Pro Leu Pro Phe 385 390 395 atc tta ctt gga ggc tct gag aag gga ttt gga atc ttt gtt gac agt 1307 Ile Leu Leu Gly Gly Ser Glu Lys Gly Phe Gly Ile Phe Val Asp Ser 400 405 410 415 gta gat tca ggt agc aaa gca act gaa gca ggc ttg aaa cgg ggg gat 1355 Val Asp Ser Gly Ser Lys Ala Thr Glu Ala Gly Leu Lys Arg Gly Asp 420 425 430 cag ata tta gaa gta aat ggc caa aac ttt gaa aac att cag ctg tca 1403 Gln Ile Leu Glu Val Asn Gly Gln Asn Phe Glu Asn Ile Gln Leu Ser 435 440 445 aaa gct atg gaa att ctt aga aat aac aca cat tta tct atc act gtg 1451 Lys Ala Met Glu Ile Leu Arg Asn Asn Thr His Leu Ser Ile Thr Val 450 455 460 aaa acc aat tta ttt gta ttt aaa gaa ctt cta aca aga ttg tca gaa 1499 Lys Thr Asn Leu Phe Val Phe Lys Glu Leu Leu Thr Arg Leu Ser Glu 465 470 475 gag aaa aga aat ggt gcc ccc cac ctt cct aaa att ggt gac att aaa 1547 Glu Lys Arg Asn Gly Ala Pro His Leu Pro Lys Ile Gly Asp Ile Lys 480 485 490 495 aag gcc agt cgc tac tcc att cca gat ctt gct gta gat gta gaa cag 1595 Lys Ala Ser Arg Tyr Ser Ile Pro Asp Leu Ala Val Asp Val Glu Gln 500 505 510 gtg ata gga ctt gaa aaa gtg aac aaa aaa agt aaa gcc aac act gtg 1643 Val Ile Gly Leu Glu Lys Val Asn Lys Lys Ser Lys Ala Asn Thr Val 515 520 525 gga gga agg aac aag ctg aaa aag ata ctc gac aag act cgg atc agt 1691 Gly Gly Arg Asn Lys Leu Lys Lys Ile Leu Asp Lys Thr Arg Ile Ser 530 535 540 atc ttg cca cag aaa cca tac aat gat att ggg att ggt cag tct caa 1739 Ile Leu Pro Gln Lys Pro Tyr Asn Asp Ile Gly Ile Gly Gln Ser Gln 545 550 555 gat gac agc ata gta gga tta agg cag aca aag cac atc cca act gca 1787 Asp Asp Ser Ile Val Gly Leu Arg Gln Thr Lys His Ile Pro Thr Ala 560 565 570 575 ttg cct gtc agt gga acc tta tca tcc agt aat cct gat tta ttg cag 1835 Leu Pro Val Ser Gly Thr Leu Ser Ser Ser Asn Pro Asp Leu Leu Gln 580 585 590 tca cat cat cgc att tta gac ttc agt gct act cct gac ttg cca gat 1883 Ser His His Arg Ile Leu Asp Phe Ser Ala Thr Pro Asp Leu Pro Asp 595 600 605 caa gtg cta agg gtt ttt aag gct gat cag caa agc cgc tac atc atg 1931 Gln Val Leu Arg Val Phe Lys Ala Asp Gln Gln Ser Arg Tyr Ile Met 610 615 620 atc agt aag gac act aca gca aag gaa gtg gtc att cag gct atc agg 1979 Ile Ser Lys Asp Thr Thr Ala Lys Glu Val Val Ile Gln Ala Ile Arg 625 630 635 gag ttt gct gtt act gcc acc ccg gat caa tat tca cta tgt gag gtc 2027 Glu Phe Ala Val Thr Ala Thr Pro Asp Gln Tyr Ser Leu Cys Glu Val 640 645 650 655 tct gtc aca cct gag gga gta atc aaa caa aga aga ctt cca gat cag 2075 Ser Val Thr Pro Glu Gly Val Ile Lys Gln Arg Arg Leu Pro Asp Gln 660 665 670 ctt tcc aaa ctt gca gac aga ata caa ctg agt gga agg tat tat ctg 2123 Leu Ser Lys Leu Ala Asp Arg Ile Gln Leu Ser Gly Arg Tyr Tyr Leu 675 680 685 aaa aac aac atg gaa aca gaa act ctt tgt tca gat gaa gat gct cag 2171 Lys Asn Asn Met Glu Thr Glu Thr Leu Cys Ser Asp Glu Asp Ala Gln 690 695 700 gag ttg ttg aga gag agt caa att tcc ctc ctt cag ctc agc act gtg 2219 Glu Leu Leu Arg Glu Ser Gln Ile Ser Leu Leu Gln Leu Ser Thr Val 705 710 715 gaa gtt gca aca cag ctc tct atg cga aat ttt gaa ctc ttt cgc aac 2267 Glu Val Ala Thr Gln Leu Ser Met Arg Asn Phe Glu Leu Phe Arg Asn 720 725 730 735 att gaa cct act gaa tat ata gat gat tta ttt aaa ctc aga tca aaa 2315 Ile Glu Pro Thr Glu Tyr Ile Asp Asp Leu Phe Lys Leu Arg Ser Lys 740 745 750 acc agc tgt gcc aac ctg aag aga ttt gaa gaa gtc att aac cag gaa 2363 Thr Ser Cys Ala Asn Leu Lys Arg Phe Glu Glu Val Ile Asn Gln Glu 755 760 765 aca ttt tgg gta gca tct gaa att ctc aga gaa aca aac cag ctg aag 2411 Thr Phe Trp Val Ala Ser Glu Ile Leu Arg Glu Thr Asn Gln Leu Lys 770 775 780 agg atg aag atc att aag cat ttc atc aag ata gca ctg cac tgt agg 2459 Arg Met Lys Ile Ile Lys His Phe Ile Lys Ile Ala Leu His Cys Arg 785 790 795 gaa tgc aag aat ttt aac tca atg ttt gca atc atc agt ggc cta aac 2507 Glu Cys Lys Asn Phe Asn Ser Met Phe Ala Ile Ile Ser Gly Leu Asn 800 805 810 815 ctg gca cca gtg gca aga ctg cga acg acc tgg gag aaa ctt ccc aat 2555 Leu Ala Pro Val Ala Arg Leu Arg Thr Thr Trp Glu Lys Leu Pro Asn 820 825 830 aaa tac gaa aaa cta ttt caa gat ctc caa gac ctg ttt gat cct tcc 2603 Lys Tyr Glu Lys Leu Phe Gln Asp Leu Gln Asp Leu Phe Asp Pro Ser 835 840 845 aga aac atg gca aaa tat cgt aat gtt ctc aat agt caa aat cta caa 2651 Arg Asn Met Ala Lys Tyr Arg Asn Val Leu Asn Ser Gln Asn Leu Gln 850 855 860 cct ccc ata atc cct cta ttc cca gtt atc aaa aag gat ctc acc ttc 2699 Pro Pro Ile Ile Pro Leu Phe Pro Val Ile Lys Lys Asp Leu Thr Phe 865 870 875 ctt cac gaa gga aat gac tca aaa gta gac ggg ctg gtc aat ttt gag 2747 Leu His Glu Gly Asn Asp Ser Lys Val Asp Gly Leu Val Asn Phe Glu 880 885 890 895 aag cta agg atg att gca aaa gaa att cgt cac gtt ggc cga atg gct 2795 Lys Leu Arg Met Ile Ala Lys Glu Ile Arg His Val Gly Arg Met Ala 900 905 910 tca gtg aac atg gac cct gcc ctc atg ttc agg act cgg aag aag aaa 2843 Ser Val Asn Met Asp Pro Ala Leu Met Phe Arg Thr Arg Lys Lys Lys 915 920 925 tgg cgg agt ttg ggg tct ctc agc cag ggt agt aca aat gca aca gtg 2891 Trp Arg Ser Leu Gly Ser Leu Ser Gln Gly Ser Thr Asn Ala Thr Val 930 935 940 cta gat gtt gct cag aca ggt ggt cat aaa aag cgg gta cgt cgt agt 2939 Leu Asp Val Ala Gln Thr Gly Gly His Lys Lys Arg Val Arg Arg Ser 945 950 955 tcc ttt ctc aat gcc aaa aag ctt tat gaa gat gcc caa atg gct cga 2987 Ser Phe Leu Asn Ala Lys Lys Leu Tyr Glu Asp Ala Gln Met Ala Arg 960 965 970 975 aaa gtg aag cag tac ctt tcc aat ttg gag cta gaa atg gac gag gag 3035 Lys Val Lys Gln Tyr Leu Ser Asn Leu Glu Leu Glu Met Asp Glu Glu 980 985 990 agt ctt cag aca tta tct ctg cag tgt gag cca gca acc aac aca ttg 3083 Ser Leu Gln Thr Leu Ser Leu Gln Cys Glu Pro Ala Thr Asn Thr Leu 995 1000 1005 cct aag aat cct ggt gac aaa aag cct gtc aaa tcc gag acc tct cca 3131 Pro Lys Asn Pro Gly Asp Lys Lys Pro Val Lys Ser Glu Thr Ser Pro 1010 1015 1020 gta gct cca agg gca ggg tca caa cag aaa gct cag tcc ctg cca cag 3179 Val Ala Pro Arg Ala Gly Ser Gln Gln Lys Ala Gln Ser Leu Pro Gln 1025 1030 1035 ccc cag cag cag cca cca cca gca cat aaa atc aac cag gga cta cag 3227 Pro Gln Gln Gln Pro Pro Pro Ala His Lys Ile Asn Gln Gly Leu Gln 1040 1045 1050 1055 gtt ccc gcc gtg tcc ctt tat cct tca cgg aag aaa gtg ccc gta aag 3275 Val Pro Ala Val Ser Leu Tyr Pro Ser Arg Lys Lys Val Pro Val Lys 1060 1065 1070 gat ctc cca cct ttt ggc ata aac tct cca caa gct tta aaa aaa att 3323 Asp Leu Pro Pro Phe Gly Ile Asn Ser Pro Gln Ala Leu Lys Lys Ile 1075 1080 1085 ctt tct ttg tct gaa gaa gga agt ttg gaa cgt cac aag aaa cag gct 3371 Leu Ser Leu Ser Glu Glu Gly Ser Leu Glu Arg His Lys Lys Gln Ala 1090 1095 1100 gaa gat aca ata tca aat gca tct tcg cag ctt tct tct cct cct act 3419 Glu Asp Thr Ile Ser Asn Ala Ser Ser Gln Leu Ser Ser Pro Pro Thr 1105 1110 1115 tct cca cag agt tct cca agg aaa ggc tat act ttg gct ccc agt ggt 3467 Ser Pro Gln Ser Ser Pro Arg Lys Gly Tyr Thr Leu Ala Pro Ser Gly 1120 1125 1130 1135 act gtg gat aat ttt tca gat tct ggt cac agt gaa att tct tca cga 3515 Thr Val Asp Asn Phe Ser Asp Ser Gly His Ser Glu Ile Ser Ser Arg 1140 1145 1150 tcc agt att gtt agc aat tcg tct ttt gac tca gtg cca gtc tca ctg 3563 Ser Ser Ile Val Ser Asn Ser Ser Phe Asp Ser Val Pro Val Ser Leu 1155 1160 1165 cac gat gag agg cgc cag agg cat tct gtc agc atc gtg gaa aca aac 3611 His Asp Glu Arg Arg Gln Arg His Ser Val Ser Ile Val Glu Thr Asn 1170 1175 1180 cta ggg atg ggc agg atg gag agg cgg acc atg att gaa cct gat cag 3659 Leu Gly Met Gly Arg Met Glu Arg Arg Thr Met Ile Glu Pro Asp Gln 1185 1190 1195 tat agc ttg ggg tcc tat gca cca atg tcc gag ggc cga ggc tta tat 3707 Tyr Ser Leu Gly Ser Tyr Ala Pro Met Ser Glu Gly Arg Gly Leu Tyr 1200 1205 1210 1215 gct aca gct aca gta att tct tct cca agc aca gag gaa ctt tcc cag 3755 Ala Thr Ala Thr Val Ile Ser Ser Pro Ser Thr Glu Glu Leu Ser Gln 1220 1225 1230 gat cag ggg gat cgc gcg tca ctt gat gct gct gac agt ggc cgt ggg 3803 Asp Gln Gly Asp Arg Ala Ser Leu Asp Ala Ala Asp Ser Gly Arg Gly 1235 1240 1245 agc tgg acg tca tgc tca agt ggc tcc cat gat aat ata cag acg atc 3851 Ser Trp Thr Ser Cys Ser Ser Gly Ser His Asp Asn Ile Gln Thr Ile 1250 1255 1260 cag cac cag aga agc tgg gag act ctt cca ttc ggg cat act cac ttt 3899 Gln His Gln Arg Ser Trp Glu Thr Leu Pro Phe Gly His Thr His Phe 1265 1270 1275 gat tat tca ggg gat cct gca ggt tta tgg gca tca agc agc cat atg 3947 Asp Tyr Ser Gly Asp Pro Ala Gly Leu Trp Ala Ser Ser Ser His Met 1280 1285 1290 1295 gac caa att atg ttt tct gat cat agc aca aag tat aac agg caa aat 3995 Asp Gln Ile Met Phe Ser Asp His Ser Thr Lys Tyr Asn Arg Gln Asn 1300 1305 1310 caa agt aga gag agc ctt gaa caa gcc cag tcc cga gca agc tgg gcg 4043 Gln Ser Arg Glu Ser Leu Glu Gln Ala Gln Ser Arg Ala Ser Trp Ala 1315 1320 1325 tct tcc aca ggt tac tgg gga gaa gac tca gaa ggt gac aca ggc aca 4091 Ser Ser Thr Gly Tyr Trp Gly Glu Asp Ser Glu Gly Asp Thr Gly Thr 1330 1335 1340 ata aag cgg agg ggt gga aag gat gtt tcc att gaa gcc gaa agc agt 4139 Ile Lys Arg Arg Gly Gly Lys Asp Val Ser Ile Glu Ala Glu Ser Ser 1345 1350 1355 agc cta acg tct gtg act acg gaa gaa acc aag cct gtc ccc atg cct 4187 Ser Leu Thr Ser Val Thr Thr Glu Glu Thr Lys Pro Val Pro Met Pro 1360 1365 1370 1375 gcc cac ata gct gtg gca tca agt act aca aag ggg ctc att gca cga 4235 Ala His Ile Ala Val Ala Ser Ser Thr Thr Lys Gly Leu Ile Ala Arg 1380 1385 1390 aag gag ggc agg tat cga gag ccc ccg ccc acc cct ccc ggc tac att 4283 Lys Glu Gly Arg Tyr Arg Glu Pro Pro Pro Thr Pro Pro Gly Tyr Ile 1395 1400 1405 gga att ccc att act gac ttt cca gaa ggg cac tcc cat cca gcc agg 4331 Gly Ile Pro Ile Thr Asp Phe Pro Glu Gly His Ser His Pro Ala Arg 1410 1415 1420 aaa ccg ccg gac tac aac gtg gcc ctt cag aga tcg cgg atg gtc gca 4379 Lys Pro Pro Asp Tyr Asn Val Ala Leu Gln Arg Ser Arg Met Val Ala 1425 1430 1435 cga tcc tcc gac aca gct ggg cct tca tcc gta cag cag cca cat ggg 4427 Arg Ser Ser Asp Thr Ala Gly Pro Ser Ser Val Gln Gln Pro His Gly 1440 1445 1450 1455 cat ccc acc agc agc agg cct gtg aac aaa cct cag tgg cat aaa ccg 4475 His Pro Thr Ser Ser Arg Pro Val Asn Lys Pro Gln Trp His Lys Pro 1460 1465 1470 aac gag tct gac ccg cgc ctc gcc cct tat cag tcc caa ggg ttt tcc 4523 Asn Glu Ser Asp Pro Arg Leu Ala Pro Tyr Gln Ser Gln Gly Phe Ser 1475 1480 1485 acc gag gag gat gaa gat gaa caa gtt tct gct gtt tga ggcacagact 4572 Thr Glu Glu Asp Glu Asp Glu Gln Val Ser Ala Val 1490 1495 tttctggaag cagagcgagc cacctgaaag gagagcacaa gaagacgtcc tgagcattgg 4632 agccttggaa ctcacattct gaggacggtg gaccagtttg cctccttccc tgccttaaaa 4692 gcagcatggg gcttcttctc cccttcttcc tttccccttt gcatgtgaaa tactgtgaag 4752 aaattgccct ggcacttttc agactttgtt gcttgaaatg cacagtgcag caatcttcga 4812 gctcccactg ttgctgcctg ccacatcaca cagtatcatt ccaaattcca agatcatcac 4872 aacaagatga ttcactctgg ctgcacttct caatgcctgg aaggattttt tttaatcttc 4932 cttttagatt tcaatccagt cctagcactt gatctcattg ggataatgag aaaagctagc 4992 cattgaacta cttggggcct ttaacccacc aaggaagaca aagaaaaaca atgaaatcct 5052 ttgagtacag tgcttgtcca cttgtttaca atgtcctcct tttaaaaaaa aaaatgagtt 5112 taaagatttt gttcagagag taaatatata tccatttaat gattacagta ttattttaaa 5172 ccttaagtag ggttgccagc ctggtttctg aaaaaccaaa tatgccggac agggtgtggc 5232 cacaccaaga agacgggaag acctggcttg tgaccctggc ttcccatgtc cttctggtct 5292 cacccgcgaa gtgccctatc ctggaagtat gaaatgttag ccaattaata ccaagacacc 5352 tcatctgctc cttccccagt ggatggggtt cttctgtaaa actgtttgca catggccagg 5412 ggagggaact aggacccttg tgtcctgtct gagccttatg gaggcaggac ggtgtcattg 5472 gcggatgtgt cctgctccat tgagatggat ggcaaacccc atttttaagt tatatttctt 5532 tgatttttgt taatttagag gtgtaggttt tgttttttgt tttttgtttt tttttaagag 5592 aaacatttat aactggatag cattgcagtg aaagcagctt gggatgttgg agctaatgcc 5652 agctgtttat actgctcttt caagacagcc tccctttatt gaattggcat tagggaataa 5712 acaagccttt aaacgtgata aaagatcaaa aacctggtta gacatgccag cctttgcaag 5772 gcaggttagt caccaaagac taacctccaa gtggctttat ggacgctgca tatagagaag 5832 gcctaagtgt agcaaccatc tgctcacagc tgctattaac cctataatga ctgaaatgac 5892 ccctccactc tatttttgtg ttgttttgca cagactccgg aaaagtgaag gctgccaatc 5952 tgagtagtac tcaaatgtga ggaactgctg gtcttggatt ttttttccat taaattcagc 6012 tgatcatatt gatcagtaga taaacgtaaa tagcttcaaa ttttaaaagt ggaattgcag 6072 tgttttttca ctgtatcaaa caatgtcagt gctttattta ataattctct tctgtatcat 6132 ggcatttgtc tacttgctta ttacattgtc aattatgcat ttgtaatttt acatgtaata 6192 tgcattattt gccagtttta ttatataggc tatggacctc atgtgcatat agaaagacag 6252 aaatctagct ctaccacaag ttgcacaaat gttatctaag cattaagtaa ttgtagaaca 6312 taggactgct aatctcagtt cgctctgtga tgtcaagtgc agaatgtaca attaactggt 6372 gatttcctca tacttttgat actacttgta cctgtatgtc ttttagaaag acattggtgg 6432 agtctgtatc ccttttgtat ttttaataca ataattgtac atattggtta tatttttgtt 6492 gaagatggta gaaatgtact atgtttatgc ttctacatcc agtttgtaca agctggaaaa 6552 taaataaata taacat 6568 2 1499 PRT Homo sapiens 2 Met Lys Pro Leu Ala Ile Pro Ala Asn His Gly Val Met Gly Gln Gln 1 5 10 15 Glu Lys His Ser Leu Pro Ala Asp Phe Thr Lys Leu His Leu Thr Asp 20 25 30 Ser Leu His Pro Gln Val Thr His Val Ser Ser Ser His Ser Gly Cys 35 40 45 Ser Ile Thr Ser Asp Ser Gly Ser Ser Ser Leu Ser Asp Ile Tyr Gln 50 55 60 Ala Thr Glu Ser Glu Ala Gly Asp Met Asp Leu Ser Gly Leu Pro Glu 65 70 75 80 Thr Ala Val Asp Ser Glu Asp Asp Asp Asp Glu Glu Asp Ile Glu Arg 85 90 95 Ala Ser Asp Pro Leu Met Ser Arg Asp Ile Val Arg Asp Cys Leu Glu 100 105 110 Lys Asp Pro Ile Asp Arg Thr Asp Asp Asp Ile Glu Gln Leu Leu Glu 115 120 125 Phe Met His Gln Leu Pro Ala Phe Ala Asn Met Thr Met Ser Val Arg 130 135 140 Arg Glu Leu Cys Ala Val Met Val Phe Ala Val Val Glu Arg Ala Gly 145 150 155 160 Thr Ile Val Leu Asn Asp Gly Glu Glu Leu Asp Ser Trp Ser Val Ile 165 170 175 Leu Asn Gly Ser Val Glu Val Thr Tyr Pro Asp Gly Lys Ala Glu Ile 180 185 190 Leu Cys Met Gly Asn Ser Phe Gly Val Ser Pro Thr Met Asp Lys Glu 195 200 205 Tyr Met Lys Gly Val Met Arg Thr Lys Val Asp Asp Cys Gln Phe Val 210 215 220 Cys Ile Ala Gln Gln Asp Tyr Cys Arg Ile Leu Asn Gln Val Glu Lys 225 230 235 240 Asn Met Gln Lys Val Glu Glu Glu Gly Glu Ile Val Met Val Lys Glu 245 250 255 His Arg Glu Leu Asp Arg Thr Gly Thr Arg Lys Gly His Ile Val Ile 260 265 270 Lys Gly Thr Ser Glu Arg Leu Thr Met His Leu Val Glu Glu His Ser 275 280 285 Val Val Asp Pro Thr Phe Ile Glu Asp Phe Leu Leu Thr Tyr Arg Thr 290 295 300 Phe Leu Ser Ser Pro Met Glu Val Gly Lys Lys Leu Leu Glu Trp Phe 305 310 315 320 Asn Asp Pro Ser Leu Arg Asp Lys Val Thr Arg Val Val Leu Leu Trp 325 330 335 Val Asn Asn His Phe Asn Asp Phe Glu Gly Asp Pro Ala Met Thr Arg 340 345 350 Phe Leu Glu Glu Phe Glu Asn Asn Leu Glu Arg Glu Lys Met Gly Gly 355 360 365 His Leu Arg Leu Leu Asn Ile Ala Cys Ala Ala Lys Ala Lys Arg Arg 370 375 380 Leu Met Thr Leu Thr Lys Pro Ser Arg Glu Ala Pro Leu Pro Phe Ile 385 390 395 400 Leu Leu Gly Gly Ser Glu Lys Gly Phe Gly Ile Phe Val Asp Ser Val 405 410 415 Asp Ser Gly Ser Lys Ala Thr Glu Ala Gly Leu Lys Arg Gly Asp Gln 420 425 430 Ile Leu Glu Val Asn Gly Gln Asn Phe Glu Asn Ile Gln Leu Ser Lys 435 440 445 Ala Met Glu Ile Leu Arg Asn Asn Thr His Leu Ser Ile Thr Val Lys 450 455 460 Thr Asn Leu Phe Val Phe Lys Glu Leu Leu Thr Arg Leu Ser Glu Glu 465 470 475 480 Lys Arg Asn Gly Ala Pro His Leu Pro Lys Ile Gly Asp Ile Lys Lys 485 490 495 Ala Ser Arg Tyr Ser Ile Pro Asp Leu Ala Val Asp Val Glu Gln Val 500 505 510 Ile Gly Leu Glu Lys Val Asn Lys Lys Ser Lys Ala Asn Thr Val Gly 515 520 525 Gly Arg Asn Lys Leu Lys Lys Ile Leu Asp Lys Thr Arg Ile Ser Ile 530 535 540 Leu Pro Gln Lys Pro Tyr Asn Asp Ile Gly Ile Gly Gln Ser Gln Asp 545 550 555 560 Asp Ser Ile Val Gly Leu Arg Gln Thr Lys His Ile Pro Thr Ala Leu 565 570 575 Pro Val Ser Gly Thr Leu Ser Ser Ser Asn Pro Asp Leu Leu Gln Ser 580 585 590 His His Arg Ile Leu Asp Phe Ser Ala Thr Pro Asp Leu Pro Asp Gln 595 600 605 Val Leu Arg Val Phe Lys Ala Asp Gln Gln Ser Arg Tyr Ile Met Ile 610 615 620 Ser Lys Asp Thr Thr Ala Lys Glu Val Val Ile Gln Ala Ile Arg Glu 625 630 635 640 Phe Ala Val Thr Ala Thr Pro Asp Gln Tyr Ser Leu Cys Glu Val Ser 645 650 655 Val Thr Pro Glu Gly Val Ile Lys Gln Arg Arg Leu Pro Asp Gln Leu 660 665 670 Ser Lys Leu Ala Asp Arg Ile Gln Leu Ser Gly Arg Tyr Tyr Leu Lys 675 680 685 Asn Asn Met Glu Thr Glu Thr Leu Cys Ser Asp Glu Asp Ala Gln Glu 690 695 700 Leu Leu Arg Glu Ser Gln Ile Ser Leu Leu Gln Leu Ser Thr Val Glu 705 710 715 720 Val Ala Thr Gln Leu Ser Met Arg Asn Phe Glu Leu Phe Arg Asn Ile 725 730 735 Glu Pro Thr Glu Tyr Ile Asp Asp Leu Phe Lys Leu Arg Ser Lys Thr 740 745 750 Ser Cys Ala Asn Leu Lys Arg Phe Glu Glu Val Ile Asn Gln Glu Thr 755 760 765 Phe Trp Val Ala Ser Glu Ile Leu Arg Glu Thr Asn Gln Leu Lys Arg 770 775 780 Met Lys Ile Ile Lys His Phe Ile Lys Ile Ala Leu His Cys Arg Glu 785 790 795 800 Cys Lys Asn Phe Asn Ser Met Phe Ala Ile Ile Ser Gly Leu Asn Leu 805 810 815 Ala Pro Val Ala Arg Leu Arg Thr Thr Trp Glu Lys Leu Pro Asn Lys 820 825 830 Tyr Glu Lys Leu Phe Gln Asp Leu Gln Asp Leu Phe Asp Pro Ser Arg 835 840 845 Asn Met Ala Lys Tyr Arg Asn Val Leu Asn Ser Gln Asn Leu Gln Pro 850 855 860 Pro Ile Ile Pro Leu Phe Pro Val Ile Lys Lys Asp Leu Thr Phe Leu 865 870 875 880 His Glu Gly Asn Asp Ser Lys Val Asp Gly Leu Val Asn Phe Glu Lys 885 890 895 Leu Arg Met Ile Ala Lys Glu Ile Arg His Val Gly Arg Met Ala Ser 900 905 910 Val Asn Met Asp Pro Ala Leu Met Phe Arg Thr Arg Lys Lys Lys Trp 915 920 925 Arg Ser Leu Gly Ser Leu Ser Gln Gly Ser Thr Asn Ala Thr Val Leu 930 935 940 Asp Val Ala Gln Thr Gly Gly His Lys Lys Arg Val Arg Arg Ser Ser 945 950 955 960 Phe Leu Asn Ala Lys Lys Leu Tyr Glu Asp Ala Gln Met Ala Arg Lys 965 970 975 Val Lys Gln Tyr Leu Ser Asn Leu Glu Leu Glu Met Asp Glu Glu Ser 980 985 990 Leu Gln Thr Leu Ser Leu Gln Cys Glu Pro Ala Thr Asn Thr Leu Pro 995 1000 1005 Lys Asn Pro Gly Asp Lys Lys Pro Val Lys Ser Glu Thr Ser Pro Val 1010 1015 1020 Ala Pro Arg Ala Gly Ser Gln Gln Lys Ala Gln Ser Leu Pro Gln Pro 1025 1030 1035 1040 Gln Gln Gln Pro Pro Pro Ala His Lys Ile Asn Gln Gly Leu Gln Val 1045 1050 1055 Pro Ala Val Ser Leu Tyr Pro Ser Arg Lys Lys Val Pro Val Lys Asp 1060 1065 1070 Leu Pro Pro Phe Gly Ile Asn Ser Pro Gln Ala Leu Lys Lys Ile Leu 1075 1080 1085 Ser Leu Ser Glu Glu Gly Ser Leu Glu Arg His Lys Lys Gln Ala Glu 1090 1095 1100 Asp Thr Ile Ser Asn Ala Ser Ser Gln Leu Ser Ser Pro Pro Thr Ser 1105 1110 1115 1120 Pro Gln Ser Ser Pro Arg Lys Gly Tyr Thr Leu Ala Pro Ser Gly Thr 1125 1130 1135 Val Asp Asn Phe Ser Asp Ser Gly His Ser Glu Ile Ser Ser Arg Ser 1140 1145 1150 Ser Ile Val Ser Asn Ser Ser Phe Asp Ser Val Pro Val Ser Leu His 1155 1160 1165 Asp Glu Arg Arg Gln Arg His Ser Val Ser Ile Val Glu Thr Asn Leu 1170 1175 1180 Gly Met Gly Arg Met Glu Arg Arg Thr Met Ile Glu Pro Asp Gln Tyr 1185 1190 1195 1200 Ser Leu Gly Ser Tyr Ala Pro Met Ser Glu Gly Arg Gly Leu Tyr Ala 1205 1210 1215 Thr Ala Thr Val Ile Ser Ser Pro Ser Thr Glu Glu Leu Ser Gln Asp 1220 1225 1230 Gln Gly Asp Arg Ala Ser Leu Asp Ala Ala Asp Ser Gly Arg Gly Ser 1235 1240 1245 Trp Thr Ser Cys Ser Ser Gly Ser His Asp Asn Ile Gln Thr Ile Gln 1250 1255 1260 His Gln Arg Ser Trp Glu Thr Leu Pro Phe Gly His Thr His Phe Asp 1265 1270 1275 1280 Tyr Ser Gly Asp Pro Ala Gly Leu Trp Ala Ser Ser Ser His Met Asp 1285 1290 1295 Gln Ile Met Phe Ser Asp His Ser Thr Lys Tyr Asn Arg Gln Asn Gln 1300 1305 1310 Ser Arg Glu Ser Leu Glu Gln Ala Gln Ser Arg Ala Ser Trp Ala Ser 1315 1320 1325 Ser Thr Gly Tyr Trp Gly Glu Asp Ser Glu Gly Asp Thr Gly Thr Ile 1330 1335 1340 Lys Arg Arg Gly Gly Lys Asp Val Ser Ile Glu Ala Glu Ser Ser Ser 1345 1350 1355 1360 Leu Thr Ser Val Thr Thr Glu Glu Thr Lys Pro Val Pro Met Pro Ala 1365 1370 1375 His Ile Ala Val Ala Ser Ser Thr Thr Lys Gly Leu Ile Ala Arg Lys 1380 1385 1390 Glu Gly Arg Tyr Arg Glu Pro Pro Pro Thr Pro Pro Gly Tyr Ile Gly 1395 1400 1405 Ile Pro Ile Thr Asp Phe Pro Glu Gly His Ser His Pro Ala Arg Lys 1410 1415 1420 Pro Pro Asp Tyr Asn Val Ala Leu Gln Arg Ser Arg Met Val Ala Arg 1425 1430 1435 1440 Ser Ser Asp Thr Ala Gly Pro Ser Ser Val Gln Gln Pro His Gly His 1445 1450 1455 Pro Thr Ser Ser Arg Pro Val Asn Lys Pro Gln Trp His Lys Pro Asn 1460 1465 1470 Glu Ser Asp Pro Arg Leu Ala Pro Tyr Gln Ser Gln Gly Phe Ser Thr 1475 1480 1485 Glu Glu Asp Glu Asp Glu Gln Val Ser Ala Val 1490 1495 3 799 DNA Mus musculus 3 actaaaggga acaaaagctg gagctccacc gcggtggcgg ccgctctaga actagtggat 60 cccccgggct gcaggaattc aagcggtggg aaggatgtct ccgctgaggc agagagcagc 120 agcatggtgc ccgtgactac agaggaagcc aaacctgtcc ctatgcctgc ccacatagct 180 gtgacgccga gcactaccaa gggactcatc gcacggaagg aaggcaggta ccgggagccg 240 cctcccacac ctccaggcta cgtgggcatc cccattgccg atttcccaga agggccttgc 300 cacccggcca ggaagccccc ggattacaac gtggccctgc agcggtcccg catggtggca 360 cggcccactg aggccccggc accgggccag acgccgcctg cagccgcagc cagccggccg 420 ggcagcaagc cacagtggca caagcccagc gacgcagacc cacgcctcgc gcccttccag 480 gcaggcttcg caggagcgga ggaggacgaa gatgaacaag tgtctgctgt ttgaggcgca 540 ggctccttga tccacagtga gccacccaaa ggagagcaca agaagacgtc ccaagccttg 600 gagccttggc acgcacatct gaggatggtg gaccagtttg cctccttccc tgccttaaag 660 cagcatgggg cttcttctcc ccttcttcct ttcccctttg catgtgaaat actgtgaaga 720 aattgccctg gcactttgca gacttgttgc ttgaaatgca cagcccagca gcccctgagc 780 tgctgcctgc cacgtcacg 799 4 286 PRT Homo sapiens SIMILAR Xaa is any aa 4 Thr Lys Gly Asn Lys Ser Trp Ser Ser Thr Ala Val Ala Ala Ala Leu 1 5 10 15 Glu Leu Val Asp Pro Pro Gly Cys Arg Asn Ser Ser Gly Gly Lys Asp 20 25 30 Val Ser Ala Glu Ala Glu Ser Ser Ser Met Val Pro Val Thr Thr Glu 35 40 45 Glu Ala Lys Pro Val Pro Met Pro Ala His Ile Ala Val Thr Pro Ser 50 55 60 Thr Thr Lys Gly Leu Ile Ala Arg Lys Glu Gly Arg Tyr Arg Glu Pro 65 70 75 80 Pro Pro Thr Pro Pro Gly Tyr Val Gly Ile Pro Ile Ala Asp Phe Pro 85 90 95 Glu Gly Pro Cys His Pro Ala Arg Lys Pro Pro Asp Tyr Asn Val Ala 100 105 110 Leu Gln Arg Ser Arg Met Val Ala Arg Pro Thr Glu Ala Pro Ala Pro 115 120 125 Gly Gln Thr Pro Pro Ala Ala Ala Ala Ser Arg Pro Gly Ser Lys Pro 130 135 140 Gln Trp His Lys Pro Ser Asp Ala Asp Pro Arg Leu Ala Pro Phe Gln 145 150 155 160 Ala Ala Ser His Ser Gly Thr Ser Pro Ala Thr Gln Thr His Ala Ser 165 170 175 Arg Pro Ser Arg Gln Ala Ser Gln Glu Arg Arg Arg Thr Lys Met Asn 180 185 190 Lys Cys Leu Leu Phe Glu Ala Gln Ala Pro Xaa Ser Thr Val Ser His 195 200 205 Pro Lys Glu Ser Thr Arg Arg Arg Pro Lys Pro Trp Ser Leu Gly Thr 210 215 220 His Ile Xaa Gly Trp Trp Thr Ser Leu Pro Pro Ser Leu Pro Xaa Ser 225 230 235 240 Ser Met Gly Leu Leu Leu Pro Phe Phe Leu Ser Pro Leu His Val Lys 245 250 255 Tyr Cys Glu Glu Ile Ala Leu Ala Leu Cys Arg Leu Val Ala Xaa Asn 260 265 270 Ala Gln Pro Ser Ser Pro Xaa Ala Ala Ala Cys His Val Thr 275 280 285 5 245 PRT Homo sapiens SIMILAR Xaa is any aa 5 Leu Lys Gly Thr Lys Ala Gly Ala Pro Pro Arg Trp Arg Pro Leu Xaa 1 5 10 15 Asn Xaa Trp Ile Pro Arg Ala Ala Gly Ile Gln Ala Val Gly Arg Met 20 25 30 Ser Pro Leu Arg Gln Arg Ala Ala Ala Trp Cys Pro Xaa Leu Gln Arg 35 40 45 Lys Pro Asn Leu Ser Leu Cys Leu Pro Thr Xaa Leu Xaa Arg Arg Ala 50 55 60 Leu Pro Arg Asp Ser Ser His Gly Arg Lys Ala Gly Thr Gly Ser Arg 65 70 75 80 Leu Pro His Leu Gln Ala Thr Trp Ala Ser Pro Leu Pro Ile Ser Gln 85 90 95 Lys Gly Leu Ala Thr Arg Pro Gly Ser Pro Arg Ile Thr Thr Trp Pro 100 105 110 Cys Ser Gly Pro Ala Trp Trp His Gly Pro Leu Arg Pro Arg His Arg 115 120 125 Ala Arg Arg Arg Leu Gln Pro Gln Pro Ala Gly Arg Arg Leu Arg Arg 130 135 140 Ser Gly Gly Gly Arg Arg Xaa Thr Ser Val Cys Cys Leu Arg Arg Arg 145 150 155 160 Leu Leu Asp Pro Gln Xaa Ala Thr Gln Arg Arg Ala Gln Glu Asp Val 165 170 175 Pro Ser Leu Gly Ala Leu Ala Arg Thr Ser Glu Asp Gly Gly Pro Val 180 185 190 Cys Leu Leu Pro Cys Leu Lys Ala Ala Trp Gly Phe Phe Ser Pro Ser 195 200 205 Ser Phe Pro Leu Cys Met Xaa Asn Thr Val Lys Lys Leu Pro Trp His 210 215 220 Phe Ala Asp Leu Leu Leu Glu Met His Ser Pro Ala Ala Pro Glu Leu 225 230 235 240 Leu Pro Ala Thr Ser 245 6 266 PRT Homo sapiens SIMILAR Xaa is any aa 6 Xaa Arg Glu Gln Lys Leu Glu Leu His Arg Gly Gly Gly Arg Ser Arg 1 5 10 15 Thr Ser Gly Ser Pro Gly Leu Gln Glu Phe Lys Arg Trp Glu Gly Cys 20 25 30 Leu Arg Xaa Gly Arg Glu Gln Gln His Gly Ala Arg Asp Tyr Arg Gly 35 40 45 Ser Gln Thr Cys Pro Tyr Ala Cys Pro His Ser Cys Asp Ala Glu His 50 55 60 Tyr Gln Gly Thr His Arg Thr Glu Gly Arg Gln Val Pro Gly Ala Ala 65 70 75 80 Ser His Thr Ser Arg Leu Arg Gly His Pro His Cys Arg Phe Pro Arg 85 90 95 Arg Ala Leu Pro Pro Gly Gln Glu Ala Pro Gly Leu Gln Arg Gly Pro 100 105 110 Ala Ala Val Pro His Gly Gly Thr Ala His Xaa Gly Pro Gly Thr Gly 115 120 125 Pro Asp Ala Ala Cys Ser Arg Ser Gln Pro Ala Gly Gln Gln Ala Thr 130 135 140 Val Ala Gln Ala Gln Arg Arg Arg Pro Thr Pro Arg Ala Leu Pro Gly 145 150 155 160 Ala Gly Phe Ala Gly Ala Glu Glu Asp Glu Asp Glu Gln Val Ser Ala 165 170 175 Val Xaa Gly Ala Gly Ser Leu Ile His Ser Glu Pro Pro Lys Gly Glu 180 185 190 His Lys Lys Thr Ser Gln Ala Leu Glu Pro Trp His Ala His Leu Arg 195 200 205 Met Val Asp Gln Phe Ala Ser Phe Pro Ala Leu Lys Gln His Gly Ala 210 215 220 Ser Ser Pro Leu Leu Pro Phe Pro Phe Ala Cys Glu Ile Leu Xaa Arg 225 230 235 240 Asn Cys Pro Gly Thr Leu Gln Thr Cys Cys Leu Lys Cys Thr Ala Gln 245 250 255 Gln Pro Leu Ser Cys Cys Leu Pro Arg His 260 265 7 307 PRT Drosophila melanogaster 7 Ser Asn Val His Phe Leu His Leu Asn Ala Tyr Glu Leu Ala Ile Gln 1 5 10 15 Leu Thr Leu Gln Asp Phe Ala Asn Phe Arg Gln Ile Glu Ser Thr Glu 20 25 30 Tyr Val Asp Glu Leu Phe Glu Leu Arg Ser Arg Tyr Gly Val Pro Met 35 40 45 Leu Ser Lys Phe Ala Glu Leu Val Asn Arg Glu Met Phe Trp Val Val 50 55 60 Ser Glu Ile Cys Ala Glu His Asn Ile Val Arg Arg Met Lys Ile Val 65 70 75 80 Lys Gln Phe Ile Lys Ile Ala Arg His Cys Lys Glu Cys Arg Asn Phe 85 90 95 Asn Ser Met Phe Ala Ile Val Ser Gly Leu Gly His Gly Ala Val Ser 100 105 110 Arg Leu Arg Gln Thr Trp Glu Lys Leu Pro Ser Lys Tyr Gln Arg Leu 115 120 125 Phe Asn Asp Leu Gln Asp Leu Met Asp Pro Ser Arg Asn Met Ser Lys 130 135 140 Tyr Arg Gln Leu Val Ser Ala Glu Leu Leu Ala Gln His Pro Ile Ile 145 150 155 160 Pro Phe Tyr Pro Ile Val Lys Lys Asp Leu Thr Phe Ile His Leu Gly 165 170 175 Asn Asp Thr Arg Val Asp Gly Leu Val Asn Phe Glu Lys Leu Arg Met 180 185 190 Leu Ala Lys Glu Val Arg Leu Leu Thr His Met Cys Ser Ser Pro Tyr 195 200 205 Asp Leu Leu Ser Ile Leu Glu Leu Lys Gly Gln Ser Pro Ser Asn Ala 210 215 220 Leu Phe Ser Leu Asn Gln Met Ser Ala Ser Gln Ser Asn Ala Ala Ala 225 230 235 240 Gly Thr Val Ile Ala Ala Asn Ala Gly Gln Ala Thr Ile Lys Arg Arg 245 250 255 Lys Lys Ser Thr Ala Ala Pro Asn Pro Lys Lys Met Phe Glu Glu Ala 260 265 270 Gln Met Val Arg Arg Val Lys Ala Tyr Leu Asn Ser Leu Lys Ile Leu 275 280 285 Ser Asp Glu Asp Leu Leu His Lys Phe Ser Leu Glu Cys Glu Pro Ala 290 295 300 His Gly Ser 305 8 270 PRT Homo sapiens 8 Ser Ala Glu Gly Leu Asp Leu Val Ser Ala Lys Asp Leu Ala Gly Gln 1 5 10 15 Leu Thr Asp His Asp Trp Ser Leu Phe Asn Ser Ile His Gln Val Glu 20 25 30 Leu Ile His Tyr Val Leu Gly Pro Gln His Leu Arg Asp Val Thr Thr 35 40 45 Ala Asn Leu Glu Arg Phe Met Arg Arg Phe Asn Glu Leu Gln Tyr Trp 50 55 60 Val Ala Thr Glu Leu Cys Leu Cys Pro Val Pro Gly Pro Arg Ala Gln 65 70 75 80 Leu Leu Arg Lys Phe Ile Lys Leu Ala Ala His Leu Lys Glu Gln Lys 85 90 95 Asn Leu Asn Ser Phe Phe Ala Val Met Phe Gly Leu Ser Asn Ser Ala 100 105 110 Ile Ser Arg Leu Ala His Thr Trp Glu Arg Leu Pro His Lys Val Arg 115 120 125 Lys Leu Tyr Ser Ala Leu Glu Arg Leu Leu Asp Pro Ser Trp Asn His 130 135 140 Arg Val Tyr Arg Leu Ala Leu Ala Lys Leu Ser Pro Pro Val Ile Pro 145 150 155 160 Phe Met Pro Leu Leu Leu Lys Asp Met Thr Phe Ile His Glu Gly Asn 165 170 175 His Thr Leu Val Glu Asn Leu Ile Asn Phe Glu Lys Met Arg Met Met 180 185 190 Ala Arg Ala Ala Arg Met Leu His His Cys Arg Ser His Asn Pro Val 195 200 205 Pro Leu Ser Pro Leu Arg Ser Arg Val Ser His Leu His Glu Asp Ser 210 215 220 Gln Val Ala Arg Ile Ser Thr Cys Ser Glu Gln Ser Leu Ser Thr Arg 225 230 235 240 Ser Pro Ala Ser Thr Trp Ala Tyr Val Gln Gln Leu Lys Val Ile Asp 245 250 255 Asn Gln Arg Glu Leu Ser Arg Leu Ser Arg Glu Leu Glu Pro 260 265 270 9 244 PRT Mus musculus 9 Lys Ala Glu Cys Phe Glu Thr Leu Ser Ala Met Glu Leu Ala Glu Gln 1 5 10 15 Ile Thr Leu Leu Asp His Ile Val Phe Arg Ser Ile Pro Tyr Glu Glu 20 25 30 Phe Leu Gly Gln Gly Trp Met Lys Leu Asp Lys Asn Glu Arg Thr Pro 35 40 45 Tyr Ile Met Lys Thr Ser Gln His Phe Asn Glu Met Ser Asn Leu Val 50 55 60 Ala Ser Gln Ile Met Asn Tyr Ala Asp Ile Ser Ser Arg Pro Asn Ala 65 70 75 80 Ile Glu Lys Trp Val Ala Val Ala Asp Ile Cys Arg Cys Leu His Asn 85 90 95 Tyr Asn Gly Val Leu Glu Ile Thr Ser Ala Leu Asn Arg Ser Pro Ile 100 105 110 Tyr Arg Leu Lys Lys Thr Trp Ala Lys Val Ser Lys Gln Thr Lys Ala 115 120 125 Leu Met Asp Lys Leu Gln Lys Thr Val Ser Ser Glu Gly Arg Phe Lys 130 135 140 Asn Leu Arg Glu Thr Leu Lys Asn Cys Asn Pro Pro Ala Val Pro Tyr 145 150 155 160 Leu Gly Met Tyr Leu Thr Asp Leu Ala Phe Ile Glu Glu Gly Thr Pro 165 170 175 Asn Phe Thr Glu Glu Gly Leu Val Asn Phe Ser Lys Met Arg Met Ile 180 185 190 Ser His Ile Ile Arg Glu Ile Arg Gln Phe Gln Gln Thr Ala Tyr Arg 195 200 205 Ile Asp Gln Gln Pro Lys Val Ile Gln Tyr Leu Leu Asp Lys Ala Leu 210 215 220 Val Ile Asp Glu Asp Ser Leu Tyr Glu Leu Ser Leu Lys Ile Glu Pro 225 230 235 240 Arg Leu Pro Ala 10 249 PRT Homo sapiens 10 Asp Glu Ile Thr Leu Leu Thr Leu His Pro Leu Glu Leu Ala Arg Gln 1 5 10 15 Leu Thr Leu Leu Glu Phe Glu Met Tyr Lys Asn Val Lys Pro Ser Glu 20 25 30 Leu Val Gly Ser Pro Trp Thr Lys Lys Asp Lys Glu Val Lys Ser Pro 35 40 45 Asn Leu Leu Lys Ile Met Lys His Thr Thr Asn Val Thr Arg Trp Ile 50 55 60 Glu Lys Ser Ile Thr Glu Ala Glu Asn Tyr Glu Glu Arg Leu Ala Ile 65 70 75 80 Met Gln Arg Ala Ile Glu Val Met Met Val Met Leu Glu Leu Asn Asn 85 90 95 Phe Asn Gly Ile Leu Ser Ile Val Ala Ala Met Gly Thr Ala Ser Val 100 105 110 Tyr Arg Leu Arg Trp Thr Phe Gln Gly Leu Pro Glu Arg Tyr Arg Lys 115 120 125 Phe Leu Glu Glu Cys Arg Glu Leu Ser Asp Asp His Leu Lys Lys Tyr 130 135 140 Gln Glu Arg Leu Arg Ser Ile Asn Pro Pro Cys Val Pro Phe Phe Gly 145 150 155 160 Arg Tyr Leu Thr Asn Ile Leu His Leu Glu Glu Gly Asn Pro Asp Leu 165 170 175 Leu Ala Asn Thr Glu Leu Ile Asn Phe Ser Lys Arg Arg Lys Val Ala 180 185 190 Glu Ile Ile Gly Glu Ile Gln Gln Tyr Gln Asn Gln Pro Tyr Cys Leu 195 200 205 Asn Glu Glu Ser Thr Ile Arg Gln Phe Phe Glu Gln Leu Asp Pro Phe 210 215 220 Asn Gly Leu Ser Asp Lys Gln Met Ser Asp Tyr Leu Tyr Asn Glu Ser 225 230 235 240 Leu Arg Ile Glu Pro Arg Gly Cys Lys 245 11 243 PRT Homo sapiens 11 Val Ser Leu Leu Phe Asp His Leu Glu Pro Glu Glu Leu Ser Glu His 1 5 10 15 Leu Thr Tyr Leu Glu Phe Lys Ser Phe Arg Arg Ile Ser Phe Ser Asp 20 25 30 Tyr Gln Asn Tyr Leu Val Asn Ser Cys Val Lys Glu Asn Pro Thr Met 35 40 45 Glu Arg Ser Ile Ala Leu Cys Asn Gly Ile Ser Gln Trp Val Gln Leu 50 55 60 Met Val Leu Ser Arg Pro Thr Pro Gln Leu Arg Ala Glu Val Phe Ile 65 70 75 80 Lys Phe Ile Gln Val Ala Gln Lys Leu His Gln Leu Gln Asn Phe Asn 85 90 95 Thr Leu Met Ala Val Ile Gly Gly Leu Cys His Ser Ser Ile Ser Arg 100 105 110 Leu Lys Glu Thr Ser Ser His Val Pro His Glu Ile Asn Lys Val Leu 115 120 125 Gly Glu Met Thr Glu Leu Leu Ser Ser Ser Arg Asn Tyr Asp Asn Tyr 130 135 140 Arg Arg Ala Tyr Gly Glu Cys Thr Asp Phe Lys Ile Pro Ile Leu Gly 145 150 155 160 Val His Leu Lys Asp Leu Ile Ser Leu Tyr Glu Ala Met Pro Asp Tyr 165 170 175 Leu Glu Asp Gly Lys Val Asn Val His Lys Leu Leu Ala Leu Tyr Asn 180 185 190 His Ile Ser Glu Leu Val Gln Leu Gln Glu Val Ala Pro Pro Leu Glu 195 200 205 Ala Asn Lys Asp Leu Val His Leu Leu Thr Leu Ser Leu Asp Leu Tyr 210 215 220 Tyr Thr Glu Asp Glu Ile Tyr Glu Leu Ser Tyr Ala Arg Glu Pro Arg 225 230 235 240 Asn His Arg 12 48 PRT Unknown Organism Description of Unknown Organism unavailable 12 Ile Arg Gly Gly Thr Lys Glu Ala Leu Ile Glu His Leu Thr Ser His 1 5 10 15 Glu Leu Val Asp Ala Ala Phe Asn Val Thr Met Leu Ile Thr Phe Arg 20 25 30 Ser Ile Leu Thr Thr Arg Glu Phe Phe Tyr Ala Leu Ile Tyr Arg Tyr 35 40 45 13 47 PRT Mus musculus 13 Ile Lys Gly Gly Thr Val Val Lys Leu Ile Glu Arg Leu Thr Tyr His 1 5 10 15 Met Tyr Ala Asp Pro Asn Phe Val Arg Thr Phe Leu Thr Tyr Arg Ser 20 25 30 Phe Cys Lys Gln Glu Leu Leu Asn Leu Leu Ile Glu Arg Phe Glu 35 40 45 14 48 PRT Mus musculus 14 Ile Arg Tyr Ala Ser Val Glu Ala Leu Leu Glu Arg Leu Thr Asp Leu 1 5 10 15 Arg Phe Leu Ser Ile Asp Phe Leu Asn Thr Phe Leu His Thr Tyr Arg 20 25 30 Ile Phe Thr Thr Ala Thr Val Val Leu Ala Lys Leu Ser Asp Ile Tyr 35 40 45 15 50 PRT Unknown Organism SIMILAR Xaa is any aa 15 Val Val Lys Phe Ala Ser Leu Asn Lys Leu Val Glu His Leu Thr His 1 5 10 15 Asp Ser Lys His Asp Leu Gln Phe Leu Lys Thr Phe Leu Met Thr Tyr 20 25 30 Gln Ser Phe Cys Thr Pro Glu Lys Leu Met Ser Lys Leu Gln Gln Arg 35 40 45 Tyr Xaa 50 16 77 PRT Drosophila melanogaster 16 Leu Thr Arg Ser Ser Arg Asp Glu Pro Leu Asn Phe Arg Ile Val Gly 1 5 10 15 Gly Tyr Glu Leu Arg Gly Val Ala Ile Ala Thr Gly Asn Ala Ala Val 20 25 30 Gly Ile Tyr Ile Ser His Val Glu Pro Gly Ser Lys Ala Gln Asp Val 35 40 45 Gly Leu Lys Arg Gly Asp Gln Ile His Glu Val Asn Gly Gln Ser Leu 50 55 60 Asp His Val Thr Ser Lys Arg Ala Leu Glu Ile Leu Thr 65 70 75 17 71 PRT Homo sapiens 17 Asn Leu Lys Lys Asp Ala Lys Tyr Gly Leu Gly Phe Gln Ile Ile Gly 1 5 10 15 Gly Glu Lys Met Gly Arg Leu Asp Leu Gly Ile Phe Ile Ser Ser Val 20 25 30 Ala Pro Gly Gly Pro Ala Asp Leu Asp Gly Cys Leu Lys Pro Gly Asp 35 40 45 Arg Leu Ile Ser Val Asn Ser Val Ser Leu Glu Gly Val Ser His His 50 55 60 Ala Ala Ile Glu Ile Leu Gln 65 70 18 67 PRT Homo sapiens 18 Ile Val Ile His Arg Gly Ser Thr Gly Leu Gly Phe Asn Ile Val Gly 1 5 10 15 Gly Glu Asp Gly Glu Gly Ile Phe Ile Ser Phe Ile Leu Ala Gly Gly 20 25 30 Pro Ala Asp Leu Ser Gly Glu Leu Arg Lys Gly Asp Gln Ile Leu Ser 35 40 45 Val Asn Gly Val Asp Leu Arg Asn Ala Ser His Glu Gln Ala Ala Ile 50 55 60 Ala Leu Lys 65 19 68 PRT Rattus rattus 19 Val Glu Leu Pro Lys Thr Glu Glu Gly Leu Gly Phe Asn Ile Met Gly 1 5 10 15 Gly Lys Glu Gln Asn Ser Pro Ile Tyr Ile Ser Arg Ile Ile Pro Gly 20 25 30 Gly Ile Ala Asp Arg His Gly Gly Leu Lys Arg Gly Asp Gln Leu Leu 35 40 45 Ser Val Asn Gly Val Ser Val Glu Gly Glu His His Glu Lys Ala Val 50 55 60 Glu Leu Leu Lys 65 20 65 PRT Homo sapiens 20 Val Lys Val Gln Lys Gly Ser Glu Pro Leu Gly Ile Ser Ile Val Ser 1 5 10 15 Gly Glu Lys Gly Gly Ile Tyr Val Ser Lys Val Thr Val Gly Ser Ile 20 25 30 Ala His Gln Ala Gly Leu Glu Tyr Gly Asp Gln Leu Leu Glu Phe Asn 35 40 45 Gly Ile Asn Leu Arg Ser Ala Thr Glu Gln Gln Ala Arg Leu Ile Ile 50 55 60 Gly 65 21 98 PRT Drosophila melanogaster 21 Met Val Phe Ala Val Val Asp Lys Ala Gly Thr Val Val Met Ser Asp 1 5 10 15 Gly Glu Glu Leu Asp Ser Trp Ser Val Leu Ile Asn Gly Ala Val Glu 20 25 30 Ile Glu His Ala Asn Gly Ser Arg Glu Glu Leu Gln Met Gly Asp Ser 35 40 45 Phe Gly Ile Leu Pro Thr Met Asp Lys Leu Tyr His Arg Gly Val Met 50 55 60 Arg Thr Lys Cys Asp Asp Cys Gln Phe Val Cys Ile Thr Gln Thr Asp 65 70 75 80 Tyr Tyr Arg Ile Gln His Gln Gly Glu Glu Asn Thr Arg Arg His Glu 85 90 95 Asp Glu 22 99 PRT Homo sapiens 22 Leu Leu Phe Glu Pro His Ser Lys Ala Gly Thr Val Leu Phe Ser Gln 1 5 10 15 Gly Asp Lys Gly Thr Ser Trp Tyr Ile Ile Trp Lys Gly Ser Val Asn 20 25 30 Val Val Thr His Gly Lys Gly Leu Val Thr Thr Leu His Glu Gly Asp 35 40 45 Asp Phe Gly Gln Leu Ala Leu Val Asn Asp Ala Pro Arg Ala Ala Thr 50 55 60 Ile Ile Leu Arg Glu Asp Asn Cys His Phe Leu Arg Val Asp Lys Gln 65 70 75 80 Asp Phe Asn Arg Ile Ile Lys Asp Val Glu Ala Lys Thr Met Arg Leu 85 90 95 Glu Glu His 23 97 PRT Homo sapiens 23 Ala Met Phe Pro Val Thr His Ile Ala Gly Glu Thr Val Ile Gln Gln 1 5 10 15 Gly Asn Glu Gly Asp Asn Phe Tyr Val Val Asp Gln Gly Glu Val Asp 20 25 30 Val Tyr Val Asn Gly Glu Trp Val Thr Asn Ile Ser Glu Gly Gly Ser 35 40 45 Phe Gly Glu Leu Ala Leu Ile Tyr Gly Thr Pro Arg Ala Ala Thr Val 50 55 60 Lys Ala Lys Thr Asp Leu Lys Leu Trp Gly Ile Asp Arg Asp Ser Tyr 65 70 75 80 Arg Arg Ile Leu Met Gly Ser Thr Leu Arg Lys Arg Lys Met Tyr Glu 85 90 95 Glu 24 97 PRT Homo sapiens 24 Cys Met Tyr Gly Arg Asn Tyr Gln Gln Gly Ser Tyr Ile Ile Lys Gln 1 5 10 15 Gly Glu Pro Gly Asn His Ile Phe Val Leu Ala Glu Gly Arg Leu Glu 20 25 30 Val Phe Gln Gly Glu Lys Leu Leu Ser Ser Ile Pro Met Trp Thr Thr 35 40 45 Phe Gly Glu Leu Ala Ile Leu Tyr Asn Cys Thr Arg Thr Ala Ser Val 50 55 60 Lys Ala Ile Thr Asn Val Lys Thr Trp Ala Leu Asp Arg Glu Val Phe 65 70 75 80 Gln Asn Ile Met Arg Arg Thr Ala Gln Ala Arg Asp Glu Gln Tyr Arg 85 90 95 Asn 25 103 PRT Mus musculus 25 Arg Leu Arg Ser Val Val Tyr Leu Pro Asn Asp Tyr Val Cys Lys Lys 1 5 10 15 Gly Glu Ile Gly Arg Glu Met Tyr Ile Ile Gln Ala Gly Gln Val Gln 20 25 30 Val Leu Gly Gly Pro Asp Gly Lys Ser Val Leu Val Thr Leu Lys Ala 35 40 45 Gly Ser Val Phe Gly Glu Ile Ser Leu Leu Ala Val Gly Gly Gly Asn 50 55 60 Arg Arg Thr Ala Asn Val Val Ala His Gly Phe Thr Asn Leu Phe Ile 65 70 75 80 Leu Asp Lys Lys Asp Leu Asn Glu Ile Leu Val His Tyr Pro Glu Ser 85 90 95 Gln Lys Leu Leu Arg Lys Lys 100 26 91 PRT Unknown Organism Description of Unknown Organism unavailable 26 Arg Glu Asp Phe Glu Ile Ile Arg Val Phe Asp Gly Asn Asn Ser Tyr 1 5 10 15 Arg Ser Gln Ile Ser Arg Asn Ile Val Val Ala Lys His Val Ser Val 20 25 30 Gln Gln Val Arg Asp Ala Ala Leu Arg Arg Phe His Ile Asn Asp Thr 35 40 45 Pro Glu Arg Tyr Tyr Ile Thr Gln Val Val Gly Glu Val Glu Glu Glu 50 55 60 Ile Leu Glu Asp Pro Val Pro Leu Arg Asn Val Lys Arg Pro Glu Gly 65 70 75 80 Lys Arg Ala Gln Ile Phe Ile Arg Tyr Tyr Asp 85 90 27 129 PRT Unknown Organism Description of Unknown Organism unavailable 27 Ser Ile Leu Val Thr Ser Gln Asp Lys Ala Pro Ser Val Ile Ser Arg 1 5 10 15 Val Leu Lys Lys Asn Asn Arg Asp Ser Ala Val Ala Ser Glu Tyr Glu 20 25 30 Leu Val Gln Leu Leu Pro Gly Glu Arg Glu Leu Thr Ile Pro Ala Ser 35 40 45 Ala Asn Val Phe Tyr Ala Met Asp Gly Ala Ser His Asp Phe Leu Leu 50 55 60 Arg His Gly Glu Gly Pro Leu Leu Leu His Leu Ala Ser Pro Val Ala 65 70 75 80 Arg Leu Pro Gln Glu Leu Leu Arg Val Arg Glu Glu Gly Ala Pro Phe 85 90 95 Pro Gly Ser Arg Pro Gln Gly Gly Arg Leu His Gly His Cys Ser Glu 100 105 110 Glu Glu Ala Pro Leu Ala Tyr Arg Ser His Gly Val His Thr Arg Cys 115 120 125 Gly

Claims (35)

We claim:
1. An isolated nucleic acid molecule encoding a polypeptide having GRF4 activity.
2. The nucleic acid molecule of claim 1, comprising all or part of the nucleic acid molecule of [SEQ ID NO: 1].
3. An isolated nucleic molecule comprising at least 40% sequence identity to all or part of the nucleic acid molecule of [SEQ ID NO: 1], wherein the nucleic acid molecule encodes a polypeptide having GRF4 activity.
4. The molecule of any of claims 1 to 3 which is selected from a group consisting of mRNA, cDNA, sense DNA, anti-sense DNA, single-stranded DNA and double-stranded DNA.
5. A nucleic acid molecule encoding the amino acid sequence of [SEQ ID NO: 2].
6. A nucleic acid molecule that encodes all or part of a GRF4 polypeptide or a polypeptide having GRF4 activity, wherein the sequence hybridizes to the nucleic acid molecule of all or part of [SEQ ID NO: 1] under high stringency conditions.
7. The nucleic acid molecule of claim 6, wherein the high stringency conditions comprise a wash stringency of about 0.2×SSC, about 0.1% SDS, at about 50-65° C.
8. An isolated polypeptide having GRF4 activity and a CDC25 domain.
9. The polypeptide of claim 8, comprising all or part of the sequence of [SEQ ID NO: 2].
10. An isolated polypeptide comprising at least 40% sequence identity to all or part of the polypeptide of [SEQ ID NO: 2], wherein the polypeptide has GRF4 activity.
11. A mimetic of the isolated polypeptide of any of claims 8 to 10, wherein the mimetic has GRF4 activity.
12. A recombinant nucleic acid molecule comprising a nucleic acid molecule of any of claim 1 to claim 7 and a promoter region, operatively linked so that the promoter enhances transcription of the nucleic acid molecule in a host cell.
13. A system for the expression of GRF4, comprising an expression vector and a nucleic acid molecule of any of claim 1 to claim 7 inserted in the expression vector.
14. The system of claim 13, wherein the expression vector comprises a plasmid or a virus.
15. A cell transformed by the expression vector of claim 14.
16. A method for expressing a polypeptide comprising: transforming an expression host with an expression vector including and culturing the expression host.
17. The method of claim 16, further comprising isolating the polypeptide.
18. The method of claim 16 or 17, wherein the expression host is selected from the group consisting of a plant, plant cell, bacterium, yeast, fungus, protozoa, algae, animal and animal cell.
19. A pharmaceutical composition, comprising all or part of the polypeptide or mimetic of any of claims 8 to 11, and a pharmaceutically acceptable carrier, auxiliary or excipient
20. A GRF4 specific antibody targeted to a region selected from the group consisting of the C-terminus, the CDC25 domain, the cNMP binding domain and the PDZ domain.
21. The antibody of claim 20, wherein the antibody is a monoclonal antibody or a polyclonal antibody.
22. A method of medical treatment of a disease, disorder or abnormal physical state, characterized by excessive GRF4 expression, concentration or activity, comprising administering a product that reduces or inhibits GRF4 polypeptide expression, concentration or activity.
23. The method of claim 22, wherein the product is an antisense nucleic acid molecule to all or part of the nucleic acid molecule of any of claims 1 to 7, the antisense nucleic acid molecule being sufficient to reduce or inhibit GRF4 polypeptide expression.
24. The method of claim 22, wherein the product comprises all or part of Nedd4.
25. The method of any of claims 22 to 24 wherein the disease, disorder or abnormal physical state comprises cancer.
26. A method of medical treatment of a disease, disorder or abnormal physical state, characterized by inadequate GRF4 expression, concentration or activity, comprising administering a product that increases GRF4 polypeptide expression, concentration or activity.
27. The method of claim 26, wherein the product is a nucleic acid molecule comprising all or part of the nucleic acid molecule of any of claims 1 to 7, the DNA being sufficient to increase GRF4 polypeptide expression.
28. The method of claim 27, wherein the nucleic acid molecule is administered in a pharmaceutical composition comprising a carrier and a vector operably linked to the nucleic acid molecule.
29. A method of identifying a compound which modulates the interaction of GRF4 with Ras, comprising
a) contacting (i) GRF4, a Ras-binding fragment of GRF4 or a derivative of either of the foregoing with (ii) Ras, a GRF4-binding fragment of Ras or a derivative of either of the foregoing in the presence of the compound; wherein (i) and (ii) are capable of binding; and
b) determining whether the binding between (i) and (ii) is modulated, thereby indicating that the compound modulates the interaction of GRF4 and Ras.
30. A method of identifying a compound which modulates the interaction of GRF4 with Rap1, comprising
a) contacting (i) GRF4, a Rap1-binding fragment of GRF4 or a derivative of either of the foregoing with (ii) Rap1, a GRF4-binding fragment of Rap1 or a derivative of either of the foregoing in the presence of the compound; wherein (i) and (ii) are capable of binding; and
b) determining whether the binding between (i) and (ii) is modulated, thereby indicating that the compound modulates the interaction of GRF4 and Rap1.
31. A method of evaluating the cell proliferation reducing properties of a compound comprising contacting the compound with:
a) GRF4, a Ras binding fragment of GRF4 or a derivative of either of the foregoing; and
b) Ras, a GRF4 binding fragment of Ras or a derivative of either of the foregoing; wherein (a) and (b) are capable of binding; and
c) determining the ability of the compound to interfere with the binding of a) with b), the ability to interfere with binding indicating that the compound reduces cell proliferation.
32. An isolated Guanine Nucleotide Releasing Factor 4 (GRF4) polypeptide Ras activator.
33. A recombinant GRF4 protein produced by a cell including a nucleic acid molecule encoding a GRF4, operably linked to a promoter.
34. A Ras binding peptide comprising 10 to 100 amino acids wherein the peptide includes part of the peptide of [SEQ. ID NO. 2, 4, 5 or 6] or a derivative thereof and inhibits Ras activation.
35. A method of evaluating an anti-proliferative compound comprising contacting the compound with the CDC25 domain of GRF4, or a derivative thereof and determining the ability of the compound to bind to the GRF4 or derivative, wherein the ability to bind indicates that the compound inhibits cell proliferation.
US09/911,826 1999-01-20 2001-07-20 Ras activator nucleic acid molecules, polypeptides and methods of use Abandoned US20020143164A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,259,830 1999-01-20
CA002259830A CA2259830A1 (en) 1999-01-20 1999-01-20 Ras activator nucleic acid molecules, proteins and methods of use
PCT/CA2000/000042 WO2000043510A2 (en) 1999-01-20 2000-01-20 Ras activator nucleic acid molecules - guanine nucleotide releasing factor grf4, polypeptides and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2000/000042 Continuation WO2000043510A2 (en) 1999-01-20 2000-01-20 Ras activator nucleic acid molecules - guanine nucleotide releasing factor grf4, polypeptides and methods of use

Publications (1)

Publication Number Publication Date
US20020143164A1 true US20020143164A1 (en) 2002-10-03

Family

ID=4163217

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/911,826 Abandoned US20020143164A1 (en) 1999-01-20 2001-07-20 Ras activator nucleic acid molecules, polypeptides and methods of use

Country Status (4)

Country Link
US (1) US20020143164A1 (en)
AU (1) AU3028900A (en)
CA (1) CA2259830A1 (en)
WO (1) WO2000043510A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244062A1 (en) * 2003-06-02 2004-12-02 Crittenden Jill R. Use of protein inhibitors as antithrombotic agents
CN111818794A (en) * 2018-02-14 2020-10-23 中国科学院遗传与发育生物学研究所 Method for increasing nutrient utilization efficiency
WO2020257405A1 (en) * 2019-06-18 2020-12-24 Musc Foundation For Research Development Compositions and methods targeting the nucleotide free state of ras to block oncogenic signaling and transformation
US20210231683A1 (en) * 2018-04-20 2021-07-29 Unm Rainforest Innovations Rap1-GTP, Rac1-GTP and FMS-like Tyrosine Kinase 3 ligand (FLT3-L) As Biomarkers For Early Detection of Sepsis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812945B1 (en) 2000-08-10 2002-10-04 Aventis Pharma Sa USE OF PROTEIN GRF1 AND CELLS EXPRESSING PROTEIN GRF1 FOR SCREENING OF MOLECULES
CA2396350A1 (en) * 2002-07-31 2004-01-31 The Hospital For Sick Children Methods of identifying selective .beta.-1-adrenergic receptor antagonists

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244062A1 (en) * 2003-06-02 2004-12-02 Crittenden Jill R. Use of protein inhibitors as antithrombotic agents
CN111818794A (en) * 2018-02-14 2020-10-23 中国科学院遗传与发育生物学研究所 Method for increasing nutrient utilization efficiency
US20210231683A1 (en) * 2018-04-20 2021-07-29 Unm Rainforest Innovations Rap1-GTP, Rac1-GTP and FMS-like Tyrosine Kinase 3 ligand (FLT3-L) As Biomarkers For Early Detection of Sepsis
WO2020257405A1 (en) * 2019-06-18 2020-12-24 Musc Foundation For Research Development Compositions and methods targeting the nucleotide free state of ras to block oncogenic signaling and transformation

Also Published As

Publication number Publication date
AU3028900A (en) 2000-08-07
WO2000043510A2 (en) 2000-07-27
CA2259830A1 (en) 2000-07-20
WO2000043510A3 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
Berti et al. Mig12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules
WO2000031124A2 (en) Peptides that modulate the interaction of b class ephrins and pdz domains
Foletta et al. Cloning of rat ARHGAP4/C1, a RhoGAP family member expressed in the nervous system that colocalizes with the Golgi complex and microtubules
JP2001504681A (en) Inhibition of protein interactions
US20020143164A1 (en) Ras activator nucleic acid molecules, polypeptides and methods of use
US8809500B2 (en) Complexes comprising mammalian raptor polypeptide and mammalian mTOR polypeptide
US6824971B1 (en) Methods of inhibiting or enhancing the TGFβ-SMAD signaling pathway
WO2001083518A2 (en) Molecules that modulate ubiquitin-dependent proteolysis and methods for identifying same
US6723838B1 (en) Signal transducing synaptic molecules and uses thereof
US20030108554A1 (en) GIPs, a family of polypeptides with transcription factor activity that interact with goodpasture antigen binding protein
US7083935B2 (en) Androgen receptor complex-associated protein
CA2360770A1 (en) Ras activator nucleic acid molecules - guanine nucleotide releasing factor grf4, polypeptides and methods of use
EP1064373A2 (en) Identification of factors which mediate the interaction of heterotrimeric g proteins and monomeric g proteins
US7214771B2 (en) Nucleic acid and protein expression thereby and their involvement in stress
US7579161B2 (en) Assay methods for suppressor of fused modulation of hedgehog signaling
AU779258B2 (en) Human suppressor of fused
JP2003501079A (en) Gene encoding NADE (P75NTR-related cell death executive substance) and use thereof
Liu Reexamination of G protein activation model by non-dissociable Gα-Gβ fusion proteins
US6956104B2 (en) Protein Rim2
WO1999001765A1 (en) METHODS OF INHIBITING OR ENHANCING THE TGFβ-SMAD SIGNALING PATHWAY
EP1489180A1 (en) P18abeta rp gene and p18abeta rp protein, novel gene/protein (p60trp) interacting therewith to inhibit cell death and cell death promoter
Kondo Intracellular dynamics of a focal adhesion protein and its relationship to cell migratory activity: an analysis of PAG3, a novel paxillin-binding ARFGAP protein
Tilley Protein Binding Partners of Cytohesin Associated Scaffolding Protein
Albertinazzi et al. Arf6 and a functional PIX/p95-APP1 complex are required for Rac1B-mediated neurite outgrowth
ZA200106937B (en) Human suppressor of fused.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION