Connect public, paid and private patent data with Google Patents Public Datasets

Method and system for mammalian joint resurfacing

Download PDF

Info

Publication number
US20020127264A1
US20020127264A1 US10098601 US9860102A US2002127264A1 US 20020127264 A1 US20020127264 A1 US 20020127264A1 US 10098601 US10098601 US 10098601 US 9860102 A US9860102 A US 9860102A US 2002127264 A1 US2002127264 A1 US 2002127264A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
component
system
surface
preformed
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10098601
Inventor
Jeffrey Felt
Mark Rydell
Paul Buscemi
Alexander Arsenyev
Christopher Porter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Bio Surfaces Inc
Original Assignee
Advanced Bio Surfaces Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/562Implants for placement in joint gaps without restricting joint motion, e.g. to reduce arthritic pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3872Meniscus for implantation between the natural bone surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3877Patellae or trochleae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/389Tibial components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction

Abstract

A method and system for the creation or modification of the wear surface of orthopedic joints, involving the preparation and use of one or more partially or fully preformed and procured components, adapted for insertion and placement into the body and at the joint site. In a preferred embodiment, component(s) can be partially cured and generally formed ex vivo and further and further formed in vivo at the joint site to enhance conformance and improve long term performance. In another embodiment, a preformed balloon or composite material can be inserted into the joint site and filled with a flowable biomaterial in situ to conform to the joint site. In yet another embodiment, the preformed component(s) can be fully cured and formed ex vivo and optionally further fitted and secured at the joint site. Preformed components can be sufficiently pliant to permit insertion through a minimally invasive portal, yet resilient enough to substantially assume, or tend towards, the desired form in vivo with additional forming there as needed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    The present application is a continuation of an international patent application filed Aug. 28, 2001 and assigned Ser. No. PCT/US01/41908 which application has not yet been published and which itself is a continuation-in-part of Provisional U.S. Application Serial No. 60/228,444, filed Aug. 28, 2000, the entire disclosures of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • [0002]
    In one aspect, this invention relates to biomaterials formed ex vivo for implantation and use within the body. In another aspect, the invention relates to in situ curable biomaterials. In yet another aspect, this invention further relates to the field of orthopedic implants and prostheses, and more particularly, for implantable materials for use in orthopedic joints.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Applicant has previously described, inter alia, prosthetic implants formed of biomaterials that can be delivered and finally cured in situ, e.g., using minimally invasive techniques. See for instance, U.S. Pat. Nos. 5,556,429, 5,795,353, 5,888,220, 6,079,868, 6,140,452, 6,224,630 and 6,248,131 as well as published International Application Nos. WO 95/30388 and WO 97/26847 and International Application PCT/US97/20874 filed Nov. 14, 1997 (the disclosures of each of which are incorporated herein by reference). Certain of these applications describe, inter alia, the formation of a prosthetic nucleus within an intervertebral disc by a method that includes, for instance, the steps of inserting a collapsed mold apparatus (which in a preferred embodiment is described as a “balloon”) through a cannula that is itself positioned through an opening within the annulus, and filling the balloon with a flowable biomaterial that is adapted to finally cure in situ and provide a permanent disc replacement. See also, Applicant's “Porous Biomaterial and Biopolymer Resurfacing System” (PCT/US99/10004), as well as “Implantable Tissue Repair Device (PCT/US99/11740), and “Static Mixer” (PCT/US99/04407) applications.
  • [0004]
    See also, U.S. Pat. Nos. 3,030,951 (Mandarino), 4,203,444 (Bonnell et al.), 4,456,745 (Rajan), 4,463,141 (Robinson), 4,476,293 (Robinson), 4,477,604 (Oechsle, III), 4,647,643 (Zdrahala), 4,651,736 (Sanders), 4,722,948 (Sanderson), 4,743,632 (Marinovic et al.), 4,772,287 (Ray et al.), 4,808,691 (Konig et al.), 4,880,610 (Constanz), 4,873,308 (Coury et al.), 4,969,888 (Scholten et al.), 5,007,940 (Berg), 5,067,964 (Richmond et al.), 5,082,803 (Sumita), 5,108,404 (Scholten et al.), 5,109,077 (Wick), 5,143,942 (Brown), 5,166,115 (Brown), 5,254,662 (Szycher et al.), 5,278,201 (Dunn et al.), 5,525,418 (Hashimoto et al.), 5,624,463 (Stone et al.), 6,206,927 (Fell), and EP 0 353 936 (Cedar Surgical), EP 0 505 634 A1 (Kyocera Corporation), EP 0 521 573 (Industrial Res.), and FR 2 639 823 (Garcia), WO 93/11723 (Regen Corporation), WO 9531946 (Milner), WO 9531948 (Kuslich).
  • [0005]
    Applicant's PCT Application No. PCT/US97/00457 (WO 9726847A1) includes the optional use of a mold, such as a balloon, and describes the manner in which “[t]he mold created within the joint is preferably of sufficient shape and dimensions to allow the resulting cured biomaterial to replace or mimic the structure and function of the removed fibrocartilage. The mold can be formed of synthetic and/or natural materials, including those that are provided exogenously and those provided by the remaining natural tissues. The mold can either be removed from the site, upon curing of the biomaterial, or is sufficiently biocompatible to allow it to remain in position.”
  • [0006]
    Applicant's later PCT Application No. PCT/US97/20874 (WO 9820939A2) further describes the manner in which “‘mold’ will refer to the portion or portions of an apparatus of the invention used to receive, constrain, shape and/or retain a flowable biomaterial in the course of delivering and curing the biomaterial in situ. A mold may include or rely upon natural tissues (such as the annular shell of an intervertebral disc) for at least a portion of its structure, conformation or function. The mold, in turn, is responsible, at least in part, for determining the position and final dimensions of the cured prosthetic implant. As such, its dimensions and other physical characteristics can be predetermined to provide an optimal combination of such properties as the ability to be delivered to a site using minimally invasive means, filled with biomaterial, and optionally, then remain in place as or at the interface between cured biomaterial and natural tissue. In a particularly preferred embodiment the mold material can itself become integral to the body of the cured biomaterial.”
  • [0007]
    Applicant's own use of such mold apparatuses to date has concentrated largely on the use of thin, extensible balloons adapted to be positioned and then filled in situ with curable biomaterial, with particular use as a replacement for the intervertebral disc following microdiscetomy. In turn, there has been considerably less focus, to date, on the use of any such molds in other joints, such as the knee. FIGS. 6 and 7 of Applicant's PCT Publication No. WO 920939 A2, for instance, shows a balloon and corresponding drilling template for use in knee surgery, the balloon having foot portions protruding from a generally ovoid inflatable portion.
  • [0008]
    Finally, U.S. Pat. No. 6,206,927 describes a self-centering meniscal prosthesis device suitable for minimally invasive, surgical implantation into the cavity between a femoral condyle and the corresponding tibial plateau is composed of a hard, high modulus material shaped such that the contour of the device and the natural articulation of the knee exerts a restoring force on the free-floating device. In what appears to be a related manner, Sulzer has introduced a unicompartmental interpositional spacer to treat osteoarthritis in the knee. See “Little Device Could Pack a Big Punch”, Sulzer Medica Journal Edition Feb. 2000 (www.sulzermedica.com/media/smj-full-tex/2000/0002-full-text-6.html). The device is described as a metallic kidney-shaped insert which fills in for the damaged cartilage between the femur and the tibia.
  • [0009]
    Such a metallic device, as described in either the Fell patent and/or Sulzer's product literature, is described as appropriate for use in younger patients with moderate to severe chondromalacia, particularly since the product provides a hard, self-centering meniscal device that is “devoid of physical means that fix its location”. In so doing, the device of Fell et al. tends to require a significant amount of intact cartilage and meniscus. Applicant's own products to date, including those improved embodiments described herein, have been largely geared toward more elderly patients, where such healthy cartilage is lacking. In turn, Applicant's devices tend to provide angular correction and improved anchoring of the implant at the joint surface.
  • [0010]
    In spite of developments to date, there remains a need for a joint prosthesis system that provides an optimal combination of properties such as ease of preparation and use, and performance within the body.
  • BRIEF DESCRIPTION OF THE DRAWING
  • [0011]
    In the Drawing:
  • [0012]
    [0012]FIG. 1 shows top and side perspectives of a preferred preformed knee implant prepared according to the present invention.
  • [0013]
    [0013]FIG. 2 shows an embodiment in which preformed components adapted to be inserted and assembled in situ.
  • [0014]
    [0014]FIG. 3 shows an alternative embodiment in which preformed components are employed.
  • [0015]
    [0015]FIGS. 4 and 5 show an embodiment in which a substantially open (saucer-shaped) mold is inserted into the joint site, to be filled with a corresponding curable biomateral in situ.
  • [0016]
    [0016]FIG. 6 shows a variety of alternative embodiments that include one or more preformed component.
  • [0017]
    [0017]FIG. 7 shows a variety of alternative means for anchoring a preformed component such as that shown in FIG. 6d.
  • [0018]
    [0018]FIG. 8 shows a further variety for anchoring or stabilizing a preformed portion by the use of ancillary portions and/or surface texture.
  • [0019]
    [0019]FIG. 9 shows a variety of embodiments in a substantially closed (balloon like) mold is adapted to be inserted into the joint site and filled with a corresponding curable biomaterial.
  • [0020]
    [0020]FIG. 10 shows a mold adapted for use as an acetabular mold in connection with the replacement of the articulating surface in a hip.
  • [0021]
    [0021]FIG. 11 shows a patella femoral joint form suitable for use in combination with the method and system of this invention.
  • SUMMARY OF THE INVENTION
  • [0022]
    The present invention provides a method and system for the creation or modification of the wear surface of orthopedic joints, and particularly articulating joints such as the knee. In one preferred embodiment, the method relies, at least in part, upon the manner in which the various stages of curing a curable biomaterial, and in turn, the various stages of forming a component from the cured or curing biomaterial, can be correlated and optimized in a desired manner. In turn, such a method provides the ability to both generally and specifically form the component for use in situ.
  • [0023]
    The present invention includes a variety of embodiments, each of which preferably includes one or more components that are formed ex vivo, and that are adapted to be inserted and finally formed or assembled in situ in order to provide a final prosthesis and articulating joint surface. Examples of the various embodiments include, for instance,
  • [0024]
    1) one or more components that are each partially molded ex vivo, in a manner that permits the component to be inserted and finally formed in situ,
  • [0025]
    2) a plurality of preformed components adapted to be assembled in situ, for instance in an overlapping or interlocking fashion,
  • [0026]
    3) an insertable open (e.g., saucer shaped) mold, adapted to be inserted and positioned within the joint site, and there used in combination with a flowable biomaterial adapted to be delivered to the open mold in situ, under conditions that permit the flowable biomaterial to cure in contact and/or combination with the mold in order to form a final prosthesis,
  • [0027]
    4) one or more generally extensible envelope (e.g., balloon-type) molds, adapted to be positioned and filled in situ with corresponding curable biomaterials, one or more of the molds themselves providing one or more regions of generally non-extensible, preformed material. In one embodiment, for instance, a plurality of such envelope portions (e.g., a bi-compartmental single envelope) can be adapted for use on both the medial and lateral tibial surfaces, respectively.
  • [0028]
    By the selection and use of a suitable biomaterial, and other features as described herein, the present invention provides an optimal combination of benefits, as compared to methods previously described. Such benefits include those that arise in the course of preparation and storage (e.g., sterility, storage stability), those that arise in the surgical field itself (e.g., ease of use, adaptability, predictability), and those that arise in the course of long term use within the body (e.g., biocompatibility, moisture cure characteristics, tissue congruity and conformability, retention, wear characteristics, and physical-mechanical properties).
  • [0029]
    In one preferred embodiment, the method and system involve the preparation and use of partially cured components that can be formed outside the body, for insertion and placement into the body, and that can then be further formed within the joint site in order to enhance conformance. The ability to finally form one or more components in situ provides various additional benefits, such as increased control over the overall size and shape of the final prosthesis, improved shape and compliance of the surface apposing natural bone, and finally, improved shape and compliance of the opposite, articulating surface.
  • [0030]
    As used herein, the word “cure”, and inflections thereof, will refer to the extent to which a curable biomaterial, as used to form a component of this invention, has begun or completed whatever physical-chemical reactions may be contemplated in the course of fully forming the component, at the surgical site, for long term use in situ. In turn, the biomaterial can be considered as uncured (as in component parts that have not yet been mixed or compositions that have not yet been activated), or it can be partially cured (e.g., wherein the components have been mixed, or compositions activated, under conditions suitable to begin the curing process), or it can be fully cured (e.g., in which case, whatever chemical reactions may have occurred have substantially subsided). Generally, uncured compositions are sterile, storage stable, and often flowable, though are typically not yet formed or capable of being formed.
  • [0031]
    Curing compositions, by contrast, generally begin as flowable compositions, but become nonflowable over a finite time period as they begin to gel or set. Curing compositions can also be minimally formed, e.g., outside the body by the use of molds and/or suitable shaping tools, and/or within the body, as by the initial positioning of the component on supporting bone and by the repositioning of opposing, articulating bone surfaces. Thereafter, it is contemplated that certain compositions of this invention can be further formed, over time, as by the gradual effect of articulating bone in the course of long term use.
  • [0032]
    As also used herein, the word “form”, and inflections and variations thereof, will refer to the manner and extent to which a component has been sized and shaped, in either a general and/or specific manner, for use at a joint site. In turn, the forming of such a component can occur either ex vivo and/or in vivo, as well as in a general manner (e.g., by the use of an ex vivo mold or tools) and/or a specific manner (e.g., by final curing in apposition to supporting bone and/or opposing articulating bone surfaces), as well as combinations thereof.
  • [0033]
    A component can be “specifically” formed in this manner in order to conform the component (and particularly its surfaces) to the corresponding specific shapes and dimensions of bone in situ, including both supporting bone surfaces and/or opposing (e.g., articulating) bone surfaces. Such specific conformation, in turn, can be used to improve a variety of characteristics of the final implant, including comfort, mechanical performance, and/or long term stability. Such conformation can also include aspects in which one or more components, or the composite prosthesis, are “conformed” in correspondence with the joint site (e.g., by final shaping and curing processes that occur in situ).
  • [0034]
    Such conformation can also include aspects in which the components, or prosthesis itself, are adapted to be “deformed” within the site, as by the application of force. For instance, a substantially fully formed component can be provided to have sufficient mechanical properties (e.g., strength and resilience) to permit it to be inserted into a joint site and effectively deformed under normal anatomic forces For instance, a substantially convex component can be deformed to assume the corresponding concave shape in situ, in, while retaining sufficient resilient strength to tend towards its original convex shape (e.g., analogous to the manner in which a locking washer can be deformed in use, while tending toward its original shape). Preferably, a final knee component is adapted to be deformed under conditions of use within the body (e.g., under physiologic load), while maintaining desired size and tibial congruency, and in a manner that provides desired fit and thickness for desired angular correction.
  • [0035]
    Hence a “preformed” component will generally refer to a component that is at least partially formed ex vivo, as by the surgeon's selection and use of an appropriately sized ex vivo mold. Such a preformed component can be specifically formed as well, including in an ex vivo fashion, as by the use of a customized mold that is itself reflective of the particular dimensions and contours of the intended joint site. Such customized molds can be prepared, for instance, by the use of external imaging means, and/or by the appropriate use of negative and/or positive molds taken at the tissue site. Optionally, and preferably, the preformed component is specifically formed, in whole or in part, by being positioned in situ, prior to the completion of the curing process, and in apposition to both supporting bone and opposing bone surfaces. Once positioned within the joint site, any such component or prosthesis can be adapted to be deformed in order to improve its retention and/or performance in situ, e.g., resiliently deformed upon release of distracting forces and repositioning of the opposing bone surface.
  • [0036]
    For instance, a preformed composition is provided, formed initially by the ex vivo onset of cure, in which the composition can be implanted within on the order of 10 seconds to several days of the onset of cure, preferably within about 30 seconds to about 10 minutes, and more preferably within about one to about five minutes, while maintaining a surface exotherm of less than about 50 C., and more preferably less than about 45 C. once positioned within the body.
  • [0037]
    Once positioned in vivo, preferred preformed components of this invention are adapted to be finally shaped, for a period of between about 10 seconds and one or more hours, and more preferably between about one minute and about five minutes. The lower limit is defined largely by the time it takes to effectively reposition bone, or otherwise re-establish suitable force on the implant. The upper limit, in turn, is generally defined by the susceptibility of the implanted composition to further deformation or shaping. Such final shaping is generally accomplished, at least in part, under the force brought about by repositioning articulating bone surfaces. In one preferred embodiment, the partially cured composition is implanted under conditions that permit it to deform less than about 15%, preferably less than about 10%, and most preferably less than about 5%, under physiologic forces, while maintaining tibial congruency and imparting desired angular correction.
  • [0038]
    Hence, a particularly preferred preformed component of this invention can be implanted within an initial about one to about five minutes of the onset of its formation, and once implanted can be further molded or formed for a further period of about one to about five additional minutes, in a manner that permits the resultant implant to substantially retain a desired final form and function.
  • [0039]
    The system of the present invention thereby provides the surgeon with a variety of options, based on the manner in which these curing and forming processes are correlated. In one particularly preferred embodiment, for instance, the surgeon is provided with a composition adapted to be partially cured and generally formed ex vivo, and then promptly inserted into the body and positioned at the joint site, where it can be finally, and specifically, formed in the course of becoming fully cured.
  • [0040]
    By partially curing the prosthesis ex vivo, the present system simplifies the preparation process considerably, e.g., by lessening or avoiding potential problems (such as curing in the presence of moisture, and surface exotherm in the presence of tissue) that can arise when a comparable composition is mixed and delivered to the joint site while it is still flowable. Surprisingly, the present system permits such prostheses to be not only formed, but also manipulated and inserted into the joint (e.g., through an incision of between about 1 cm and about 3 cm). Once inserted, the prosthesis can be positioned, and further formed in situ, all within a reasonable time frame. In fact, it has been found that the procedure is amenable to outpatient use and even regional anesthesia.
  • [0041]
    Moreover, the present system can avoid the use of such processes as the drilling anchor holes into the underlying bone, distraction of the knee joint, ligament release, leveling of the tibial plateau, and the various other procedures typically involved with delivering the biomaterial directly to the joint site in still flowable form. Yet, the prosthesis of the present invention provides a combination of properties such as the extent of congruence with underlying bone, wear characteristics, fracture toughness, and avoidance of fibrillated articular cartilage, that meets or exceeds the combination of properties obtained using a comparable biomaterial in flowable form, delivered and largely cured in situ.
  • [0042]
    In addition to its immediate use in such joints as the knee, the system of the present invention provides particular advantages when applied to ball and socket joints, such as the hip. In one such embodiment, a balloon can be filled with a biomaterial as described herein, and inserted and positioned within the acetabulum, prior to or following filling, to provide a soft, conformable, durable lining for the placement of a hip prosthetic portion.
  • [0043]
    In a further embodiment, the method and system involve the preparation and use of one or more partially or fully cured component(s) formed outside the body, for insertion and placement into the body and optionally further fitting and securing at the joint site. These preformed component(s) typically require less manipulation at the bedside and allow for alternative methods of terminal sterilization, and final inspection and release at the manufacturing site.
  • DETAILED DESCRIPTION
  • [0044]
    The method and system (e.g., preformed component(s) and/or curable biomaterial and mold) can be used to prepare a final prosthesis, in vivo, that provides a first major surface in apposition to and retained upon the supporting bone itself, and a second (generally substantially parallel and opposite) major surface adapted to provide a wear surface for opposing (e.g., articulating) bone. By “retained upon” it is meant that the final prosthesis is maintained in a desired position upon the supporting bone surface in a manner suitable for its intended use, e.g., by the use of one or more anchor points, by the use of adhesive or other suitable interface materials, by the use of sutures, staples, and the like, and/or by a mechanical lock achieved by the combination of a bone-contacting surface suitably conformed or conformable to the terrain of supporting bone, together with the retaining (and optionally including deforming) effect achieved upon repositioning opposing articulating bone surface.
  • [0045]
    The first and second major surfaces can be provided in any suitable manner, for instance, 1) by the preparation and insertion of a single partially cured and generally preformed component into the joint, preferably under conditions that permit the component to become further, and specifically, formed in vivo, 2) by adding a flowable biomaterial to an initial preformed component (e.g., in the shape of a balloon or open mold) positioned at the tissue site, 3) by placing one or more fully cured and preformed components at the tissue site and optionally further fitting, adapting and/or securing the component(s) as needed, and/or 4) by assembling one or more preformed components in situ (e.g., side by side in an interlocking fashion upon the surface) such that the assembled components cooperate to provide the first and second major surfaces.
  • [0046]
    In addition to the partially or fully cured preformed component(s) and/or curable biomaterial and related molds, the method and system of this invention include the optional use of various additional materials and/or steps, e.g., to prepare the bone surface itself, to provide suitable interfaces (e.g., adhesive interfaces and/or protrusions that can be further secured to the joint site or by smoothing of the femoral condyle or tibial plateau as needed), to treat one or more surfaces in order to provide them with different or improved properties as compared to the inherent properties of the material providing the surface, and the like. Examples of such materials include, for instance, the use of adhesive materials, tissue in-growth stimulators, and fibrous materials (e.g., webs adapted to tether the implant and/or to facilitate fibrous tissue ingrowth).
  • [0047]
    The partially or fully cured preformed component(s) can themselves each provide uniform or non-uniform properties, and can be provided in a plurality or range of styles and sizes. These components can be designed to conform to lateral or medial compartments, or both, and to right or left knees, or both. In a preferred embodiment, all embodiments can be inserted into the joint site in a minimally invasive fashion. By “minimally invasive”, in this context, it is meant that the procedure of sizing, inserting, positioning and forming the prosthesis, in situ, can preferably be accomplished without the need for open, invasive incisions of the type conventionally used for inserting total knee prostheses. In a preferred embodiment, the partially cured preformed components can be further formed and fully cured in vivo to enhance compliance with the joint site.
  • [0048]
    The surface of the partially or fully cured preformed component(s) can also be modified to provide any desired properties (e.g., promote adhesion), such as by the design and use of polymers themselves or by surface treatment of the fully cured or curing embodiments to provide suitable reactive groups such as amines, hydroxyl groups, or other reactive or hydrogen bonding functionalities. Similarly, the partially cured preformed component or fully cured component, including balloons or composite materials, can be provided with appropriate surface coatings, e.g., biologically active agents to promote desired tissue interactions, including tissue or cellular adhesion, such as those selected from the group consisting of cytokines, hydroxyapatite, collagen, and combinations thereof.
  • [0049]
    In one embodiment of this invention, partially cured, and generally preformed components are inserted into the joint site, and there further and specifically formed to enhance compliance. In an alternative embodiment, fully cured components in the shape of a balloon or open mold are employed to provide a final composite material by inserting the balloon or mold into the joint and there filling it with a biomaterial that cures in situ and conforms with the joint site. In another alternative embodiment, the fully cured component(s) are provided and inserted into the joint either singly or piecemeal and optionally further fitted and secured in vivo.
  • [0050]
    As an example of the first such embodiment, the invention provides an open ex vivo mold, adapted to approximate the desired dimensions of the joint site, and to receive a curable biomaterial. A suitable mold can be formed, for instance, from the use of conventional materials such as silicone materials, that permit the curing biomaterial component to be easily and entirely removed at the desired time. Optionally, the mold can itself be provided with a coating or release liner, including those that can be integrated, in whole or in part, with the component thus formed. Once the flowable biomaterial has been delivered and partially cured in this ex vivo mold, and any optional molding or fabricating steps have occurred, the biomaterial can be removed from the mold and inserted into the joint site, under conditions suitable to permit it to be further and finally formed in vivo to enhance conformance with the joint site. Optionally, additional ex vivo forming steps or features can be performed, e.g., by imparting desired curvature and femoral glide paths, prior to inserting and final forming in vivo.
  • [0051]
    Also, in the course of molding the component ex vivo, and/or transferring it to the tissue site, various structures and/or materials can be incorporated into and/or onto the component itself, to enhance its placement, retention and/or performance in situ. For instance, the mold itself can be provided in a form sufficient to impart various integral structural features, such as tibial “tabs”, adapted to provide or improve the retention of the component at the tissue site. Such tabs, for instance, can be provided in the form of one or more protrusions integral with the mold itself and adapted to be positioned within and/or affixed to the soft tissue and/or bone in vivo. Examples of such tabs are shown, for instance, in FIG. 1, where reference number 18 depicts a raised posterior portion.
  • [0052]
    An insertable component can also be provided with one or more ancillary portions or protrusions formed of materials other than that used to form the bulk of the component itself. For instance, sutures or fibrous materials can be incorporated into or onto the bulk material, for use in improving the initial and/or long term retention of the component in situ, e.g, by tethering the prosthesis at the joint site and in a desired position. Such other materials can be temporarily positioned into or upon the mold itself, for instance, or otherwise provided, in a manner that permits them to become integrated into the biomaterial as it fills the mold and becomes partially cured ex vivo. With the resulting component positioned in situ, the protrusions can be used to tether the implant, by securing them to the surrounding soft tissue and/or bone by use of adhesives, sutures, screws, pins, staples or the like or combinations thereof. The materials can provide both an immediate fixation function, and optionally also a desired long term function, by permitting them to be either absorbed by the body over time, and/or to permit or encourage fibrous tissue ingrowth for long term fixation.
  • [0053]
    The reinforcing material can be provided in any suitable form, e.g., as fibers (e.g., sutures) or as a uniform woven or non-woven fabric, optionally including one or more reinforcing fibers or layers. A suitable non-woven fabric, for instance, is preferably a material such as is commercially available under the trade name Trevira Spunbond from Hoechst Celanese Corporation. The non-woven fabric is generally composed of continuous thermoplastic fiber, needle punched together to yield a felt-like fabric. In addition to fabrics like Trevira Spunbond, other materials such as polyester staple mat, glass fiber mat, as well as other organic and inorganic fiber mats and fabrics can be employed.
  • [0054]
    Reinforcing fibers can be included within the woven or non-woven fabric, or provided as separate layers of a composite. Such fiber layers can preferably include a directional reinforcing fiber layer of organic or inorganic structural reinforcing fibers such as fiberglass, carbon fibers, aramid fibers which is available from DuPont Corporation under the trade name Kevlar, linear polyethylene or polypropylene fibers such as is commercially available from Allied-Signal, Inc. (now Honeywell) under the trade name Spectra, or polyester fibers. The phrase “reinforcing fiber” can include any fiber which, when used in its own right or added to a composite fabric material, retains or enhances desired structural properties. The fibers can be randomly oriented, or preferentially, they can be oriented in one or more directions. While a number of specific types of materials have been given for use as the reinforcing fiber layer, it will be appreciated by those of ordinary skill in the art that other equivalent-type reinforcing fiber layers can be employed in the practice of the invention. A reinforcing fiber layer can be itself used to secure the prosthesis, or can be attached to a woven or non-woven fiber layer having a number of interstices or pores. Preferably, the reinforcing fiber layer and other fiber layers are secured to each other mechanically, as by conventional stitching, needle punching, stapling or buttons. In the case of certain applications, adhesives can also be used.
  • [0055]
    Similarly, a partially cured preformed component (and/or ancillary portions incorporated therein) can also be provided with suitable means to improve its ability to retain the component in situ, e.g., by the use of surface characteristics that provide improved chemical interactions with the joint site. Such interactions can be achieved by the judicious use of bulk material compositions themselves and/or the use of adhesives or other suitable interface materials. The partially cured, preformed, component can also be physically modified to increase its interactions with joint site, as by surface roughening, etching or cross-hatching, which would tend to provide increased surface area, and in turn, improved mechanical retention. A partially cured, preformed, component can also be retained by external means that are otherwise secured to the surrounding bone and/or soft tissue by use of adhesives, sutures, screws, pins, staples or the like or combinations thereof. On the major surface opposing articulating bone, the partially cured preformed component can be provided with suitable means as well, intended to improve or alter either its compliance and/or interactions with the opposing bone surface.
  • [0056]
    In one particularly preferred embodiment, the system includes a partially cured preformed component that is first molded outside of the joint site and adapted to be delivered to a tissue site and there positioned in a fixed position. The mold can be of an open or closed configuration (and/or can involve a one- or multi-step molding process), adapted to preform one or both major surfaces, respectively. Once positioned, the partially cured component is adapted to be initially fit and positioned within the joint site, and to thereafter become better conformed to the specific dimensions and/or terrain (e.g., anatomic structure) of the joint site in vivo. Optionally, and preferably, the molds are designed to yield components that have optimum adhesion and conformance to the joint sites. The molds may also be heated during the ex vivo partial curing process to optimize component properties or to provide a component that is more formable in vivo.
  • [0057]
    In an alternative preferred embodiment, the method and system involve the preparation and use of one or more fully or partially cured component(s) formed outside the body, for insertion and placement into the body and optionally further fitting and securing at the joint site. In one embodiment, the invention provides a single preformed component that is inserted into the joint site and optionally further fitted or secured as needed. In another embodiment, the invention provides a plurality of preformed components, formed of the same or different materials, and adapted to be delivered and positioned at the tissue site in a manner that provides a final composite. The components can be combined at the site in any suitable fashion, e.g., by providing a mechanical lock and/or by the use of interfacial materials such as adhesive layers. The components can be combined in any suitable fashion, e.g., as layers upon the bone, or as individual side-by-side components adapted to traverse the bone surface when combined. The use of preformed component(s) can require less manipulation at the bedside and allow for alternative methods of terminal sterilization, and final inspection and release at the manufacturing site. The various means of retaining partially cured preformed components, discussed herein, can be adapted to work with fully cured preformed components.
  • [0058]
    The method and system of this invention can be used for repairing a variety of mammalian joints, including human joints selected from the group consisting of the tibial plateau of the knee, the acetabulum of the hip, the glenoid of the shoulder, the acromion process of the shoulder, the acromio-clavicular joint of the shoulder, the distal tibial surface of the ankle, the radial head of the elbow, the distal radius of the forearm, the proximal phalanx surface of the great toe, the proximal metacarpal surface of the thumb, and the trapezium of the wrist.
  • [0059]
    Those portions or combinations of preformed component(s) that contact the bone surface are preferably adapted to physically conform closely to the prepared bone surface, e.g., to its macroscopic physical contours. Such conformation can be provided or enhanced in any suitable manner, e.g., 1) by providing a partially cured preformed component that is first made in an ex vivo mold and then adapted or modified to conform to the surface (e.g., by further forming in vivo), and/or 2) by use of a preformed balloon or composite mold material that is inserted into the joint site and filled with a flowable biomaterial that cures in vivo so that it conforms with the joint site and/or 3) by the use of fully cured preformed component(s) that has optimum geometry for biomaterial compliance once placed in the joint site and/or 4) by the preparation and use of a suitable (e.g., thin) interface material between bone and preformed component (e.g., adhesive, filler, or cement material), and/or 5) by the use of physical restraining means, such as adhesives, pins, staples screws, sutures or the like that are attached to protrusions in the component itself or to an external means of securing it.
  • [0060]
    The method and system of this invention will be further described with reference to the Drawing, wherein
  • [0061]
    [0061]FIG. 1 shows a top and side perspective of a preferred preformed knee implant (10) prepared using an ex vivo mold according to the present invention. The implant provides a first major surface (12) adapted to be positioned upon the tibial surface, and a generally planar second major surface (14) adapted to be positioned against the femoral condyle. In a typical embodiment, the second major surface, in turn, is preferably provided with a femoral glide path (16) to facilitate its performance in situ, in the form of a generally central oval depression about 1 mm to about 5 mm deep at its lowest point (2 mm as shown) and about 30 mm to about 50 mm in length by 10 mm to 30 mm in width (40 mm by 20 mm as shown). Those skilled in the art, given the present description, will readily determine the actual dimensions for optimal use, in both absolute and relative terms, depending on such factors as the actual joint size and desired results (e.g., angular correction). As shown, the implant is also provided with a raised tibial projection (18), adapted to catch the posterior portion of the tibial plateau. The implant can have dimensions on the order of between about 40 to about 60 mm in the anterior-posterior dimension, between about 30 mm to about 40 mm in the medial-lateral dimension, and a maximum thickness (at the posterior lip of between about 10 mm and about 20 mm.
  • [0062]
    [0062]FIG. 2 shows an embodiments in which a plurality of preformed components are adapted to be inserted and assembled in situ to provide the final implant (20) FIG. 2a shows an embodiment, in which preformed components (22 through 25, respectively) are assembled in a side-by-side manner sequentially, and in situ, and upon the tibial surface. The matable preformed sections each provide at least a portion of the resultant bone-contacting surface and wear surface, as well as one or more portions adapted to provide a mechanical lock with one or more respective other portions. The mechanical lock can be achieved in any suitable manner, as by the provision of corresponding male and female portions, respectively. The portions can be mated, in situ, e.g., in a press fit or sliding manner, in order to attach the respective components. As can be seen in the raised perspective of the same embodiment, and FIG. 2b, in the resultant assembly, the combined components cooperate to provide both a tibial bone-contacting surface (28) and a wear surface (26).
  • [0063]
    In the alternative embodiment of FIG. 3, rather than being positioned in a side-by-side fashion across the bone surface (as in FIG. 2), a final implant is provided using interlocking preformed components (show in this case as portions 31 through 33, respectively) are instead provided in a form that permits them to be stacked upon each other, e.g., by layering or sliding them onto each other, and positioned upon the surface, in situ. The portions can be assembled in any suitable fashion, e.g., entirely on the tissue site, entirely ex vivo, or in varying combinations as desired. Optionally, and preferably, the generally planar portions are provided with corresponding matable portions, e.g., in the form of grooves and tabs to provide a sliding fit, or a depression and corresponding projection to provide either a press fit, snap fit, or other suitable fit sufficient to prevent lateral displacement to the extent desired. The resultant formed prosthetic implant can be provided with various features as described herein, including desired molded portions adapted to provide better fit or performance. Top portion (31) is particularly well suited to provide a desirable wear surface, while one or more intermediate portions (as shown by element 32) are adapted to provide an optimal combination of such properties as thickness, cushioning, and angular correction. As shown the lowermost portion (33) is shown with a projection (34) adapted to be retained within a corresponding anchor hole or suitable depression formed into the bone itself. FIGS. 3b and 3 c provide generally bottom and top views, respectively, showing the manner in which the portions can be combined in a layered fashion.
  • [0064]
    In the embodiment of FIG. 3, preformed layers are shown having protrusions adapted to be positioned in a corresponding indentation within each underlying layer (or bone), in order to form a compact stack. In such an embodiment, the corresponding system will typically include at least two preformed components, including the initial, bone-contacting component, and final component providing the wear surface. The system can provide one or more intermediate layers, e.g., the number and/or selection of which can be used to provide a final desired height to the overall composite, and/or to provide differing properties (e.g., with respect to compressibility, resilience, tissue ingrowth), and/or to provide improved retention between the first and final components.
  • [0065]
    [0065]FIG. 4a shows an embodiment in which a substantially open (saucer-shaped) mold (40) is inserted into the joint site, to be filled with a corresponding curable biomateral in situ. The top (42) of the mold is open to receive biomaterial (not show), while the bottom (44) provides a lower major surface (46) adapted to contact bone and terminates in a filled protrusion (48) adapted to be positioned within a corresponding anchor point drilled in the bone itself. The anterior edge (50) of the cup is substantially perpendicular to the plane of the cup itself, while the posterior edge (52) is tapered (and optionally raised) to accommodate the corresponding shape of the tibial spine.
  • [0066]
    As shown, and for use in an adult human, the ex vivo mold accommodates a predetermined volume of biomaterial of on the order of about 5 ml to about 15 ml. As a further advantage of this invention, the amount of biomaterial actually can be predetermined and controlled to correspond with the ex vivo mold volume. In addition the ex vivo molds are designed for optimum sizing and conformance to the joint site and MRI software may be used to chose best mold for joint site. Implant thickness and hence angular correction can be controlled in this way.
  • [0067]
    [0067]FIG. 4b shows a bottom perspective view of the mold apparatus of FIG. 4a, showing the filled protrusion (48). The posterior edge portion (and particularly the posterior mesial edge portion, as seen in the figure) can be seen as provided with a groove or indentation (54), again to accommodate the typical shape of the corresponding tibial spine. Overall, the mold can be seen as assuming a generally kidney-shaped configuration, adapted to correspond with the tibial surface. Such a mold can be provided in a plurality of sizes, and shapes, to be selected at the time of use to accommodate the particular patient's needs and surgeon's desires.
  • [0068]
    [0068]FIGS. 5a and 5 b show the mold of FIG. 4a being positioned upon a tibial surface (FIG. 5a), with the protrusion positioned within a corresponding anchor point, and (in FIG. 5b) with the tip of a biomaterial delivery cannula (56) positioned upon it, and with flowable biomaterial (58) being shown in the course of delivery.
  • [0069]
    [0069]FIG. 6 shows a variety of alternative embodiments that include one or more preformed component. FIG. 6a shows a simple wedge shaped embodiment (60), in which the posterior portion (62) is significantly increased in size as compared to the anterior (64). FIG. 6b shows an implant (66) molded to provide portions (here, layers) having differing wear characteristics, including a preformed top having improved wear as compared to the separately formed bottom portion (70). FIG. 6c, by comparison, shows a plurality of components (72) adapted to be positioned and assembled in situ at the time of surgery. These include an upper portion (74) having improved wear characteristics as compared to the others, a bottom portion (78) being suitably formed to the patient's geometry and desired angular correction, and one (or more) central portions (76) adapted to be positioned between the top and bottom portions to achieve desired properties such as overall thickness, angles, and/or physical chemical properties (such as moduli).
  • [0070]
    The embodiment of FIG. 6d shows a single piece (80) as might be cut from preformed material at the time of surgery, while FIG. 7 shows a variety of alternative means for anchoring a preformed component such as that shown in FIG. 6d. These include the use of a grout (82) or other suitable interface material as shown in FIG. 7a; the use of a separate external retaining device (84) as shown in FIG. 7b; the use of externally provided pins, screws, sutures, etc. as exemplified by elements (86) which generally traverse the body itself as in FIG. 7c; and the use of one or more anchor portions (88) positioned along one or more suitable surfaces as shown in FIG. 7d.
  • [0071]
    [0071]FIG. 8 shows a further variety for anchoring or stabilizing a preformed portion by the use of ancillary portions and/or surface texture, including a roughened surface (90) as in FIG. 8a; or tabs (e.g., provided by fabric or suture like materials) as shown as elements 92 and 94 of FIGS. 8b and 8 c, respectively. In practice, the preformed components can benefit from any suitable combination of the various features and embodiments described or shown herein.
  • [0072]
    [0072]FIG. 9 shows a variety of embodiments in a substantially closed (balloon like) mold is adapted to be inserted into the joint site and filled with a corresponding curable biomaterial, the mold itself providing a preformed articulating wear surface, including FIG. 9a which shows an inflatable balloon portion (96) that includes an integral preformed wear surface and portion (98), as well as a lumen (100) adapted to fill the inflatable portion with flowable biomaterial. FIG. 9b shows a corresponding balloon (102) though without a preformed portion, and including its biomaterial lumen (104). Although not shown, the balloon of this or any embodiment can include various interior and/or exterior surface coatings, and can have regions and/or layers having different desired physical-chemical properties (such as porosity). FIG. 9c shows a bi-compartmental closed balloon-like mold (106), wherein each compartment is adapted to conform to a respective medial or lateral tibial surface.
  • [0073]
    [0073]FIG. 10 shows a mold adapted for use as an acetabular mold (110) in connection with the replacement of the articulating surface in a hip, when filled with biomaterial, the mold forming a concave portion adapted to retain a corresponding femoral head. The mold is shown providing a thin generally cup-shaped mold adapted to be filled in any suitable form (e.g., using a removable conduit (not shown) attached to the space between inner and outer sealed layers (116 and 114, respectively) forming the mold.
  • [0074]
    [0074]FIG. 11 shows a patella-femoral joint form suitable for use in combination with the method and system of this invention. As shown in the views of 11 a through 11 c, the form includes a silicone or other suitable pad material (122) having aluminum or other suitable stay portions (124) and terminal handle or grasping portions (126). In use, with the knee at a generally 45 degree angle, the piece is formed to the femoral bone surface, with its form maintained by bending the aluminum stays. With anchor points cut into the femoral bone, if desired, the form is held tight against the bone with the upper handle held away from bone to permit the delivery of curable biopolymer between the form and the bone. As polymer is placed onto the bone (and into any anchor points) the form is maintained for a time sufficient to suitably form the polymer, whereafter it can be removed.
  • [0075]
    As described in Applicant's co-pending U.S. provisional application 60/228,444, the present application describes a method and system for the creation or modification of the wear surface using an implanted material fixed to the support structure of the original wear surface, to generally conform to the shape of the original surface in a mammal. A method or system where the end of the bony surface is a rotating, sliding or rolling surface, such as in the knee, finger, hip, toe, spine, wrist, elbow, shoulder, ankle, or TMJ joint. The implant will function:
  • [0076]
    a) as a spacer,
  • [0077]
    b) as an impact absorber
  • [0078]
    c) as a surface with improved coefficient of friction (as compared to the diseased surface), and/or
  • [0079]
    d) to increase the weight bearing area and improve congruency of the joint surface (as compared to the diseased condition).
  • [0080]
    The method and system of this invention can be applied to areas of aseptic necrosis, such as the nevecular bone in the wrist. The material to be implanted consists of a plurality of materials, such as polymers, including polyurethane, polyethyelenes, polyureas, polyacrylates, polyurethane acrylates, hydrogels, epoxies and/or hybrids of any of the above.
  • [0081]
    In an alternative embodiment, the surface can be provided by any of a series of metals, including titanium, stainless steel, cobalt chrome millithium alloys and tantalum. Other surface materials can include various ceramics and biologic polymers.
  • [0082]
    The implantable material for the resurfacing can be formed ex vivo and/or in vivo as an injectable material that sets up to the molded shape. The methods for changing state from liquid to solid state include cooling or heating, the passage of time, which allows for a change of state, or a chemical reaction between different reactants. The reaction can be exothermic or endothermic. The set-up can be light activated or chemically catalyzed or it could be heat activated. Examples of such systems include flowable polymers of two or more components, light activated polymers, and polymers cured either by catalysts or by heat, including body heat. Molds can be used in the form of balloons, dams or retainers. They can be used in combination with the local anatomy to produce the desired shape and geometry. Molds can be of materials that are retained and becomes part of the implant or could be removed after curing of the biomaterial component.
  • [0083]
    In an alternative embodiment, the material would be semi-solid and could be shaped and then set up in vivo. This would allow for the minimally invasive application, either through an arthroscopic portal or through a small mini arthrotomy. As a further embodiment, the material could be synthesized ex vivo and then machined to fit using imaging to pre-determine the desired geometry and size of the implant. As a further alternative, a range of implant sizes could be provided and sizing could be accomplished during the procedure. An ex vivo mold could be fit using molding materials and the implant could be molded on site just prior to implantation.
  • [0084]
    Fixation methods for the implant would include biologic glues to glue the implant to the underlying surface, trapping of the implant into a cavity on the surface that causes a mechanical lock, using various anchors to the underlying structure and fixing the implant to that surface or using mold retainers and/or screws, staples, sutures or pins. In alternative embodiment, anchors in the underlying structure may be used for fixing the implant to that surface and we may also use a tissue ingrowth system to secure anchoring.
  • [0085]
    In the preferred embodiment, the patient will have a diagnosis of osteoarthritis and have loss of cartilage on the articulating surface. A determination will be made of the amount of correction needed for the reestablishment of a normal angle of articulation. The ligaments will be balanced so that there is no loss of range of motion with the implant in place and the surface will be placed in such a position that the eventual resulting surface geometry reestablishes the same plane and orientation of the original articular surface.
  • [0086]
    Access to the site is obtained in a minimally invasive way. In a preferred embodiment, this is accomplished through arthroscopic means with arthroscopic portals. In an alternative embodiment, the access is accomplished by a mini arthrotomy with a small incision that allows access to the joint without sacrificing nerves, vessels, muscles or ligaments surrounding the joint. In the preferred embodiment fibrillated articulating cartilage that is degenerated is removed down to the subchondral surface. The surface is dried and prepared for appropriate anchoring. This may include anchor points that give a mechanical lock or that alternatively simply supply horizontal and lateral stability. The surface may be prepared by drying and roughening in case a tissue adhesive is used. Pre-made anchors may be installed. These may be made of various metallic materials or of polymers and may consist of pegs that would extend up through the implant to anchor it to the underlying surface. This surrounding subchondral bone may be roughened to enhance tissue ingrowth or implant adhesion. The final geometry of the implant may be determined by a dam or mold that is placed on the joint at the time the material is implanted, when the implant is installed using an in situ cured technique (in the manner shown in FIGS. 1 and 4 of Applicant's provisional parent application).
  • [0087]
    For pre-made material formed at the surgical site within a mold, various forms of stabilization could be used, including anchor points or titanium screws. Alternatively, the pre-made material could be made off site to the specs developed from imaging of the patient's joint surface. In a third embodiment, multiple sizes could be made off site and the selection of the appropriate implant size could be chosen at the time of surgery. Two alternatives shown in FIG. 2 of the parent provisional application include a single segment that can be installed through a portal or a series of segments that can be installed through a portal and locked together once inside the joint. They would be placed sequentially and then anchored to the bone by anchor points cut in the bone or by screws or tissue ingrowth. Finally, a robot, a jag or other cutting fixture could be used to prepare the bony surface for the pre-made implant to a fixed geometry of the anchor point.
  • [0088]
    Both the preformed component(s) and flowable biomaterial, if used, can be prepared from any suitable material. Typically, the materials include polymeric materials, having an optimal combination of such properties as biocompatibility, physical strength and durability, and compatibility with other components (and/or biomaterials) used in the assembly of a final composite. Examples of suitable materials for use in preparing the preformed component(s) may be the same or different from the in situ curing biomaterial, and include polyurethanes, polyethylenes, polypropylenes, Dacrons, polyureas, hydrogels, metals, ceramics, epoxies, polysiloxanes, polyacrylates, as well as biopolymers, such as collagen or collagen-based materials or the like and combinations thereof.
  • [0089]
    Examples of suitable materials for use in preparing the flowable biomaterial, if used, include polyurethanes, polyureas, hydrogels, epoxies, polysiloxanes, polyacrylates, and combinations thereof.
  • [0090]
    In a presently preferred embodiment, the preformed component(s) and the flowable biomaterial, if included, each comprise a biocompatible polyurethane. The same or different polyurethane formulations can be used to form both the preformed component(s), e.g., by an injection molding technique, as well as for the flowable biomaterial, if present.
  • [0091]
    Suitable polyurethanes for use as either the preformed component or biomaterial can be prepared by combining: (1) a quasi-prepolymer component comprising the reaction product of one or more polyols, and one or more diisocyanates, and optionally, one or more hydrophobic additives, and (2) a curative component comprising one or more polyols, one or more chain extenders, one or more catalysts, and optionally, other ingredients such as an antioxidant, and hydrophobic additive.
  • [0092]
    In the embodiment in which an in situ curing polymer is used, the present invention preferably provides a biomaterial in the form of a curable polyurethane composition comprising a plurality of parts capable of being mixed at the time of use in order to provide a flowable composition and initiate cure, the parts including: (1) a quasi-prepolymer component comprising the reaction product of one or more polyols, and one or more diisocyanates, optionally, one or more hydrophobic additives, and (2) a curative component comprising one or more polyols, one or more chain extenders, one or more catalysts, and optionally, other ingredients such as an antioxidant, hydrophobic additive and dye. Upon mixing, the composition is sufficiently flowable to permit it to be delivered to the body, and there be fully cured under physiological conditions. Preferably, the component parts are themselves flowable, or can be rendered flowable, in order to facilitate their mixing and use.
  • [0093]
    The flowable biomaterial used in this invention preferably includes polyurethane prepolymer components that react either ex vivo or in situ to form solid polyurethane (“PU”). The formed PU, in turn, includes both hard and soft segments. The hard segments are typically comprised of stiffer oligourethane units formed from diisocyanate and chain extender, while the soft segments are typically comprised of one or more flexible polyol units. These two types of segments will generally phase separate to form hard and soft segment domains, since they tend to be incompatible with one another. Those skilled in the relevant art, given the present teaching, will appreciate the manner in which the relative amounts of the hard and soft segments in the formed polyurethane, as well as the degree of phase segregation, can have a significant impact on the final physical and mechanical properties of the polymer. Those skilled in the art will, in turn, appreciate the manner in which such polymer compositions can be manipulated to produce cured and curing polymers with desired combination of properties within the scope of this invention.
  • [0094]
    The hard segments of the polymer can be formed by a reaction between the diisocyanate or multifunctional isocyanate and chain extender. Some examples of suitable isocyanates for preparation of the hard segment of this invention include aromatic diisocyanates and their polymeric form or mixtures of isomers or combinations thereof, such as toluene diisocyanates, naphthalene diisocyanates, phenylene diisocyanates, xylylene diisocyanates, and diphenylmethane diisocyanates, and other aromatic polyisocyanates known in the art. Other examples of suitable polyisocyanates for preparation of the hard segment of this invention include aliphatic and cycloaliphatic isocyanates and their polymers or mixtures or combinations thereof, such as cyclohexane diisocyanates, cyclohexyl-bis methylene diisocyanates, isophorone diisocyanates and hexamethylene diisocyanates and other aliphatic polyisocyanates. Combinations of aromatic and aliphatic or arylakyl diisocyanates can also be used.
  • [0095]
    The isocyanate component can be provided in any suitable form, examples of which include 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, and mixtures or combinations of these isomers, optionally together with small quantities of 2,2′-diphenylmethane diisocyanate (typical of commercially available diphenylmethane diisocyanates). Other examples include aromatic polyisocyanates and their mixtures or combinations, such as are derived from phosgenation of the condensation product of aniline and formaldehyde. It is suitable to use an isocyanate that has low volatility, such as diphenylmethane diisocyanate, rather than more volatile materials such as toluene diisocyanate. An example of a particularly suitable isocyanate component is the 4,4′-diphenylmethane diisocyanate (“MDI”). Alternatively, it can be provided in liquid form as a combination of 2,2′-, 2,4′- and 4,4′-isomers of MDI. In a preferred embodiment, the isocyanate is MDI and even more preferably 4,4′-diphenylmethane diisocyanate.
  • [0096]
    Some examples of chain extenders for preparation of the hard segment of this invention include, but are not limited, to short chain diols or triols and their mixtures or combinations thereof, such as 1,4-butane diol, 2-methyl-1,3-propane diol, 1,3-propane-diol ethylene glycol, diethylene glycol, glycerol, cyclohexane dimethanol, triethanol amine, and methyldiethanol amine. Other examples of chain extenders for preparation of the hard segment of this invention include, but are not limited to, short chain diamines and their mixtures or combinations thereof, such as dianiline, toluene diamine, cyclohexyl diamine, and other short chain diamines known in the art.
  • [0097]
    The soft segment consists of urethane terminated polyol moieties, which are formed by a reaction between the polyisocyanate or diisocyanate or polymeric diisocyanate and polyol. Examples of suitable diisocyanates are denoted above. Some examples of polyols for preparation of the soft segment of this invention include but are not limited to polyalkylene oxide ethers derived form the condensation of alkylene oxides (e.g. ethylene oxide, propylene oxide, and blends thereof), as well as tetrahyrofuran based polytetramethylene ether glycols, polycaprolactone diols, polycarbonate diols and polyester diols and combinations thereof. In a preferred embodiment, the polyols are polytetrahydrofuran polyols (“PTHF”), also known as polytetramethylene oxide (“PTMO”) or polytetramethylene ether glycols (“PTMEG”). Even more preferably, the use of two or more of PTMO diols with different molecular weights selected from the commercially available group consisting of 250, 650,1000, 1400, 1800, 2000 and 2900.
  • [0098]
    Two or more PTMO diols of different molecular weight can be used as a blend or separately, and in an independent fashion as between the different parts of the two part system. The solidification temperature(s) of PTMO diols is generally proportional to their molecular weights. The compatibility of the PTMO diols with such chain extenders as 1,4-butanediol is generally in the reverse proportion to molecular weight of the diol(s). Therefore the incorporation of the low molecular weight PTMO diols in the “curative” (part B) component, and higher molecular weight PTMO diols in the prepolymer (part A) component, can provide a two-part system that can be used at relatively low temperature. In turn, good compatibility of the low molecular weight PTMO diols with such chain extenders as 1,4-butanediol permits the preparation of two part systems with higher (prepolymer to curative) volume ratio. Amine terminated polyethers and/or polycarbonate-based diols can also be used for building of the soft segment.
  • [0099]
    The PU can be chemically crosslinked, e.g., by the addition of multifunctional or branched OH-terminated crosslinking agents or chain extenders, or multifunctional isocyanates. Some examples of suitable crosslinking agents include, but are not limited to, trimethylol propane (“TMP”), glycerol, hydroxyl terminated polybutadienes, hydroxyl terminated polybutadienes (HOPB), trimer alcohols, Castor oil polyethyleneoxide (PEO), polypropyleneoxide (PPO) and PEO-PPO triols. In a preferred embodiment, HOPB is used as the crosslinking agent.
  • [0100]
    This chemical crosslinking augments the physical or “virtual” crosslinking of the polymer by hard segment domains that are in the glassy state at the temperature of the application. The optimal level of chemical cross-linking improves the compression set of the material, reduces the amount of the extractable components, and improves the biodurability of the PU. This can be particularly useful in relatively soft polyurethanes, such as those suitable for the repair of damaged cartilage. Reinforcement by virtual cross-links alone may not generate sufficient strength for in vivo performance in certain applications. Additional cross-linking from the soft segment, potentially generated by the use of higher functional polyols can be used to provide stiffer and less elastomeric materials. In this manner a balancing of hard and soft segments, and their relative contributions to overall properties can be achieved.
  • [0101]
    Additionally, a polymer system of the present invention preferably contains at least one or more, biocompatible catalysts that can assist in controlling the curing process, including the following periods: (1) the induction period, and (2) the curing period of the biomaterial. Together these two periods, including their absolute and relative lengths, and the rate of acceleration or cure within each period, determines the cure kinetics or profile for the composition. Some examples of suitable catalysts for preparation of the formed PU of this invention include, but are not limited to, tin and tertiary amine compounds or combinations thereof such as dibutyl tin dilaurate, and tin or mixed tin catalysts including those available under the tradenames “Cotin 222”, “Formrez UL-22” (Witco), “dabco” (a triethylene diamine from Sigma-Aldrich), stannous octanoate, trimethyl amine, and triethyl amine. In a preferred embodiment, the catalyst is Formrez UL-22 (Witco). In an alternative preferred embodiment, the catalyst is a combination Cotin 222 (CasChem) and dabco (Sigma-Aldrich).
  • [0102]
    The in vivo and ex vivo cured polyurethanes of this invention can be formed by the reaction of two parts. Part I of which (alternatively referred to as Part A) includes a di- or multifunctional isocyanate or quasi-prepolymer which is the reaction product of one or more OH-terminated components, and one or more isocyanates. Part II of the polyurethane (alternatively referred to as Part B herein) is a curative component that includes of one or more chain extenders and one or more polyols, and one or more catalysts, and other additives such as antioxidants and dyes. For a suitable formed PU, the stoichiometry between Parts I (quasi-prepolymer) and II (curative component), expressed in terms of NCO:OH molar ratio of the isocyanate terminated pre-polymer (Part I) and the curative component (Part II) is preferably within the range of about 0.8 to 1.0 to 1.2 to 1.0, and more preferably from about 0.9 to 1 to about 1.1 to 1.0.
  • [0103]
    Optionally, a reactive polymer additive can be included and is selected from the group consisting of hydroxyl- or amine-terminated compounds selected from the group consisting of poybutadiene, polyisoprene, polyisobutylene, silicones, polyethylene-propylenediene, copolymers of butadiene with acryolnitrile, copolymers of butadiene with styrene, copolymers of isoprene with acrylonitrile, copolymers of isoprene with styrene, and mixtures of the above.
  • [0104]
    Suitable compositions for use in the present invention are those polymeric materials that provide an optimal combination of properties relating to their manufacture, application, and in vivo use. In the uncured state, such properties include component miscibility or compatibility, processability, and the ability to be adequately sterilized or aseptically processed and stored. In the course of applying such compositions, suitable materials exhibit an optimal combination of such properties as flowability, moldability, and in vivo curability. In the cured state, suitable compositions exhibit an optimal combination of such properties as strength (e.g., tensile and compressive), modulus, biocompatibility and biostability.
  • [0105]
    When cured, the compositions demonstrate an optimal combination of properties, particularly in terms of their conformational stability and retention of physical shape, dissolution stability, biocompatibility, and physical performance, as well mechanical properties such as load-bearing strength, tensile strength, shear strength, shear fatigue resistance, impact absorption, wear resistance, and surface abrasion resistance. Such performance can be evaluated using procedures commonly accepted for the evaluation of natural tissue and joints, as well as the evaluation of materials and polymers in general. In particular, a preferred composition, in its cured form, exhibits mechanical properties that approximate or exceed those of the natural tissue it is intended to provide or replace.
  • [0106]
    To achieve these desirable uncured and delivery properties, a “polymer system”, as used herein refers to the component or components used to prepare a polymeric composition of the present invention. In a preferred embodiment, a polymer system comprises the components necessary to form two parts: Part I being an NCO terminated pre-polymer (optionally referred to as an “isocyanate quasi-polymer”). The quasi-polymer of Part I typically includes a polyol component, optionally in combination with a hydrophobic additive component, and an excess of an isocyanate component. Part II of the two component system can include one long-chain polyols, chain extenders and/or cross-linkers, together with other ingredients (e.g., catalysts, stabilizers, plasticizers, antioxidants, dyes and the like). Such adjuvants or ingredients can be added to or combined with any other component thereof either prior to or at the time of mixing, delivery, and/or curing.
  • [0107]
    In a particularly preferred embodiment, a polymer system of this invention is provided as a plurality of component parts and employs one or more catalysts. The component parts, including catalyst, can be mixed to initiate cure, and then delivered, set and fully cured under conditions (e.g., time and exotherm) sufficient for its desired purpose. Upon the completion of cure, the resultant composition provides an optimal combination of properties for use in repairing or replacing injured or damaged tissue. In a particularly preferred embodiment, the formulation provides an optimal combination of such properties as compatibility and stability of the biomaterial parts, ex vivo or in situ cure capability and characteristics (e.g., extractable levels, biocompatibility, thermal/mechanical properties), mechanical properties (e.g., tensile, tear and fatigue properties), and biostability.
  • [0108]
    The volume ratio of the parts can also be used to improve and affect the uncured and curing properties Compositions having two or more parts, are preferred. Where two parts are used, the relative volumes can range, for instance, from 1:10 to 10:1 (quasi-prepolymer to curative components, based on volume). A presently preferred range is between 2:1 and 1:2. As those skilled in the art will appreciate, given the present description, the optimal volume ratio is largely determined by the compatibility and the stability of part A and B.
  • [0109]
    In choosing an optimal volume ratio for a given formulation, those skilled in the art, given the present description, will appreciate the manner in which the following considerations can be addressed. The viscosity of the reactive parts, at the temperature used for either injection-molding preformed components, or for in situ cure, should provide an acceptable degree of mixing and flow rate, without causing mechanical failure of any component of the delivery system including cartridge, static mixer, gun and other components.
  • [0110]
    Preferably, the biomaterial is sufficiently flowable to permit it to be delivered (e.g., injected) into the mold or tissue site. The composition of both reactive parts must be such that these parts are homogeneous and phase stable in the temperature range of the application. Generally, the maximum temperature of the reaction exotherm is proportional to the concentration of the reactive groups in the mixed polymer. A high concentration of the reactive groups might evolve too high reaction exothermal energy and therefore cause thermal damage to the surrounding tissues. The reactive parts will preferably remain substantially liquid in form during mixing.
  • [0111]
    A desired and stable volume ratio of the components can be achieved in any suitable manner, e.g., by the use of dual-compartment cartridges with constant volume ratio or by using the injectors with delivery rates independently variable for each component.
  • [0112]
    Compatibility of the composition can also be affected (and improved) in other ways as well, e.g., by pre-heating the components prior to polymer application. To enhance the homogeneity of the components, the components of a preferred composition of this invention are preferably preheated before mixing and delivery, e.g., by heating to about 60 C. to about 80 C. for about 2 to about 6 hours prior to use. Preferably, the composition parts are cooled back to about 35 C. to 37 C. before use in injection.
  • [0113]
    Fully cured polymeric (e.g., polyurethane) biomaterials suitable for use in forming components of this invention provide an optimal combination of such properties as creep and abrasion resistance. Preferably, for instance, the biomaterial provides DIN abrasion values of less than about 100 mm3, more preferably less than about 80 mm3 and most preferably less than about 60 mm3, as determined by ASTM Test Method D5963-96 (“Standard Test Method for Rubber Property Abrasion Resistance Rotary Drum Abrader”).

Claims (79)

What is claimed is:
1. A system for the creation or modification of the wear surface of an orthopedic joint within a mammalian body, the system comprising one or more partially or fully preformed polymeric components, adapted to be inserted and positioned at a joint site to provide an implant having at least one major surface in apposition to supporting bone, and at least a second major surface in apposition to opposing bone.
2. A system according to claim 1 wherein one or more of the polymeric components are formed at the time of use, by the use of a curable polymer system adapted to be at least partially cured and partially formed by ex vivo molding in order to provide an implantable component adapted to be inserted and positioned in vivo, under conditions suitable to permit the implanted component to become finally formed upon reestablishing the natural joint space and in conformance with the opposing bone surfaces of the orthopedic joint site.
3. A system according to claim 1 wherein the polymeric components comprise a plurality of packaged, preformed components adapted to be assembled at the orthopedic joint site in a minimally invasive fashion to provide a final prosthesis having surfaces in conformance with the opposing bone surfaces of the orthopedic joint site.
4. A system according to claim 1 further comprising an ex vivo mold having a molding surface adapted to provide a roughened, patterned, and/or contoured surface to the partially preformed component, in a manner sufficient to provide improved retention and fit of the component at the joint site.
5. A system according to claim 4 wherein the mold further provides ancillary means adapted to be incorporated into the preformed component for securing the component once formed in the joint site.
6. A system according to claim 5 wherein the ancillary means comprise one or more protrusions adapted to be attached to either soft tissue and/or bone at the joint site to improve fixation.
7. A system according to claim 4 wherein the contoured surface comprises a contour having one or more protrusions, integral with the preformed component, and formed during the ex vivo molding process.
8. A system according to claim 6 wherein the protrusions are adapted to be integrated into the preformed component during the ex vivo molding process.
9. A system according to claim 7 wherein the protrusions are comprised of sutures and/or fibrous biomaterials integrally formed with the component itself.
10. A system according to claim 4 further comprising separate means, not associated with the mold itself, for securing the component to the joint site, selected from the group consisting of adhesives, sutures, pins, staples, screws, and combinations thereof.
11. A system according to claim 1 wherein the one or more preformed polymeric component(s) are adapted to be inserted into a joint in a minimally invasive fashion.
12. A system according to claim 2 in which the preformed component(s) and/or corresponding mold(s) are provided in a plurality or range of styles and sizes for selection and use in the surgical field.
13. A system according to claim 1 wherein the implant is adapted for use on the tibial surface of the knee, and provides portions adapted to conform to the shape of the femoral condyle and corresponding medial tibial plateau, lateral tibial plateau, or both.
14. A system according to claim 1 wherein the polymeric component is fabricated from a material selected from the group consisting of polyurethanes, polyureas, hydrogels, polysiloxanes, polyacrylates, and epoxies, and combinations thereof.
15. A system according to claim 14 wherein the polymeric component comprises a polyurethane.
16. A system according to claim 15 wherein the polyurethane is prepared from polyisocyanate(s), short and long chain polyols, and optionally including one or more ingredients selected from the group hydrophobic additive(s), tin and/or amine catalyst(s), and antioxidant(s).
17. A system according to claim 16 wherein the polyurethane comprises aromatic polyisocyanates, PTMO's, and short chain diols.
18. A system according to claim 16 wherein the hydrophobic additive comprises hydroxyl-terminated polybutadiene, and the tin and/or amine catalyst(s) are adapted to promote the isocyanate-hydroxyl reaction preferentially and are selected from the group consisting of UL22, Cotin 222, 1,4-diazabicyclo[2.2.2]octane (dabco), and dibutyltin dilaurate (DBTDL), and combinations thereof.
19. A system according to claim 14, wherein the preformed polymeric component comprises one or more surfaces having attached thereto a biologically active agent selected from the group cytokines, growth factors, autologous growth factors, hydroxyapatite, collagen, and combinations thereof.
20. A system according to claim 14 wherein the surface of the preformed component is provided or modified with reactive groups to promote tissue adhesion.
21. A system according to claim 20 wherein the reactive groups are provided by the polymers used to fabricate the polymeric component, and are selected from amines, hydroxyl groups, or other reactive or hydrogen bonding functionalities.
22. A system for the creation or modification of the wear surface of an orthopedic joint within a mammalian body, the system comprising one or more preformed polymeric components adapted to be positioned within the joint site and one or more flowable biomaterial polymer compositions adapted to be arthroscopically injected into contact with a preformed component and cured in situ at the joint site in order to provide a composite implant.
23. A system according to claim 22 wherein the preformed polymeric components comprise an inflatable balloon having a preformed top weight-bearing wear portion and a preformed bottom portion adapted to conform to the shape of supporting bone.
24. A system according to claim 23 wherein the one or more portions of the balloon are fabricated from a natural or synthetic fabric adapted to permit tissue in-growth, and sufficiently permeable to permit air to escape while retaining the curable biomaterial.
25. A system according to claim 24 wherein the fabric is of sufficient permeability to permit physical interpenetration of the flowable polymer.
26. A system according to claim 23 wherein the bottom and/or top portions comprise materials selected from polyurethanes, polyethylenes, polypropylenes, metals, ceramics, biopolymers or the like and combinations thereof.
27. A system according to claim 23 wherein the top and bottom portions are provided with forms corresponding to the shape of a femoral condyle and tibial plateau, respectively.
28. A system according to claim 23 wherein the balloon further comprises a port adapted to fill the balloon with flowable biomaterial in situ, in a manner sufficient to force the top portion toward corresponding bone.
29. A system according to claim 23 wherein the bottom portion provides a raised protrusion sufficient to improve retention within the joint site and/or to provide a site for suturing, stapling, pinning, or screwing the portion within the joint site.
30. A system according to claim 22 wherein separate means are provided for securing the preformed component within the joint site.
31. A system according to claim 22, further comprising one or more biologically active agents adapted to be provided on one or more surfaces of the resultant composite implant.
32. A system according to claim 22 wherein the surface of the preformed component and/or resultant composite material are provided or modified with reactive groups to promote adhesion.
33. A system according to claim 32 wherein the reactive groups are either provided by the preformed component itself, or are separately added by suitable surface treatment of the component or resultant composite, and the reactive groups are selected from amines, hydroxyl groups, or other reactive or hydrogen bonding functionalities.
34. A system according to claim 22 in which one or more of the preformed components are provided in a plurality or range of styles and sizes.
35. A system according to claim 22 wherein the one or more flowable biomaterial(s) are adapted to be inserted into a joint using minimally invasive means.
36. A system for the creation or modification of the wear surface of an orthopedic joint within a mammalian body, the system comprising a plurality of packaged, preformed components adapted to be assembled at the orthopedic joint site in a minimally invasive fashion to provide a final prosthesis having surfaces in apposition to and conformance with the opposing bone surfaces of the orthopedic joint site.
37. A system according to claim 36 wherein one or more of the preformed components are provided with surfaces suitably roughened, patterned, or contoured to provide maximum adhesion and fit when placed, and optionally further fitted and secured, within the joint site.
38. A system according to claim 36, wherein one or more of the preformed components are formed at the time of use by the use of a curable bomaterial adapted to completely cure when preformed and then placed and optionally further fitted or secured inside the joint site.
39. A system according to claim 36 wherein one or more of the preformed components provide means for further securing the component once placed in the joint site.
40. A system according to claim 39 wherein the retention means to secure the component includes the use of tissue adhesives to improve fixation.
41. A system according to claim 39 wherein the retention means comprise one or more protrusions adapted to be sutured, pinned, stapled, screwed or combinations thereof or otherwise mechanically attached into the surrounding soft tissue and/or bone to improve fixation.
42. A system according to claim 41 wherein the protrusions are themselves integral with the preformed component.
43. A system according to claim 42 wherein the protrusions are integrated into a flowable biomaterial during the ex vivo molding process used to form the preformed component.
44. A system according to claim 43 wherein the protrusions are comprised of sutures or fibrous materials.
45. A system according to claim 39 wherein means to secure the component are external to it and secured once inside the joint site by the use of adhesives, sutures, pins, staples, screws or the like and combinations thereof to improve fixation to the surrounding soft tissue and/or bone to improve fixation.
46. A system according to claim 36 wherein the one or more preformed component(s) are adapted to be inserted into a joint in a minimally invasive fashion.
47. A system according to claim 36 in which the one or more preformed component(s) are provided in a plurality or range of styles and sizes.
48. A system according to claim 37 wherein the assembled components conform to the shape of the femoral condyle and tibial plateau, medial, lateral or both.
49. A system according to claim 37 wherein the preformed component(s) are fabricated from materials selected from the group consisting of polyurethanes, polyethylenes, polyureas, hydrogels, polysiloxanes, polyacrylates, epoxies, and combinations thereof.
50. A system according to claim 49 wherein the material comprises a polyurethane.
51. A system according to claim 50 wherein polyurethane is prepared from polyisocyanate(s), short and long chain polyols, and optionally including one or more ingredients selected from the group hydrophobic additive(s), tin and/or amine catalyst(s), and antioxidant(s).
52. A system according to claim 51 wherein the polyurethanes are prepared from aromatic polyisocyanates, PTMO's, short chain diols.
53. A system according to claim 52 wherein the hydrophobic additive comprises hydroxyl-terminated polybutadiene, and the tin and/or amine catalyst(s) used promote the isocyanate-hydroxyl reaction preferentially and are selected from the group consisting of UL22, Cotin 222, 1,4-diazabicyclo[2.2.2]octane (dabco), and dibutyltin dilaurate (DBTDL) or the like and combinations thereof.
54. A system according to claim 36 wherein the preformed components provide one or more surfaces having attached thereto a biologically active agent selected from the group cytokines, hydroxyapatite, growth factors, autologous growth factors, collagen or the like and combinations thereof.
55. A system according to claim 36 wherein the surface of one or more preformed component(s) is provided or modified with reactive groups to promote tissue adhesion.
56. A system according to claim 55 wherein the reactive groups are covalently attached to the polymers used to fabricate the preformed component(s), and are selected from amines, hydroxyl groups, or other reactive or hydrogen bonding functionalities.
57. A system according to claim 36 wherein the preformed component(s) are selected from the group consisting of a) a single preformed component, b) a plurality of components adapted to be layered upon each other at the tissue site, c) a plurality of components adapted to be assembled at the tissue site in an interlocking fashion, such that the components cooperate to provide a respective portion of the first and second major surfaces.
58. A system according to claims 1 or 22 or 36 further comprising the use of one or more additional materials and/or steps adapted to a) prepare the bone surface itself, b) provide a desired interface between bone, component(s), and/or the physiologic environment, and/or c) treat one or more surfaces of the component(s) in order to provide them with different or improved properties as compared to the inherent properties of the material providing the surface.
59. A system according to claim 58 wherein the materials and/or steps are adapted to affect, improve or provide a surface property or function selected from adhesion, lubricity, smoothness, conformance, tissue in-growth, or biocompatibility.
60. A system according to claims 1 or 22 or 36 wherein the system is adapted to be used for repairing a variety of mammalian joints, including human joints selected from the group consisting of the tibial plateau of the knee, the acetabulum of the hip, the glenoid of the shoulder, the acromion process of the shoulder, the acromio-clavicular joint of the shoulder, the distal tibial surface of the ankle, the radial head of the elbow, the distal radius of the forearm, the proximal phalanx surface of the great toe, the proximal metacarpal surface of the thumb, and the trapezium of the wrist.
61. A system according to claim 60 wherein the system is adapted to be used for repairing the tibial plateau of the knee.
62. A system according to claim 60 wherein the system is adapted to be used for repairing the acetabulum of the hip.
63. A system according to claim 13 wherein the implant is provided in the form of a preformed knee implant prepared using an ex vivo mold and having a first major surface adapted to be positioned upon the tibial surface, and a second major surface adapted to be positioned against the femoral condyle.
64. A system according to claim 63 wherein the second major surface is provided with a femoral glide path to facilitate its performance in situ.
65. A system according to claim 64 wherein the glide path is in the form of a generally central oval depression about 1 mm to about 5 mm deep at its lowest point and about 30 mm to about 50 mm in length by 10 mm to 30 mm in width.
66. A system according to claim 63 wherein the implant also includes a raised tibial projection adapted to catch the posterior portion of the tibial plateau in situ.
67. A system according to claim 63 wherein the implant has dimensions on the order of between about 40 to about 60 mm in the anterior-posterior dimension, between about 30 mm to about 40 mm in the medial-lateral dimension, and a maximum thickness, at the posterior lip, of between about 10 mm and about 20 mm.
68. A system according to claim 63 wherein the preformed component includes ancillary means for securing the component once formed in the joint site.
69. A system according to claim 68 wherein the ancillary means comprise one or more protrusions adapted to be attached to either soft tissue and/or bone at the joint site to improve fixation.
70. A system according to claim 68 wherein the contoured surface of the preformed component further comprises a contour having one or more protrusions, integral with the preformed component, and formed during the ex vivo molding process.
71. A system according to claim 70 wherein the protrusions are adapted to be integrated into the preformed component during the ex vivo molding process and comprise sutures and/or fibrous biomaterials integrally formed with the component itself.
72. A system according to claim 68 wherein the ancillary means are selected from the group consisting of adhesives, sutures, pins, staples, screws, and combinations thereof.
73. A system according to claim 70 wherein the implant is preformed in a mold having an anterior cup edge that is substantially perpendicular to the plane of the cup itself, and a posterior mesial edge that is tapered and raised to accommodate the corresponding shape of the tibial spine.
74. A system according to claim 73 wherein the mold is adapted to permits control of sizing, conformance to the joint site, implant thickness and angular correction.
75. A system according to claim 74 where the implant assumes a generally kidney-shaped configuration, adapted to correspond with the tibial surface, and provides a posterior mesial edge portion having an indentation to accommodate the typical shape of the corresponding tibial spine.
76. A system according to claim 15 wherein the polyurethane comprises an isocyanate selected from the group consisting of aromatic, aliphatic and arylakyl diisocyanates, and combinations thereof.
77. A system according to claim 76 wherein the isocyanate is selected from the group consisting of toluene diisocyanates, naphthalene diisocyanates, phenylene diisocyanates, xylylene diisocyanates, diphenylmethane diisocyanates, cyclohexane diisocyanates, cyclohexyl-bis methylene diisocyanates, isophorone diisocyanates and hexamethylene diisocyanates.
78. A system according to claim 63 further comprising a patella-femoral joint form suitable adapted to be formed to, and held against, the femoral bone surface, in order to permit the delivery of curable biopolymer between the form and the bone.
79. A system according to claim 1 wherein the implant is provided in the form of a preformed knee implant prepared using an ex vivo mold and having a first major surface adapted to be positioned upon the tibial surface, and a second major surface adapted to be positioned against the femoral condyle, the implant also includes a raised tibial projection adapted to catch the posterior portion of the tibial plateau in situ, the implant has dimensions on the order of between about 40 to about 60 mm in the anterior-posterior dimension, between about 30 mm to about 40 mm in the medial-lateral dimension, and a maximum thickness, at the posterior lip, of between about 10 mm and about 20 mm, the preformed component includes ancillary means for securing the component once formed in the joint site, and the preformed component is fabricated from a polyurethane that comprises an isocyanate comprising a phenylene diisocyanate.
US10098601 2000-08-28 2002-03-15 Method and system for mammalian joint resurfacing Abandoned US20020127264A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US22844400 true 2000-08-28 2000-08-28
PCT/US2001/041908 WO2002017821A9 (en) 2000-08-28 2001-08-28 Method for mammalian joint resurfacing
US10098601 US20020127264A1 (en) 2000-08-28 2002-03-15 Method and system for mammalian joint resurfacing

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US10098601 US20020127264A1 (en) 2000-08-28 2002-03-15 Method and system for mammalian joint resurfacing
US10121455 US20020183850A1 (en) 2000-08-28 2002-04-12 Method and system for mammalian joint resurfacing
US10167963 US6652587B2 (en) 2000-08-28 2002-06-12 Method and system for mammalian joint resurfacing
JP2003561468A JP4324478B2 (en) 2002-01-22 2003-01-22 Between 置関 clause forming system
PCT/US2003/002142 WO2003061522A9 (en) 2002-01-22 2003-01-22 Interpositional arthroplasty system and method
CA 2473858 CA2473858A1 (en) 2002-01-22 2003-01-22 Interpositional arthroplasty system and method
EP20030703997 EP1474071B1 (en) 2002-01-22 2003-01-22 Interpositional arthroplasty system
US10500929 US20040247641A1 (en) 2002-01-22 2003-01-22 Interpositional arthroplasty system & method
US10722019 US7320709B2 (en) 2000-08-28 2003-11-24 Method and system for mammalian joint resurfacing
US11953203 US7914582B2 (en) 2000-08-28 2007-12-10 Method and system for mammalian joint resurfacing
US12479402 US8100979B2 (en) 2000-08-28 2009-06-05 Method and system for mammalian joint resurfacing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/041908 Continuation WO2002017821A9 (en) 2000-08-28 2001-08-28 Method for mammalian joint resurfacing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10121455 Continuation-In-Part US20020183850A1 (en) 2000-08-28 2002-04-12 Method and system for mammalian joint resurfacing

Publications (1)

Publication Number Publication Date
US20020127264A1 true true US20020127264A1 (en) 2002-09-12

Family

ID=22857197

Family Applications (6)

Application Number Title Priority Date Filing Date
US10098601 Abandoned US20020127264A1 (en) 2000-08-28 2002-03-15 Method and system for mammalian joint resurfacing
US10121455 Abandoned US20020183850A1 (en) 2000-08-28 2002-04-12 Method and system for mammalian joint resurfacing
US10167963 Active US6652587B2 (en) 2000-08-28 2002-06-12 Method and system for mammalian joint resurfacing
US10722019 Active 2021-12-22 US7320709B2 (en) 2000-08-28 2003-11-24 Method and system for mammalian joint resurfacing
US11953203 Active US7914582B2 (en) 2000-08-28 2007-12-10 Method and system for mammalian joint resurfacing
US12479402 Active US8100979B2 (en) 2000-08-28 2009-06-05 Method and system for mammalian joint resurfacing

Family Applications After (5)

Application Number Title Priority Date Filing Date
US10121455 Abandoned US20020183850A1 (en) 2000-08-28 2002-04-12 Method and system for mammalian joint resurfacing
US10167963 Active US6652587B2 (en) 2000-08-28 2002-06-12 Method and system for mammalian joint resurfacing
US10722019 Active 2021-12-22 US7320709B2 (en) 2000-08-28 2003-11-24 Method and system for mammalian joint resurfacing
US11953203 Active US7914582B2 (en) 2000-08-28 2007-12-10 Method and system for mammalian joint resurfacing
US12479402 Active US8100979B2 (en) 2000-08-28 2009-06-05 Method and system for mammalian joint resurfacing

Country Status (5)

Country Link
US (6) US20020127264A1 (en)
CA (1) CA2420898A1 (en)
DE (1) DE60139262D1 (en)
EP (1) EP1315470B1 (en)
WO (1) WO2002017821A9 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040006393A1 (en) * 2002-07-03 2004-01-08 Brian Burkinshaw Implantable prosthetic knee for lateral compartment
WO2005016175A2 (en) * 2003-06-27 2005-02-24 Advanced Bio Surfaces, Inc. Meniscus preserving implant method and apparatus
EP1575460A2 (en) * 2002-11-27 2005-09-21 Conformis, Inc. Patient selectable total and partial joint arthroplasty devices and surgical tools
US20060069446A1 (en) * 2004-09-21 2006-03-30 Ragusa Mathieu A J Articular interposition implant
EP1686932A2 (en) * 2003-06-27 2006-08-09 Advanced Bio Surfaces, Inc. System and method for ankle arthroplasty
US20060241758A1 (en) * 2005-04-20 2006-10-26 Sdgi Holdings, Inc. Facet spacers
US20070233269A1 (en) * 2001-05-25 2007-10-04 Conformis, Inc. Interpositional Joint Implant
US20070233268A1 (en) * 2006-03-31 2007-10-04 Depuy Products, Inc. Interpositional knee arthroplasty
US20080097606A1 (en) * 2006-10-19 2008-04-24 Cragg Andrew H Knee joint prosthesis and hyaluronate compositions for treatment of osteoarthritis
US20080221700A1 (en) * 2005-08-31 2008-09-11 Zimmer, Gmbh Implant
US20080234820A1 (en) * 2000-08-28 2008-09-25 Felt Jeffrey C Method and system for mammalian joint resurfacing
US20090036995A1 (en) * 2007-07-31 2009-02-05 Zimmer, Inc. Joint space interpositional prosthetic device with internal bearing surfaces
US20090048679A1 (en) * 2006-02-09 2009-02-19 Zimmer Gmbh Implant
US20090187252A1 (en) * 2006-04-28 2009-07-23 Zimmer Gmbh Implant
US20090222103A1 (en) * 2001-05-25 2009-09-03 Conformis, Inc. Articular Implants Providing Lower Adjacent Cartilage Wear
US7708740B1 (en) 2000-01-14 2010-05-04 Marctec, Llc Method for total knee arthroplasty and resecting bone in situ
US7708741B1 (en) 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
US7717956B2 (en) 2001-05-25 2010-05-18 Conformis, Inc. Joint arthroplasty devices formed in situ
US7796791B2 (en) 2002-11-07 2010-09-14 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US7799077B2 (en) 2002-10-07 2010-09-21 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US7881768B2 (en) 1998-09-14 2011-02-01 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US20110029093A1 (en) * 2001-05-25 2011-02-03 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US7959635B1 (en) 2000-01-14 2011-06-14 Marctec, Llc. Limited incision total joint replacement methods
US7981158B2 (en) 2001-05-25 2011-07-19 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8036729B2 (en) 1998-09-14 2011-10-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8038718B2 (en) 2005-03-09 2011-10-18 Vertebral Technologies, Inc. Multi-composite disc prosthesis
US8066708B2 (en) 2001-05-25 2011-11-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8122582B2 (en) 2001-05-25 2012-02-28 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20120116523A1 (en) * 2009-07-10 2012-05-10 Milux Holding Sa Joint device and method
US8234097B2 (en) 2001-05-25 2012-07-31 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US8265730B2 (en) 1998-09-14 2012-09-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US8308807B2 (en) 2005-11-09 2012-11-13 Zimmer, Gmbh Implant with differential anchoring
US8337507B2 (en) 2001-05-25 2012-12-25 Conformis, Inc. Methods and compositions for articular repair
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8500740B2 (en) 2006-02-06 2013-08-06 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US8808303B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US8951260B2 (en) 2001-05-25 2015-02-10 Conformis, Inc. Surgical cutting guide
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US9020788B2 (en) 1997-01-08 2015-04-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US9286686B2 (en) 1998-09-14 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and assessing cartilage loss
US9308091B2 (en) 2001-05-25 2016-04-12 Conformis, Inc. Devices and methods for treatment of facet and other joints
US20160128811A1 (en) * 2013-05-27 2016-05-12 Vita Zahnfabrik H. Rauter Gmbh & Co. Kg Prosthetic preform for producing a dental prosthetic body
US9486226B2 (en) 2012-04-18 2016-11-08 Conformis, Inc. Tibial guides, tools, and techniques for resecting the tibial plateau
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US9649117B2 (en) 2009-02-24 2017-05-16 Microport Orthopedics Holdings, Inc. Orthopedic surgical guide
US9675471B2 (en) 2012-06-11 2017-06-13 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US9877790B2 (en) 2011-11-11 2018-01-30 Conformis, Inc. Tibial implant and systems with variable slope

Families Citing this family (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1474071B1 (en) * 2002-01-22 2010-05-19 ABS Corporation Interpositional arthroplasty system
US6045551A (en) 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
US9289153B2 (en) * 1998-09-14 2016-03-22 The Board Of Trustees Of The Leland Stanford Junior University Joint and cartilage diagnosis, assessment and modeling
US20050033424A1 (en) * 1999-05-10 2005-02-10 Fell Barry M. Surgically implantable knee prosthesis
US8066776B2 (en) * 2001-12-14 2011-11-29 Btg International Limited Tibial component
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US6447516B1 (en) 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US6875235B2 (en) * 1999-10-08 2005-04-05 Bret A. Ferree Prosthetic joints with contained compressible resilient members
US6368343B1 (en) 2000-03-13 2002-04-09 Peter M. Bonutti Method of using ultrasonic vibration to secure body tissue
US8388624B2 (en) 2003-02-24 2013-03-05 Arthrosurface Incorporated Trochlear resurfacing system and method
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US6520964B2 (en) 2000-05-01 2003-02-18 Std Manufacturing, Inc. System and method for joint resurface repair
US6610067B2 (en) 2000-05-01 2003-08-26 Arthrosurface, Incorporated System and method for joint resurface repair
US6620196B1 (en) * 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US6482209B1 (en) 2001-06-14 2002-11-19 Gerard A. Engh Apparatus and method for sculpting the surface of a joint
EP1448908B1 (en) * 2001-11-23 2006-02-01 Universität Duisburg-Essen Implant
US6719765B2 (en) 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
CA2492030A1 (en) * 2002-07-11 2004-01-22 Advanced Bio Surfaces, Inc. Method and kit for interpositional arthroplasty
US6942475B2 (en) * 2002-03-13 2005-09-13 Ortho Development Corporation Disposable knee mold
US7613491B2 (en) * 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US7867236B2 (en) * 2003-12-30 2011-01-11 Zimmer, Inc. Instruments and methods for preparing a joint articulation surface for an implant
US7922772B2 (en) * 2002-05-24 2011-04-12 Zimmer, Inc. Implants and related methods and apparatus for securing an implant on an articulating surface of an orthopedic joint
US20040049283A1 (en) * 2002-06-04 2004-03-11 Tushar Patel Medical implant and method of reducing back pain
US20040070107A1 (en) * 2002-10-09 2004-04-15 Pragtech, Inc. Method of making lubricious polyacrylonitrile artificial joint components and resulting product
US7309361B2 (en) * 2002-10-23 2007-12-18 Wasielewski Ray C Biologic modular tibial and femoral component augments for use with total knee arthroplasty
EP1555963A4 (en) 2002-10-23 2008-12-31 Mako Surgical Corp Modular femoral component for a total knee joint replacement for minimally invasive implantation
US7537664B2 (en) 2002-11-08 2009-05-26 Howmedica Osteonics Corp. Laser-produced porous surface
EP1765201A4 (en) * 2004-06-28 2013-01-23 Arthrosurface Inc System for articular surface replacement
EP1845890A4 (en) 2003-11-20 2010-06-09 Arthrosurface Inc System and method for retrograde procedure
US7828853B2 (en) 2004-11-22 2010-11-09 Arthrosurface, Inc. Articular surface implant and delivery system
US7326252B2 (en) * 2002-12-20 2008-02-05 Smith & Nephew, Inc. High performance knee prostheses
US6916341B2 (en) * 2003-02-20 2005-07-12 Lindsey R. Rolston Device and method for bicompartmental arthroplasty
WO2004093747A1 (en) * 2003-04-02 2004-11-04 Ortho Development Corporation Tibial augment connector
US20050074877A1 (en) * 2003-07-28 2005-04-07 Mao Jeremy Jian Biological engineering of articular structures containing both cartilage and bone
WO2005025451A3 (en) * 2003-09-11 2005-06-23 Advanced Bio Surfaces Inc Method and materials for interpositional arthroplasty implant
EP1684672A1 (en) 2003-10-17 2006-08-02 SMITH & NEPHEW, INC. High flexion articular insert
US20050119752A1 (en) * 2003-11-19 2005-06-02 Synecor Llc Artificial intervertebral disc
EP2338442B1 (en) 2003-12-11 2013-01-30 Isto Technologies Inc. Particulate cartilage system
US7578824B2 (en) * 2003-12-30 2009-08-25 Zimmer, Inc. Methods and apparatus for forming a tunnel through a proximal end of a tibia
US7819878B2 (en) * 2003-12-30 2010-10-26 Zimmer, Inc. Tibial condylar hemiplasty tissue preparation instruments and methods
US7771483B2 (en) * 2003-12-30 2010-08-10 Zimmer, Inc. Tibial condylar hemiplasty implants, anchor assemblies, and related methods
US8852195B2 (en) * 2004-07-09 2014-10-07 Zimmer, Inc. Guide templates for surgical implants and related methods
US8002840B2 (en) 2004-01-12 2011-08-23 Depuy Products, Inc. Systems and methods for compartmental replacement in a knee
EP1703867B1 (en) 2004-01-12 2012-03-07 Depuy Products, Inc. Systems for compartmental replacement in a knee
US8535383B2 (en) 2004-01-12 2013-09-17 DePuy Synthes Products, LLC Systems and methods for compartmental replacement in a knee
WO2005069957A3 (en) * 2004-01-20 2007-01-18 Alexander Michalow Unicondylar knee implant
US8323349B2 (en) * 2004-02-17 2012-12-04 The University Of Notre Dame Du Lac Textured surfaces for orthopedic implants
US20050197711A1 (en) * 2004-03-03 2005-09-08 Cachia Victor V. Catheter deliverable foot implant and method of delivering the same
US7338529B1 (en) 2004-03-30 2008-03-04 Biomet Manufacturing Corp. Methods and apparatuses for enhancing prosthetic implant durability
US20060095115A1 (en) * 2004-05-10 2006-05-04 Youssef Bladillah Stent and method of manufacturing same
EP1611871B1 (en) * 2004-07-02 2008-02-20 Zimmer Technology, Inc. Multiple piece modular patellar prosthetic system
US7892287B2 (en) * 2004-09-27 2011-02-22 Depuy Products, Inc. Glenoid augment and associated method
US7927335B2 (en) 2004-09-27 2011-04-19 Depuy Products, Inc. Instrument for preparing an implant support surface and associated method
US7922769B2 (en) 2004-09-27 2011-04-12 Depuy Products, Inc. Modular glenoid prosthesis and associated method
US20090088846A1 (en) 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
EP1890649A4 (en) * 2004-11-30 2011-03-30 Mansmann Kevin A Anchoring systems and interfaces for flexible surgical implants for replacing cartilage
US20060282169A1 (en) * 2004-12-17 2006-12-14 Felt Jeffrey C System and method for upper extremity joint arthroplasty
US20060147332A1 (en) 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
US20060195191A1 (en) * 2005-01-08 2006-08-31 Alphaspine Inc. Modular disc device
US20060178749A1 (en) * 2005-02-10 2006-08-10 Zimmer Technology, Inc. Modular porous implant
US8828080B2 (en) * 2005-02-22 2014-09-09 Barry M. Fell Method and system for knee joint repair
US8778028B2 (en) 2005-02-25 2014-07-15 Shoulder Innovations, Inc. Methods and devices for less invasive glenoid replacement
US8007538B2 (en) * 2005-02-25 2011-08-30 Shoulder Innovations, Llc Shoulder implant for glenoid replacement
US8696707B2 (en) * 2005-03-08 2014-04-15 Zyga Technology, Inc. Facet joint stabilization
JP4832514B2 (en) 2005-05-24 2011-12-07 バーテブラル テクノロジーズ インコーポレイテッドVertebral Technologies,Inc. Interlocking modular disc nucleus prosthesis
WO2007025290A3 (en) 2005-08-26 2007-10-18 H Davis Adkisson Iv Implants and methods for repair, replacement and treatment of joint disease
EP2796544A1 (en) * 2005-09-09 2014-10-29 Duke University Tissue engineering methods and compositions
US20070088444A1 (en) * 2005-10-13 2007-04-19 Robert A Hodorek Method for repairing a bone defect using a formable implant which hardens in vivo
US7618422B2 (en) 2005-11-07 2009-11-17 Howmedica Osteonics Corp. Tibial augmentation guide
US7744630B2 (en) * 2005-11-15 2010-06-29 Zimmer Spine, Inc. Facet repair and stabilization
CN101384230A (en) * 2005-11-21 2009-03-11 福特真公司 Devices and methods for treating facet joints, uncovertebral joints, costovertebral joints and other joints
US7766969B2 (en) * 2005-12-05 2010-08-03 Zimmer, Inc. Modular progressive implant for a joint articulation surface
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
DE102005063249B3 (en) * 2005-12-21 2007-08-09 Aesculap Ag & Co. Kg Artificial meniscus part for knee joint end prosthesis, has tibia joint surface formed in even manner and comprising recess surface that points away from meniscus part, where recess surface comprises recess
EP1803513B1 (en) * 2005-12-30 2017-03-29 Howmedica Osteonics Corp. Method of manufacturing implants using laser
US20070179607A1 (en) * 2006-01-31 2007-08-02 Zimmer Technology, Inc. Cartilage resurfacing implant
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US20110046735A1 (en) * 2006-02-27 2011-02-24 Biomet Manufacturing Corp. Patient-Specific Implants
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US7927358B2 (en) * 2006-03-07 2011-04-19 Zimmer Spine, Inc. Spinal stabilization device
US9474619B2 (en) * 2006-03-21 2016-10-25 Tornier, Inc. Glenoid component with improved fixation stability
CA2650490A1 (en) 2006-04-26 2007-11-08 Illuminoss Medical, Inc. Apparatus and methods for reinforcing bone
US7806900B2 (en) 2006-04-26 2010-10-05 Illuminoss Medical, Inc. Apparatus and methods for delivery of reinforcing materials to bone
GB0609058D0 (en) * 2006-05-09 2006-06-14 Finsbury Dev Ltd Knee prosthesis
US20070288021A1 (en) * 2006-06-07 2007-12-13 Howmedica Osteonics Corp. Flexible joint implant
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
EP2043561B1 (en) 2006-06-30 2016-01-27 Smith & Nephew, Inc. Anatomical motion hinged prosthesis
US8147861B2 (en) 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
US20080058949A1 (en) * 2006-09-06 2008-03-06 Roger Ryan Dees Implants with Transition Surfaces and Related Processes
US7988711B2 (en) * 2006-09-21 2011-08-02 Warsaw Orthopedic, Inc. Low profile vertebral stabilization systems and methods
US8192491B2 (en) 2006-10-09 2012-06-05 Active Implants Corporation Meniscus prosthetic device
WO2008045807A3 (en) 2006-10-09 2008-08-14 Active Implants Corp Meniscus prosthetic device
US7879041B2 (en) 2006-11-10 2011-02-01 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
CA2669129C (en) 2006-11-10 2014-09-16 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
WO2008073404A3 (en) 2006-12-11 2008-08-21 Arthrosurface Inc Retrograde resection apparatus and method
US8163549B2 (en) 2006-12-20 2012-04-24 Zimmer Orthobiologics, Inc. Method of obtaining viable small tissue particles and use for tissue repair
US8758407B2 (en) * 2006-12-21 2014-06-24 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing orthopedic implant device in vivo
US8663328B2 (en) * 2006-12-21 2014-03-04 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing component of an orthopedic implant device by inserting a malleable device that hardens in vivo
WO2008090468A3 (en) * 2007-01-22 2008-10-30 Christian Bruderer An implant and a method for partial replacement of joint surfaces
US20080234540A1 (en) * 2007-01-31 2008-09-25 Warsaw Orthopedic, Inc. Osteochondral Implant Procedure
US20110093084A1 (en) * 2007-02-09 2011-04-21 Morton Troy N Artificial joint preserving tendon and/or sesamoid bone structure
US8292966B2 (en) * 2007-02-09 2012-10-23 Morton Ballard Arthrotechnology, LLC. Artificial toe joint
US20110093085A1 (en) * 2007-02-09 2011-04-21 Morton Troy N Artificial joint and insert
WO2008101110A3 (en) * 2007-02-14 2008-10-23 Christopher Carson Method and system for computer assisted surgery for bicompartmental knee replacement
US8506637B2 (en) 2007-02-26 2013-08-13 Marvin Schwartz Mobile prosthesis for interpositional location between bone joint articular surfaces and method of use
US7670381B2 (en) * 2007-02-26 2010-03-02 Marvin Schwartz Prosthesis for interpositional location between bone joint articular surfaces and method of use
US9814581B2 (en) 2007-02-26 2017-11-14 Marvin Schwartz Mobile prosthesis for interpositional location between bone joint articular surfaces and method of use
US8147558B2 (en) 2007-03-30 2012-04-03 Depuy Products, Inc. Mobile bearing assembly having multiple articulation interfaces
US8764841B2 (en) 2007-03-30 2014-07-01 DePuy Synthes Products, LLC Mobile bearing assembly having a closed track
US8142510B2 (en) 2007-03-30 2012-03-27 Depuy Products, Inc. Mobile bearing assembly having a non-planar interface
US8147557B2 (en) * 2007-03-30 2012-04-03 Depuy Products, Inc. Mobile bearing insert having offset dwell point
US8328874B2 (en) 2007-03-30 2012-12-11 Depuy Products, Inc. Mobile bearing assembly
US20090012612A1 (en) * 2007-04-10 2009-01-08 David White Devices and methods for push-delivery of implants
EP2339985A4 (en) * 2008-09-12 2013-07-03 Articulinx Inc Tether-based orthopedic joint device delivery methods
US20080255664A1 (en) 2007-04-10 2008-10-16 Mdesign International Percutaneously deliverable orthopedic joint device
US20080255665A1 (en) * 2007-04-11 2008-10-16 Active Implants Corporation Anchored prosthetic meniscus device
CA2684040C (en) * 2007-04-12 2016-12-06 Isto Technologies, Inc. Method of forming an implant using a mold that mimics the shape of the tissue defect site and implant formed therefrom
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
EP1985319B1 (en) * 2007-04-23 2012-06-13 Jointsphere B.V. Device for cartilage repair
WO2009014718A1 (en) 2007-07-24 2009-01-29 Porex Corporation Porous laser sintered articles
US8343189B2 (en) 2007-09-25 2013-01-01 Zyga Technology, Inc. Method and apparatus for facet joint stabilization
US7918893B2 (en) 2007-09-30 2011-04-05 Depuy Products, Inc. Hinged orthopaedic prosthesis
US20100305714A1 (en) * 2007-10-19 2010-12-02 Stryker Trauma Gmbh Synthetic bone substitute, method for preparing same and method for filing a cavity in a substrate
WO2009059090A1 (en) 2007-10-31 2009-05-07 Illuminoss Medical, Inc. Light source
US20090118833A1 (en) * 2007-11-05 2009-05-07 Zimmer Spine, Inc. In-situ curable interspinous process spacer
US20090138092A1 (en) * 2007-11-28 2009-05-28 Johnston Brent W Therapeutic Structures for Utilization in Temporomandibular Joint Replacement Systems
WO2009073781A3 (en) 2007-12-07 2009-08-20 Zimmer Orthopaedic Surgical Pr Spacer molds and methods therfor
US8403968B2 (en) 2007-12-26 2013-03-26 Illuminoss Medical, Inc. Apparatus and methods for repairing craniomaxillofacial bones using customized bone plates
US7690864B2 (en) * 2007-12-27 2010-04-06 Allen Engineering Corporation Hydraulic riding trowel with automatic load sensing system
US8252029B2 (en) * 2008-02-21 2012-08-28 Zimmer Gmbh Expandable interspinous process spacer with lateral support and method for implantation
EP2262448A4 (en) 2008-03-03 2014-03-26 Arthrosurface Inc Bone resurfacing system and method
US8152846B2 (en) * 2008-03-06 2012-04-10 Musculoskeletal Transplant Foundation Instrumentation and method for repair of meniscus tissue
US20090248092A1 (en) 2008-03-26 2009-10-01 Jonathan Bellas Posterior Intervertebral Disc Inserter and Expansion Techniques
US7611653B1 (en) * 2008-04-09 2009-11-03 Active Implants Corporation Manufacturing and material processing for prosthetic devices
US8016884B2 (en) * 2008-04-09 2011-09-13 Active Implants Corporation Tensioned meniscus prosthetic devices and associated methods
US8361147B2 (en) 2008-04-09 2013-01-29 Active Implants Corporation Meniscus prosthetic devices with anti-migration features
US7991599B2 (en) * 2008-04-09 2011-08-02 Active Implants Corporation Meniscus prosthetic device selection and implantation methods
US8529631B2 (en) * 2008-07-18 2013-09-10 Zimmer, Gmbh Base component for a tibial implant
US9364338B2 (en) 2008-07-23 2016-06-14 Resspond Spinal Systems Modular nucleus pulposus prosthesis
EP2303196A4 (en) 2008-07-23 2012-07-04 Marc I Malberg Modular nucleus pulposus prosthesis
US9808345B2 (en) 2008-07-24 2017-11-07 Iorthopedics, Inc. Resilient arthroplasty device
CA2731698A1 (en) 2008-08-05 2010-02-11 Biomimedica, Inc. Polyurethane-grafted hydrogels
ES2647919T3 (en) 2008-08-13 2017-12-27 Smed-Ta/Td, Llc Drug delivery implants
US9358056B2 (en) 2008-08-13 2016-06-07 Smed-Ta/Td, Llc Orthopaedic implant
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
WO2010019781A1 (en) 2008-08-13 2010-02-18 Smed-Ta/Td, Llc Drug delivery implants
US8257357B2 (en) * 2008-09-23 2012-09-04 Edwin Burton Hatch Combination of a motor driven oscillating orthopedic reshaping and resurfacing tool and a surface-matching sheet metal prosthesis
JP5400891B2 (en) * 2008-10-29 2014-01-29 ジンマー オーソピーディック サージカル プロダクツ,インコーポレーテッドZimmer Orthopaedic Surgical Products, Inc. Scan Bae Samorudo with a releasable securing structure
US20100125341A1 (en) * 2008-11-19 2010-05-20 Frauens John T Device & method for restoring joints with artificial cartilage
US9155623B2 (en) * 2009-07-10 2015-10-13 Peter Forsell Implantable medical device and method of implanting the medical device
US8241365B2 (en) 2008-12-23 2012-08-14 Depuy Products, Inc. Shoulder prosthesis with vault-filling structure having bone-sparing configuration
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8556972B2 (en) * 2009-04-02 2013-10-15 Sevika Holding AG Monolithic orthopedic implant with an articular finished surface
EP2588030A4 (en) * 2010-07-01 2017-03-15 Intellectual Property Chalet Llc Convex concave implant
US20100256758A1 (en) * 2009-04-02 2010-10-07 Synvasive Technology, Inc. Monolithic orthopedic implant with an articular finished surface
US8210729B2 (en) 2009-04-06 2012-07-03 Illuminoss Medical, Inc. Attachment system for light-conducting fibers
US8512338B2 (en) 2009-04-07 2013-08-20 Illuminoss Medical, Inc. Photodynamic bone stabilization systems and methods for reinforcing bone
US9662126B2 (en) 2009-04-17 2017-05-30 Arthrosurface Incorporated Glenoid resurfacing system and method
WO2010121246A1 (en) 2009-04-17 2010-10-21 Arthrosurface Incorporated Glenoid resurfacing system and method
CN102711671B (en) 2009-05-29 2017-07-28 史密夫和内修有限公司 A method for performing knee arthroplasty instruments and
US9549820B2 (en) * 2009-06-25 2017-01-24 Zimmer, Inc. Glenoid implant with synthetic labrum
US8394125B2 (en) 2009-07-24 2013-03-12 Zyga Technology, Inc. Systems and methods for facet joint treatment
DE102009028503B4 (en) 2009-08-13 2013-11-14 Biomet Manufacturing Corp. Resektionsschablone for resection of bone, to methods for producing such Resektionsschablone and Operationsset for performing knee replacement surgeries
EP2467098A4 (en) 2009-08-19 2015-07-08 Illuminoss Medical Inc Devices and methods for bone alignment, stabilization and distraction
JP2013504389A (en) 2009-09-11 2013-02-07 アーティキュリンクス, インコーポレイテッド The orthopedic device of the disc-shaped
US8152854B2 (en) * 2009-09-30 2012-04-10 Imbriglia Joseph E Resurfacing implant for the wrist and method of implantation thereof
US20110118740A1 (en) * 2009-11-10 2011-05-19 Illuminoss Medical, Inc. Intramedullary Implants Having Variable Fastener Placement
US8231683B2 (en) 2009-12-08 2012-07-31 Depuy Products, Inc. Shoulder prosthesis assembly having glenoid rim replacement structure
CN102834073B (en) * 2010-01-22 2016-01-13 R·托马斯·哥罗兹 Elastic knee implants and methods
WO2011106369A1 (en) * 2010-02-25 2011-09-01 Orteq B.V. Meniscus repair assembly and method
US9233006B2 (en) 2010-06-15 2016-01-12 Zyga Technology, Inc. Systems and methods for facet joint treatment
US8663293B2 (en) 2010-06-15 2014-03-04 Zyga Technology, Inc. Systems and methods for facet joint treatment
KR20150087273A (en) 2012-11-15 2015-07-29 지가 테크놀로지 인코포레이티드 Systems and methods for facet joint treatment
US8684965B2 (en) 2010-06-21 2014-04-01 Illuminoss Medical, Inc. Photodynamic bone stabilization and drug delivery systems
WO2012019248A1 (en) * 2010-08-12 2012-02-16 Intigo Giselle Nominees Pty Ltd Prosthetic menisci and method of implanting in the human knee joint
US20130217829A1 (en) 2010-08-27 2013-08-22 David Myung "hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same"
US8465548B2 (en) 2010-11-24 2013-06-18 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8480750B2 (en) 2010-11-24 2013-07-09 DePuy Synthes Products, LLC Modular glenoid prosthesis
US9179959B2 (en) 2010-12-22 2015-11-10 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US9066716B2 (en) 2011-03-30 2015-06-30 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8747479B2 (en) 2011-04-26 2014-06-10 Michael A. McShane Tibial component
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9861372B2 (en) 2011-05-27 2018-01-09 Howmedica Osteonics Corp. Prosthetic implant and associated instruments
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
CN103997978A (en) 2011-07-13 2014-08-20 通用医疗公司 Methods and devices for knee joint replacement with anterior cruciate ligament substitution
WO2013059609A1 (en) 2011-10-19 2013-04-25 Illuminoss Medical, Inc. Systems and methods for joint stabilization
US9144442B2 (en) 2011-07-19 2015-09-29 Illuminoss Medical, Inc. Photodynamic articular joint implants and methods of use
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
WO2013033447A3 (en) 2011-09-01 2013-05-02 Grotz R Thomas Resilient interpositional arthroplasty device
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
KR20130046337A (en) 2011-10-27 2013-05-07 삼성전자주식회사 Multi-view device and contol method thereof, display apparatus and contol method thereof, and display system
US9468536B1 (en) 2011-11-02 2016-10-18 Nuvasive, Inc. Spinal fusion implants and related methods
EP2782524B1 (en) 2011-11-21 2017-12-20 Biomimedica, Inc Systems for anchoring orthopaedic implants to bone
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9364896B2 (en) 2012-02-07 2016-06-14 Medical Modeling Inc. Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology
US9271836B2 (en) 2012-03-06 2016-03-01 DePuy Synthes Products, Inc. Nubbed plate
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9237952B2 (en) * 2012-04-30 2016-01-19 William B. Kurtz Total knee arthroplasty system and method
CA2872238A1 (en) * 2012-05-03 2013-11-07 Ultimate Joint Ltd. In-situ formation of a joint replacement prosthesis
US9468448B2 (en) 2012-07-03 2016-10-18 Arthrosurface Incorporated System and method for joint resurfacing and repair
US8939977B2 (en) 2012-07-10 2015-01-27 Illuminoss Medical, Inc. Systems and methods for separating bone fixation devices from introducer
US20150265291A1 (en) 2012-10-18 2015-09-24 Smith & Nephew, Inc. Alignment devices and methods
EP2911737A1 (en) * 2012-10-29 2015-09-02 Cardiac Pacemakers, Inc. Suture sleeves having exterior surface tear resistance
US9486622B2 (en) 2012-11-08 2016-11-08 Cardiac Pacemakers, Inc. Fixation and strain relief element for temporary therapy delivery device
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9687281B2 (en) 2012-12-20 2017-06-27 Illuminoss Medical, Inc. Distal tip for bone fixation devices
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9492200B2 (en) 2013-04-16 2016-11-15 Arthrosurface Incorporated Suture system and method
US20150250602A1 (en) 2014-03-07 2015-09-10 Arthrosurface Incorporated Implant and anchor assembly
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
CN104352291A (en) * 2014-11-05 2015-02-18 上海大学 Surface micro-texture artificial knee joint meniscus
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030951A (en) * 1959-04-10 1962-04-24 Michael P Mandarino Methods and materials for orthopedic surgery
US3728742A (en) * 1971-06-18 1973-04-24 Howmedica Knee or elbow prosthesis
US3815599A (en) * 1973-03-02 1974-06-11 W Deyerle Femoral shaft surgical rasp for use in hip prosthesis surgery
US4081866A (en) * 1977-02-02 1978-04-04 Howmedica, Inc. Total anatomical knee prosthesis
US4203444A (en) * 1977-11-07 1980-05-20 Dyonics, Inc. Surgical instrument suitable for closed surgery such as of the knee
US4456745A (en) * 1982-05-24 1984-06-26 Ethyl Corporation Polyurethanes prepared from polycarbonates
US4463141A (en) * 1981-11-30 1984-07-31 E. I. Du Pont De Nemours And Company Polyether carbonate diols and polyurethanes prepared therefrom
US4477604A (en) * 1982-09-20 1984-10-16 Oechsle Iii Sixtus J Polyurethane compositions and their use as luting agents
US4647643A (en) * 1985-11-08 1987-03-03 Becton, Dickinson And Company Soft non-blocking polyurethanes
US4651736A (en) * 1986-02-01 1987-03-24 Bruce Sanders Methods for temporomandibular joint small incision surgery
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
US4743632A (en) * 1987-02-25 1988-05-10 Pfizer Hospital Products Group, Inc. Polyetherurethane urea polymers as space filling tissue adhesives
US4772287A (en) * 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
US4808691A (en) * 1987-05-21 1989-02-28 Bayer Aktiengesellschaft Polyether-polycarbonate diols and processes for their production and use
US4873308A (en) * 1988-09-30 1989-10-10 Medtronic, Inc. Biostable, segmented aliphatic polyurethanes and process therefor
US4880610A (en) * 1988-04-20 1989-11-14 Norian Corporation In situ calcium phosphate minerals--method and composition
US4969888A (en) * 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
US5007940A (en) * 1989-06-09 1991-04-16 American Medical Systems, Inc. Injectable polymeric bodies
US5067964A (en) * 1989-12-13 1991-11-26 Stryker Corporation Articular surface repair
US5082803A (en) * 1989-09-21 1992-01-21 Asahi Kogaku Kogyo Kabushiki Kaisha Process for producing bone prosthesis
US5109077A (en) * 1983-05-21 1992-04-28 Azko Nv Biocompatible polyurethane
US5143942A (en) * 1991-10-28 1992-09-01 Ethyl Corporation Polyurethanes
US5166115A (en) * 1991-10-28 1992-11-24 Brown William R Polyurethanes
US5254662A (en) * 1990-09-12 1993-10-19 Polymedia Industries, Inc. Biostable polyurethane products
US5278201A (en) * 1988-10-03 1994-01-11 Atrix Laboratories, Inc. Biodegradable in-situ forming implants and methods of producing the same
US5509934A (en) * 1992-02-28 1996-04-23 Osteonics Corp. Prosthetic knee tibial component constructed of synthetic polymeric material
US5525418A (en) * 1992-04-14 1996-06-11 Fuji Photo Film Co., Ltd. Magnetic recording medium having a magnetic layer containing ferromagnetic powder and a polyurethane resin obtained from a polyolefin polyol or a polybutadiene polyol
US5556429A (en) * 1994-05-06 1996-09-17 Advanced Bio Surfaces, Inc. Joint resurfacing system
US5624463A (en) * 1987-07-20 1997-04-29 Regen Biologics, Inc. Prosthetic articular cartilage
US5725531A (en) * 1995-12-27 1998-03-10 Shapiro; Jules S. Reaming device
US5888220A (en) * 1994-05-06 1999-03-30 Advanced Bio Surfaces, Inc. Articulating joint repair
US5944759A (en) * 1996-09-12 1999-08-31 Waldemar Link (Gmbh & Co) Joint endoprosthesis
US6048345A (en) * 1999-04-08 2000-04-11 Joseph J. Berke Motorized reciprocating surgical file apparatus and method
US6079868A (en) * 1997-12-18 2000-06-27 Advanced Bio Surfaces, Inc. Static mixer
US6140452A (en) * 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
US6206927B1 (en) * 1999-04-02 2001-03-27 Barry M. Fell Surgically implantable knee prothesis
US6224630B1 (en) * 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US6248131B1 (en) * 1994-05-06 2001-06-19 Advanced Bio Surfaces, Inc. Articulating joint repair
US20010037114A1 (en) * 1999-09-24 2001-11-01 Dinger Fred B. Osteotome and handpiece adapter assembly and powered surgical handpiece assembly including an osteotome
US20030055500A1 (en) * 1999-05-10 2003-03-20 Fell Barry M. Surgically implantable knee prosthesis having two-piece keyed components
US20030055501A1 (en) * 1999-05-10 2003-03-20 Fell Barry M. Surgically implantable knee prosthesis having different tibial and femoral surface profiles
US20030060885A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having enlarged femoral surface
US20030060884A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having keels
US20030060882A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having medially shifted tibial surface
US20030060883A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having attachment apertures
US20030060888A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Proportioned surgically implantable knee prosthesis
US6558421B1 (en) * 2000-09-19 2003-05-06 Barry M. Fell Surgically implantable knee prosthesis
US20040006393A1 (en) * 2002-07-03 2004-01-08 Brian Burkinshaw Implantable prosthetic knee for lateral compartment

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA992255A (en) * 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
US3848601A (en) * 1972-06-14 1974-11-19 G Ma Method for interbody fusion of the spine
CA1146301A (en) * 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
US4502161B1 (en) 1981-09-21 1989-07-25
US4476293A (en) * 1981-11-30 1984-10-09 E. I. Du Pont De Nemours And Company Polymeric carbonate diols of copolyether glycols and polyurethanes prepared therefrom
DE3433264C2 (en) 1984-09-11 1986-10-02 S + G Implants Gmbh, 2400 Luebeck, De
US4743256A (en) * 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5860973A (en) * 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
CA1333209C (en) * 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
FR2639823B1 (en) 1988-12-06 1994-12-23 Garcia Alain
US4872452A (en) 1989-01-09 1989-10-10 Minnesota Mining And Manufacturing Company Bone rasp
US5263987A (en) * 1989-08-25 1993-11-23 Shah Mrugesh K Method and apparatus for arthroscopically replacing a bone joint
DE8912648U1 (en) * 1989-10-23 1990-11-22 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5047055A (en) * 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
JP3007903B2 (en) * 1991-03-29 2000-02-14 京セラ株式会社 Artificial disc
NL9101159A (en) 1991-07-03 1993-02-01 Industrial Res Bv Shape-retaining to make expandable ring, cylinder or sleeve.
US5329846A (en) * 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
US5344459A (en) 1991-12-03 1994-09-06 Swartz Stephen J Arthroscopically implantable prosthesis
US5344458A (en) * 1992-08-06 1994-09-06 Bonutti Peter M Arthroplasty component
EP0621020A1 (en) 1993-04-21 1994-10-26 SULZER Medizinaltechnik AG Intervertebral prosthesis and method of implanting such a prosthesis
FR2709949B1 (en) * 1993-09-14 1995-10-13 Commissariat Energie Atomique An intervertebral disk prosthesis.
US5397364A (en) * 1993-10-12 1995-03-14 Danek Medical, Inc. Anterior interbody fusion device
DE4339895C1 (en) * 1993-11-23 1995-03-23 Plus Endoprothetik Ag System for designing a knee-joint endoprosthesis
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US6187048B1 (en) 1994-05-24 2001-02-13 Surgical Dynamics, Inc. Intervertebral disc implant
US5824093A (en) * 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
US5562736A (en) * 1994-10-17 1996-10-08 Raymedica, Inc. Method for surgical implantation of a prosthetic spinal disc nucleus
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
WO1997015246A1 (en) * 1995-10-20 1997-05-01 Synthes Ag Chur Intervertebral implant with cage and rotating element
CA2229822C (en) * 1995-10-20 2004-03-09 Synthes (U.S.A.) Inter-vertebral implant
ES2184017T3 (en) * 1996-08-24 2003-04-01 Cerasiv Gmbh Joint prosthesis.
DE69728424T2 (en) * 1996-10-23 2005-02-17 SDGI Holdings, Inc., Wilmington Spacer for invertebrates
WO1998020939A3 (en) 1996-11-15 1998-09-03 Advanced Bio Surfaces Inc Biomaterial system for in situ tissue repair
US6033438A (en) * 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US5855167A (en) * 1997-07-21 1999-01-05 Hay & Forage Industries End of round bale twine guide
US6511509B1 (en) * 1997-10-20 2003-01-28 Lifenet Textured bone allograft, method of making and using same
US6143033A (en) * 1998-01-30 2000-11-07 Synthes (Usa) Allogenic intervertebral implant
US6224631B1 (en) * 1998-03-20 2001-05-01 Sulzer Spine-Tech Inc. Intervertebral implant with reduced contact area and method
US6241769B1 (en) * 1998-05-06 2001-06-05 Cortek, Inc. Implant for spinal fusion
DE19823325C1 (en) * 1998-05-26 2000-03-23 Werner Scholz Prosthetic system for knee joint
US6251140B1 (en) * 1998-05-27 2001-06-26 Nuvasive, Inc. Interlocking spinal inserts
EP1100417B1 (en) * 1998-08-03 2004-04-07 SYNTHES AG Chur Intervertebral allograft spacer
WO2000007528A1 (en) * 1998-08-06 2000-02-17 Sdgi Holdings, Inc. Composited intervertebral bone spacers
US6159211A (en) 1998-10-22 2000-12-12 Depuy Acromed, Inc. Stackable cage system for corpectomy/vertebrectomy
US6174311B1 (en) * 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6183517B1 (en) * 1998-12-16 2001-02-06 Loubert Suddaby Expandable intervertebral fusion implant and applicator
US6206923B1 (en) * 1999-01-08 2001-03-27 Sdgi Holdings, Inc. Flexible implant using partially demineralized bone
US6146422A (en) 1999-01-25 2000-11-14 Lawson; Kevin Jon Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method
US6245108B1 (en) * 1999-02-25 2001-06-12 Spineco Spinal fusion implant
US6113638A (en) * 1999-02-26 2000-09-05 Williams; Lytton A. Method and apparatus for intervertebral implant anchorage
US7491235B2 (en) 1999-05-10 2009-02-17 Fell Barry M Surgically implantable knee prosthesis
US20050033424A1 (en) 1999-05-10 2005-02-10 Fell Barry M. Surgically implantable knee prosthesis
US7297161B2 (en) 1999-05-10 2007-11-20 Fell Barry M Surgically implantable knee prosthesis
WO2000059411A1 (en) * 1999-04-02 2000-10-12 Fell Barry M Surgically implantable knee prosthesis
US6110210A (en) * 1999-04-08 2000-08-29 Raymedica, Inc. Prosthetic spinal disc nucleus having selectively coupled bodies
US6387130B1 (en) * 1999-04-16 2002-05-14 Nuvasive, Inc. Segmented linked intervertebral implant systems
US6764514B1 (en) * 1999-04-26 2004-07-20 Sdgi Holdings, Inc. Prosthetic apparatus and method
WO2001001895A1 (en) 1999-07-02 2001-01-11 Petrus Besselink Reinforced expandable cage
US6371990B1 (en) * 1999-10-08 2002-04-16 Bret A. Ferree Annulus fibrosis augmentation methods and apparatus
US6264695B1 (en) * 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US7291171B2 (en) * 2002-05-10 2007-11-06 Ferree Bret A Artificial disc replacement (ADR) using elastic tether member
US6419704B1 (en) * 1999-10-08 2002-07-16 Bret Ferree Artificial intervertebral disc replacement methods and apparatus
US6342075B1 (en) * 2000-02-18 2002-01-29 Macarthur A. Creig Prosthesis and methods for total knee arthroplasty
US6740093B2 (en) * 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
EP3000416A3 (en) 2000-03-10 2016-08-17 Smith & Nephew, Inc. Apparatus for use in arthroplasty on a knee joint
US6482234B1 (en) * 2000-04-26 2002-11-19 Pearl Technology Holdings, Llc Prosthetic spinal disc
DE60139262D1 (en) 2000-08-28 2009-08-27 Disc Dynamics Inc System for recovery of joint surfaces of mammals
US6620196B1 (en) * 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US20020026244A1 (en) * 2000-08-30 2002-02-28 Trieu Hai H. Intervertebral disc nucleus implants and methods
US20050154463A1 (en) * 2000-08-30 2005-07-14 Trieu Hal H. Spinal nucleus replacement implants and methods
US6468311B2 (en) 2001-01-22 2002-10-22 Sdgi Holdings, Inc. Modular interbody fusion implant
US6595998B2 (en) * 2001-03-08 2003-07-22 Spinewave, Inc. Tissue distraction device
DE10152567A1 (en) 2001-10-24 2003-05-08 Tutogen Medical Gmbh implant
US6855167B2 (en) 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US20030171812A1 (en) * 2001-12-31 2003-09-11 Ilan Grunberg Minimally invasive modular support implant device and method
US6726720B2 (en) * 2002-03-27 2004-04-27 Depuy Spine, Inc. Modular disc prosthesis
US20060106462A1 (en) * 2002-04-16 2006-05-18 Tsou Paul M Implant material for minimally invasive spinal interbody fusion surgery
US20040010318A1 (en) * 2002-05-15 2004-01-15 Ferree Bret A. Conformable endplates for artificial disc replacement (ADR) devices and other applications
US6817284B2 (en) 2002-06-14 2004-11-16 Lyco Manufacturing, Inc. Food processing apparatus, transport mechanism, bucket and method
US20040054413A1 (en) * 2002-09-16 2004-03-18 Howmedica Osteonics Corp. Radiovisible hydrogel intervertebral disc nucleus
US7824444B2 (en) * 2003-03-20 2010-11-02 Spineco, Inc. Expandable spherical spinal implant
WO2004098466A3 (en) * 2003-05-02 2005-03-31 Neville Alleyne Artificial spinal disk
US20040220672A1 (en) 2003-05-03 2004-11-04 Shadduck John H. Orthopedic implants, methods of use and methods of fabrication
US6997929B2 (en) 2003-05-16 2006-02-14 Spine Wave, Inc. Tissue distraction device
US7008452B2 (en) * 2003-06-26 2006-03-07 Depuy Acromed, Inc. Dual durometer elastomer artificial disc
US20050015150A1 (en) * 2003-07-17 2005-01-20 Lee Casey K. Intervertebral disk and nucleus prosthesis
US7901459B2 (en) * 2004-01-09 2011-03-08 Warsaw Orthopedic, Inc. Split spinal device and method
US20060247778A1 (en) 2005-01-26 2006-11-02 Ferree Bret A Intradiscal devices including spacers facilitating posterior-lateral and other insertion approaches
US7250060B2 (en) 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system
US7910124B2 (en) 2004-02-06 2011-03-22 Georgia Tech Research Corporation Load bearing biocompatible device
WO2006034436A3 (en) * 2004-09-21 2006-10-19 Stout Medical Group Lp Expandable support device and method of use
US8048083B2 (en) 2004-11-05 2011-11-01 Dfine, Inc. Bone treatment systems and methods
CA2629407A1 (en) * 2004-11-15 2006-05-18 Medtronic Spine Llc Assembled prosthesis such as a disc
WO2006066228A3 (en) * 2004-12-16 2006-08-24 Dennis Colleran Expandable implants for spinal disc replacement
CN101188986A (en) * 2005-01-19 2008-05-28 耐可真脊柱有限公司 Elastomeric intervertebral disc prosthesis
US8034109B2 (en) * 2005-02-24 2011-10-11 Morphogeny, Llc Linked slideable and interlockable rotatable components
US7591853B2 (en) * 2005-03-09 2009-09-22 Vertebral Technologies, Inc. Rail-based modular disc nucleus prosthesis
US9737414B2 (en) * 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices

Patent Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030951A (en) * 1959-04-10 1962-04-24 Michael P Mandarino Methods and materials for orthopedic surgery
US3728742A (en) * 1971-06-18 1973-04-24 Howmedica Knee or elbow prosthesis
US3815599A (en) * 1973-03-02 1974-06-11 W Deyerle Femoral shaft surgical rasp for use in hip prosthesis surgery
US4081866A (en) * 1977-02-02 1978-04-04 Howmedica, Inc. Total anatomical knee prosthesis
US4203444A (en) * 1977-11-07 1980-05-20 Dyonics, Inc. Surgical instrument suitable for closed surgery such as of the knee
US4203444B1 (en) * 1977-11-07 1987-07-21
US4463141A (en) * 1981-11-30 1984-07-31 E. I. Du Pont De Nemours And Company Polyether carbonate diols and polyurethanes prepared therefrom
US4456745A (en) * 1982-05-24 1984-06-26 Ethyl Corporation Polyurethanes prepared from polycarbonates
US4477604A (en) * 1982-09-20 1984-10-16 Oechsle Iii Sixtus J Polyurethane compositions and their use as luting agents
US5109077A (en) * 1983-05-21 1992-04-28 Azko Nv Biocompatible polyurethane
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
US4647643A (en) * 1985-11-08 1987-03-03 Becton, Dickinson And Company Soft non-blocking polyurethanes
US4651736A (en) * 1986-02-01 1987-03-24 Bruce Sanders Methods for temporomandibular joint small incision surgery
US4743632A (en) * 1987-02-25 1988-05-10 Pfizer Hospital Products Group, Inc. Polyetherurethane urea polymers as space filling tissue adhesives
US4808691A (en) * 1987-05-21 1989-02-28 Bayer Aktiengesellschaft Polyether-polycarbonate diols and processes for their production and use
US5624463A (en) * 1987-07-20 1997-04-29 Regen Biologics, Inc. Prosthetic articular cartilage
US4772287A (en) * 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
US4880610A (en) * 1988-04-20 1989-11-14 Norian Corporation In situ calcium phosphate minerals--method and composition
US4873308A (en) * 1988-09-30 1989-10-10 Medtronic, Inc. Biostable, segmented aliphatic polyurethanes and process therefor
US5278201A (en) * 1988-10-03 1994-01-11 Atrix Laboratories, Inc. Biodegradable in-situ forming implants and methods of producing the same
US5108404A (en) * 1989-02-09 1992-04-28 Arie Scholten Surgical protocol for fixation of bone using inflatable device
US4969888A (en) * 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
US5007940A (en) * 1989-06-09 1991-04-16 American Medical Systems, Inc. Injectable polymeric bodies
US5082803A (en) * 1989-09-21 1992-01-21 Asahi Kogaku Kogyo Kabushiki Kaisha Process for producing bone prosthesis
US5067964A (en) * 1989-12-13 1991-11-26 Stryker Corporation Articular surface repair
US5254662A (en) * 1990-09-12 1993-10-19 Polymedia Industries, Inc. Biostable polyurethane products
US5143942A (en) * 1991-10-28 1992-09-01 Ethyl Corporation Polyurethanes
US5166115A (en) * 1991-10-28 1992-11-24 Brown William R Polyurethanes
US5509934A (en) * 1992-02-28 1996-04-23 Osteonics Corp. Prosthetic knee tibial component constructed of synthetic polymeric material
US5525418A (en) * 1992-04-14 1996-06-11 Fuji Photo Film Co., Ltd. Magnetic recording medium having a magnetic layer containing ferromagnetic powder and a polyurethane resin obtained from a polyolefin polyol or a polybutadiene polyol
US6140452A (en) * 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
US5556429A (en) * 1994-05-06 1996-09-17 Advanced Bio Surfaces, Inc. Joint resurfacing system
US5795353A (en) * 1994-05-06 1998-08-18 Advanced Bio Surfaces, Inc. Joint resurfacing system
US5888220A (en) * 1994-05-06 1999-03-30 Advanced Bio Surfaces, Inc. Articulating joint repair
US6248131B1 (en) * 1994-05-06 2001-06-19 Advanced Bio Surfaces, Inc. Articulating joint repair
US5725531A (en) * 1995-12-27 1998-03-10 Shapiro; Jules S. Reaming device
US5944759A (en) * 1996-09-12 1999-08-31 Waldemar Link (Gmbh & Co) Joint endoprosthesis
US6079868A (en) * 1997-12-18 2000-06-27 Advanced Bio Surfaces, Inc. Static mixer
US6224630B1 (en) * 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US6206927B1 (en) * 1999-04-02 2001-03-27 Barry M. Fell Surgically implantable knee prothesis
US6048345A (en) * 1999-04-08 2000-04-11 Joseph J. Berke Motorized reciprocating surgical file apparatus and method
US20030060885A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having enlarged femoral surface
US20030055500A1 (en) * 1999-05-10 2003-03-20 Fell Barry M. Surgically implantable knee prosthesis having two-piece keyed components
US20030055501A1 (en) * 1999-05-10 2003-03-20 Fell Barry M. Surgically implantable knee prosthesis having different tibial and femoral surface profiles
US20030060888A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Proportioned surgically implantable knee prosthesis
US20030060884A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having keels
US20030060882A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having medially shifted tibial surface
US20030060883A1 (en) * 1999-05-10 2003-03-27 Fell Barry M. Surgically implantable knee prosthesis having attachment apertures
US20010037114A1 (en) * 1999-09-24 2001-11-01 Dinger Fred B. Osteotome and handpiece adapter assembly and powered surgical handpiece assembly including an osteotome
US6558421B1 (en) * 2000-09-19 2003-05-06 Barry M. Fell Surgically implantable knee prosthesis
US20040006393A1 (en) * 2002-07-03 2004-01-08 Brian Burkinshaw Implantable prosthetic knee for lateral compartment

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020788B2 (en) 1997-01-08 2015-04-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
USRE43282E1 (en) 1998-09-14 2012-03-27 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US9286686B2 (en) 1998-09-14 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and assessing cartilage loss
US8862202B2 (en) 1998-09-14 2014-10-14 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US8036729B2 (en) 1998-09-14 2011-10-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US7881768B2 (en) 1998-09-14 2011-02-01 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8112142B2 (en) 1998-09-14 2012-02-07 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8369926B2 (en) 1998-09-14 2013-02-05 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8306601B2 (en) 1998-09-14 2012-11-06 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US8265730B2 (en) 1998-09-14 2012-09-11 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US7837736B2 (en) 2000-01-14 2010-11-23 Marctec, Llc Minimally invasive surgical systems and methods
US8133229B1 (en) 2000-01-14 2012-03-13 Marctec, Llc. Knee arthroplasty method
US9101443B2 (en) 2000-01-14 2015-08-11 Bonutti Skeletal Innovations Llc Methods for robotic arthroplasty
US7828852B2 (en) 2000-01-14 2010-11-09 Marctec, Llc. Inlaid articular implant
US8425522B2 (en) 2000-01-14 2013-04-23 Bonutti Skeletal Innovations Llc Joint replacement method
US7806896B1 (en) 2000-01-14 2010-10-05 Marctec, Llc Knee arthroplasty method
US8632552B2 (en) 2000-01-14 2014-01-21 Bonutti Skeletal Innovations Llc Method of preparing a femur and tibia in knee arthroplasty
US9192459B2 (en) 2000-01-14 2015-11-24 Bonutti Skeletal Innovations Llc Method of performing total knee arthroplasty
US7708740B1 (en) 2000-01-14 2010-05-04 Marctec, Llc Method for total knee arthroplasty and resecting bone in situ
US8784495B2 (en) 2000-01-14 2014-07-22 Bonutti Skeletal Innovations Llc Segmental knee arthroplasty
US7959635B1 (en) 2000-01-14 2011-06-14 Marctec, Llc. Limited incision total joint replacement methods
US7749229B1 (en) 2000-01-14 2010-07-06 Marctec, Llc Total knee arthroplasty through shortened incision
US7931690B1 (en) 2000-01-14 2011-04-26 Marctec, Llc Method of resurfacing an articular surface of a bone
US7806897B1 (en) 2000-01-14 2010-10-05 Marctec, Llc Knee arthroplasty and preservation of the quadriceps mechanism
US9795394B2 (en) 2000-01-14 2017-10-24 Bonutti Skeletal Innovations Llc Method for placing implant using robotic system
US7892236B1 (en) 2000-01-14 2011-02-22 Marctec, Llc System and method for total joint replacement
US7914582B2 (en) 2000-08-28 2011-03-29 Vertebral Technologies, Inc. Method and system for mammalian joint resurfacing
US8100979B2 (en) 2000-08-28 2012-01-24 Vertebral Technologies, Inc. Method and system for mammalian joint resurfacing
US20080234820A1 (en) * 2000-08-28 2008-09-25 Felt Jeffrey C Method and system for mammalian joint resurfacing
US9333085B2 (en) 2001-05-25 2016-05-10 Conformis, Inc. Patient selectable knee arthroplasty devices
US9216025B2 (en) 2001-05-25 2015-12-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20110029093A1 (en) * 2001-05-25 2011-02-03 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US8998915B2 (en) 2001-05-25 2015-04-07 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8926706B2 (en) 2001-05-25 2015-01-06 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8945230B2 (en) 2001-05-25 2015-02-03 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US7717956B2 (en) 2001-05-25 2010-05-18 Conformis, Inc. Joint arthroplasty devices formed in situ
US20090222103A1 (en) * 2001-05-25 2009-09-03 Conformis, Inc. Articular Implants Providing Lower Adjacent Cartilage Wear
US7981158B2 (en) 2001-05-25 2011-07-19 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9295482B2 (en) 2001-05-25 2016-03-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9186254B2 (en) 2001-05-25 2015-11-17 Conformis, Inc. Patient selectable knee arthroplasty devices
US8062302B2 (en) 2001-05-25 2011-11-22 Conformis, Inc. Surgical tools for arthroplasty
US8066708B2 (en) 2001-05-25 2011-11-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8906107B2 (en) 2001-05-25 2014-12-09 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US9125672B2 (en) 2001-05-25 2015-09-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US9308091B2 (en) 2001-05-25 2016-04-12 Conformis, Inc. Devices and methods for treatment of facet and other joints
US8105330B2 (en) 2001-05-25 2012-01-31 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9358018B2 (en) 2001-05-25 2016-06-07 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8122582B2 (en) 2001-05-25 2012-02-28 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US9186161B2 (en) 2001-05-25 2015-11-17 Conformis, Inc. Surgical tools for arthroplasty
US9387079B2 (en) 2001-05-25 2016-07-12 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US9125673B2 (en) 2001-05-25 2015-09-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8234097B2 (en) 2001-05-25 2012-07-31 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US9439767B2 (en) 2001-05-25 2016-09-13 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US9107679B2 (en) 2001-05-25 2015-08-18 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20070233269A1 (en) * 2001-05-25 2007-10-04 Conformis, Inc. Interpositional Joint Implant
US9107680B2 (en) 2001-05-25 2015-08-18 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9055953B2 (en) 2001-05-25 2015-06-16 Conformis, Inc. Methods and compositions for articular repair
US8337507B2 (en) 2001-05-25 2012-12-25 Conformis, Inc. Methods and compositions for articular repair
US8343218B2 (en) 2001-05-25 2013-01-01 Conformis, Inc. Methods and compositions for articular repair
US8366771B2 (en) 2001-05-25 2013-02-05 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US9495483B2 (en) 2001-05-25 2016-11-15 Conformis, Inc. Automated Systems for manufacturing patient-specific orthopedic implants and instrumentation
US8377129B2 (en) 2001-05-25 2013-02-19 Conformis, Inc. Joint arthroplasty devices and surgical tools
US9579110B2 (en) 2001-05-25 2017-02-28 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8460304B2 (en) 2001-05-25 2013-06-11 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US9084617B2 (en) 2001-05-25 2015-07-21 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8529630B2 (en) 2001-05-25 2013-09-10 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US8551103B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8551102B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8551099B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Surgical tools for arthroplasty
US8551169B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8556906B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8556907B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8562611B2 (en) 2001-05-25 2013-10-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8561278B2 (en) 2001-05-25 2013-10-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8562618B2 (en) 2001-05-25 2013-10-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8568480B2 (en) 2001-05-25 2013-10-29 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8568479B2 (en) 2001-05-25 2013-10-29 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8585708B2 (en) 2001-05-25 2013-11-19 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8617172B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US9072531B2 (en) 2001-05-25 2015-07-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9700971B2 (en) 2001-05-25 2017-07-11 Conformis, Inc. Implant device and method for manufacture
US8951260B2 (en) 2001-05-25 2015-02-10 Conformis, Inc. Surgical cutting guide
US8951259B2 (en) 2001-05-25 2015-02-10 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9023050B2 (en) 2001-05-25 2015-05-05 Conformis, Inc. Surgical tools for arthroplasty
US8641716B2 (en) 2001-05-25 2014-02-04 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8657827B2 (en) 2001-05-25 2014-02-25 Conformis, Inc. Surgical tools for arthroplasty
US9066728B2 (en) 2001-05-25 2015-06-30 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8690945B2 (en) 2001-05-25 2014-04-08 Conformis, Inc. Patient selectable knee arthroplasty devices
US9775680B2 (en) 2001-05-25 2017-10-03 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8337501B2 (en) 2001-05-25 2012-12-25 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8768028B2 (en) 2001-05-25 2014-07-01 Conformis, Inc. Methods and compositions for articular repair
US8974539B2 (en) 2001-05-25 2015-03-10 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US7708741B1 (en) 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
US8641726B2 (en) 2001-08-28 2014-02-04 Bonutti Skeletal Innovations Llc Method for robotic arthroplasty using navigation
US8834490B2 (en) 2001-08-28 2014-09-16 Bonutti Skeletal Innovations Llc Method for robotic arthroplasty using navigation
US8840629B2 (en) 2001-08-28 2014-09-23 Bonutti Skeletal Innovations Llc Robotic arthroplasty system including navigation
US9763683B2 (en) 2001-08-28 2017-09-19 Bonutti Skeletal Innovations Llc Method for performing surgical procedures using optical cutting guides
US8858557B2 (en) 2001-08-28 2014-10-14 Bonutti Skeletal Innovations Llc Method of preparing a femur and tibia in knee arthroplasty
US8623030B2 (en) 2001-08-28 2014-01-07 Bonutti Skeletal Innovations Llc Robotic arthroplasty system including navigation
US9060797B2 (en) 2001-08-28 2015-06-23 Bonutti Skeletal Innovations Llc Method of preparing a femur and tibia in knee arthroplasty
US20040006393A1 (en) * 2002-07-03 2004-01-08 Brian Burkinshaw Implantable prosthetic knee for lateral compartment
US8709089B2 (en) 2002-10-07 2014-04-29 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US7799077B2 (en) 2002-10-07 2010-09-21 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US8932363B2 (en) 2002-11-07 2015-01-13 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US8634617B2 (en) 2002-11-07 2014-01-21 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US8965088B2 (en) 2002-11-07 2015-02-24 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US8077950B2 (en) 2002-11-07 2011-12-13 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US7796791B2 (en) 2002-11-07 2010-09-14 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
EP1575460A2 (en) * 2002-11-27 2005-09-21 Conformis, Inc. Patient selectable total and partial joint arthroplasty devices and surgical tools
US20070067032A1 (en) * 2003-06-27 2007-03-22 Felt Jeffrey C Meniscus preserving implant method and apparatus
WO2005016175A2 (en) * 2003-06-27 2005-02-24 Advanced Bio Surfaces, Inc. Meniscus preserving implant method and apparatus
EP1686932A4 (en) * 2003-06-27 2007-12-26 Advanced Bio Surfaces Inc System and method for ankle arthroplasty
WO2005016175A3 (en) * 2003-06-27 2005-05-12 Advanced Bio Surfaces Inc Meniscus preserving implant method and apparatus
EP1686932A2 (en) * 2003-06-27 2006-08-09 Advanced Bio Surfaces, Inc. System and method for ankle arthroplasty
US9204971B2 (en) 2003-06-27 2015-12-08 Memometal Technologies System and method for ankle arthroplasty
US9241724B2 (en) 2003-11-25 2016-01-26 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9314256B2 (en) 2003-11-25 2016-04-19 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9308005B2 (en) 2003-11-25 2016-04-12 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9295481B2 (en) 2003-11-25 2016-03-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9408615B2 (en) 2003-11-25 2016-08-09 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9241725B2 (en) 2003-11-25 2016-01-26 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9113921B2 (en) 2003-11-25 2015-08-25 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9375222B2 (en) 2003-11-25 2016-06-28 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9381025B2 (en) 2003-11-25 2016-07-05 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20060069446A1 (en) * 2004-09-21 2006-03-30 Ragusa Mathieu A J Articular interposition implant
US8100977B2 (en) 2005-03-09 2012-01-24 Vertebral Technologies, Inc. Interlocked modular disc nucleus prosthesis
US8038718B2 (en) 2005-03-09 2011-10-18 Vertebral Technologies, Inc. Multi-composite disc prosthesis
US20060241758A1 (en) * 2005-04-20 2006-10-26 Sdgi Holdings, Inc. Facet spacers
US20080221700A1 (en) * 2005-08-31 2008-09-11 Zimmer, Gmbh Implant
US7799087B2 (en) 2005-08-31 2010-09-21 Zimmer Gmbh Implant
US20100312353A1 (en) * 2005-08-31 2010-12-09 Zimmer, Gmbh Implant
US8394149B2 (en) 2005-08-31 2013-03-12 Zimmer, Gmbh Method for implantation of a femoral implant
US8308807B2 (en) 2005-11-09 2012-11-13 Zimmer, Gmbh Implant with differential anchoring
US9220517B2 (en) 2006-02-06 2015-12-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9308053B2 (en) 2006-02-06 2016-04-12 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
US8500740B2 (en) 2006-02-06 2013-08-06 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
US9220516B2 (en) 2006-02-06 2015-12-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9326780B2 (en) 2006-02-06 2016-05-03 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
US20090048679A1 (en) * 2006-02-09 2009-02-19 Zimmer Gmbh Implant
US20070233268A1 (en) * 2006-03-31 2007-10-04 Depuy Products, Inc. Interpositional knee arthroplasty
US20090187252A1 (en) * 2006-04-28 2009-07-23 Zimmer Gmbh Implant
US8632601B2 (en) 2006-04-28 2014-01-21 Zimmer, Gmbh Implant
US20080097606A1 (en) * 2006-10-19 2008-04-24 Cragg Andrew H Knee joint prosthesis and hyaluronate compositions for treatment of osteoarthritis
US20110172768A1 (en) * 2006-10-19 2011-07-14 Cragg Andrew H Knee joint prosthesis and hyaluronate compositions for treatment of osteoarthritis
US8287594B2 (en) 2006-10-19 2012-10-16 Intersect Partners, Llc Knee joint prosthesis and hyaluronate compositions for treatment of osteoarthritis
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US20090036995A1 (en) * 2007-07-31 2009-02-05 Zimmer, Inc. Joint space interpositional prosthetic device with internal bearing surfaces
US8979935B2 (en) 2007-07-31 2015-03-17 Zimmer, Inc. Joint space interpositional prosthetic device with internal bearing surfaces
US9180015B2 (en) 2008-03-05 2015-11-10 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US9700420B2 (en) 2008-03-05 2017-07-11 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US9675365B2 (en) 2009-02-24 2017-06-13 Microport Orthopedics Holdings Inc. System and method for anterior approach for installing tibial stem
US9320620B2 (en) 2009-02-24 2016-04-26 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8808303B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
US9089342B2 (en) 2009-02-24 2015-07-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US9566075B2 (en) 2009-02-24 2017-02-14 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US9113914B2 (en) 2009-02-24 2015-08-25 Microport Orthopedics Holdings Inc. Method for forming a patient specific surgical guide mount
US9642632B2 (en) 2009-02-24 2017-05-09 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
US9649117B2 (en) 2009-02-24 2017-05-16 Microport Orthopedics Holdings, Inc. Orthopedic surgical guide
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US20120116523A1 (en) * 2009-07-10 2012-05-10 Milux Holding Sa Joint device and method
US9375315B2 (en) * 2009-07-10 2016-06-28 Peter Forsell Joint device and method
US9877790B2 (en) 2011-11-11 2018-01-30 Conformis, Inc. Tibial implant and systems with variable slope
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US9486226B2 (en) 2012-04-18 2016-11-08 Conformis, Inc. Tibial guides, tools, and techniques for resecting the tibial plateau
US9675471B2 (en) 2012-06-11 2017-06-13 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
US20160128811A1 (en) * 2013-05-27 2016-05-12 Vita Zahnfabrik H. Rauter Gmbh & Co. Kg Prosthetic preform for producing a dental prosthetic body
US9883870B2 (en) 2015-04-20 2018-02-06 Microport Orthopedics Holdings Inc. Method for forming a patient specific surgical guide mount

Also Published As

Publication number Publication date Type
WO2002017821A3 (en) 2002-11-21 application
US7320709B2 (en) 2008-01-22 grant
US20040107000A1 (en) 2004-06-03 application
DE60139262D1 (en) 2009-08-27 grant
EP1315470B1 (en) 2009-07-15 grant
US8100979B2 (en) 2012-01-24 grant
CA2420898A1 (en) 2002-03-07 application
JP2004521666A (en) 2004-07-22 application
US20020173852A1 (en) 2002-11-21 application
US20100145457A1 (en) 2010-06-10 application
US7914582B2 (en) 2011-03-29 grant
EP1315470A2 (en) 2003-06-04 application
WO2002017821A2 (en) 2002-03-07 application
US20080234820A1 (en) 2008-09-25 application
WO2002017821A9 (en) 2003-02-13 application
US6652587B2 (en) 2003-11-25 grant
US20020183850A1 (en) 2002-12-05 application

Similar Documents

Publication Publication Date Title
Ramakrishna et al. Biomedical applications of polymer-composite materials: a review
US6994730B2 (en) Meniscal and tibial implants
US7491235B2 (en) Surgically implantable knee prosthesis
US7503936B2 (en) Methods for forming and retaining intervertebral disc implants
US6620196B1 (en) Intervertebral disc nucleus implants and methods
US20050070913A1 (en) Devices and methods for spine repair
US20090204220A1 (en) Intervertebral Disc Nucleus Implants and Methods
US7291169B2 (en) Cartilage implant
US20050171604A1 (en) Unicondylar knee implant
US6187048B1 (en) Intervertebral disc implant
US7244273B2 (en) Prosthetic device
US7618461B2 (en) Composite intervertebral disc implants and methods for forming the same
US20060089719A1 (en) In situ formation of intervertebral disc implants
US20060085080A1 (en) Medical device comprising a bio-compatible polymeric product with a layered structure
US20090088846A1 (en) Hydrogel arthroplasty device
US20090182429A1 (en) Total joint Replacement
US6629997B2 (en) Meniscus-type implant with hydrogel surface reinforced by three-dimensional mesh
US7267690B2 (en) Interlocked modular disc nucleus prosthesis
US6632246B1 (en) Cartilage repair plug
US20050043816A1 (en) Reticulated elastomeric matrices, their manufacture and use in implantable devices
US20050154463A1 (en) Spinal nucleus replacement implants and methods
US7066960B1 (en) Intervertebral disk replacement
US20040230309A1 (en) In-situ formed intervertebral fusion device and method
US7572295B2 (en) Cushion bearing implants for load bearing applications
US20080109081A1 (en) Joint Arthroplasty Devices Having Articulating Members

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED BIO SURFACES, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FELT, JEFFREY C.;RYDELL, MARK A.;BUSCEMI, PAUL J.;AND OTHERS;REEL/FRAME:012899/0875

Effective date: 20020311