US3815599A - Femoral shaft surgical rasp for use in hip prosthesis surgery - Google Patents

Femoral shaft surgical rasp for use in hip prosthesis surgery Download PDF

Info

Publication number
US3815599A
US3815599A US33766573A US3815599A US 3815599 A US3815599 A US 3815599A US 33766573 A US33766573 A US 33766573A US 3815599 A US3815599 A US 3815599A
Authority
US
United States
Prior art keywords
rasp
portion
prosthesis
femur
shank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
W Deyerle
Original Assignee
W Deyerle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W Deyerle filed Critical W Deyerle
Priority to US33766573 priority Critical patent/US3815599A/en
Application granted granted Critical
Publication of US3815599A publication Critical patent/US3815599A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1664Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip
    • A61B17/1668Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip for the upper femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1659Surgical rasps, files, planes, or scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/12Straight saw blades; Strap saw blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3631Necks with an integral complete or partial peripheral collar or bearing shoulder at its base

Abstract

A femoral shaft surgical rasp for forming a canal in an amputated femur shaft for reception of the elongated shank of a femoral prosthesis head member in the femur in performing hip prosthesis surgery, wherein the rasp has a working portion configurated like the elongated shank of the deformal prosthesis component or member providing a generally wedge-shaped zone, and has the cutting promenances of the rasp along one longitudinal edge only, with the remaining three surfaces smooth. By this design, damage to the abductor muscles and/or soft tissue which are in the working path of reciprocative movement of the rasp when forming the canal is avoided, and the instrument cuts more efficiently because the smooth surface opposite the cutting edge exerts a forciful wedging action toward the bone surface confronting the cutting edge.

Description

United States atent [191 Deyerle I 1541 FEMORALIS I SURGICAL RASP non USE IN lflP PRosTnasrs SURGERY [76] Inventor: William Minor Deyerle, 2222 Monument Ave., Richmond, Va. 23220 Mar. 2, 1973 [22] Filed:

- 21 App]. No.: 337,665

Austenal Surgical Catalogue, page 72, Figs. 6839-5,

6828-5, copyright 1964.

Primary Examiner-Richard A. Gaudet Assistant Examiner-J. Yasko Attorney, Agent, or Firm-Mason, Fenwicke &

Lawrence 57 ABSTRACT A femoral shaft surgical rasp for forming a canal in an amputated femur shaft for reception of the elongated shank of a femoral prosthesis head member in the femur in performing hip prosthesis surgery, wherein the rasp has a working portion configurated like the elongated shank of the deformal prosthesis component or member providing a generally wedge-shaped zone, and has the cutting promenances of the rasp along one longitudinal edge only, with the remaining three surfaces smooth. By this design, damage to the abductor muscles and/or soft tissue which are in the working path of reciprocative movement of the rasp when forming the canal is avoided, and the instrument cuts more efficiently because the smooth surface opposite the cutting edge exerts a forciful wedging action toward the bone surface confronting the cutting edge. 10 Claims, 4 Drawing Figures 1 FEMOR'AL sum SURGICAL RASP FOR USE IN HIP'PROSTHESISSURGERY BACKGROUND AND OBJECTS OF THE INVENTION The present invention relates in general to femoral shaft surgical rasps for use in forming an elongated canal in the femoral shaft of the thigh bone after amputation'of a portion of the femur, into which a femoral or head prosthesis member is inserted and fixed in the course of performing total ans subtotal hip prosthesis surgery.

I-Ieretofore, total hip prosthesis surgery has been performed wherein a prosthesis cup is fitted in the acetabulum, and a femoral prosthesis member or head pros thesis member, forming the femoral component of the total prosthesis, which comprises a stem or shank portion and an artificial head, is fixed in the femur shaft to provide a prosthetic hip joint. The fixation of the shank portion of the prosthesis (the head member) in the shaft of the femur has been attempted by forming an appropriately shaped canal or seating recess in the femur shaft and cementing the shank in the femur shaft, or by forming the canal, inserting the prosthesis shank, and drilling and installing bolts transversely 4 through the femur shaft and the prosthesis shank. Considerable difficulties have been encountered in properly forming thecanal in the femur for receivingthe shank of the femoral portion or head prosthesis member in proper position in the femur shaft with rasps of conventional construction having the cutting prominences on all four surfaces of the rasp as in the case of the typical rasp used in the Harris total hip system- (the components of which are advertised and sold by Howmedica, Inc. of Rutherford, N.J.), because of the proximity of soft tissue, such as the abductor muscles, to the path of reciprocative movement of the cutting portion of the rasp. Many surgeons detach the abductors from the greater trochanter to be able to move the abductors away from the path of the rasp so as to avoid damaging them, but the detachment of the abductors adds an additional approximately six weeks to recuperation time.

Also, previous rasps have the cutting teeth on all four sides and therefore did not allow the surgeon to select the direction of maximum cutting. The direction of this cutting'can be critical in proper seating of the prosthe-- sis or trial hip, especially if there has been previous surgery. This is often the case; since many of these total hip prosthesis procedures are done as salvage procedures of old hips with many previous attempts at surgery.

An object of the present invention is the provision of a novel femoral shaft surgical rasp construction for use in performing total and subtotal hip prosthesis surgery, wherein the working portion of the rasp is in the shape of the shaft portion of the femoral prosthesis member, and has cutting prominences along one edge only of the working portion so as to present smooth surfaces in the other three directions to avoid traumatizing abductor muscles which are still attached to the femur and similar soft tissue and facilitate control of the cutting action.

Other objects, advantages and capabilities of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings illustrating apreferred embodiment of the invention.

, BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a perspective view of the femoral component of a total hip'prosthesis, to which the present invention relates;

FIG. 2 is a side elevation view of the femoral shaft surgical rasp of the present invention. having the cutting prominences along only the straight rear side of the rasp;

.FIG. 3 is an elevation viewthereof, viewed from the left hand side of FIG. 2; and

FIG. 4 is a side elevation view of another form of the femoral shaft surgical'rasp, having the. cutting prominences along only the concavely curved front side of the rasp.

DETAILEDIDESCRIPTION OF THE PREFERRED- EMBODIMENTS hip prosthesis by the lateral approach will first be generally reviewed. After the fascia has been opened and A the trochanter with its abductor muscles identified, ab-

the trochanter is carefully osteomotized to avoid any.

- fracture of the distal stock of the femur, which osteotomy maybe accomplished with a power saw. A piriformis is frequently attached near the osteotomy site and this is released, and the external r'otators which are usually attached partially to the released portion of the trochanter and partially to the distal femur, are individually released. The anterior capsule and the expansion of the orign of the rectus femorus are identified and removed with the cutting cautery. The lateral capsule is separated from the few fibers of the abductor muscles and it also is removed with the cutting cautery. The capsule is delineated carefully from the rectus femorus and the medial portion of the capsule is removed. The posterior capsule is then removed with the cutting cautery.

The head and neck of the femur are removed directly in a transcervical direction by amputation perpendicular to the middle portion of the neck with either a power saw, Gigley saw, or a sharp osteotome, taking care not to fracture the distal stock of the femur This initial amputation is not the site of the final seating of the femoral prosthesis .but tends to be on the high side just below the cartilage of the femoral head. Using the conventional template for the cup member of the total prosthesis, the position of the cup is checked to see how the cup will seat at a 30 angle. The conventional acetabular index template is used to determine the 30 angle, and the degree of reaming that will be necessary is determined at this point. Making every effort to protect the lateral quarter of inch cartilage in the acetabulum, the cartilages are removed with sharp dissection in the reaming portion of the acetabulum. After the cartilage has been removed, small reamers are used to gradually ream the recipient acetabulum to acceptthe cup.

The acetabular inde'x' template is'reinserted at inte'rvals to determine the'proper fit'for' the cup. A template is used to start the slots for-the phalanges on the cup. A sharp instrument is then used to deepen'these to appropriate depths. At least three screws for fixing the cup in the acetabulum are then inserted.

Previous orientation withsimple prostheses and cups have tended to err on the side of a loose fit. However, the exact opposite is true with the total hip prosthesis, as an extremely tight fit is essential. In order to obtain a tight fit, anestimate should be made of the amount of the neck of the femur to'be removed to obtain this fit. Then slightly less than the estimated amount should be removed in the initial amputation step previously described. This must be done with power instruments member to be used, and having three holes corresponding to the exact angle of the flange at the base'of the neck and head of the prosthesis. The headon the trial template is placed in the acetabulum with .the body portion of the template parallel to the femur shaft. An 35- sistant pulls down firmly on the shaft of the femur to give the maximum length for a very tight fit. Drills are inserted through these holes perpendicular to the neck to mark the final amputation site of the neck, and the final amputation is performed with a power saw or osteotome. This is approximately one finger breadth above the lesser trochanter. Prior to the final amputation it is important to identify the most inferior portion of the neckand calcar-femorali and mark it using the cutting cautery. This will usually be found to be slightly anterior to thelesser trochanter and should be marked down to at least as low as the lesser trochanter, regardfem'orali by attempting to use a rasp in those cases p where there is an increase of cortical type bone in the region of the trochanters. This is particularly tine in those patients who have had previous surgery, either osteotomi'es, bonegrafts, or other bony surgery in the region of the hip. An x-ray on the table before closure will avoid a misplacement'of any of the components.

The configuration of the femoral component or head member of the total hip prosthesis which is to be installed and fixed in the amputated femur shaft is illustrated in 'FIG. 1 of the accompanying drawings, and is indicated by the reference character 10. The femoral prosthesis member is substantiallyfiatand is of elo'nless of how much neck is removed, the proper line for the inferior edge of the prosthesis will always be visible. This marking may also be accomplished with the use of the burr on an air power instrument.

Prior to any of this surgery in the region of the abductors, a wet lap sheet is placed from the anterior portion of the wound through the posterior portion of the wound around the abductor muscles. This identifies and protects them throughout the procedure. It is well to have this duringthepreparation of the acetabular portion also as the wet lap sheet around the deltoid tends to hold moisture in these muscles which could otherwise become dry and have a lowered resistance.

The rasp of the present invention is then used to form the seating recess or canal in the amputated femur shaft. The outline of the insertion of the prosthesis shank is then marked,-in the proper plane, with a conventional osteotome or a box osteotome. The rasp, as will be later described, is one that cuts onlyon one side which leaves a smooth side of the rasp in contact with the abductor muscles. The rasp is advanced down the canal, using a curette if necessary to palpate the lining of the canal. The rasp is inserted at an increasing distance down the canal and then retracted and the canal fracturing either the greater trochanter or the calcartransverse holes 14a, 14b and 14c extending through the shank 12 near its upper end, which may be about one-quarter inch in diameter, to receive three bolts, for example 2 inch bolts of one-quarter inch diameter, designed to extend transversely through the femur shaft and accurately and precisely fix the prosthesis shank in the femur in a manner which effectively resists the torque on the prosthesis head and conveys the stress from theprosthesis member to the hard cortex without either rotary or piston like motion. The shank 12 of the gated tapering configuration having a straight inner edge 12a and a substantially concavely tapering outer edge 12b. j

The rasp to be employed in reaming or forming the canal in the'amputated'femur shaft for receiving the femoral prosthesis shank comprises an elongated rasp member indicated by the reference character 15 in FIG. 2. or FIG. 4 including an elongated handle 16 of gene-rally oval configuration having a butt end 17 and having an enlarged flange 18 at the opposite end thereof disposed at an angle of 45 to the longitudinal axis of the handle 16. Extending below the flange end ,18 of the handle 16 is the working portion or cutting In the FIG. 4 embodiment for example, the teeth 22 willcut on the calcar-femorali side only of the amputated femur shaft. The working portion 19 of the rasp '15 is progressively inserted at increasing distances down the canal to be formed in the amputated femur shaft and is then retracted, and the canal cleaned out, until the canal is formed to a sufficient depth to permit full seating of the femoral prosthesis shaft therein. Be-' cause the edge of the working portion of the rasp 15 opposite the toothed edge, as well as the lateral sides 23 and 24 thereof, are smooth, there are no teeth directly confronting the very important abductors which remain attached to the greater trochanter so that chewing up, damaging or traumatizing these abductors is avoided. Furthermore, the rasp cuts much more efficiently, because the smooth edge of the working portion 19 of the rasp, which extends in downwardly convergent relation with the toothed edge in the upper zone of portion 19, (for example declining'along a gensurfaces, since the operator does not have to overcome the resistance to cutting offered by the bone portions contacting the smooth edge. Efficiency is also improved because the bone surface against which the smooth edge works assists in forcing the teeth of the cutting edge into cuttingengagement with the bone surface portions engaged by the teeth. The two rasp configurations in FIGS. 2 and 4 facilitate reaming the,

opposite surfaces of the canal as needed by the surgeon.

After forming of the canal in the amputated femur shaft by use of the rasp 15, a jig and-femoral prosthesis memberor replica are positioned relative to the femur to guide drill, bits to form drill holes transversely in the femur for fixation bolts to fix the prosthesis in position. T he jig may be of the type disclosed in my co-pending U.S. Pat. application Ser. No. 338,669, entitled METHOD AND J IG FOR TOTAL HIP PROSTHESIS INSTALLATION, filed Mar. 7, 1973, which is used by inserting the replica of the femoral prosthesis shank in the canal, or, a jig of the type disclosed in my earlier U.S. Pat. application Ser. No. 183,418 filed Sept. 24, 1971, may be attached to the femoral prosthesis member, after which the shank of the femoral prosthesis member is inserted in the canal to substantiallythe proper position. In either case, holes are drilled transversely through the femur shaft by inserting the drill through the guide holes in the guide leg of the jig and through the holes in the replica of the femoral prosthesis shank or through theholes in the prosthesis shank to which the jig is attached, in the manner described in those earlier co-pending patentapplications. After the drill holes are formed, and the shank of the femoral prosthesis member is tapped into place and the holes in the prosthesis shank accurately lined up with the holes drilled inthe femor shaft, bolts, such as one-fourth inch diameter bolts approximately 2 inches along or 1 inch long having hexagonal heads, are driven into the proximal cortex and into the deep cortex to fix the femoral prosthesis member. After the femoral prosthesis component has been fixed in the femur, and assuming the prosthesis cup has been fixed in place in the acetabulum, strong traction is applied and, with the aid of a nylon end concave prosthesis inserter, the head of the femoral prosthesis is pushed into the prosthesis cup, tests are conducted to see that the leg has a proper range of movement, and the wound is closed.

The hereinabove described rasp facilitates the formation of an appropriately sized and configurated channel corresponding substantially in cross-section and in profile to the stem or shank portion 12 of the femoral prosthesis member in a most efficient manner, providing an accurate fit of the femoral prosthesis member shank 12 in the thus formed canal in the femor shaft. The

femoralprosthesis member can then be accurately and rigidly fixed in the femor shaft, for example by the method disclosed in my earlier U.S. Pat. application Ser. No. 183,418, filed Sept. 24, 1971 or in my later US. Pat. application Ser. No. 338,669, entitled METHOD AND 116 FOR TOTAL HIP PROSTI-IESIS INSTALLATION, with bolts being inserted through the transverse bolt holes formed by the method disclosed in those applications. This makes absolute fixation of the prosthesis member possible without the use of methyl merthacrylate cement, as. has been frequently used in the past, but which has been discovered to present a serious hazard to the patient, as pointed out in the recent article by Edith R. Kedes, M. D., et al. entitled inoperative Death Associated -With Acrylic Bone Cc. ment, Journal American Medical Association, Volume 222, No. 5, pages 575-577, Oct. 30, 1972; Also, the presence of previous infection in the femur of the patient effectively precludes the use of methyl merthacrylate bone cement, whereas use of my fixation technique involving formation of theaccurately sized canal for the femoral prosthesis member shank accurately sized by the above-described rasp and fixed in position by transverse bolts allows use of the total hip prosthesis procedure for such patients.

What is claimed is:

l. A femoral shaft surgical rasp for use in performing total and sub-total hip prosthesis surgery to form an elongated canal in an amputated femur shaft for reception of an elongated shank portion of a femoral prosthesis component to be fixed in the canal, the femoral prosthesis having a head portion integral with the shank portion including a flanged neck at the juncture of the head and shank portions and the shank portion having a straight longitudinal edge and a concavely curved opposite longitudinal edge, the rasp comprising an elongated handle portion and an elongated working blade portion extending integrally from the handle portion which is a substantial replica of the prosthesis member shank in lateral profile and cross-section having a pair of opposite longitudinal edges conforming in location and direction to the longitudinal edges of said prosthesis shank defining a Wedgeshaped region spaced from a free end of the working-portion and the blade portion having flat parallel sides extending between said edges and forming the lateral surface of the rasp blade portion, the rasp-having cutting prominences only along the length of a first one of said edges of said working blade portion to confine the cutting action of the rasp on the femur to the internal femur portion in confronting abutment with only said first one of said edges, the longitudinal edge of said blade portion opposite said first one of said edges being smooth throughout its length to slide without cutting on confronting portions of the femur and force more efficient cutting by said first one of said edges due to the bearing pressure of the wherein said rasp includes a flanged collar formation at 7 the juncture of said handle and working portions which substantially duplicates relative to the axis of said working portion the angular disposition of said flanged neck of the prosthesis component relative to the longitudinal axis of the prosthesis shank and presents a flat substantially encircling inclined surface toward the working portion simulating the surface of the flanged neck facing toward the prosthesis shank.

4. A femur shaft surgical rasp as defined in claim 2, wherein said rasp includes a flanged collar formation at the juncture of said handle and working portions which substantially duplicates relative to the axis of said working portion the angular disposition of said flanged neck of the prosthesis component relative to the longitudinal axis of the prosthesis shank and presents a flat substantially encircling inclined surface toward the working portion simulating the surface of the flanged neck facing toward the prosthesis shank.

5. A femur shaft surgical rasp as defined in claim 1, wherein said cutting prominences are located only on of the rasp along the entire length thereof.

6. A femur shaft surgical rasp as defined in clairn'3, wherein said cutting prominences are located only on said curved longitudinal edge of said working'portion of the raspalong the entire length thereof.

7. A femur shaft surgical rasp as defined in claim 2,

' said straight longitudinaledge of said working portion of the rasp along the entire length thereof.

9. A femur shaft surgical rasp as defined in claim 3, wherein said working portion has holes therein identical in sizeand spacing and location to transverse fastener openings in the prosthesis shank.

' 10. A femur shaft surgical rasp as defined in claim wherein said working portion has hole's'therein identical in size and spacing-and location to transverse fastener openings in the prosthesis shank.

Claims (10)

1. A femoral shaft surgical rasp for use in performing total and sub-total hip prosthesis surgery to form an elongated canal in an amputated femur shaft for reception of an elongated shank portion of a femoral prosthesis component to be fixed in the canal, the femoral prosthesis having a head portion integral with the shank portion including a flanged neck at the juncture of the head and shank portions and the shank portion having a straight longitudinal edge and a concavely curved opposite longitudinal edge, the rasp comprising an elongated handle portion and an elongated working blade portion extending integrally from the handle portion which is a substantial replica of the prosthesis member shank in lateral profile and cross-section having a pair of opposite longitudinal edges conforming in location and direction to the longitudinal edges of said prosthesis shank defining a wedge-shaped region spaced from a free end of the working portion and the blade portion having flat parallel sides extending between said edges and forming the lateral surface of the rasp blade portion, the rasp having cutting prominences only along the length of a first one of said edges of said working blade portion to confine the cutting action of the rasp on the femur to the internal femur portion in confronting abutment with only said first one of said edges, the longitudinal edge of said blade portion opposite said first one of said edges being smooth throughout its length to slide without cutting on confronting portions of the femur and force more efficient cutting by said first one of said edges due to the bearing pressure of the femur on the smooth edge, and the smooth edge and sides of the working blade portion presenting only smooth, not damaging surfaces to abductors and other soft tissue during reciprocative movement of the rasp in its working path.
2. A femur shaft surgical rasp as defined in claim 1, wherein said elongated handle portion and said working portion extend along parallel axes in opposite directions from the juncture therebetween.
3. A femur shaft surgical rasp as defined in claim 1, wherein said rasp includes a flanged collar formation at the juncture of said handle and working portions which substantially duplicates relative to the axis of said working portion the angular disposition of said flanged neck of the prosthesis component relative to the longitudinal axis of the prosthesis shank and presents a flat substantially encircling inclined surface toward the working portion simulating the surface of the flanged neck facing toward the prosthesis shank.
4. A femur shaft surgical rasp as defined in claim 2, wherein said rasp includes a flanged collar formation at the juncture of said handle and working portions which substantially duplicates relative to the axis of said working portion the angular disposition of said flanged neck of the prosthesis component relative to the longitudinal axis of the prosthesis shank and presents a flat substantially encircling inclined surface toward the working portion simulating the surface of the flanged neck facing toward the prosthesis shank.
5. A femur shaft surgical rasp as defined in claim 1, wherein said cutting prominences are located only on said curved longitudinal edge of said working portion of the rasp along the entire length thereof.
6. A femur shaft surgical rasp as defined in claim 3, wherein said cutting prominences are located only on said curved longitudinal edge of said working portion of the rasp along the entire length thereof.
7. A femur shaft surgical rasp as defined in claim 2, wherein said cutting prominences are located only on said straight longitudinal edge of said working portion of the rasp along the entire length thereof.
8. A femur shaft surgical rasp as defined in claim 4, wherein said cutting prominences are located only on said straight longitudinal edge of said working portion of the rasp along the entire length thereof.
9. A femur shaft surgical rasp as defined in claiM 3, wherein said working portion has holes therein identical in size and spacing and location to transverse fastener openings in the prosthesis shank.
10. A femur shaft surgical rasp as defined in claim 6, wherein said working portion has holes therein identical in size and spacing and location to transverse fastener openings in the prosthesis shank.
US33766573 1973-03-02 1973-03-02 Femoral shaft surgical rasp for use in hip prosthesis surgery Expired - Lifetime US3815599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US33766573 US3815599A (en) 1973-03-02 1973-03-02 Femoral shaft surgical rasp for use in hip prosthesis surgery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33766573 US3815599A (en) 1973-03-02 1973-03-02 Femoral shaft surgical rasp for use in hip prosthesis surgery

Publications (1)

Publication Number Publication Date
US3815599A true US3815599A (en) 1974-06-11

Family

ID=23321486

Family Applications (1)

Application Number Title Priority Date Filing Date
US33766573 Expired - Lifetime US3815599A (en) 1973-03-02 1973-03-02 Femoral shaft surgical rasp for use in hip prosthesis surgery

Country Status (1)

Country Link
US (1) US3815599A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0078888A1 (en) * 1981-11-10 1983-05-18 Gebrüder Sulzer Aktiengesellschaft Joint endoprosthesis having a flat and straight stem
US4466435A (en) * 1981-09-04 1984-08-21 Murray William M Bone cement nozzle and method
EP0122670A2 (en) * 1983-04-15 1984-10-24 Pfizer Hospital Products Group, Inc. Rasp handle
EP0136079A2 (en) * 1983-08-30 1985-04-03 Adler Instrument Company Surgical rasp and method of manufacture
US4552136A (en) * 1983-10-19 1985-11-12 Howmedica, Inc. Femoral rasp
US4587964A (en) * 1985-02-05 1986-05-13 Zimmer, Inc. Rasp tool
US4671275A (en) * 1985-11-14 1987-06-09 Deyerle William M Femoral shaft surgical rasp for use in hip prosthesis surgery
US4872452A (en) * 1989-01-09 1989-10-10 Minnesota Mining And Manufacturing Company Bone rasp
US4921493A (en) * 1986-08-11 1990-05-01 Zimmer, Inc. Rasp tool
US5089003A (en) * 1989-12-22 1992-02-18 Zimmer, Inc. Rasp tool including detachable handle member
US5147364A (en) * 1981-08-20 1992-09-15 Ohio Medical Instrument Company Osteotomy saw/file, cutting guide and method
US5261915A (en) * 1992-04-16 1993-11-16 Scott M. Durlacher Femur bone rasp with adjustable handle
US5342365A (en) * 1993-07-19 1994-08-30 Padgett Instruments, Inc. Surgical rasp
EP1106143A1 (en) * 1999-12-02 2001-06-13 Waldemar Link (GmbH & Co.) Prosthetic system
US6267594B1 (en) * 1998-06-05 2001-07-31 Kaltenbach & Voigt Gmbh & Co. Medical or dental-medical instrument for material-removing working of body tissue and tool for such an instrument
US20020127264A1 (en) * 2000-08-28 2002-09-12 Felt Jeffrey C. Method and system for mammalian joint resurfacing
WO2003053278A2 (en) * 2001-12-19 2003-07-03 Advanced Bio Surfaces, Inc. Bone smoothing method and system
US20040243134A1 (en) * 2003-05-30 2004-12-02 Walker Peter Stanley Bone shaping device for knee replacement
US20040247641A1 (en) * 2002-01-22 2004-12-09 Felt Jeffrey C. Interpositional arthroplasty system & method
US20040249384A1 (en) * 2003-02-04 2004-12-09 Blaha J. David Compacting broach
US20050043810A1 (en) * 2000-04-26 2005-02-24 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US20050043808A1 (en) * 1994-05-06 2005-02-24 Advanced Bio Surfaces, Inc. Knee joint prosthesis
US20050203524A1 (en) * 2004-03-04 2005-09-15 Penenberg Brad L. Bone preserving total hip arthroplasty using autograft
US20060111726A1 (en) * 2002-07-11 2006-05-25 Advanced Bio Surfaces, Inc. Method and kit for interpositional arthroplasty
US20060282169A1 (en) * 2004-12-17 2006-12-14 Felt Jeffrey C System and method for upper extremity joint arthroplasty
US20080208343A1 (en) * 2005-03-09 2008-08-28 Vertebral Technologies, Inc. Interlocked modular disc nucleus prosthesis
US7572260B1 (en) * 2005-06-06 2009-08-11 Nelson Chris L Orthopedic surgical device for simultaneous bone removal on both sides of a fixation pin
US20090275948A1 (en) * 2003-11-18 2009-11-05 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US20100023014A1 (en) * 2008-07-25 2010-01-28 Sergio Romagnoli Gender specific femoral rasps
US20100121331A1 (en) * 2003-11-18 2010-05-13 Sharp Jeffrey A Universal double offset surgical instrument
US20110218537A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Method and Apparatus for Preparing a Proximal Femur
US20110218582A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Method and Apparatus for Implanting a Modular Femoral Hip
US20110218636A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Guide Assembly for Lateral Implants and Associated Methods
US20110218641A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Modular Lateral Hip Augments
US20110218640A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Method and Apparatus for Trialing and Implanting a Modular Femoral Hip
US20110218583A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Assembly Tool for Modular Implants and Associated Method
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US10238402B2 (en) 2013-08-09 2019-03-26 Zimmer, Inc. Surgical bone rasp having flattened medial teeth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812761A (en) * 1955-07-27 1957-11-12 Myer Z Palkovitz Fixation apparatus for bone fractures
US3670724A (en) * 1970-03-12 1972-06-20 David N Bosacco Prosthetic or fracture device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812761A (en) * 1955-07-27 1957-11-12 Myer Z Palkovitz Fixation apparatus for bone fractures
US3670724A (en) * 1970-03-12 1972-06-20 David N Bosacco Prosthetic or fracture device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Austenal Surgical Catalogue, page 72, Figs. 6839 5, 6828 5, copyright 1964. *

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147364A (en) * 1981-08-20 1992-09-15 Ohio Medical Instrument Company Osteotomy saw/file, cutting guide and method
US4466435A (en) * 1981-09-04 1984-08-21 Murray William M Bone cement nozzle and method
EP0078888A1 (en) * 1981-11-10 1983-05-18 Gebrüder Sulzer Aktiengesellschaft Joint endoprosthesis having a flat and straight stem
EP0122670A2 (en) * 1983-04-15 1984-10-24 Pfizer Hospital Products Group, Inc. Rasp handle
EP0122670A3 (en) * 1983-04-15 1985-07-03 Howmedica Inc. Rasp handle
EP0136079A2 (en) * 1983-08-30 1985-04-03 Adler Instrument Company Surgical rasp and method of manufacture
EP0136079A3 (en) * 1983-08-30 1986-06-11 Adler Instrument Company Surgical rasp and method of manufacture
US4625725A (en) * 1983-08-30 1986-12-02 Snowden-Pencer, Inc. Surgical rasp and method of manufacture
US4552136A (en) * 1983-10-19 1985-11-12 Howmedica, Inc. Femoral rasp
US4587964A (en) * 1985-02-05 1986-05-13 Zimmer, Inc. Rasp tool
US4671275A (en) * 1985-11-14 1987-06-09 Deyerle William M Femoral shaft surgical rasp for use in hip prosthesis surgery
US4921493A (en) * 1986-08-11 1990-05-01 Zimmer, Inc. Rasp tool
US4872452A (en) * 1989-01-09 1989-10-10 Minnesota Mining And Manufacturing Company Bone rasp
US5089003A (en) * 1989-12-22 1992-02-18 Zimmer, Inc. Rasp tool including detachable handle member
US5261915A (en) * 1992-04-16 1993-11-16 Scott M. Durlacher Femur bone rasp with adjustable handle
US5342365A (en) * 1993-07-19 1994-08-30 Padgett Instruments, Inc. Surgical rasp
US20050043808A1 (en) * 1994-05-06 2005-02-24 Advanced Bio Surfaces, Inc. Knee joint prosthesis
US6267594B1 (en) * 1998-06-05 2001-07-31 Kaltenbach & Voigt Gmbh & Co. Medical or dental-medical instrument for material-removing working of body tissue and tool for such an instrument
EP1106143A1 (en) * 1999-12-02 2001-06-13 Waldemar Link (GmbH & Co.) Prosthetic system
US6488714B2 (en) 1999-12-02 2002-12-03 Waldemar Link (Gmbh & Co.) Prosthesis system
KR100631445B1 (en) 1999-12-02 2006-10-09 발데마르 링크 게엠베하 운트 코.카게 Prosthesis system
US20050043810A1 (en) * 2000-04-26 2005-02-24 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US20040107000A1 (en) * 2000-08-28 2004-06-03 Felt Jeffrey C. Method and system for mammalian joint resurfacing
US7914582B2 (en) 2000-08-28 2011-03-29 Vertebral Technologies, Inc. Method and system for mammalian joint resurfacing
US20100145457A1 (en) * 2000-08-28 2010-06-10 Felt Jeffrey C Method and system for mammalian joint resurfacing
US20020127264A1 (en) * 2000-08-28 2002-09-12 Felt Jeffrey C. Method and system for mammalian joint resurfacing
US8100979B2 (en) 2000-08-28 2012-01-24 Vertebral Technologies, Inc. Method and system for mammalian joint resurfacing
US7320709B2 (en) 2000-08-28 2008-01-22 Advanced Bio Surfaces, Inc. Method and system for mammalian joint resurfacing
GB2399309A (en) * 2001-12-19 2004-09-15 Advanced Bio Surfaces Inc Bone smoothing method and system
WO2003053278A2 (en) * 2001-12-19 2003-07-03 Advanced Bio Surfaces, Inc. Bone smoothing method and system
US20050075642A1 (en) * 2001-12-19 2005-04-07 Felt Jeffrey C. Bone smoothing method and system
WO2003053278A3 (en) * 2001-12-19 2004-03-04 Advanced Bio Surfaces Inc Bone smoothing method and system
US20040247641A1 (en) * 2002-01-22 2004-12-09 Felt Jeffrey C. Interpositional arthroplasty system & method
US20060111726A1 (en) * 2002-07-11 2006-05-25 Advanced Bio Surfaces, Inc. Method and kit for interpositional arthroplasty
US20040249384A1 (en) * 2003-02-04 2004-12-09 Blaha J. David Compacting broach
US20050192584A1 (en) * 2003-05-30 2005-09-01 Walker Peter S. Bone shaping device for knee replacement
US20040243134A1 (en) * 2003-05-30 2004-12-02 Walker Peter Stanley Bone shaping device for knee replacement
US20050192583A1 (en) * 2003-05-30 2005-09-01 Walker Peter S. Bone shaping device for knee replacement
US9265508B2 (en) 2003-11-18 2016-02-23 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US8657824B2 (en) 2003-11-18 2014-02-25 Smith & Nephew, Inc. Universal double offset surgical instrument
US20090275948A1 (en) * 2003-11-18 2009-11-05 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US9615837B2 (en) 2003-11-18 2017-04-11 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US8734451B2 (en) 2003-11-18 2014-05-27 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal hip arthroplasty surgery
US9622758B2 (en) 2003-11-18 2017-04-18 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US20100121331A1 (en) * 2003-11-18 2010-05-13 Sharp Jeffrey A Universal double offset surgical instrument
USD677384S1 (en) 2003-11-18 2013-03-05 Smith & Nephew, Inc. Surgical hip anterior approach arthroplasty device
USD648850S1 (en) 2003-11-18 2011-11-15 Smith & Nephew, Inc. Surgical hip anterior approach arthroplasty device
US9526512B2 (en) 2003-11-18 2016-12-27 Smith & Nephew, Inc. Universal double offset surgical instrument
US10292715B2 (en) 2003-11-18 2019-05-21 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US8096993B2 (en) 2003-11-18 2012-01-17 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US7582090B2 (en) * 2004-03-04 2009-09-01 Wright Medical Technology, Inc. Bone preserving total hip arthroplasty using autograft
US20050203524A1 (en) * 2004-03-04 2005-09-15 Penenberg Brad L. Bone preserving total hip arthroplasty using autograft
US20060282169A1 (en) * 2004-12-17 2006-12-14 Felt Jeffrey C System and method for upper extremity joint arthroplasty
US20100057144A1 (en) * 2005-03-09 2010-03-04 Felt Jeffrey C Rail-based modular disc nucleus prosthesis
US20080208343A1 (en) * 2005-03-09 2008-08-28 Vertebral Technologies, Inc. Interlocked modular disc nucleus prosthesis
US8100977B2 (en) 2005-03-09 2012-01-24 Vertebral Technologies, Inc. Interlocked modular disc nucleus prosthesis
US8038718B2 (en) 2005-03-09 2011-10-18 Vertebral Technologies, Inc. Multi-composite disc prosthesis
US7572260B1 (en) * 2005-06-06 2009-08-11 Nelson Chris L Orthopedic surgical device for simultaneous bone removal on both sides of a fixation pin
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US10195048B2 (en) 2006-11-21 2019-02-05 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US8870875B2 (en) 2008-07-25 2014-10-28 Zimmer Gmbh Gender specific femoral rasps
US9763677B2 (en) 2008-07-25 2017-09-19 Zimmer Gmbh Gender specific femoral rasps
US20100023014A1 (en) * 2008-07-25 2010-01-28 Sergio Romagnoli Gender specific femoral rasps
EP2147642A3 (en) * 2008-07-25 2010-04-07 Zimmer GmbH Gender specific femoral rasps
US20110218636A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Guide Assembly for Lateral Implants and Associated Methods
US20110218640A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Method and Apparatus for Trialing and Implanting a Modular Femoral Hip
US8679130B2 (en) 2010-03-05 2014-03-25 Biomet Manufacturing, Llc Guide assembly for lateral implants and associated methods
US20110218641A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Modular Lateral Hip Augments
US8591518B2 (en) 2010-03-05 2013-11-26 Biomet Manufacturing, Llc Method and apparatus for implanting a modular femoral hip
US8876837B2 (en) 2010-03-05 2014-11-04 Biomet Manufacturing, Llc Method and apparatus for implanting a modular femoral hip
US8906109B2 (en) 2010-03-05 2014-12-09 Biomet Manufacturing, Llc Modular lateral hip augments
US9138273B2 (en) 2010-03-05 2015-09-22 Biomet Manufacturing, Llc Guide assembly for lateral implants and associated methods
US8529569B2 (en) 2010-03-05 2013-09-10 Biomet Manufacturing, Llc Method and apparatus for preparing a proximal femur
US9314287B2 (en) 2010-03-05 2016-04-19 Biomet Manufacturing, Llc Assembly tool for modular implant and associated method
US9339318B2 (en) 2010-03-05 2016-05-17 Biomet Manufacturing, Llc Method and apparatus for preparing a proximal femur
US8460393B2 (en) 2010-03-05 2013-06-11 Biomet Manufacturing Corp. Modular lateral hip augments
US20110218582A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Method and Apparatus for Implanting a Modular Femoral Hip
US20110218537A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Method and Apparatus for Preparing a Proximal Femur
US9615942B2 (en) 2010-03-05 2017-04-11 Biomet Manufacturing, Llc Method and apparatus for trialing and implanting a modular femoral hip
US8419743B2 (en) 2010-03-05 2013-04-16 Biomet Manufacturing Corp. Assembly tool for modular implants and associated method
US20110218583A1 (en) * 2010-03-05 2011-09-08 Biomet Manufacturing Corp. Assembly Tool for Modular Implants and Associated Method
US8333807B2 (en) 2010-03-05 2012-12-18 Biomet Manufacturing Corp. Method and apparatus for trialing and implanting a modular femoral hip
US8221432B2 (en) 2010-03-05 2012-07-17 Biomet Manufacturing Corp. Method and apparatus for implanting a modular femoral hip
US10188520B2 (en) 2010-03-05 2019-01-29 Biomet Manufacturing, Llc Modular lateral hip augments
US9510950B2 (en) 2010-03-05 2016-12-06 Biomet Manufacturing, Llc Modular lateral hip auguments
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US10238402B2 (en) 2013-08-09 2019-03-26 Zimmer, Inc. Surgical bone rasp having flattened medial teeth

Similar Documents

Publication Publication Date Title
Hartzband Posterolateral minimal incision for total hip replacement: technique and early results
US6102916A (en) Bone cutting guides with removable housings for use in the implantation of prosthetic joint components
EP1669034B1 (en) Bone shaping instrument
US7959636B2 (en) Osteochondral repair using plug fashioned from whole distal femur or condyle formed of hydrogel composition
US7273500B2 (en) Instruments and methods for use in performing knee surgery
US8298237B2 (en) Patient-specific alignment guide for multiple incisions
US4467801A (en) Method and apparatus for shaping a proximal tibial surface
US4621630A (en) Guide for femoral neck osteotomy
EP1858453B1 (en) Shoulder implant for glenoid replacement
US6695850B2 (en) Minimally invasive total hip replacement
US6852115B2 (en) Multi-functional orthopedic surgical instrument and method of using same
EP1862149B1 (en) Prosthesis and implementation system
US8226726B2 (en) Method and instrumentation for patello-femoral joint replacement
US6860903B2 (en) Method and apparatus for performing a minimally invasive total hip arthroplasty
AU736610B2 (en) Machining assembly and methods for preparing the medullary cavity of a femur in hip arthroplasty
JP2650787B2 (en) Flexible bone marrow reamer system
US20120203234A1 (en) Femoral prosthetic implant
US20030093079A1 (en) Joint replacement methods and apparatus
US5464406A (en) Instrumentation for revision surgery
US5041117A (en) Elbow arthroplasty instrumentation and surgical procedure
AU2002336798C1 (en) Apparatus and methods for bone surgery
EP0327249B1 (en) Apparatus for knee prosthesis
US4913137A (en) Intramedullary rod system
US4927422A (en) Elbow arthroplasty instrumentation and surgical procedure
US5116338A (en) Apparatus for knee prosthesis