US20020123062A1 - Automated analysis of real-time nucleic acid amplification - Google Patents

Automated analysis of real-time nucleic acid amplification Download PDF

Info

Publication number
US20020123062A1
US20020123062A1 US10/074,169 US7416902A US2002123062A1 US 20020123062 A1 US20020123062 A1 US 20020123062A1 US 7416902 A US7416902 A US 7416902A US 2002123062 A1 US2002123062 A1 US 2002123062A1
Authority
US
United States
Prior art keywords
fluorescence
nucleic acid
amplification
fluorescent
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/074,169
Inventor
Carl Wittwer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Utah Research Foundation Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/074,169 priority Critical patent/US20020123062A1/en
Assigned to UTAH, UNIVERSITY OF reassignment UTAH, UNIVERSITY OF ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WITTWER, CARL T.
Assigned to UNIVERSITY OF UTAH RESEARCH FOUNDATION reassignment UNIVERSITY OF UTAH RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UTAH, UNIVERSITY OF
Assigned to UTAH, UNIVERSITY OF reassignment UTAH, UNIVERSITY OF ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WITTWER, CARL T.
Assigned to UTAH RESEARCH FOUNDATION, UNIVERSITY OF reassignment UTAH RESEARCH FOUNDATION, UNIVERSITY OF ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UTAH, UNIVERSITY OF
Publication of US20020123062A1 publication Critical patent/US20020123062A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to a method of analyzing a sample for the presence of a nucleic acid. More particularly, the present invention is directed to an automated method for detecting and reporting the presence of a predetermined nucleic acid in a sample using polymerase chain reaction and a fluorescent detecting entity.
  • PCR polymerase chain reaction
  • PCR is an invaluable molecular biology tool
  • the practical implementation of real time PCR techniques has lagged behind the conceptual promise.
  • Currently available instrumentation generally does not actually analyze data during PCR; it simply acquires the data for later analysis. After PCR has been completed, multiple manual steps are necessary to analyze the acquired data, and human judgment is typically required to provide the analysis result.
  • What is needed is a system for automating data acquisition and analysis so that no user intervention is required for reporting the analytical results.
  • the system software is automatically triggered and the results, for example, the presence or absence of a given pathogen, are immediately displayed on screen. Algorithms for detection, quantification, and genotyping are needed.
  • initiation of the analysis algorithm can be implemented prior to completion of temperature cycling.
  • Data processing can occur during amplification and concomitant analysis results can be used to modify temperature cycling and to acquire additional data during the latter stages of the amplification procedure to optimize amplification protocol and data quality.
  • a major problem in automating PCR data analysis is identification of baseline fluorescence. Background fluorescence varies from reaction to reaction. Moreover, baseline drift, wherein fluorescence increases or decreases without relation to amplification of nucleic acids in the sample, is a common occurrence.
  • Prior attempts to automate amplification data analysis involved setting the baseline fluorescence as that measured at one or more predetermined early cycle numbers. This technique accounts for the variation in background fluorescence, but it does not compensate for baseline drift. Without compensation for baseline drift, automated amplification data analysis can easily provide both false negative and false positive results.
  • a method for determining the presence of a nucleic acid in a sample comprising the steps of providing a fluorescent entity capable of indicating the presence of the nucleic acid and capable of providing a signal related to the quantity of the nucleic acid, amplifying the nucleic acid through a plurality of amplification cycles in the presence of the fluorescent entity, measuring fluorescence intensity of the fluorescent entity at each of the plurality of amplification cycles to produce a fluorescent value for each cycle related to the quantity of the nucleic acid present at each cycle, generating a plot wherein the fluorescent values are recorded for each amplification cycle, performing a confidence band analysis on the plot to generate a positive or negative call, and if the call is positive, confirming the positive call by a melting temperature analysis.
  • the melting profile for the melting temperature analysis may be obtained by monitoring fluorescence between extension and denaturation during one of the amplification cycles, by monitoring fluorescence between annealing and denaturation during one of the amplification cycles, or in a separate melting process subsequent to amplification.
  • an automated method for determining the presence of a nucleic acid comprising the steps of placing a sample into a container containing a fluorescent entity capable of indicating the presence of the nucleic acid and capable of providing a signal related to the quantity of the nucleic acid, placing the container into a device for amplifying the nucleic acid through a plurality of amplification cycles in the presence of the fluorescent entity, measuring fluorescence intensity of the fluorescent entity at each of the plurality of amplification cycles to produce a fluorescent value for each cycle related to the quantity of the nucleic acid present at each cycle, generating a plot wherein the fluorescent values are recorded for each amplification cycle, calculating slopes of segments of the plot using a plurality of the fluorescent values, using the segment slopes of the plot to establish a baseline fluorescence region by generating a slope value for each of a plurality of the amplification cycles, and establishing the baseline fluorescence region comprising an interval of cycles that includes the amplification cycle with the slope value
  • a device for determining the presence of a predetermined nucleic acid in a sample comprising an instrument for temperature cycling to amplify the nucleic acid, a fluorimeter for detecting fluorescence during amplification of the nucleic acid, the fluorescence obtained from a fluorescent entity capable of providing a signal related to the quantity of the nucleic acid, wherein the fluorimeter measures fluorescence intensity of the fluorescent entity at each of a plurality of amplification cycles, and wherein the fluorimeter measures fluorescence intensity of the fluorescent entity to obtain a melting profile of the nucleic acid, and a processor for performing analysis routines, wherein the processor is programmed to generate a plot of the fluorescent values verses amplification cycle, to perform a confidence band analysis on the plot to generate a positive or negative call, and to perform melting temperature analysis to confirm a positive call.
  • FIGS. 1 a - l show a comparison of three fluorescence monitoring schemes, (FIGS. 1 a, d, g, j ) dsDNA dye, (FIGS. 1 b, e, h, k ) exonuclease probe, and (FIGS. 1 c, f, i, l ) hybridization probe, for PCR amplification, wherein each scheme is illustrated (FIGS. 1 a - c ) before amplification and (FIGS. 1 d - f ) after amplification, and fluorescence values are shown (FIGS. 1 g - i ) once during each cycle of PCR and (FIGS. 1 j - l ) continuously during PCR.
  • FIG. 2 is a graph illustrating logistic growth.
  • FIGS. 3 a - f show a comparison of various cycle-verses-fluorescence curve types.
  • FIG. 4 illustrates a sliding window analysis for determining the slope of the fluorescence-verses-cycle number graph at each cycle.
  • FIG. 5 shows typical fluorescence verses amplification cycle graphs for (A) a negative sample and (B) a positive sample.
  • FIG. 6 also shows typical amplification graphs wherein (A) shows fluorescence verses amplification cycle, (B) is the first derivative of fluorescence verses amplification cycle, and (C) is the second derivative of fluorescence verses amplification cycle.
  • FIGS. 7 - 11 show the results for various samples wherein open white circles represent the fluorescence measurement at each cycle, open black circles represent the first derivatives, closed black circles represent second derivatives, large black circles connected by lines represent the points contributing to the baseline calculation, and the horizontal lines illustrate the baseline region.
  • FIGS. 7 and 8 illustrate positive results
  • FIGS. 9 - 11 illustrate negative results.
  • nucleic acid As used herein, “nucleic acid,” “DNA,” and similar terms also include nucleic acid analogs, i.e. analogs having other than a phosphodiester backbone.
  • nucleic acid analogs i.e. analogs having other than a phosphodiester backbone.
  • peptide nucleic acids which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention.
  • fluorescence resonance energy transfer pair refers to a pair of fluorophores comprising a donor fluorophore and acceptor fluorophore, wherein the donor fluorophore is capable of transferring resonance energy to the acceptor fluorophore.
  • the emission spectrum of the donor fluorophore overlaps the absorption spectrum of the acceptor fluorophore.
  • the absorption spectrum of the donor fluorophore does not substantially overlap the absorption spectrum of the acceptor fluorophore.
  • FRET oligonucleotide pair refers to a pair of oligonucleotides, each labeled with a member of a fluorescent resonance energy transfer pair, wherein hybridization to complementary target nucleic acid sequences brings the fluorescent entities into a fluorescence resonance energy transfer relationship.
  • the present invention is directed to a method of analyzing a sample for the presence of a nucleic acid wherein the sample is amplified, preferably using PCR, in the presence of a fluorescent probe capable of detecting the presence of the nucleic acid sample.
  • a baseline region is determined by comparing the fluorescence at various amplification cycles, and the fluorescence at each of various amplification cycles is compared to the baseline region to determine whether the fluorescence measurements fall outside of that baseline region.
  • various tests are performed on the fluorescent data acquired during amplification, each of which test produces a numeric score. The scores are then used to determine a composite value, and a call is made based on that value.
  • dsDNA double stranded DNA
  • SYBRTM Green I SYBRTM Green I
  • product specificity can be increased by analysis of melting curves or by acquiring fluorescence at a high temperature where nonspecific products have melted.
  • Ririe K M, Rasmussen R P and C T Wittwer Product differentiation by analysis of DNA melting curves during the polymerase chain reaction, Anal. Biochem. 245-154-160, 1997; Morrison T B, J&J Weis and C T Wittwer, Quantification of low copy transcripts by continuous SYBR Green I monitoring during amplification, Bio Techniques 24:954-962, 1998.
  • Oligonucleotide probes can also be covalently labeled with fluorescent molecules.
  • Hairpin primers (SunriseTM primers), hairpin probes (Molecular BeaconsTM) and exonuclease probes (TaqManTM) are dual-labeled oligonucleotides that can be monitored during PCR. These probes depend on fluorescence quenching of a fluorophore by a quencher on the same oligonucleotide. Fluorescence increases when hybridization or exonuclease hydrolysis occurs.
  • An illustrated probe design employs two oligonucleotides, each labeled with a fluorescent probe. Hybridization of these oligonucleotides to a target nucleic acid brings the two fluorescent probes close together to allow resonance energy transfer to occur. Wittwer C T, M G Herrmann, A A Moss and R P Rasmussen, Continuous fluorescence monitoring of rapid cycle DNA amplification, Bio Techniques 22:130-138, 1997. These hybridization probes require only a single fluorescent label per probe and are easier to design and synthesize than dual labeled probes.
  • Acceptable fluorophore pairs for use as fluorescent resonance energy transfer pairs are well known to those skilled in the art and include, but are not limited to, fluorescein/rhodamine, phycoerythrin/Cy7, fluorescein/Cy5, fluorescein/Cy5.5, fluorescein/LC Red 640, and fluorescein/LC Red 705.
  • Donor-quencher FRET oligonucleotide pairs may also be employed, wherein fluorescence of the donor fluorophore is quenched by the quencher fluorophore when the two fluorescent probes are brought close together. It is understood that when donor-quencher FRET oligonucleotide pairs are used, the fluorescence values, and hence all maximum and minimum values, will be the inverse as described below.
  • hybridization probe a “single-labeled oligonucleotide probe,” employs an oligonucleotide probe wherein each probe is constructed of a single oligonucleotide and a single fluorescent dye.
  • the oligonucleotide probes are constructed such that hybridization of the probe to a target sequence affects the fluorescent emission of the fluorescent dye.
  • Single-labeled oligonucleotide probes may employ various probe designs. In one design, hybridization of the probe to the target sequence places the fluorescent dye in close proximity to a guanine residue, with resultant quenching of fluorescent emission.
  • the fluorescent entity replaces a base in the oligonucleotide probe structure, and upon hybridization this “virtual nucleotide” is placed in a complementary position to a G residue, with resultant quenching of fluorescence.
  • probes are constructed such that hybridization results in an increase in fluorescent emission.
  • the fluorescent entity is attached to a G residue, with increased fluorescence upon hybridization.
  • SYBRTM Green I, exonuclease probe, and hybridization probe designs are shown in FIGS. 1 a - l.
  • FIGS. 1 a - l For each design, schematics both before (FIGS. 1 a - c ) and after (FIGS. 1 d - f ) amplification are shown, as well as cycle verses fluorescence amplification plots of positive and negative controls (FIGS. 1 g - i ), and temperature verses fluorescence plots from continuous monitoring (FIGS. 1 j - l ).
  • SYBR Green I fluorescence increases as more dsDNA is made (FIGS. 1 a, d, g, j ).
  • FIGS. 1 b, e, h, k dual-labeled fluorescein/rhodamine probes are cleaved during polymerase extension by 5′-exonuclease activity, separating the fluorophores and increasing the fluorescein emission. The signal generated is cumulative and the fluorescence continues to increase even after the amount of product has reached a plateau.
  • FIGS. 1 c, f, i, l show use of a FRET oligonucleotide pair wherein two probes hybridize next to each other, one labeled 3′ with fluorescein and the other labeled 5′ with Cy5. As product accumulates during PCR, fluorescence energy transfer to Cy5 increases. The fluorescence of hybridization probes decreases at high cycle number because of probe/product competition.
  • Standard instruments for PCR complete 30 cycles in about two to four hours.
  • a preferred system is a rapid thermal cycling device using capillary tubes and hot air temperature control. See, for example, U.S. Pat. No. 5,455,175, herein incorporated by reference. Because of the low heat capacity of air and the thin walls and high surface area of capillary tubes, small volume samples could be cycled quickly. The total amplification time for 30 cycles is reduced to 15 minutes with excellent results.
  • capillaries with forced air heating allows precise control of sample temperature at a speed not possible with other designs.
  • sample temperature verses time plots in capillaries show sharp spikes at denaturation and annealing temperatures, whereas several seconds are required for all of the sample to reach equilibrium in conical plastic tubes.
  • Rapid cycling for cycle sequencing reduces sequencing artifacts and minimizes “shadow banding” in dinucleotide repeat amplifications.
  • Swerdlow H, K Dew-Jager and R F Gesteland Rapid cycle sequencing in an air thermal cycler, Bio Techniques 15:512-519, 1993; Odelberg S J and R White, A method for accurate amplification of polymorphic CA-repeat sequences, PCR Meth. Appl. 3:7-12, 1993.
  • yield is improved when the sample is exposed as little as possible to high denaturation temperatures.
  • Gustafson C E, R A Alm and T J Trust Effect of heat denaturation of target DNA on the PCR amplification.
  • the RapidCycler® developed by Idaho Technology, is an example of a rapid thermal cycling device.
  • the LightCycler® (Roche Diagnostics, Indianapolis, Ind.) is a rapid temperature cycler with a fluorimeter, wherein light emitting diodes are used for excitation and photodiodes are used for detection.
  • the present invention is directed to methods for automating detection nucleic acids with real time PCR. While these algorithms may be applied to any amplification system, it is preferred to integrate these algorithms into the LightCycler® platform. These analysis routines are triggered by the completion of rapid thermal cycling for “hands off” amplification, analysis, and final results presentation in a total of less than 15 min. The analysis routines take from ⁇ 1 second for detection and quantification to ⁇ 10 seconds for genotyping. Lab View (National Instruments, Austin, Tex.), a graphical programming language, is preferred for LightCycler® instrument control. The LightCycler® is a PC-based instrument.
  • FIGS. 3 a - f display various types of amplification curves, all of which have been observed in LightCyclerTM runs.
  • FIGS. 3 a and b show curves from samples that are negative with no template present.
  • the fluorescence scales in FIGS. 3 a and b are magnified (compared to FIGS. 3 c - f ) to demonstrate the baseline drift and to provide algorithms capable of being independent of the fluorescence intensity.
  • This baseline drift of negative reactions must be distinguished from positive reactions of either low copy numbers (FIG.
  • the baseline is determined as a function of measured fluorescence at a fixed range of cycles near the beginning of amplification.
  • selection of a fixed range of cycles is not adequate because both downward drift (FIG. 3 a ) and high copy (FIG. 3 d ) amplifications may be incorrectly called.
  • the background is identified by analyzing the fluorescent measurements over a wide range of amplification cycles.
  • the background is identified by selecting the sliding window (FIG. 4) with the shallowest slope. That is, calculate the slope at each cycle by linear regression of the local neighborhood (for example, a 7 point sliding window).
  • the window with the slope of lowest absolute value (least difference from zero) defines the background region.
  • the variation of these background points about their regression line (the square root of the mean square error) is multiplied by a constant to determine a confidence band. This confidence band will have a slope near zero and is extrapolated across all cycles. If the fluorescence of the last cycle is within the confidence band it is negative, if it is outside the band it is positive.
  • FIG. 5 demonstrates both cases.
  • the maximum slope (first derivative) is obtained from the sliding window analysis already performed for background identification.
  • the second derivatives are calculated by a 3-point sliding window linear regression of the first derivatives. If the curve shape is well behaved (that is, if looking at a graph of FIG. 6, and reading from lowest to highest cycle number, the features occur in the order listed above), then the background is only selected from sliding windows centered at cycle numbers less than the second derivative maximum. This solves the potential analysis problem with FIG. 3 d.
  • cycle numbers less than the first derivative maximum or cycle numbers less than the second derivative minimum may be used. It will be further understood that any cycle number between the second derivative maximum and the second derivative minimum is a suitable cutoff cycle for use with this technique and is within the scope of this invention.
  • Another method is to compare the cycle with the greatest fluorescence (which is not necessarily the last cycle) to the confidence band. This is especially suited for hybridization probes that may decrease in fluorescence with extensive cycling, such as seen in FIG. 3 f.
  • the cycle with the greatest fluorescence only should be used when the curve shape is well behaved, in order to prevent false positive calls with downward drifts, such as shown in FIG. 3 a.
  • the variables to optimize for automatic detection are: 1) the window size for the first derivative estimate, 2) the window size for the second derivative estimate, and 3) the confidence band factor.
  • a reasonable value for the first derivative window size is 7, although 3, 5, 9, and 11 are also quite useful.
  • the preferred window size is 3, but 5, and 7 have also proven to be useful values.
  • a preferred confidence band factor is 20. As the first derivative window size increases the variance estimate is more accurate, but the edge cycles (beginning and ending) are lost.
  • A the number of fluorescence values used to determine the first derivatives. It is convenient to use odd numbers, so that the first derivatives correspond to integer cycle numbers. As discussed above, reasonable values include 3, 5, 7, 9, and 11. Preferably, 7 is used as the first derivative window size.
  • B the number of first derivative values used to determine the second derivatives. Again, it is convenient to use odd numbers, so that the second derivative values also correspond to integer cycle numbers. Reasonable values include 3, 5, and 7, with 3 being the preferred value.
  • C the confidence band factor. This factor determines the confidence band by multiplying it by a variance measure, preferably the square root of the mean square error.
  • the first step is to calculate the first and second derivatives.
  • a preferred method is to determine the first derivatives as the slope of a linear regression line through A points, and assigning the value to the central cycle number. Some cycles on either edge cannot be assigned first derivatives, but first derivatives can be provided for cycles (A+1)/2 through N ⁇ (A ⁇ 1)/2.
  • the second derivatives are calculated as the slope of the first derivative points and assigned to cycles (A+1)/2+(B ⁇ 1)/2 through [N ⁇ (A ⁇ 1)/2] ⁇ (B ⁇ 1)/2. Calculation of the first and second derivatives provide arrays Y′i and Y′′i, with some edge values missing. In FIG. 7, the first and second derivatives are displayed as open black circles and closed black circles, respectively.
  • the next step is to determine whether the fluorescence curve has a well-behaved shape.
  • the well-behaved shape occurs when the cycles with minimum fluorescence, maximum second derivative, maximum first derivative, minimum second derivative, and maximum fluorescence occur in that order, from low to high cycle number.
  • the baseline is then determined. If the fluorescence curve does not have the expected shape, the cycle whose first derivative is closest to zero is used. If the fluorescence curve has a well-behaved shape, the cycle whose first derivative is closest to zero chosen from among all cycles prior to the cycle with the maximum second derivative (again, any cycle between the maximum second derivative and the minimum second derivative may also be used as the cutoff cycle number).
  • the baseline is drawn through the fluorescence value of the chosen cycle with a slope of its first derivative. In FIG. 7, the A points contributing to the first derivative calculation for the baseline are displayed as large black dots connected by a line.
  • the next step is to determine the test point cycle, that is, the cycle used to compare against the baseline for determining a positive or negative result. If the curve is not well-behaved, the test point is the last cycle. If the fluorescence curve is well-behaved, the test point is the cycle with fluorescence farthest from the baseline. The test point fluorescence of a negative sample can be predicted as the intersection of the baseline with the test point cycle.
  • a confidence interval can be determined about the predicted negative test point. Preferably, this is done by finding the square root of the mean square error about the baseline of A points used to determine the baseline. This is multiplied by C. The product is added to the predicted negative test point to get the upper fluorescence limit of the confidence interval and is subtracted from the predicted negative test point to get the lower limit of the confidence band. These limits are shown on FIG. 7 as two solid horizontal lines.
  • the final step is to declare the sample positive or negative. If the test point fluorescence is outside of the confidence interval, the sample is positive. If it is within the interval, the sample is negative.
  • FIGS. 7 and 8 are samples which are positive, while FIGS. 9 - 11 are negative samples.
  • the “positive” calls generated by the above method are further confirmed by automatic feedback of the melting temperature (Tm) value of the amplified product.
  • Tm melting temperature
  • the Tm of an amplified product can be determined as follows: at a predetermined and/or dynamically chosen amplification cycle, fluorescence is monitored between extension and denaturation (or annealing and denaturation, in the case of a two-step amplification process). In an illustrated embodiment, the fluorescence is monitored at each 0.1° C. temperature increment. However, the monitoring may occur at smaller or larger increments.
  • This monitoring will provide a melting profile of the amplified product.
  • a Tm can be obtained by adding a separate melting process at the end of the amplification cycle, during which fluorescence is continuously monitored and a melting profile is obtained. The minimum (or maximum, depending on whether the probe design produces a melting peak/valley), of the derivative of this melting profile will determine the Tm. The Tm value will then be compared with the known Tm of the target analyte, and if the two values are in concordance, a verified positive call is made. If they are discordant, then a “positive” call is not verified. This technique may be used, for example, to identify situations where a locus other than the target locus was amplified or where primer dimers were produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A method and device are described for analyzing a sample for the presence of a nucleic acid wherein the sample is amplified, illustratively using PCR, in the presence of a fluorescent probe capable of detecting the presence of the nucleic acid sample. A baseline region is determined by comparing the fluorescence at various amplification cycles, and the fluorescence at a selected amplification cycle is compared to the baseline region to determine whether the fluorescence measurement falls outside of that baseline region, indicating the presence of the nucleic acid. A positive result may be verified by melting temperature analysis.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 09/391,811, filed Sep. 8, 1999, which claims priority under 35 U.S.C. § 119 (e) to U.S. Provisional Application No. 60/131,256, filed Apr. 27, 1999, which is expressly incorporated by reference herein.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to a method of analyzing a sample for the presence of a nucleic acid. More particularly, the present invention is directed to an automated method for detecting and reporting the presence of a predetermined nucleic acid in a sample using polymerase chain reaction and a fluorescent detecting entity. [0002]
  • BACKGROUND AND SUMMARY OF THE INVENTION
  • Amplification of DNA by polymerase chain reaction (PCR) is a technique fundamental to molecular biology. Nucleic acid analysis by PCR requires sample preparation, amplification, and product analysis. Although these steps are usually performed sequentially, amplification and analysis can occur simultaneously. DNA dyes or fluorescent probes can be added to the PCR mixture before amplification and used to analyze PCR products during amplification. Sample analysis occurs concurrently with amplification in the same tube within the same instrument. This combined approach decreases sample handling, saves time, and greatly reduces the risk of product contamination for subsequent reactions, as there is no need to remove the samples from their closed containers for further analysis. The concept of combining amplification with product analysis has become known as “real time” PCR. See, for example, U.S. Pat. No. 6,174,670, incorporated herein by reference. [0003]
  • Monitoring fluorescence each cycle of PCR initially involved the use of ethidium bromide. Higuchi R, G Dollinger, P S Walsh and R. Griffith, Simultaneous amplification and detection of specific DNA sequences, Bio/Technology 10:413-417, 1992; Higuchi R, C Fockler G Dollinger and R Watson, Kinetic PCR analysis: real time monitoring of DNA amplification reactions, Bio/Technology 11:1026-1030, 1993. In that system fluorescence is measured once per cycle as a relative measure of product concentration. Ethidium bromide detects double stranded DNA; if template is present fluorescence intensity increases with temperature cycling. Furthermore, the cycle number where an increase in fluorescence is first detected increases inversely proportionally to the log of the initial template concentration. Other fluorescent systems have been developed that are capable of providing additional data concerning the nucleic acid concentration and sequence. [0004]
  • While PCR is an invaluable molecular biology tool, the practical implementation of real time PCR techniques has lagged behind the conceptual promise. Currently available instrumentation generally does not actually analyze data during PCR; it simply acquires the data for later analysis. After PCR has been completed, multiple manual steps are necessary to analyze the acquired data, and human judgment is typically required to provide the analysis result. What is needed is a system for automating data acquisition and analysis so that no user intervention is required for reporting the analytical results. Thus, when the temperature cycling in a polymerase chain reaction amplification is complete, the system software is automatically triggered and the results, for example, the presence or absence of a given pathogen, are immediately displayed on screen. Algorithms for detection, quantification, and genotyping are needed. Moreover, initiation of the analysis algorithm can be implemented prior to completion of temperature cycling. Data processing can occur during amplification and concomitant analysis results can be used to modify temperature cycling and to acquire additional data during the latter stages of the amplification procedure to optimize amplification protocol and data quality. [0005]
  • A major problem in automating PCR data analysis is identification of baseline fluorescence. Background fluorescence varies from reaction to reaction. Moreover, baseline drift, wherein fluorescence increases or decreases without relation to amplification of nucleic acids in the sample, is a common occurrence. Prior attempts to automate amplification data analysis involved setting the baseline fluorescence as that measured at one or more predetermined early cycle numbers. This technique accounts for the variation in background fluorescence, but it does not compensate for baseline drift. Without compensation for baseline drift, automated amplification data analysis can easily provide both false negative and false positive results. [0006]
  • Thus, in one embodiment a method for determining the presence of a nucleic acid in a sample is provided, said method comprising the steps of providing a fluorescent entity capable of indicating the presence of the nucleic acid and capable of providing a signal related to the quantity of the nucleic acid, amplifying the nucleic acid through a plurality of amplification cycles in the presence of the fluorescent entity, measuring fluorescence intensity of the fluorescent entity at each of the plurality of amplification cycles to produce a fluorescent value for each cycle related to the quantity of the nucleic acid present at each cycle, generating a plot wherein the fluorescent values are recorded for each amplification cycle, performing a confidence band analysis on the plot to generate a positive or negative call, and if the call is positive, confirming the positive call by a melting temperature analysis. The melting profile for the melting temperature analysis may be obtained by monitoring fluorescence between extension and denaturation during one of the amplification cycles, by monitoring fluorescence between annealing and denaturation during one of the amplification cycles, or in a separate melting process subsequent to amplification. [0007]
  • In another embodiment, an automated method for determining the presence of a nucleic acid is provided, comprising the steps of placing a sample into a container containing a fluorescent entity capable of indicating the presence of the nucleic acid and capable of providing a signal related to the quantity of the nucleic acid, placing the container into a device for amplifying the nucleic acid through a plurality of amplification cycles in the presence of the fluorescent entity, measuring fluorescence intensity of the fluorescent entity at each of the plurality of amplification cycles to produce a fluorescent value for each cycle related to the quantity of the nucleic acid present at each cycle, generating a plot wherein the fluorescent values are recorded for each amplification cycle, calculating slopes of segments of the plot using a plurality of the fluorescent values, using the segment slopes of the plot to establish a baseline fluorescence region by generating a slope value for each of a plurality of the amplification cycles, and establishing the baseline fluorescence region comprising an interval of cycles that includes the amplification cycle with the slope value having an absolute value closest to zero, outputting a positive result if the fluorescence value of a selected amplification cycle is outside the baseline fluorescence region, and confirming the positive result by melting temperature analysis. [0008]
  • In yet another aspect of this invention a device is provided for determining the presence of a predetermined nucleic acid in a sample comprising an instrument for temperature cycling to amplify the nucleic acid, a fluorimeter for detecting fluorescence during amplification of the nucleic acid, the fluorescence obtained from a fluorescent entity capable of providing a signal related to the quantity of the nucleic acid, wherein the fluorimeter measures fluorescence intensity of the fluorescent entity at each of a plurality of amplification cycles, and wherein the fluorimeter measures fluorescence intensity of the fluorescent entity to obtain a melting profile of the nucleic acid, and a processor for performing analysis routines, wherein the processor is programmed to generate a plot of the fluorescent values verses amplification cycle, to perform a confidence band analysis on the plot to generate a positive or negative call, and to perform melting temperature analysis to confirm a positive call. [0009]
  • Additional features of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1[0011] a-l show a comparison of three fluorescence monitoring schemes, (FIGS. 1a, d, g, j) dsDNA dye, (FIGS. 1b, e, h, k) exonuclease probe, and (FIGS. 1c, f, i, l) hybridization probe, for PCR amplification, wherein each scheme is illustrated (FIGS. 1a-c) before amplification and (FIGS. 1d-f) after amplification, and fluorescence values are shown (FIGS. 1g-i) once during each cycle of PCR and (FIGS. 1j-l) continuously during PCR.
  • FIG. 2 is a graph illustrating logistic growth. [0012]
  • FIGS. 3[0013] a-f show a comparison of various cycle-verses-fluorescence curve types.
  • FIG. 4 illustrates a sliding window analysis for determining the slope of the fluorescence-verses-cycle number graph at each cycle. [0014]
  • FIG. 5 shows typical fluorescence verses amplification cycle graphs for (A) a negative sample and (B) a positive sample. [0015]
  • FIG. 6 also shows typical amplification graphs wherein (A) shows fluorescence verses amplification cycle, (B) is the first derivative of fluorescence verses amplification cycle, and (C) is the second derivative of fluorescence verses amplification cycle. [0016]
  • FIGS. [0017] 7-11 show the results for various samples wherein open white circles represent the fluorescence measurement at each cycle, open black circles represent the first derivatives, closed black circles represent second derivatives, large black circles connected by lines represent the points contributing to the baseline calculation, and the horizontal lines illustrate the baseline region. FIGS. 7 and 8 illustrate positive results, while FIGS. 9-11 illustrate negative results.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In describing and claiming the invention, the following terminology will be used in accordance with the definitions set forth below. [0018]
  • As used herein, “nucleic acid,” “DNA,” and similar terms also include nucleic acid analogs, i.e. analogs having other than a phosphodiester backbone. For example, the so-called “peptide nucleic acids,” which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention. [0019]
  • As used herein, “fluorescence resonance energy transfer pair” or “FRET pair” refers to a pair of fluorophores comprising a donor fluorophore and acceptor fluorophore, wherein the donor fluorophore is capable of transferring resonance energy to the acceptor fluorophore. In other words the emission spectrum of the donor fluorophore overlaps the absorption spectrum of the acceptor fluorophore. In preferred fluorescence resonance energy transfer pairs, the absorption spectrum of the donor fluorophore does not substantially overlap the absorption spectrum of the acceptor fluorophore. [0020]
  • As used herein, “FRET oligonucleotide pair” refers to a pair of oligonucleotides, each labeled with a member of a fluorescent resonance energy transfer pair, wherein hybridization to complementary target nucleic acid sequences brings the fluorescent entities into a fluorescence resonance energy transfer relationship. [0021]
  • The present invention is directed to a method of analyzing a sample for the presence of a nucleic acid wherein the sample is amplified, preferably using PCR, in the presence of a fluorescent probe capable of detecting the presence of the nucleic acid sample. A baseline region is determined by comparing the fluorescence at various amplification cycles, and the fluorescence at each of various amplification cycles is compared to the baseline region to determine whether the fluorescence measurements fall outside of that baseline region. In an alternative embodiment, various tests are performed on the fluorescent data acquired during amplification, each of which test produces a numeric score. The scores are then used to determine a composite value, and a call is made based on that value. [0022]
  • Many different probes have recently become available for monitoring PCR. Although not sequence specific, double stranded DNA (dsDNA) specific dyes can be used in any amplification without the need for probe synthesis. Such dyes include ethidium bromide and SYBR™ Green I. With dsDNA dyes, product specificity can be increased by analysis of melting curves or by acquiring fluorescence at a high temperature where nonspecific products have melted. Ririe K M, Rasmussen R P and C T Wittwer, Product differentiation by analysis of DNA melting curves during the polymerase chain reaction, Anal. Biochem. 245-154-160, 1997; Morrison T B, J&J Weis and C T Wittwer, Quantification of low copy transcripts by continuous SYBR Green I monitoring during amplification, Bio Techniques 24:954-962, 1998. [0023]
  • Oligonucleotide probes can also be covalently labeled with fluorescent molecules. Hairpin primers (Sunrise™ primers), hairpin probes (Molecular Beacons™) and exonuclease probes (TaqMan™) are dual-labeled oligonucleotides that can be monitored during PCR. These probes depend on fluorescence quenching of a fluorophore by a quencher on the same oligonucleotide. Fluorescence increases when hybridization or exonuclease hydrolysis occurs. [0024]
  • An illustrated probe design employs two oligonucleotides, each labeled with a fluorescent probe. Hybridization of these oligonucleotides to a target nucleic acid brings the two fluorescent probes close together to allow resonance energy transfer to occur. Wittwer C T, M G Herrmann, A A Moss and R P Rasmussen, Continuous fluorescence monitoring of rapid cycle DNA amplification, Bio Techniques 22:130-138, 1997. These hybridization probes require only a single fluorescent label per probe and are easier to design and synthesize than dual labeled probes. Acceptable fluorophore pairs for use as fluorescent resonance energy transfer pairs are well known to those skilled in the art and include, but are not limited to, fluorescein/rhodamine, phycoerythrin/Cy7, fluorescein/Cy5, fluorescein/Cy5.5, fluorescein/LC Red 640, and fluorescein/LC Red 705. Donor-quencher FRET oligonucleotide pairs may also be employed, wherein fluorescence of the donor fluorophore is quenched by the quencher fluorophore when the two fluorescent probes are brought close together. It is understood that when donor-quencher FRET oligonucleotide pairs are used, the fluorescence values, and hence all maximum and minimum values, will be the inverse as described below. [0025]
  • Another type of hybridization probe, a “single-labeled oligonucleotide probe,” employs an oligonucleotide probe wherein each probe is constructed of a single oligonucleotide and a single fluorescent dye. The oligonucleotide probes are constructed such that hybridization of the probe to a target sequence affects the fluorescent emission of the fluorescent dye. Single-labeled oligonucleotide probes may employ various probe designs. In one design, hybridization of the probe to the target sequence places the fluorescent dye in close proximity to a guanine residue, with resultant quenching of fluorescent emission. In another embodiment, the fluorescent entity replaces a base in the oligonucleotide probe structure, and upon hybridization this “virtual nucleotide” is placed in a complementary position to a G residue, with resultant quenching of fluorescence. In other embodiments, probes are constructed such that hybridization results in an increase in fluorescent emission. In one such embodiment, the fluorescent entity is attached to a G residue, with increased fluorescence upon hybridization. Further information on single-labeled oligonucleotide probe design is found in U.S. patent application Ser. No. 09/927,842, filed Aug. 10, 2001, herein incorporated by reference. As with the donor-quencher FRET oligonucleotide pairs, when fluorescent quenching indicates hybridization, the fluorescence values, and hence all maximum and minimum values, will be the inverse as described below [0026]
  • SYBR™ Green I, exonuclease probe, and hybridization probe designs are shown in FIGS. 1[0027] a-l. For each design, schematics both before (FIGS. 1a-c) and after (FIGS. 1d-f) amplification are shown, as well as cycle verses fluorescence amplification plots of positive and negative controls (FIGS. 1g-i), and temperature verses fluorescence plots from continuous monitoring (FIGS. 1j-l). SYBR Green I fluorescence increases as more dsDNA is made (FIGS. 1a, d, g, j). Because the dye is not sequence specific, a negative control also increases in fluorescence during later cycles as primer dimers are formed. In FIGS. 1b, e, h, k, dual-labeled fluorescein/rhodamine probes are cleaved during polymerase extension by 5′-exonuclease activity, separating the fluorophores and increasing the fluorescein emission. The signal generated is cumulative and the fluorescence continues to increase even after the amount of product has reached a plateau. FIGS. 1c, f, i, l show use of a FRET oligonucleotide pair wherein two probes hybridize next to each other, one labeled 3′ with fluorescein and the other labeled 5′ with Cy5. As product accumulates during PCR, fluorescence energy transfer to Cy5 increases. The fluorescence of hybridization probes decreases at high cycle number because of probe/product competition.
  • Standard instruments for PCR complete 30 cycles in about two to four hours. A preferred system is a rapid thermal cycling device using capillary tubes and hot air temperature control. See, for example, U.S. Pat. No. 5,455,175, herein incorporated by reference. Because of the low heat capacity of air and the thin walls and high surface area of capillary tubes, small volume samples could be cycled quickly. The total amplification time for 30 cycles is reduced to 15 minutes with excellent results. [0028]
  • The use of capillaries with forced air heating allows precise control of sample temperature at a speed not possible with other designs. For example, sample temperature verses time plots in capillaries show sharp spikes at denaturation and annealing temperatures, whereas several seconds are required for all of the sample to reach equilibrium in conical plastic tubes. Wittwer, C T, G B Reed and K M Ririe, Rapid cycle DNA amplification, in K Mullis, F Ferre, and R Gibbs (Eds.), The polymerase chain reaction, Springer-Verlag, Deerfield Beach, Fla. pp. 174-181, 1994; Wittwer, C T, B C Marshall, G B Reed, and J L Cherry, Rapid cycle allele-specific amplification: studies with the cystic fibrosis delta F508 locus, Clin. Chem., 39:804-809, 1993. Rapid temperature cycling with minimal annealing and denaturation times improves quantitative PCR and increases the discrimination of allele specific amplification. Weis, J H, S S Tan, B K Martin, and C T Wittwer, Detection of rare mRNA species via quantitative RT-PCR, Trends in Genetics, 8:263-4, 1992; Tan S T and J H Weis, Development of a sensitive reverse transcriptase PCR assay, RT-RPCR, utilizing rapid cycle times, PCR Meth. and Appl. 2:137-143, 1992. Rapid cycling for cycle sequencing reduces sequencing artifacts and minimizes “shadow banding” in dinucleotide repeat amplifications. Swerdlow H, K Dew-Jager and R F Gesteland, Rapid cycle sequencing in an air thermal cycler, Bio Techniques 15:512-519, 1993; Odelberg S J and R White, A method for accurate amplification of polymorphic CA-repeat sequences, PCR Meth. Appl. 3:7-12, 1993. For long PCR, yield is improved when the sample is exposed as little as possible to high denaturation temperatures. Gustafson C E, R A Alm and T J Trust, Effect of heat denaturation of target DNA on the PCR amplification. Gene 23:241-244, 1993. The RapidCycler®, developed by Idaho Technology, is an example of a rapid thermal cycling device. The LightCycler® (Roche Diagnostics, Indianapolis, Ind.) is a rapid temperature cycler with a fluorimeter, wherein light emitting diodes are used for excitation and photodiodes are used for detection. [0029]
  • The present invention is directed to methods for automating detection nucleic acids with real time PCR. While these algorithms may be applied to any amplification system, it is preferred to integrate these algorithms into the LightCycler® platform. These analysis routines are triggered by the completion of rapid thermal cycling for “hands off” amplification, analysis, and final results presentation in a total of less than 15 min. The analysis routines take from <1 second for detection and quantification to <10 seconds for genotyping. Lab View (National Instruments, Austin, Tex.), a graphical programming language, is preferred for LightCycler® instrument control. The LightCycler® is a PC-based instrument. [0030]
  • Perhaps the most basic analysis of real time PCR data is a judgement of whether a targeted nucleic acid is present. If the nucleic acid is present, further quantification and genotyping may take place. In many cases, a yes/no judgement is all that is needed. For example, one may want to determine whether [0031] E. coli 0157:H7 is in a sample of hamburger, whether anthrax is on a swab from a soldier; or whether hepatitis C is in a unit of blood. Real time PCR can improve yes/no detection over end point PCR assays because fluorescence is acquired at each cycle.
  • Inspection of cycle verses fluorescence data from positive and negative real time PCR runs (see FIGS. 1[0032] h and 1 i) suggests that discrimination is simple. The positive samples increase with cycle number while the negative samples remain at baseline. A trained observer expects positive samples to follow an S-shape curve, beginning with a baseline, followed by an exponential segment, and finishing with a plateau. The expected curve is similar to the logistic model for population growth, where the rate of growth is proportional to both the population size y and to the difference L-y, where L is the maximum population that can be supported. For small y, growth is exponential, but as y nears L the growth rate approaches zero. An example of logistic growth is shown in FIG. 2.
  • Although intuitively simple, accurately discriminating between positive and negative samples is not easy in practice. The simplest approach is to set a horizontal fluorescence threshold as a discriminator between positive and negative samples. This works best with a stable baseline (between and within samples) and a known fluorescence intensity that correlates with “positive.” Although this method will work on obvious samples (e.g. FIGS. 1[0033] h and 1 i), a more robust algorithm is desired that will work under a wider variety of conditions. For example, the baseline may drift and the fluorescence intensity may vary greatly between different samples and probe techniques. Thus, the present invention is directed to a method that will: (1) automatically identify the baseline, (2) use the baseline variance to establish a confidence region, and (3) call each sample positive or negative based on the relationship of the confidence region to the fluorescence data.
  • FIGS. 3[0034] a-f display various types of amplification curves, all of which have been observed in LightCycler™ runs. FIGS. 3a and b show curves from samples that are negative with no template present. The fluorescence scales in FIGS. 3a and b are magnified (compared to FIGS. 3c-f) to demonstrate the baseline drift and to provide algorithms capable of being independent of the fluorescence intensity. There is always some baseline drift during cycling. This drift usually is greatest at the beginning of cycling but later levels off, and may be either downward (FIG. 3a) or upward (FIG. 3b). This baseline drift of negative reactions must be distinguished from positive reactions of either low copy numbers (FIG. 3c) or high copy numbers (FIG. 3d) of starting template. The method needs to work with various probe designs, including exonuclease (FIG. 3e) and hybridization (FIG. 3f) probes.
  • Automatic identification of the background is surprisingly difficult. In prior art methods, the baseline is determined as a function of measured fluorescence at a fixed range of cycles near the beginning of amplification. However, selection of a fixed range of cycles is not adequate because both downward drift (FIG. 3[0035] a) and high copy (FIG. 3d) amplifications may be incorrectly called.
  • Confidence Band Analysis [0036]
  • In the present invention, the background is identified by analyzing the fluorescent measurements over a wide range of amplification cycles. Preferably, the background is identified by selecting the sliding window (FIG. 4) with the shallowest slope. That is, calculate the slope at each cycle by linear regression of the local neighborhood (for example, a 7 point sliding window). The window with the slope of lowest absolute value (least difference from zero) defines the background region. Once the background region has been identified, the variation of these background points about their regression line (the square root of the mean square error) is multiplied by a constant to determine a confidence band. This confidence band will have a slope near zero and is extrapolated across all cycles. If the fluorescence of the last cycle is within the confidence band it is negative, if it is outside the band it is positive. FIG. 5 demonstrates both cases. [0037]
  • This algorithm should work well in most cases. However, with the high copy fluorescence curve type (FIG. 3[0038] d), the shallowest slope might be found at early cycles (resulting in a correct positive call) or at late cycles (resulting in an incorrect negative call). This exception may be handled by analyzing the curve shape. In a well-behaved amplification, the expected amplification curve shape is ordered by cycle number as follows:
  • 1. Minimum fluorescence [0039]
  • 2. Maximum second derivative (F″) [0040]
  • 3. Maximum first derivative (F′) [0041]
  • 4. Minimum second derivative (F″) [0042]
  • 5. Maximum fluorescence [0043]
  • This gives the characteristic S-curve shape expected during PCR (FIG. 6A). The maximum slope (first derivative) is obtained from the sliding window analysis already performed for background identification. Preferably, the second derivatives are calculated by a 3-point sliding window linear regression of the first derivatives. If the curve shape is well behaved (that is, if looking at a graph of FIG. 6, and reading from lowest to highest cycle number, the features occur in the order listed above), then the background is only selected from sliding windows centered at cycle numbers less than the second derivative maximum. This solves the potential analysis problem with FIG. 3[0044] d. In other preferred embodiments, cycle numbers less than the first derivative maximum or cycle numbers less than the second derivative minimum may be used. It will be further understood that any cycle number between the second derivative maximum and the second derivative minimum is a suitable cutoff cycle for use with this technique and is within the scope of this invention.
  • Another method is to compare the cycle with the greatest fluorescence (which is not necessarily the last cycle) to the confidence band. This is especially suited for hybridization probes that may decrease in fluorescence with extensive cycling, such as seen in FIG. 3[0045] f. The cycle with the greatest fluorescence only should be used when the curve shape is well behaved, in order to prevent false positive calls with downward drifts, such as shown in FIG. 3a.
  • The variables to optimize for automatic detection are: 1) the window size for the first derivative estimate, 2) the window size for the second derivative estimate, and 3) the confidence band factor. A reasonable value for the first derivative window size is 7, although 3, 5, 9, and 11 are also quite useful. For the second derivative the preferred window size is 3, but 5, and 7 have also proven to be useful values. A preferred confidence band factor is 20. As the first derivative window size increases the variance estimate is more accurate, but the edge cycles (beginning and ending) are lost. [0046]
  • This algorithm is best understood by referring to the fluorescence verses cycle test result plot shown in FIGS. [0047] 7-11. The input data consist of one fluorescence value for each cycle of amplification, shown as the closed white circles. Let this equal array Yi, where i is the cycle number and N is the total number of cycles. The detection criteria are:
  • A=the number of fluorescence values used to determine the first derivatives. It is convenient to use odd numbers, so that the first derivatives correspond to integer cycle numbers. As discussed above, reasonable values include 3, 5, 7, 9, and 11. Preferably, 7 is used as the first derivative window size. [0048]
  • B=the number of first derivative values used to determine the second derivatives. Again, it is convenient to use odd numbers, so that the second derivative values also correspond to integer cycle numbers. Reasonable values include 3, 5, and 7, with 3 being the preferred value. [0049]
  • C=the confidence band factor. This factor determines the confidence band by multiplying it by a variance measure, preferably the square root of the mean square error. [0050]
  • The first step is to calculate the first and second derivatives. Although there are many ways to accomplish this, a preferred method is to determine the first derivatives as the slope of a linear regression line through A points, and assigning the value to the central cycle number. Some cycles on either edge cannot be assigned first derivatives, but first derivatives can be provided for cycles (A+1)/2 through N−(A−1)/2. Similarly, the second derivatives are calculated as the slope of the first derivative points and assigned to cycles (A+1)/2+(B−1)/2 through [N−(A−1)/2]−(B−1)/2. Calculation of the first and second derivatives provide arrays Y′i and Y″i, with some edge values missing. In FIG. 7, the first and second derivatives are displayed as open black circles and closed black circles, respectively. [0051]
  • The next step is to determine whether the fluorescence curve has a well-behaved shape. As discussed above, the well-behaved shape occurs when the cycles with minimum fluorescence, maximum second derivative, maximum first derivative, minimum second derivative, and maximum fluorescence occur in that order, from low to high cycle number. [0052]
  • The baseline is then determined. If the fluorescence curve does not have the expected shape, the cycle whose first derivative is closest to zero is used. If the fluorescence curve has a well-behaved shape, the cycle whose first derivative is closest to zero chosen from among all cycles prior to the cycle with the maximum second derivative (again, any cycle between the maximum second derivative and the minimum second derivative may also be used as the cutoff cycle number). The baseline is drawn through the fluorescence value of the chosen cycle with a slope of its first derivative. In FIG. 7, the A points contributing to the first derivative calculation for the baseline are displayed as large black dots connected by a line. [0053]
  • The next step is to determine the test point cycle, that is, the cycle used to compare against the baseline for determining a positive or negative result. If the curve is not well-behaved, the test point is the last cycle. If the fluorescence curve is well-behaved, the test point is the cycle with fluorescence farthest from the baseline. The test point fluorescence of a negative sample can be predicted as the intersection of the baseline with the test point cycle. [0054]
  • Next, a confidence interval can be determined about the predicted negative test point. Preferably, this is done by finding the square root of the mean square error about the baseline of A points used to determine the baseline. This is multiplied by C. The product is added to the predicted negative test point to get the upper fluorescence limit of the confidence interval and is subtracted from the predicted negative test point to get the lower limit of the confidence band. These limits are shown on FIG. 7 as two solid horizontal lines. [0055]
  • The final step is to declare the sample positive or negative. If the test point fluorescence is outside of the confidence interval, the sample is positive. If it is within the interval, the sample is negative. FIGS. 7 and 8 are samples which are positive, while FIGS. [0056] 9-11 are negative samples.
  • Melting Temperature Analysis [0057]
  • In another embodiment, the “positive” calls generated by the above method are further confirmed by automatic feedback of the melting temperature (Tm) value of the amplified product. This additional confirmation is possible as long as the hybridized and non-hybridized states of the probe can be distinguished by changes in fluorescence signal, as with dsDNA dyes and hybridization probes. The Tm of an amplified product can be determined as follows: at a predetermined and/or dynamically chosen amplification cycle, fluorescence is monitored between extension and denaturation (or annealing and denaturation, in the case of a two-step amplification process). In an illustrated embodiment, the fluorescence is monitored at each 0.1° C. temperature increment. However, the monitoring may occur at smaller or larger increments. This monitoring will provide a melting profile of the amplified product. Alternatively, a Tm can be obtained by adding a separate melting process at the end of the amplification cycle, during which fluorescence is continuously monitored and a melting profile is obtained. The minimum (or maximum, depending on whether the probe design produces a melting peak/valley), of the derivative of this melting profile will determine the Tm. The Tm value will then be compared with the known Tm of the target analyte, and if the two values are in concordance, a verified positive call is made. If they are discordant, then a “positive” call is not verified. This technique may be used, for example, to identify situations where a locus other than the target locus was amplified or where primer dimers were produced. [0058]
  • Although the invention has been described in detail with reference to preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims. [0059]

Claims (13)

1. A method for determining the presence of a nucleic acid in a sample comprising the steps of
providing a fluorescent entity capable of indicating the presence of the nucleic acid and capable of providing a signal related to the quantity of the nucleic acid,
amplifying the nucleic acid through a plurality of amplification cycles in the presence of the fluorescent entity,
measuring fluorescence intensity of the fluorescent entity at each of the plurality of amplification cycles to produce a fluorescent value for each cycle related to the quantity of the nucleic acid present at each cycle,
generating a plot wherein the fluorescent values are recorded for each amplification cycle,
performing a confidence band analysis on the plot to generate a positive or negative call, and
if the call is positive, confirming the positive call by a melting temperature analysis.
2. The method of claim 1 wherein the confidence band analysis is performed by
calculating slopes of segments of the plot using a plurality of the fluorescent values,
using the segment slopes of the plot to establish a baseline fluorescence region by generating a slope value for each of a plurality of the amplification cycles, and establishing the baseline fluorescence region comprising an interval of cycles that includes the amplification cycle with the slope value having an absolute value closest to zero, and
making the positive or negative call based on whether the fluorescence value during a selected amplification cycle is outside the baseline fluorescence region.
3. The method of claim 2 wherein the baseline fluorescent region is established without the use of an internal standard.
4. The method of claim 1 wherein the melting temperature analysis is performed by
obtaining a melting profile,
determining the minimum or maximum of the first derivative to generate a Tm value, and
comparing the Tm value with the known Tm of the target analyte.
5. The method of claim 4 wherein the melting profile is obtained by monitoring fluorescence between extension and denaturation during one of the amplification cycles.
6. The method of claim 4 wherein the melting profile is obtained by monitoring fluorescence between annealing and denaturation during one of the amplification cycles.
7. The method of claim 4 wherein the melting profile is obtained by monitoring fluorescence in a separate melting process subsequent to amplification.
8. The method of claim 4 wherein the melting profile is obtained by monitoring fluorescence at 0.1° C. temperature increments.
9. The method of claim 4 wherein the melting profile is obtained by monitoring fluorescence at temperature increments of greater than 0.1° C.
10. An automated method for determining the presence of a nucleic acid comprising the steps of
placing a sample into a container containing a fluorescent entity capable of indicating the presence of the nucleic acid and capable of providing a signal related to the quantity of the nucleic acid,
placing the container into a device for amplifying the nucleic acid through a plurality of amplification cycles in the presence of the fluorescent entity,
measuring fluorescence intensity of the fluorescent entity at each of the plurality of amplification cycles to produce a fluorescent value for each cycle related to the quantity of the nucleic acid present at each cycle,
generating a plot wherein the fluorescent values are recorded for each amplification cycle,
calculating slopes of segments of the plot using a plurality of the fluorescent values,
using the segment slopes of the plot to establish a baseline fluorescence region by generating a slope value for each of a plurality of the amplification cycles, and establishing the baseline fluorescence region comprising an interval of cycles that includes the amplification cycle with the slope value having an absolute value closest to zero,
outputting a positive result if the fluorescence value of a selected amplification cycle is outside the baseline fluorescence region, and
confirming the positive result by melting temperature analysis.
11. A device for determining the presence of a predetermined nucleic acid in a sample comprising
an instrument for temperature cycling to amplify the nucleic acid,
a fluorimeter for detecting fluorescence during amplification of the nucleic acid, the fluorescence obtained from a fluorescent entity capable of providing a signal related to the quantity of the nucleic acid, wherein the fluorimeter measures fluorescence intensity of the fluorescent entity at each of a plurality of amplification cycles, and wherein the fluorimeter measures fluorescence intensity of the fluorescent entity to obtain a melting profile of the nucleic acid, and
a processor for performing analysis routines, wherein the processor is programmed to generate a plot of the fluorescent values verses amplification cycle, to perform a confidence band analysis on the plot to generate a positive or negative call, and to perform melting temperature analysis to confirm a positive call.
12. The device of claim 11 wherein the instrument is configured for rapid thermal cycling.
13. The device of claim 12 wherein the instrument employs capillary tubes and hot air control.
US10/074,169 1999-04-27 2002-02-12 Automated analysis of real-time nucleic acid amplification Abandoned US20020123062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/074,169 US20020123062A1 (en) 1999-04-27 2002-02-12 Automated analysis of real-time nucleic acid amplification

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13125699P 1999-04-27 1999-04-27
US09/391,811 US6387621B1 (en) 1999-04-27 1999-09-08 Automated analysis of real-time nucleic acid amplification
US10/074,169 US20020123062A1 (en) 1999-04-27 2002-02-12 Automated analysis of real-time nucleic acid amplification

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/391,811 Continuation-In-Part US6387621B1 (en) 1999-04-27 1999-09-08 Automated analysis of real-time nucleic acid amplification

Publications (1)

Publication Number Publication Date
US20020123062A1 true US20020123062A1 (en) 2002-09-05

Family

ID=26829286

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/391,811 Expired - Lifetime US6387621B1 (en) 1999-04-27 1999-09-08 Automated analysis of real-time nucleic acid amplification
US10/074,169 Abandoned US20020123062A1 (en) 1999-04-27 2002-02-12 Automated analysis of real-time nucleic acid amplification

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/391,811 Expired - Lifetime US6387621B1 (en) 1999-04-27 1999-09-08 Automated analysis of real-time nucleic acid amplification

Country Status (5)

Country Link
US (2) US6387621B1 (en)
EP (1) EP1059523B1 (en)
JP (1) JP4689004B2 (en)
AT (1) ATE366821T1 (en)
DE (1) DE60035459T2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830888B2 (en) * 2001-05-07 2004-12-14 Mayo Foundation For Medical Education And Research Detection of Legionella
US20050053950A1 (en) * 2003-09-08 2005-03-10 Enrique Zudaire Ubani Protocol and software for multiplex real-time PCR quantification based on the different melting temperatures of amplicons
US20070031866A1 (en) * 2002-09-25 2007-02-08 Mayo Foundation For Medical Education And Research, A Minnesota Corporation Detection of Vancomycin-Resistant Enterococcus spp.
RU2294532C1 (en) * 2006-02-14 2007-02-27 Закрытое акционерное общество "Научно-производственная фирма ДНК-Технология" Method for standardizing polymerase chain reaction data with reaction products accumulation recorded on the basis of fluorescence data directly during reaction (real time polymerase chain reaction)
US20070238095A1 (en) * 2006-04-11 2007-10-11 Mayo Foundation For Medical Education And Research , A Minnesota Corporation Detection of Influenza A Virus
US20070238093A1 (en) * 2006-04-11 2007-10-11 Espy Mark J Detection of influenza A virus
US20100076690A1 (en) * 2008-09-19 2010-03-25 Corbett Research Pty Ltd METHOD AND SYSTEM FOR ANALYSIS OF MELT CURVES, PARTICULARLY dsDNA AND PROTEIN MELT CURVES
RU2423685C1 (en) * 2010-05-20 2011-07-10 Александр Иванович Заико Method of standardisation of convection polymerase chain reaction values with direct fluorescence registration of reaction product accumulation
US8306754B2 (en) 2007-12-26 2012-11-06 Arkray, Inc. Nucleic acid amplification determining method and nucleic acid amplification determining device
US20130273547A1 (en) * 2012-04-16 2013-10-17 Samsung Techwin Co., Ltd. Method to determine and correct baseline and to characterize pcr amplification kinetics
US9714447B2 (en) 2013-08-19 2017-07-25 General Electric Company Detection of nucleic acid amplification in a porous substrate

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387621B1 (en) * 1999-04-27 2002-05-14 University Of Utah Research Foundation Automated analysis of real-time nucleic acid amplification
CA2403890A1 (en) * 2000-03-27 2001-10-04 Applera Corporation Improved invasion assay
US6979541B1 (en) 2001-07-26 2005-12-27 University Of Utah Research Foundation Methods for identifying chromosomal aneuploidy
US7188030B2 (en) * 2001-08-21 2007-03-06 Applera Corporation Automatic threshold setting for quantitative polymerase chain reaction
US7630837B2 (en) * 2001-08-31 2009-12-08 Idaho Technology, Inc. Real-time gene quantification with internal standards
ES2301754T3 (en) * 2002-02-12 2008-07-01 University Of Utah Research Foundation ANALYSIS OF MULTIPLE TESTS OF AMPLIFICATIONS OF NUCLEIC ACIDS IN REAL TIME.
US7373253B2 (en) * 2002-02-12 2008-05-13 Idaho Technology Multi-test analysis of real-time nucleic acid amplification
CA2476481C (en) 2002-02-21 2016-01-26 Asm Scientific, Inc. Recombinase polymerase amplification
US8030000B2 (en) 2002-02-21 2011-10-04 Alere San Diego, Inc. Recombinase polymerase amplification
US7399590B2 (en) 2002-02-21 2008-07-15 Asm Scientific, Inc. Recombinase polymerase amplification
US6977162B2 (en) * 2002-03-01 2005-12-20 Ravgen, Inc. Rapid analysis of variations in a genome
US7208274B2 (en) 2002-03-01 2007-04-24 Ravgen, Inc. Rapid analysis of variations in a genome
US7727720B2 (en) * 2002-05-08 2010-06-01 Ravgen, Inc. Methods for detection of genetic disorders
US7442506B2 (en) * 2002-05-08 2008-10-28 Ravgen, Inc. Methods for detection of genetic disorders
US20070178478A1 (en) * 2002-05-08 2007-08-02 Dhallan Ravinder S Methods for detection of genetic disorders
AUPS267802A0 (en) * 2002-05-30 2002-06-20 Bio-Molecular Holdings Pty Limited Improved dna amplification apparatus and method
US7083974B2 (en) * 2002-07-12 2006-08-01 Applera Corporation Rotatable sample disk and method of loading a sample disk
JP2006500034A (en) * 2002-09-19 2006-01-05 アプレラ コーポレイション Methods and compositions for detecting targets
AU2003303307B2 (en) * 2002-11-15 2006-12-07 Gen-Probe Incorporated Assay and compositions for detection of bacillus anthracis nucleic acid
SG173221A1 (en) * 2003-02-28 2011-08-29 Ravgen Inc Methods for detection of genetic disorders
EP2390352A1 (en) 2003-03-18 2011-11-30 Quantum Genetics Ireland Limited Systems and methods for improving protein and milk production of dairy herds
US20040185446A1 (en) * 2003-03-18 2004-09-23 Jones Alison M. Cpn60 targets for quantification of microbial species
MXPA06009452A (en) 2004-02-19 2007-03-15 Univ Alberta Leptin promoter polymorphisms and uses thereof.
KR100738073B1 (en) 2004-09-01 2007-07-12 삼성전자주식회사 Method for quantification of initial nucleic acid concentration from real-time nucleic acid amplification data
US20060178838A1 (en) * 2005-02-10 2006-08-10 Adelson Martin E Method of receiving and handling a plurality of clinical samples for reporting a sum of diagnostic results for each sample
US9464310B2 (en) * 2005-02-10 2016-10-11 Medical Diagnostic Laboratories, Llc Integrated method for collection and maintenance of detectability of a plurality of microbiological agents in a single clinical sample and for handling a plurality of samples for reporting a sum of diagnostic results for each sample
US20060246423A1 (en) * 2005-02-10 2006-11-02 Adelson Martin E Method and kit for the collection and maintenance of the detectability of a plurality of microbiological species in a single gynecological sample
CA2967430C (en) 2005-03-10 2018-05-08 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes within samples
JP5068748B2 (en) * 2005-06-22 2012-11-07 ジェン−プロウブ インコーポレイテッド Methods and algorithms for quantifying polynucleotides
EP2385140B1 (en) 2005-07-25 2014-07-16 Alere San Diego, Inc. Methods for multiplexing recombinase polymerase amplification
EP1798542A1 (en) * 2005-12-19 2007-06-20 Roche Diagnostics GmbH Analytical method and instrument
CA2650993C (en) 2006-05-04 2015-06-16 Asm Scientific, Inc. Recombinase polymerase amplification
JP4993260B2 (en) * 2006-05-15 2012-08-08 石川県 Gene quantification apparatus and quantification method
US7802215B2 (en) * 2006-06-06 2010-09-21 Fujitsu Limited System and method for providing an improved sliding window scheme for clock mesh analysis
US7629124B2 (en) * 2006-06-30 2009-12-08 Canon U.S. Life Sciences, Inc. Real-time PCR in micro-channels
US20080182263A1 (en) * 2007-01-29 2008-07-31 Applera Corporation Systems and Methods for Calibration Using Dye Signal Amplification
JP5400768B2 (en) * 2007-06-29 2014-01-29 エフ.ホフマン−ラ ロシュ アーゲー System and method for determining crosstalk coefficients in PCR and other data sets
US20090055243A1 (en) 2007-08-21 2009-02-26 Jayson Lee Lusk Systems and methods for predicting a livestock marketing method
US8386184B2 (en) * 2007-08-28 2013-02-26 Becton, Dickinson And Company Systems and methods for determining an amount of starting reagent using the polymerase chain reaction
US8380457B2 (en) 2007-08-29 2013-02-19 Canon U.S. Life Sciences, Inc. Microfluidic devices with integrated resistive heater electrodes including systems and methods for controlling and measuring the temperatures of such heater electrodes
EP2215265B1 (en) * 2007-11-14 2013-05-22 Grifols Therapeutics Inc. Method for adjusting results of a polymerase chain reaction (pcr) instrument
KR101413659B1 (en) 2007-12-06 2014-07-01 삼성전자주식회사 Method of determining initial concentration of nucleic acids in a sample using a real time amplification data
US20100055733A1 (en) * 2008-09-04 2010-03-04 Lutolf Matthias P Manufacture and uses of reactive microcontact printing of biomolecules on soft hydrogels
US20100119454A1 (en) * 2008-11-03 2010-05-13 Ping Shen Use of the conserved Drosophila NPFR1 system for uncovering interacting genes and pathways important in nociception and stress response
GB0905325D0 (en) 2009-03-30 2009-05-13 Selex Sensors & Airborne Sys Detection system
US9469867B2 (en) * 2009-05-20 2016-10-18 Alere San Diego, Inc. DNA glycosylase/lyase and AP endonuclease substrates
EP4596717A2 (en) 2009-06-05 2025-08-06 Abbott Diagnostics Scarborough, Inc. Recombinase polymerase amplification reagents and kits
US10208335B2 (en) * 2009-08-05 2019-02-19 Life Technologies Corporation Methods for the analysis of proximity binding assay data
US8023794B2 (en) * 2009-08-10 2011-09-20 The Boeing Company Apparatus and method for establishing an optical path spanning a discontinuity in an optical channel
WO2011050173A1 (en) 2009-10-21 2011-04-28 Brandeis University Methods, kits and reaction mixtures for analyzing single-stranded nucleic acid sequences
US9046507B2 (en) 2010-07-29 2015-06-02 Gen-Probe Incorporated Method, system and apparatus for incorporating capacitive proximity sensing in an automated fluid transfer procedure
AU2012222178B2 (en) 2011-02-24 2014-12-18 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
CN103476940B (en) 2011-04-07 2016-07-13 美艾利尔圣地亚哥有限公司 Monitoring of Recombinant Polymerase Amplification Mixtures
EP2756101B1 (en) 2011-09-15 2018-05-23 David A. Shafer Probe: antiprobe compositions for high specificity dna or rna detection
EP3231861B1 (en) * 2012-02-03 2020-01-08 Axxin Pty Ltd Nucleic acid amplification with mathematical calculation of the assay result
AU2015275310B2 (en) * 2012-02-03 2018-10-18 Axxin Pty Ltd Nucleic acid amplification and detection apparatus and method
WO2014000037A1 (en) 2012-06-26 2014-01-03 Axxin Pty Ltd Nucleic acid amplification and detection kit
EP2877952B1 (en) 2012-07-27 2023-04-12 Gen-Probe Incorporated Dual reference calibration method and system for quantifying polynucleotides
US10053726B2 (en) 2012-09-10 2018-08-21 Biofire Diagnostics, Llc Multiple amplification cycle detection
US10463290B2 (en) 2014-11-14 2019-11-05 Axxin Pty Ltd. Biological sample collection and storage assembly
US11198122B2 (en) 2015-07-17 2021-12-14 Axxin Pty Ltd Diagnostic test assembly, apparatus, method
US10328147B2 (en) 2017-03-24 2019-06-25 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herpes simplex virus type-1(HSV-1) vaccine strain VC2 generating an anti-EHV-1 immune response
WO2019018099A1 (en) 2017-07-21 2019-01-24 Biofire Diagnostics, Llc Detection using concurrent melting curves
CA3076836A1 (en) 2017-09-27 2019-04-04 Axxin Pty Ltd Diagnostic test system and method
GB201812192D0 (en) 2018-07-26 2018-09-12 Ttp Plc Variable temperature reactor, heater and control circuit for the same
WO2020122679A1 (en) * 2018-12-14 2020-06-18 Seegene, Inc. Method for detecting a target analyte in a sample using an s-shaped function for a slope data set
PL3839958T3 (en) * 2019-12-20 2024-03-25 Euroimmun Medizinische Labordiagnostika Ag Method and device for qualitative evaluation of real-time pcr data
CN111426661B (en) * 2020-04-09 2022-10-18 基蛋生物科技股份有限公司 Fluorescence data acquisition and discrimination method in nucleic acid amplification stage
KR102407585B1 (en) * 2020-08-21 2022-06-10 한림대학교 산학협력단 Test method for negative determination of polymerase chain reaction using artificial intelligence
KR102407584B1 (en) * 2020-08-21 2022-06-10 한림대학교 산학협력단 Test method for positive determination of polymerase chain reaction using artificial intelligence
CN112816446B (en) * 2020-12-24 2022-02-01 四川长虹电器股份有限公司 Method for detecting powder decay of fluorescent wheel based on fluorescence spectrum
CN112669910A (en) * 2020-12-30 2021-04-16 杭州博日科技股份有限公司 Amplification curve baseline determination method and device and electronic equipment
WO2023027704A1 (en) * 2021-08-25 2023-03-02 Hewlett-Packard Development Company, L.P. Nucleic acid strand detections
AU2023386451A1 (en) 2022-11-22 2025-04-24 bioMérieux New nucleic acid binding compounds and uses
WO2025141105A1 (en) 2023-12-27 2025-07-03 bioMérieux Specific probes for the detection of nucleic acids, methods and uses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592365A (en) * 1981-08-10 1986-06-03 Ivac Corporation Electronic sphygmomanometer
US5455175A (en) * 1990-06-04 1995-10-03 University Of Utah Research Foundation Rapid thermal cycling device
US6387621B1 (en) * 1999-04-27 2002-05-14 University Of Utah Research Foundation Automated analysis of real-time nucleic acid amplification

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2304573T3 (en) 1996-06-04 2008-10-16 University Of Utah Research Foundation CONTAINER TO CARRY OUT AND CONTROL BIOLOGICAL PROCESSES.
NZ333136A (en) * 1996-06-04 2000-03-27 Univ Utah Res Found Continuous monitoring of hybridization during PCR using fluorescence resonance energy transfer pairs
US5736333A (en) * 1996-06-04 1998-04-07 The Perkin-Elmer Corporation Passive internal references for the detection of nucleic acid amplification products
US6303305B1 (en) * 1999-03-30 2001-10-16 Roche Diagnostics, Gmbh Method for quantification of an analyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592365A (en) * 1981-08-10 1986-06-03 Ivac Corporation Electronic sphygmomanometer
US5455175A (en) * 1990-06-04 1995-10-03 University Of Utah Research Foundation Rapid thermal cycling device
US6387621B1 (en) * 1999-04-27 2002-05-14 University Of Utah Research Foundation Automated analysis of real-time nucleic acid amplification

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830888B2 (en) * 2001-05-07 2004-12-14 Mayo Foundation For Medical Education And Research Detection of Legionella
US20070031866A1 (en) * 2002-09-25 2007-02-08 Mayo Foundation For Medical Education And Research, A Minnesota Corporation Detection of Vancomycin-Resistant Enterococcus spp.
US20050053950A1 (en) * 2003-09-08 2005-03-10 Enrique Zudaire Ubani Protocol and software for multiplex real-time PCR quantification based on the different melting temperatures of amplicons
RU2294532C1 (en) * 2006-02-14 2007-02-27 Закрытое акционерное общество "Научно-производственная фирма ДНК-Технология" Method for standardizing polymerase chain reaction data with reaction products accumulation recorded on the basis of fluorescence data directly during reaction (real time polymerase chain reaction)
US20070238095A1 (en) * 2006-04-11 2007-10-11 Mayo Foundation For Medical Education And Research , A Minnesota Corporation Detection of Influenza A Virus
US20070238093A1 (en) * 2006-04-11 2007-10-11 Espy Mark J Detection of influenza A virus
US8306754B2 (en) 2007-12-26 2012-11-06 Arkray, Inc. Nucleic acid amplification determining method and nucleic acid amplification determining device
US20100076690A1 (en) * 2008-09-19 2010-03-25 Corbett Research Pty Ltd METHOD AND SYSTEM FOR ANALYSIS OF MELT CURVES, PARTICULARLY dsDNA AND PROTEIN MELT CURVES
US8271205B2 (en) 2008-09-19 2012-09-18 Corbett Research Pty Ltd Method and system for analysis of melt curves, particularly dsDNA and protein melt curves
RU2423685C1 (en) * 2010-05-20 2011-07-10 Александр Иванович Заико Method of standardisation of convection polymerase chain reaction values with direct fluorescence registration of reaction product accumulation
US20130273547A1 (en) * 2012-04-16 2013-10-17 Samsung Techwin Co., Ltd. Method to determine and correct baseline and to characterize pcr amplification kinetics
US9714447B2 (en) 2013-08-19 2017-07-25 General Electric Company Detection of nucleic acid amplification in a porous substrate

Also Published As

Publication number Publication date
DE60035459T2 (en) 2008-03-20
US20020042051A1 (en) 2002-04-11
EP1059523A2 (en) 2000-12-13
JP2000333700A (en) 2000-12-05
EP1059523A3 (en) 2003-05-21
US6387621B1 (en) 2002-05-14
DE60035459D1 (en) 2007-08-23
ATE366821T1 (en) 2007-08-15
EP1059523B1 (en) 2007-07-11
JP4689004B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US6387621B1 (en) Automated analysis of real-time nucleic acid amplification
US7373253B2 (en) Multi-test analysis of real-time nucleic acid amplification
US7630837B2 (en) Real-time gene quantification with internal standards
US7363168B2 (en) Adaptive baseline algorithm for quantitative PCR
US6232079B1 (en) PCR method for nucleic acid quantification utilizing second or third order rate constants
US7081339B2 (en) Methods for variation detection
EP0686699B1 (en) Apparatus and method for determining the concentration of the target nucleic acid in PCR
AU2002327800A1 (en) Adaptive baseline algorithm for quantitative PCR
CA2129787A1 (en) Monitoring multiple amplification reactions simultaneously and analyzing same
EP1335028B1 (en) Multi-test analysis of real-time nucleic acid amplifications
US20030211482A1 (en) Method for nucleic acid detection

Legal Events

Date Code Title Description
AS Assignment

Owner name: UTAH, UNIVERSITY OF, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WITTWER, CARL T.;REEL/FRAME:012830/0368

Effective date: 20020305

Owner name: UNIVERSITY OF UTAH RESEARCH FOUNDATION, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UTAH, UNIVERSITY OF;REEL/FRAME:012830/0398

Effective date: 20020305

AS Assignment

Owner name: UTAH, UNIVERSITY OF, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WITTWER, CARL T.;REEL/FRAME:012935/0910

Effective date: 20020513

Owner name: UTAH RESEARCH FOUNDATION, UNIVERSITY OF, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UTAH, UNIVERSITY OF;REEL/FRAME:012935/0896

Effective date: 20020514

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION