US20020112991A1 - Version with markings to show changes made - Google Patents

Version with markings to show changes made Download PDF

Info

Publication number
US20020112991A1
US20020112991A1 US10/045,860 US4586001A US2002112991A1 US 20020112991 A1 US20020112991 A1 US 20020112991A1 US 4586001 A US4586001 A US 4586001A US 2002112991 A1 US2002112991 A1 US 2002112991A1
Authority
US
United States
Prior art keywords
catalyst
active component
hydrotreating
component
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/045,860
Inventor
Masahiko Iijima
Takao Hashimoto
Yoshinobu Okayasu
Takeshi Isoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/045,860 priority Critical patent/US20020112991A1/en
Publication of US20020112991A1 publication Critical patent/US20020112991A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only

Definitions

  • This invention relates to a catalyst for hydrotreating and a process for hydrotreating hydrocarbon oils using the same, more particularly to the multi-component solid catalyst with a hydrogenation-active component dispersed uniformly in a matrix of refractory, inorganic oxide, and the process for hydro-treating hydrocarbon oils using the same.
  • a refractory inorganic oxide e.g., alumina, silica, magnesia and zirconia
  • the hydrogenation-active component is selected from the group consisting of the group 6A elements (e.g., molybdenum, tungsten and chromium) and the group 8 elements (e.g., cobalt and nickel).
  • One of the widely used methods for producing these catalysts is impregnation, in which a carrier is impregnated with an aqueous solution of a group 6A element and group 8 element, dried and calcined.
  • a carrier is impregnated with an aqueous solution of a group 6A element and group 8 element, dried and calcined.
  • One of the disadvantages involved in the impregnation method is difficulty in dispersing the active component highly uniformly, because it is highly mobile during the catalyst production process from adsorption or precipitation to completion of drying. This mobility comes from the weak bond between the active component and carrier, because the carrier is impregnated, after it is prepared, with a solution of the active component, with the result that it is merely adsorbed or precipitated on the carrier.
  • the conventional catalyst tends to suffer lack of homogeneity and decreased number of active sites, when content of the active component is optimized to enhance catalyst hydrotreating activity. This tends to limit its activity. Therefore, new techniques for the catalysts of high homogeneity and activity have been increasingly in demand.
  • Japanese Laid-open Patent Application No. 83603/1986 discloses a method for producing a homogeneous, amorphous complex metal oxide. This method, however, involves several disadvantages. First, satisfying the amorphous condition tends to limit content of the hydrogenation-active component, and hence catalyst activity for hydrotreating.
  • a carrier containing crystalline compound e.g., ⁇ -Al 2 O 3 , which has an effective function as the carrier for hydrotreating catalyst is no longer used for this method.
  • An amorphous metal oxide is unstable and low in mechanical strength, and hence unsuitable for a commercial catalyst which is required to exhibit long serviceability.
  • a high-activity hydrotreating catalyst with a hydrogenation-active component highly dispersed, high in homogeneity and containing a crystalline component, which is also high in desulfurization activity for hydrotreating hydrocarbon oil, and also excellent in activity for, e.g., denitrogenation, dearomatization and cracking and which can treat diversified types of hydrocarbon oils, e.g., hydrodesulfurization, hydrodenitrogenation, hydrodearomatization, hydroisomerization, hydrocracking, hydrodewaxing, hydrodemetallization, in particular deep hydrodesulfurization of a diesel fuel fraction.
  • the inventors of the present invention have found, after having conducted extensive studies, that the catalyst comprising a refractory inorganic oxide matrix dispersed with a hydrogenation-active component, high in homogeneity and containing a crystalline component shows high activity for hydrotreating (e.g., hydrodesulfurizing) a hydrocarbon oil.
  • hydrotreating e.g., hydrodesulfurizing
  • the present invention provides a hydrotreating catalyst containing a crystalline component comprising a refractory inorganic oxide matrix dispersed with a hydrogenation-active component,
  • said hydrogenation-active component comprising at least one active component (A) selected from group 6A elements, and/or at least one active component (B) selected from the group 8 elements, wherein
  • total content of said hydrogenation-active component is 0.02 moles to 0.4 moles per mole of all of the elements that constitute the catalyst
  • N max , N min and N 0 are the maximum, minimum and average contents of the hydrogenation-active component, determined by the EPMA line analysis), or following relationship (2), established by the EPMA plane analysis:
  • S parameter and P parameter are an index for size uniformity and distribution of the active component particles, respectively, determined by the EPMA plane analysis
  • the present invention also provides a process for hydrotreating a hydrocarbon oil, where the oil is brought into contact with hydrogen under hydrotreating conditions in the presence of the above hydrotreating catalyst.
  • FIG. 1 is an X-ray diffraction pattern of the hydrotreating catalyst prepared by EXAMPLE 2.
  • FIG. 2 is an X-ray diffraction pattern of the hydrotreating catalyst prepared by COMPARATIVE EXAMPLE 3.
  • the hydrotreating catalyst of the present invention comprises a refractory inorganic oxide matrix uniformly dispersed with a hydrogenation-active component, high in homogeneity and containing a crystalline component and satisfying the following conditions (1), (2) and (3):
  • total content of said hydrogenation-active component is 0.02moles to 0.4 moles per mole of all of the elements that constitute the catalyst.
  • the total content is expressed as the sum content of the components.
  • the hydrotreating catalyst is able to exhibit high uniformity, when each of its active components satisfies the relationship (1) or (2),
  • N max , N min and N 0 are the maximum, minimum and average contents of the hydrogenation-active component in the variation range, determined by the EPMA line analysis.
  • the compounds useful for the refractory inorganic matrix as the constituent of the hydrotreating catalyst of the present invention include alumina, silica, magnesia, calcium oxide, boria, zirconia, titania, thoria, ceria, hafnia, phosphorus oxide, and various other metal oxides.
  • oxide compositions having two or more oxides can be used.
  • alumina-silica alumina-magnesia, alumina-boria, alumina-zirconia, alumina-thoria, alumina-titania-zirconia, silica-magnesia, silica-zirconia, silica-boria, silica-thoria and silica-titania.
  • the preferable refractory inorganic oxide matrix for the present invention comprises alumina and silica, which may be incorporated with a third component, e.g., magnesia, boria, titania, zirconia, ceria, hafnia, thoria and phosphorus oxide. More concretely, these composites include alumina-silica-boria, alumina-silica-titania, alumina-silica-zirconia, alumina-silica-ceria, alumina-silica-magnesia, alumina-silica-halfnia, alumina-silica-phosphorus oxide and alumina-silica-boria-phosphorus oxide.
  • a third component e.g., magnesia, boria, titania, zirconia, ceria, hafnia, thoria and phosphorus oxide.
  • these composites include alumina-silica-boria, alumina
  • the above refractory inorganic oxide matrix of alumina, silica or alumina-silica may be incorporated with a zeolite or clay material, e.g., montmorillonite, kaolinite, halloysite, bentonite and attapulgite, to form the refractory inorganic oxide matrix component.
  • a zeolite or clay material e.g., montmorillonite, kaolinite, halloysite, bentonite and attapulgite
  • the hydrogenation-active component which constitutes the hydrotreating catalyst of the present invention is uniformly dispersed in the above refractory inorganic oxide matrix.
  • the hydrogenation-active component comprises at least one active component (A) selected from the group consisting of the group 6A elements, and/or at least one active component (B) selected from the group consisting of the group 8 elements. It may be further incorporated with an active component (C) selected from the group consisting of the group 1 B, group 2B and group 7A elements.
  • the group 6A elements useful for the active component (A) include chromium, molybdenum and tungsten, of which molybdenum and tungsten are more preferable. Molybdenum is most preferable. They may be used either individually or in combination.
  • the elements useful for the active component (B) include iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, of which cobalt, nickel, ruthenium, rhodium, palladium, iridium and platinum are preferable. More preferable active components include cobalt, nickel and platinum. Cobalt and nickel are most preferable. They may be used either individually or in combination.
  • the elements useful for the active component (C), selected from the group 1B, group 2B and group 7A elements, include copper, zinc, manganese and rhenium. They may be used individually, but preferably in combination with the active components (A) and (B).
  • Total content of the active components (A), (B) and (C) for the hydrotreating catalyst of the present invention is 0.02 moles to 0.4 moles per mole of all of the elements that constitute the catalyst, preferably 0.024 mol/mol to 0.25 mol/mol. Reaction activity or the like of the catalyst will be insufficient at an active component content below 0.02 mol/mol. Securing the content within the above range realizes the catalyst high in homogeneity, containing a crystalline component and hence high in activity.
  • “Homogeneity” of the hydrotreating catalyst of the present invention means that the refractory inorganic oxide matrix is uniformly dispersed with the active component particles of uniform size. More concretely, the following conditions are simultaneously satisfied:
  • the particles of the hydrogenation-active component, comprising the active components (A), (B) and (C), to be dispersed in the refractory inorganic oxide matrix are uniformly sized, and
  • the catalyst will have high activity, when the active component particles are highly uniform in size and dispersed highly uniformly (i.e., at constant intervals), because it will have the active sites distributed widely and uniformly.
  • Homogeneity of the hydrotreating catalyst of the present invention is determined by electron probe microanalysis (referred to as “EPMA”, as required). More concretely, EPMA line analysis or plane analysis is used, depending on size of the active component particles and distance between these particles, and the results are used to determine homogeneity.
  • EPMA line analysis determines concentration distribution of the active component of the group 6A element and/or group 8 element or the like in the catalyst section, trying to evaluate homogeneity based on the EPMA line analysis data obtained by numerically expressing variation range.
  • the inventors of the present invention have found, after having analyzed a number of experimental results, that a catalyst is highly homogeneous and shows notable effects of hydrotreating, e.g., hydrodesulfurization, when it satisfies the following relationship:
  • N max , N min and N 0 are the maximum, minimum and average contents of the hydrogenation-active component in the variation range of the catalyst section, determined by EPMA line analysis.
  • Any hydrogenation-active component is to be evaluated by the EPMA line analysis when it is present at 0.002 mol/mol or more in the catalyst.
  • each is to be evaluated, needless to say when one type of the hydrogenation-active component is present.
  • the inventors of the present invention have found that activity of the catalyst is not greatly affected by its homogeneity, when the hydrogenation-active component is present at below 0.002 mol/mol. Therefore, activity of the catalyst for, e.g., desulfurization, can be sufficiently evaluated, when homogeneity of each hydrogenation-active component present at 0.002 mol/mol or more is measured.
  • the hydrogenation-active component includes the above-described active components (A), (B) and (C). Each component should satisfy the relationship (1), when it is present at 0.002 mol/mol or more.
  • the EPMA plane analysis measures size and size distribution morphology of the active component particles, processing images to numerically express uniformity of the size and its distribution.
  • S parameter and P parameter are an index for size uniformity and distribution uniformity of the active component particles, respectively, each determined by processing the images obtained by the EPMA plane analysis.
  • the hydrotreating catalyst of the present invention contains a crystalline component, which represents another characteristic of the present invention together with its homogeneity. Its presence is judged when one or more diffraction lines are observed in the spectral pattern obtained by X-ray diffraction analysis (XRD).
  • XRD X-ray diffraction analysis
  • FIG. 1 shows the XRD spectral pattern of the catalyst prepared by EXAMPLE 2. As shown, the sharp peaks relevant to the crystalline system are observed at specific diffraction angles.
  • FIG. 2 gives the XRD spectral pattern of the catalyst prepared by COMPARATIVE EXAMPLE 3, showing no crystal-derived diffraction line, indicating that the catalyst is amorphous.
  • a catalyst when containing a crystalline component, shows higher activity because of its capacity to contain a larger quantity of the active component. It will show still higher activity, when it contains a component having a crystalline compound such as ⁇ -Al 2 O 3 known to exhibit an effective function as a refractory inorganic oxide. Moreover, a crystalline component will secure a sufficient strength, and hence serviceability, for a commercial hydrotreating catalyst.
  • the method for producing the hydrotreating catalyst of the present invention is not limited, but the one suitable for the present invention is coprecipitation, which simultaneously precipitates two or more catalyst components from a mixture which contains at least one hydrogenation-active component.
  • oxygenated organometallic compounds as the starting materials for the refractory inorganic oxide matrix and inorganic metal salt as the starting material for the hydrogenation-active component are dissolved in a non-aqueous solvent, to prepare a homogeneous solution,
  • the compounds useful as the starting material for the refractory inorganic oxide matrix include alkoxides, acetylacetonates and carboxylates of aluminum, silicon, magnesium, calcium, boron, zirconium, titanium, thorium, cerium, hafnium and gallium, of which alkoxides with an alkoxyl group having a carbon number of I to 5 are preferable for their easiness of handling.
  • the compounds useful as the starting materials for the hydrogenation-active component include the inorganic metal salts described earlier. More concretely, they include nitrates, chlorides, oxychlorides and sulfides of molybdenum, tungsten, chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, zinc, manganese and rhenium; and ammonium salts of the acids of the above metals.
  • organic metal salts e.g., acetates, oxalates and alkoxides, may be also used.
  • the non-aqueous solvents useful for the present invention include monoalcohols, divalent alcohols, ketoalcohols, aminoalcohols and carboxylic acids. Quantity of the reaction material may be determined, depending on content of the desired catalytic component.
  • the homogeneous solution can be prepared by dissolving oxygenated organometallic compounds (e.g., aluminum alkoxide and silicon alkoxide) in a non-aqueous solvent with stirring, to which an inorganic metal salt (e.g., ammonium molybdate, or nitrate of cobalt or nickel) is added with stirring, to form the homogeneous solution.
  • an inorganic metal salt e.g., ammonium molybdate, or nitrate of cobalt or nickel
  • Aqueous solutions of ammonium molybdate, and nitrate of cobalt or nickel, or the like may be added in the subsequent step (2) to the homogeneous solution prepared in the step (1) by dissolving aluminum alkoxide and silicon alkoxide in a non-aqueous solvent with stirring.
  • the hydrotreating catalyst of the present invention high in homogeneity, containing a crystalline component and satisfying the relationship (1) or (2) described earlier can be produced by, in particular, controlling, e.g., temperature, pressure, stirring conditions, size of the gel particles, gel particle concentration, and quantity of hydrolyzing water in the precipitant solution, in the step (2) as the sol-preparation step.
  • the non-aqueous solvent is preferably used at 0.1 moles to 50 moles per mole of the total metallic and semi-metallic elements and phosphorus which constitute the hydrotreating catalyst, more preferably 1 mol/mol to 20 mol/mol. It is essential to avoid use of an excessive quantity of the solvent while controlling the reaction conditions in such a way to form the stable, fluid gel slurry, in order to prepare the catalyst of high homogeneity.
  • the gel slurry is held at 50° C. to 99° C. preferably for at least 1 hour.
  • This aging step mainly controls pore characteristics of the catalyst, to enhance its reaction activity.
  • the aged gel slurry as the catalyst precursor is treated by filtration, settling, centrifugal separation or evaporation to adjust content of the water-containing solvent, and formed into a shape by tablet making, extrusion, rotary granulation or the like.
  • the catalyst may be cylindrical, table-shaped, spherical or others, such as that having a four-leaf section. It is important for the catalyst to have a shape and size which allow to control packing density in the reactor. It is preferable to adjust size of the catalyst pellets, which is porous, for increasing packing density. Catalyst diameter is normally in a range from 0.5 mm to 20 mm on the average, viewed from increasing packing density and controlling pressure loss.
  • the catalyst pellets formed in the step (3) are then dried and calcined in the step (4). They may be dried by one of many methods, e.g., air-drying, drying in hot wind, drying under heating and freeze drying. They are calcined at 150° C. to 700° C. at which they are held for 1 hour to 20 hours in an oxidative, reducing, inert, sulfiding, nitriding, carbonizing or steam atmosphere depending on their specific purposes.
  • the hydrotreating catalyst of the present invention has a specific surface area of 10 m 2 /g to 1000 m 2 /g (preferably 200 m 2 /g to 800 m 2 /g), total pore volume of 0.1 ml/g to 2 ml/g (preferably 0.2 ml/g to 1.5 ml/g) and average pore diameter of 4 ⁇ to 1000 ⁇ (preferably 10 ⁇ to 600 ⁇ ), is high in homogeneity, contains a crystalline component, and is suitable as the catalyst for hydrotreating a hydro-carbon oil.
  • the present invention provides a hydrotreating catalyst, applicable to all types of the reactions proceeding in the presence of hydrogen, in particular hydrofinishing, hydrodesulfurization, hydrodenitrogenation, hydrodearomatization, hydroisomerization, hydrocracking, hydrodewaxing, hydrodemetallization and the like.
  • the process of the present invention for hydrotreating a hydrocarbon oil is described as follows.
  • the hydrotreating process of the present invention includes all of the reactions, e.g., hydrofining, hydrodesulfurization, hydrodenitrogenation, hydrodearomatization, hydroisomerization, hydrocracking, hydrodewaxing, hydrodemetallization, occurring when hydrocarbon oils are brought into contact with hydrogen in the presence of the hydrotreating catalyst of the present invention under hydrotreating conditions.
  • the hydrotreating conditions can be optionally selected for the desired reactions.
  • the hydrotreating catalyst of the present invention is particularly suitable for the hydrodesulfurization of hydrocarbon oils.
  • Hydrocarbon oils which can be treated by the hydrotreating process of the present invention are not limited. They include petroleum-derived oils, e.g., atmospheric distillates, atmospheric residue, vacuum distillates, vacuum residue, cracked distillates, raffinates, hydrotreated oils, deasphalted oils, slack wax, Fischer-Tropsch wax and a mixture thereof. They also include oils derived from tar sand, shale oil, coal-liquefied oil, and a mixture thereof.
  • the catalyst of the present invention is particularly suitable for treating vacuum, cracked and straight-run distillates to remove their sulfur- and nitrogen-containing compounds which are difficult to remove.
  • a vacuum distillate produced by treating atmospheric residue under a vacuum, boils at around 370° C. to 610° C., and contains significant quantities of sulfur, nitrogen and metals, e.g., at 2.0 wt. % and 800 wt.ppm for sulfur and nitrogen.
  • the sulfur-containing compounds include 4-methylbenzothiophene and 4,6-dimethyl-benzothiophene.
  • the nitrogen-containing compounds include pyridines, amines and amides which are basic, and pyrroles which are weakly basic.
  • the metals include nickel, vanadium and iron.
  • the catalyst produced by the method of the present invention can treat these vacuum distillates most efficiently to remove sulfur and nitrogen.
  • Cracked distillates are the fractions boiling at around 200° C. or higher, produced by thermal cracking (e.g., coking or visbreaking) of residue, or light cycle gas oil (LCGO) or heavy cycle gas oil (HCGO) produced by a fluid catalytic cracking unit.
  • thermal cracking e.g., coking or visbreaking
  • LCGO light cycle gas oil
  • HCGO heavy cycle gas oil
  • the atmospheric distillates which can be treated by the hydrotreating process of the present invention include straight-run naphtha, heavy naphtha and kerosene fractions. They also include gasoline components produced by various cracking units, e.g., catalytically cracked naphtha, thermally cracked naphtha and steam-cracked naphtha, and other light fractions used as fuel components which boil at around 250° C. or lower.
  • various cracking units e.g., catalytically cracked naphtha, thermally cracked naphtha and steam-cracked naphtha, and other light fractions used as fuel components which boil at around 250° C. or lower.
  • the hydrotreating conditions are not limited. They can be adequately selected for specific situations, e.g., type of hydrocarbon oil to be treated and desired reactions, and target desulfurization and denitrogenation levels.
  • the preferable conditions are reaction temperature: 150° C. to 500° C., more preferably 200° C. to 450° C.; reaction pressure: 1 kg/cm 2 to 350 kg/cm 2 , more preferably 5 kg/cm to 300 kg/cm 2 ; hydrogen-containing treat gas rate: 301/1 to 2000 1/1, more preferably 351/1 to 1800 1/1; and liquid hourly space velocity: 0.01 V/H/V to 20.0 V/H/V, more preferably 0.05 V/H/V to 10.0 V/H/V.
  • Hydrogen content in treat gas is normally in a range from 60% to 100%.
  • the hydrotreating catalyst of the present invention exhibits high activities for, e.g., desulfurization, denitrogenation and dearomatization and also high activity maintenance capacity therefor, and can achieve with stability required performance, e.g., desulfurization rate, for extended periods under the severe conditions which would deactivate the conventional catalyst in a short time, in particular under low reaction pressure.
  • Hydrotreatment of a hydrocarbon oil over the catalyst of the present invention can be effected in any type of reactor, e.g., fixed, fluidized, ebullated or moving bed type.
  • a fixed bed type is a normal choice, for its simpler process and higher operability.
  • Two or more reactors may be connected in series for deeper hydrotreatment. This is a particularly preferable configuration, when heavy oil is to be treated.
  • Hydrocarbon oil may be brought into contact with a hydrogen-containing treat gas either co-currently or counter-currently.
  • the catalyst sample embedded in a polyester resin was cut to produce a smooth section, which was coated with carbon black.
  • Beam size 1 ⁇ m in diameter
  • EPMA line analysis The catalyst was measured in the diametral direction at intervals of 1 ⁇ m steps.
  • EPMA plane analysis Distribution of each element was analyzed in a square 200 by 140 ⁇ m.
  • X-ray diffraction X-ray diffraction
  • the catalyst sample was analyzed by an X-ray diffractometer (Philips, goniometer, PW1820/00, high-voltage generator: PW1730/10, controller: PW1710/00, software: PW1877PC-APD ver. 3.6 g) under the following conditions: Tube anode Cu Generator tension 40 kV Generator current 40 mA Divergence slit AUTOMATIC Receiving slit 0.2 Sample spinner ON Monochrometer used YES Start angle 20° End angle 75° Step size 0.02 Time per step 20
  • a homogeneous solution of 130.1 g of aluminum isopropoxide [Al(i—OC 3 H 7 ) 3 ] dissolved in 820.7 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 13.9 g of tetraethoxysilane [Si(OC 2 H 5 ) 4 ] was added with stirring at 80° C. for 3 hours.
  • the slurry On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NCMSAH19. Its chemical composition is given in Table 1.
  • the catalyst NCMSAH19 had a hydrogenation-active component at 0.051 mol/mol, and N max : 812, N min : 486 and N 0 : 685 for the Mo component, N max : 1370, N min : 899 and N 0 : 1147 for the Co component, and N max : 366, N min : 171 and N 0 : 257 for the Ni component as the EPMA line analysis results.
  • Tables 7 and 8 gives properties and reaction activities of the catalysts prepared in EXAMPLES and COMPARATIVE EXAMPLES, respectively.
  • a homogeneous solution of 116.4 g of aluminum isopropoxide [Al(i-OC 3 H 7 ) 3 ] dissolved in 849.9 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 12.4 g of tetraethoxysilane [Si(OC 2 H 5 ) 4 ] was added with stirring at 80° C. for 3 hours.
  • the slurry On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NCMSAH23. Its chemical composition is given in Table 1.
  • the catalyst NCMSAH23 had a hydrogenation-active component at 0.069 mol/mol, and N max : 1150, N min : 630 and N 0 : 925 for the Mo component, N max : 2104, N min : 1250 and N 0 : 1627 for the Co component, and N max : 378, N min : 175 and N 0 : 275 for the Ni component as the EPMA line analysis results.
  • the slurry On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst CMPDSAH02.
  • the catalyst CMPDSAH02 had a hydrogenation-active component at 0.068 mol/mol, and N max : 1209, N min : 664 and N 0 : 993 for the Mo component, N max : 2232, N min : 1382 and N 0 : 1713 for the Co component, and N max : 0, N min : 0 and N 0 : 0 for the Pd component as the EPMA line analysis results.
  • the slurry On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NMPt/20862R1.
  • the catalyst NMPt/20862R1 had a hydrogenation-active component at 0.027 mol/mol, and N max : 544, N min : 269 and N 0 : 417 for the Mo component, N max : 745, N min : 402 and N 0 : 575 for the Co component, and N max : 0, N min : 0 and N 0 : 0 for the Pt component as the EPMA line analysis results.
  • a homogeneous solution of 84.1 g of aluminum isopropoxide [Al(i-OC 3 H 7 ) 3 ] dissolved in 829.6 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 72.8 g of tetraethoxysilane [Si(OC 2 H 5 ) 4 ] was added with stirring at 80° C. for 3 hours.
  • the slurry On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NMZ/50SAH13R3.
  • the catalyst NMZ/50SAH13R3 F had a hydrogenation-active component at 0.027 mol/mol, and N max : 471, N min : 235 and N 0 : 352 for the Mo component, N max : 833, N min : 437 and N 0 : 626 for the Ni component, and N max : 654, N min : 328 and N 0 : 492 for the Zn component as the EPMA line analysis results.
  • the slurry On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NM/ZSAH03.
  • the catalyst NM/ZSAH03 had a hydrogenation-active component at 0.054 mol/mol, and N max : 855, N min : 512 and N 0 : 722 for the Mo component, and N max : 1178, N min : 666 and N 0 : 910 for the Ni component as the EPMA line analysis results.
  • the mixed solution was adjusted at pH 8.8 to 9.2 with nitric acid, and aged at around 70° C. for around 0.5 hours, to form a slurry solution containing precipitated particles of alumina hydrate covered with silica hydrate.
  • This slurry was filtrated, and the separated cake was washed with an aqueous solution of ammonium carbonate, until sodium content in the filtrate was decreased to 5 ppm or less.
  • the cake was dried at 80° C. in a kneader to a moisture content at which it was moldable, and extruded into cylindrical pellets, 1.5 mm in diameter.
  • the pellets were dried at 120° C. for 16 hours and calcined at 700° C. for 3 hours, to prepare the carrier.
  • the carrier was impregnated with an aqueous solution of ammonium 7-molybdate, and dried at 120° C. and calcined at 450° C. It was then impregnated with an aqueous solution of cobalt nitrate and nickel nitrate, and dried at 120° C. and calcined at 500° C., to prepare the comparative catalyst (a).
  • the comparative catalyst (a) had a hydrogenation-active component at 0.051 mol/mol, and N max : 1531, N min : 723 and N 0 : 1179 for the Mo component, N max : 1289, N min : 702 and N 0 : 1019 for the Co component, and N max : 349, N min : 128 and N 0 : 258 for the Ni component as the EPMA line analysis results.
  • the effluent solution was aged at 90° C. for 72 hours, evaporated and solidified by a rotary evaporator, and calcined at 650° C. for 5 hours in a flow of air.
  • the green compact thus prepared was molded by a tablet maker, 20 mm in diameter, at 2 tons/cm 2 , into a carrier of 11%SiO 2 -Al 2 O 3 .
  • the carrier was impregnated with active metals by the following procedure:
  • the impregnation solution was prepared by dissolving 11.2 g of 12-molybdo-1-phosphoric acid [H 3 (PM 12 O 40 .6H 2 O)], 9.7 g of cobalt nitrate [Co(NO 3 ) 2 .6H 2 O)], 2.3 g of nickel nitrate [Ni(NO 3 ) 2 .6H 2 O)] and 5.8 g of citric acid in 44 g of a mixed solution of ammonia water and pure water, where ammonia water/pure water ratio was adjusted to make the solution with the solutes completely dissolved at pH 9.
  • the carrier was mixed with the impregnation solution by adding the latter dropwise onto the former.
  • the impregnated carrier was dried at 110° C. all night, and calcined at 500° C. for 3 hours in a flow of air, to prepare the comparative catalyst (b).
  • the comparative catalyst (b) thus prepared had a composition of silica: 8.0 wt. %, alumina: 65.0 wt. %, molybdenum oxide: 20.0 wt. %, cobalt oxide: 5.0 wt. %, nickel oxide: 1.2 wt. % and phosphorus oxide: 0.8 wt. %, and properties of specific surface area: 244 m 2 /g and total pore volume: 0.43 ml/g.
  • the comparative catalyst (b) had a hydrogenation-active component at 0.051 mol/mol, and N max : 1392, N min : 759 and N 0 : 1072 for the Mo component, N max : 1228, N min : 737 and N 0 : 926 for the Co component, and N max : 367, N min : 155 and N 0 : 245 for the Ni component as the EPMA line analysis results.
  • the comparative catalyst (c) had N max : 193, N min : 82 and N 0 : 121 for the Ru component as the EPMA line analysis results, which satisfied the relationship (1). However, it showed no diffraction line in the XRD pattern (FIG. 2). It had a hydrogenation-active component at 0.007 mol/mol.
  • the catalyst was heated from room temperature to 200° C. in 30 min, at which it was held for 30 min, to 340° C. in 30 min, at which it was held for 2 hours, and then cooled to 200° C. in 30 min.
  • LGO-D (approximately 25 cc) was introduced into the reactor when the sulfided catalyst was cooled to 170° C. After LGO-D went through the catalyst bed, reactor pressure was increased, and then temperature was also increased to 320° C. in 30 min, for the HDS reactions. Catalyst HDS activity was determined by measuring sulfur content of the product obtained 10 hours after LGO-D was charged.
  • HDS activity was determined by the following formula:
  • HDS activity (Liquid Hourly Space Velocity per Unit Catalyst Weight) ⁇ [1 /S 0.5 ⁇ 1 /S 0 0.5 ]
  • S and S 0 are sulfur contents of the product and feed.
  • HDS hydrodesulfurization
  • HDN hydrodenitrogenation
  • HDA hydrodearomatization
  • HI hydroisomerization
  • HC hydrocracking
  • the catalyst was heated from room temperature to 200° C. in 30 min, at which it was held for 30 min, to 340° C. in 30 min, at which it was held for 2 hours, and then cooled to 200° C. in 30 min.
  • test oil for each test was passed into the reactor when the sulfided catalyst was cooled to 200° C.
  • reactor pressure was increased to 9 kg/cm 2 -G, and then temperature was also increased to 310° C. in 30 min, for the hydrotreating reactions under the conditions given in Table 4.
  • Hydrodesulfurization(HDS), hydrodenitrogenation(HDN), hydrodearomatization (HDA), hydroisomerization(HI), and hydrocracking(HC) activities were determined by the following formulae:
  • HDS activity ( DBT ) (Liquid Hourly Space Velocity per Unit Catalyst Weight) ⁇ [( N DBT,0 ⁇ N DBT )/( N DBT,0 )]
  • N DBT and N DBT,0 are dibenzothiophene contents of the product and feed.
  • HDS activity (4,6 DMDBT ) (Liquid Hourly Space Velocity per Unit Catalyst Weight) ⁇ [( N 4,6DMDBT,0 ⁇ N 4,6DMDBT )/( N 4,6DMDBT,0 )]
  • N 4,6DMDBT and N 4,6DMDBT,0 are 4,6 dimethyldibenzothiophene contents of the product and feed.
  • HDN activity (Liquid Hourly Space Velocity per Unit Catalyst Weight) ⁇ ( N N )/( N N,0 ⁇ N N )
  • N N,0 is quinoline content of the feed and N N is a total content of propylcyclohexane, propylcyclohexane and propylbenzene in the product.
  • HDA activity (Liquid Hourly Space Velocity per Unit Catalyst Weight) ⁇ ( N A )/( N A,0 ⁇ N A )
  • N A,0 is 1-methylnaphthalene content of the feed and N A is a total content of 2-methylnaphthalene, methyl tetralin, methyl decalin, alkyl benzene and alkyl toluene in the product.
  • HI activity (Total area of peaks at a retention time of 9.40 to 10.14 in the gas chromatogram obtained under the conditions given in Table 4,% on total area of all peaks).
  • HC activity (Total area of peaks at a retention time of 4.8 to 5.18 in the gas chromatogram obtained under the conditions given in Table 4,% on total area of all peaks).
  • hydrotreating catalyst of the present invention shows especially high activities for desulfurization (e.g., of 4,6-DMDBT) and isomerization, when incorporated with selected active component(s), e.g., the catalyst prepared by EXAMPLE 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A high-activity hydrotreating catalyst containing a uniformly dispersed active component at a high concentration, and particularly useful for deep desulfurization of a hydrocarbon oil for its high hydrodesulfurization activity. The present invention also provides a hydrotreating process using the same catalyst.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 09/652,954, filed Aug. 31, 2000, which claims priority to Japanese Patent Application No. 287424/1999, filed Oct. 7, 1999, which is incorporated herein by reference. [0001]
  • FIELD OF THE INVENTION
  • This invention relates to a catalyst for hydrotreating and a process for hydrotreating hydrocarbon oils using the same, more particularly to the multi-component solid catalyst with a hydrogenation-active component dispersed uniformly in a matrix of refractory, inorganic oxide, and the process for hydro-treating hydrocarbon oils using the same. [0002]
  • BACKGOUND OF THE INVENTION
  • Various types of catalysts have been proposed for hydrotreating hydrocarbon oils, e.g., those with one or more hydrogenation-active components carried by a refractory inorganic oxide (e.g., alumina, silica, magnesia and zirconia), and the hydrogenation-active component is selected from the group consisting of the group 6A elements (e.g., molybdenum, tungsten and chromium) and the group 8 elements (e.g., cobalt and nickel). [0003]
  • One of the widely used methods for producing these catalysts is impregnation, in which a carrier is impregnated with an aqueous solution of a group 6A element and group 8 element, dried and calcined. One of the disadvantages involved in the impregnation method is difficulty in dispersing the active component highly uniformly, because it is highly mobile during the catalyst production process from adsorption or precipitation to completion of drying. This mobility comes from the weak bond between the active component and carrier, because the carrier is impregnated, after it is prepared, with a solution of the active component, with the result that it is merely adsorbed or precipitated on the carrier. [0004]
  • Other disadvantages are limited content of the active component and difficulty in controlling the content in an optimum range. The active component is immobilized on the already prepared carrier, by which is meant that content of the active component tends to be limited by total pore volume of the carrier. [0005]
  • The conventional catalyst, therefore, tends to suffer lack of homogeneity and decreased number of active sites, when content of the active component is optimized to enhance catalyst hydrotreating activity. This tends to limit its activity. Therefore, new techniques for the catalysts of high homogeneity and activity have been increasingly in demand. As one of the attempts to realize such a catalyst, Japanese Laid-open Patent Application No. 83603/1986 discloses a method for producing a homogeneous, amorphous complex metal oxide. This method, however, involves several disadvantages. First, satisfying the amorphous condition tends to limit content of the hydrogenation-active component, and hence catalyst activity for hydrotreating. A carrier containing crystalline compound, e.g., □-Al[0006] 2O3, which has an effective function as the carrier for hydrotreating catalyst is no longer used for this method. An amorphous metal oxide is unstable and low in mechanical strength, and hence unsuitable for a commercial catalyst which is required to exhibit long serviceability.
  • Recently, reduction of sulfur content of gas oil is strongly required for environmental reasons, especially by deep desulfurization of stocks of high sulfur contents, e.g., light gas oil (LGO), vacuum gas oil (VGO) and cracked gas oil. In particular, sulfur content of diesel fuel oil is required to be reduced to 0.05 wt. % or lower. The techniques to achieve the required desulfurization level have been studied from wide angles, and it is now considered that whether this is achieved or not largely depends on whether sulfur compounds difficult to remove, e.g., 4-methyl dibenzothiophene and 4-6-dimethyl dibenzothiophene, are efficiently desulfurized. Development of catalysts of higher activity is essential also viewed from the above point. [0007]
  • It would be desirable to provide a high-activity hydrotreating catalyst, with a hydrogenation-active component highly dispersed, high in homogeneity and containing a crystalline component, which is also high in desulfurization activity for hydrotreating hydrocarbon oil, and also excellent in activity for, e.g., denitrogenation, dearomatization and cracking and which can treat diversified types of hydrocarbon oils, e.g., hydrodesulfurization, hydrodenitrogenation, hydrodearomatization, hydroisomerization, hydrocracking, hydrodewaxing, hydrodemetallization, in particular deep hydrodesulfurization of a diesel fuel fraction. [0008]
  • SUMMARY OF THE INVENTION
  • The inventors of the present invention have found, after having conducted extensive studies, that the catalyst comprising a refractory inorganic oxide matrix dispersed with a hydrogenation-active component, high in homogeneity and containing a crystalline component shows high activity for hydrotreating (e.g., hydrodesulfurizing) a hydrocarbon oil. [0009]
  • The present invention provides a hydrotreating catalyst containing a crystalline component comprising a refractory inorganic oxide matrix dispersed with a hydrogenation-active component, [0010]
  • said hydrogenation-active component comprising at least one active component (A) selected from group 6A elements, and/or at least one active component (B) selected from the group 8 elements, wherein [0011]
  • (1) total content of said hydrogenation-active component is 0.02 moles to 0.4 moles per mole of all of the elements that constitute the catalyst, [0012]
  • (2) of said hydrogenation-active component, any one, when present at 0.002 mol/mol or more, satisfies the following relationship (1), established by the electron probe microanalysis (“EPMA”) line analysis: [0013]
  • N max-N min≦2×[3×(N 0)0.5+0.2×N 0]  (1)
  • (N[0014] max, Nmin and N0 are the maximum, minimum and average contents of the hydrogenation-active component, determined by the EPMA line analysis), or following relationship (2), established by the EPMA plane analysis:
  • 0.8≦S parameter<1, 0.8≦P parameter<1  (2)
  • (S parameter and P parameter are an index for size uniformity and distribution of the active component particles, respectively, determined by the EPMA plane analysis), and [0015]
  • (3) one or more diffraction lines relevant to crystalline component are observed by powder X-ray diffraction analysis. [0016]
  • The present invention also provides a process for hydrotreating a hydrocarbon oil, where the oil is brought into contact with hydrogen under hydrotreating conditions in the presence of the above hydrotreating catalyst. [0017]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is an X-ray diffraction pattern of the hydrotreating catalyst prepared by EXAMPLE 2. [0018]
  • FIG. 2 is an X-ray diffraction pattern of the hydrotreating catalyst prepared by COMPARATIVE EXAMPLE 3.[0019]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The hydrotreating catalyst of the present invention comprises a refractory inorganic oxide matrix uniformly dispersed with a hydrogenation-active component, high in homogeneity and containing a crystalline component and satisfying the following conditions (1), (2) and (3): [0020]
  • (1) First, total content of said hydrogenation-active component is 0.02moles to 0.4 moles per mole of all of the elements that constitute the catalyst. When two or more hydrogenation-active components are present, the total content is expressed as the sum content of the components. [0021]
  • (2) Secondly, of said hydrogenation-active component, any one, when present at 0.002 mol/mol or more, satisfies the following relationship (1), established by the EPMA line analysis: [0022]
  • N max-N min≦2×[3×(N 0)0.5+0.2×N 0]  (1)
  • or following relationship (2), established by the EPMA plane analysis: [0023]
  • 0.8≦S parameter<1, 0.8≦P parameter<1  (2)
  • The hydrotreating catalyst is able to exhibit high uniformity, when each of its active components satisfies the relationship (1) or (2), [0024]
  • (3) Thirdly, one or more diffraction lines relevant to crystalline component are observed by powder X-ray diffraction analysis. [0025]
  • In the relationship (1), N[0026] max, Nmin and N0 are the maximum, minimum and average contents of the hydrogenation-active component in the variation range, determined by the EPMA line analysis.
  • The compounds useful for the refractory inorganic matrix as the constituent of the hydrotreating catalyst of the present invention include alumina, silica, magnesia, calcium oxide, boria, zirconia, titania, thoria, ceria, hafnia, phosphorus oxide, and various other metal oxides. In particular, oxide compositions having two or more oxides can be used. These include alumina-silica, alumina-magnesia, alumina-boria, alumina-zirconia, alumina-thoria, alumina-titania-zirconia, silica-magnesia, silica-zirconia, silica-boria, silica-thoria and silica-titania. [0027]
  • The preferable refractory inorganic oxide matrix for the present invention comprises alumina and silica, which may be incorporated with a third component, e.g., magnesia, boria, titania, zirconia, ceria, hafnia, thoria and phosphorus oxide. More concretely, these composites include alumina-silica-boria, alumina-silica-titania, alumina-silica-zirconia, alumina-silica-ceria, alumina-silica-magnesia, alumina-silica-halfnia, alumina-silica-phosphorus oxide and alumina-silica-boria-phosphorus oxide. [0028]
  • The above refractory inorganic oxide matrix of alumina, silica or alumina-silica may be incorporated with a zeolite or clay material, e.g., montmorillonite, kaolinite, halloysite, bentonite and attapulgite, to form the refractory inorganic oxide matrix component. [0029]
  • The hydrogenation-active component which constitutes the hydrotreating catalyst of the present invention is uniformly dispersed in the above refractory inorganic oxide matrix. [0030]
  • The hydrogenation-active component comprises at least one active component (A) selected from the group consisting of the group 6A elements, and/or at least one active component (B) selected from the group consisting of the group 8 elements. It may be further incorporated with an active component (C) selected from the group consisting of the group 1 B, group 2B and group 7A elements. [0031]
  • The group 6A elements useful for the active component (A) include chromium, molybdenum and tungsten, of which molybdenum and tungsten are more preferable. Molybdenum is most preferable. They may be used either individually or in combination. [0032]
  • The elements useful for the active component (B) include iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, of which cobalt, nickel, ruthenium, rhodium, palladium, iridium and platinum are preferable. More preferable active components include cobalt, nickel and platinum. Cobalt and nickel are most preferable. They may be used either individually or in combination. [0033]
  • The elements useful for the active component (C), selected from the group 1B, group 2B and group 7A elements, include copper, zinc, manganese and rhenium. They may be used individually, but preferably in combination with the active components (A) and (B). [0034]
  • Total content of the active components (A), (B) and (C) for the hydrotreating catalyst of the present invention is 0.02 moles to 0.4 moles per mole of all of the elements that constitute the catalyst, preferably 0.024 mol/mol to 0.25 mol/mol. Reaction activity or the like of the catalyst will be insufficient at an active component content below 0.02 mol/mol. Securing the content within the above range realizes the catalyst high in homogeneity, containing a crystalline component and hence high in activity. [0035]
  • Next, homogeneity of the hydrotreating catalyst of the present invention is described. [0036]
  • “Homogeneity” of the hydrotreating catalyst of the present invention means that the refractory inorganic oxide matrix is uniformly dispersed with the active component particles of uniform size. More concretely, the following conditions are simultaneously satisfied: [0037]
  • (1) the particles of the hydrogenation-active component, comprising the active components (A), (B) and (C), to be dispersed in the refractory inorganic oxide matrix are uniformly sized, and [0038]
  • (2) these particles are dispersed at constant intervals. [0039]
  • The catalyst will have high activity, when the active component particles are highly uniform in size and dispersed highly uniformly (i.e., at constant intervals), because it will have the active sites distributed widely and uniformly. [0040]
  • Homogeneity of the hydrotreating catalyst of the present invention is determined by electron probe microanalysis (referred to as “EPMA”, as required). More concretely, EPMA line analysis or plane analysis is used, depending on size of the active component particles and distance between these particles, and the results are used to determine homogeneity. [0041]
  • EPMA line analysis determines concentration distribution of the active component of the group 6A element and/or group 8 element or the like in the catalyst section, trying to evaluate homogeneity based on the EPMA line analysis data obtained by numerically expressing variation range. The inventors of the present invention have found, after having analyzed a number of experimental results, that a catalyst is highly homogeneous and shows notable effects of hydrotreating, e.g., hydrodesulfurization, when it satisfies the following relationship: [0042]
  • The relationship (1) is expressed as follows: [0043]
  • N max-N min≦2×[3×(N 0)0.5+0.2×N 0]  (1)
  • wherein N[0044] max, Nmin and N0 are the maximum, minimum and average contents of the hydrogenation-active component in the variation range of the catalyst section, determined by EPMA line analysis.
  • Any hydrogenation-active component is to be evaluated by the EPMA line analysis when it is present at 0.002 mol/mol or more in the catalyst. When two or more types of the hydrogenation-active components are present, each is to be evaluated, needless to say when one type of the hydrogenation-active component is present. The inventors of the present invention have found that activity of the catalyst is not greatly affected by its homogeneity, when the hydrogenation-active component is present at below 0.002 mol/mol. Therefore, activity of the catalyst for, e.g., desulfurization, can be sufficiently evaluated, when homogeneity of each hydrogenation-active component present at 0.002 mol/mol or more is measured. The hydrogenation-active component includes the above-described active components (A), (B) and (C). Each component should satisfy the relationship (1), when it is present at 0.002 mol/mol or more. [0045]
  • On the other hand, the EPMA plane analysis measures size and size distribution morphology of the active component particles, processing images to numerically express uniformity of the size and its distribution. [0046]
  • It is found by the plane analysis that a catalyst is highly homogeneous and shows notable effects of hydrodesulfurization, when it satisfies the following relationship: [0047]
  • The relationship (2) is expressed as follows: [0048]
  • 0.8≦S parameter<1, 0.8≦P parameter<1  (2)
  • wherein S parameter and P parameter are an index for size uniformity and distribution uniformity of the active component particles, respectively, each determined by processing the images obtained by the EPMA plane analysis. [0049]
  • S parameter is determined by processing the EPMA plane images using an image analysis free software NIH Image, and given by the following formula: [0050] S = i = 1 n si nsi / n ( 1 / n ) si = ai / i = 1 n ai
    Figure US20020112991A1-20020822-M00001
  • wherein (n) is number of the active component particles, and (ai) is an area of the i[0051] th particle present in the plane.
  • P parameter is also determined by processing the EPMA plane images using an image analysis free software NIH Image, and given by the following formula: [0052] P = i = 1 m pi npi / n ( 1 / m ) pi = bi / i = 1 m bi
    Figure US20020112991A1-20020822-M00002
  • wherein (m) is number of the divided sections of the same area, and (bi) is an area of the i[0053] th section.
  • Next, crystallinity of the hydrotreating catalyst of the present invention is described. The hydrotreating catalyst of the present invention contains a crystalline component, which represents another characteristic of the present invention together with its homogeneity. Its presence is judged when one or more diffraction lines are observed in the spectral pattern obtained by X-ray diffraction analysis (XRD). A concrete example is given in FIG. 1, which shows the XRD spectral pattern of the catalyst prepared by EXAMPLE 2. As shown, the sharp peaks relevant to the crystalline system are observed at specific diffraction angles. FIG. 2, on the other hand, gives the XRD spectral pattern of the catalyst prepared by COMPARATIVE EXAMPLE 3, showing no crystal-derived diffraction line, indicating that the catalyst is amorphous. [0054]
  • A catalyst, when containing a crystalline component, shows higher activity because of its capacity to contain a larger quantity of the active component. It will show still higher activity, when it contains a component having a crystalline compound such as α-Al[0055] 2O3 known to exhibit an effective function as a refractory inorganic oxide. Moreover, a crystalline component will secure a sufficient strength, and hence serviceability, for a commercial hydrotreating catalyst.
  • Next, the method for producing the hydrotreating catalyst of the present invention is described. The method for producing the catalyst is not limited, but the one suitable for the present invention is coprecipitation, which simultaneously precipitates two or more catalyst components from a mixture which contains at least one hydrogenation-active component. [0056]
  • More concretely, the process comprising the following steps can be used: [0057]
  • (1) oxygenated organometallic compounds as the starting materials for the refractory inorganic oxide matrix and inorganic metal salt as the starting material for the hydrogenation-active component are dissolved in a non-aqueous solvent, to prepare a homogeneous solution, [0058]
  • (2) a precipitant-containing solution is added to the homogeneous solution prepared by the step (1), to prepare a gel slurry from the homogeneous sol, [0059]
  • (3) the gel slurry prepared by the step (2) is aged, and [0060]
  • (4) the aged gel is dried and calcined. [0061]
  • The compounds useful as the starting material for the refractory inorganic oxide matrix include alkoxides, acetylacetonates and carboxylates of aluminum, silicon, magnesium, calcium, boron, zirconium, titanium, thorium, cerium, hafnium and gallium, of which alkoxides with an alkoxyl group having a carbon number of I to 5 are preferable for their easiness of handling. These include aluminum methoxide, aluminum ethoxide, aluminum isopropoxide, aluminum butoxide, tetramethoxy silane, tetraethoxy silane, tetraisopropoxy silane, tetra-t-butoxy silane, magnesium methoxide, magnesium ethoxide, magnesium isopropoxide, calcium methoxide, boron methoxide, boron ethoxide, zirconium ethoxide, zirconium propoxide, zirconium-sec-butoxide, titanium ethoxide, titanium isopropoxide and hafnium ethoxide. [0062]
  • The compounds useful as the starting materials for the hydrogenation-active component include the inorganic metal salts described earlier. More concretely, they include nitrates, chlorides, oxychlorides and sulfides of molybdenum, tungsten, chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, zinc, manganese and rhenium; and ammonium salts of the acids of the above metals. In addition to the above inorganic metal salts, organic metal salts, e.g., acetates, oxalates and alkoxides, may be also used. [0063]
  • The non-aqueous solvents useful for the present invention include monoalcohols, divalent alcohols, ketoalcohols, aminoalcohols and carboxylic acids. Quantity of the reaction material may be determined, depending on content of the desired catalytic component. [0064]
  • In the step (1), the homogeneous solution can be prepared by dissolving oxygenated organometallic compounds (e.g., aluminum alkoxide and silicon alkoxide) in a non-aqueous solvent with stirring, to which an inorganic metal salt (e.g., ammonium molybdate, or nitrate of cobalt or nickel) is added with stirring, to form the homogeneous solution. Aqueous solutions of ammonium molybdate, and nitrate of cobalt or nickel, or the like may be added in the subsequent step (2) to the homogeneous solution prepared in the step (1) by dissolving aluminum alkoxide and silicon alkoxide in a non-aqueous solvent with stirring. The hydrotreating catalyst of the present invention, high in homogeneity, containing a crystalline component and satisfying the relationship (1) or (2) described earlier can be produced by, in particular, controlling, e.g., temperature, pressure, stirring conditions, size of the gel particles, gel particle concentration, and quantity of hydrolyzing water in the precipitant solution, in the step (2) as the sol-preparation step. [0065]
  • In the step (1), the non-aqueous solvent is preferably used at 0.1 moles to 50 moles per mole of the total metallic and semi-metallic elements and phosphorus which constitute the hydrotreating catalyst, more preferably 1 mol/mol to 20 mol/mol. It is essential to avoid use of an excessive quantity of the solvent while controlling the reaction conditions in such a way to form the stable, fluid gel slurry, in order to prepare the catalyst of high homogeneity. [0066]
  • In the aging step (3), the gel slurry is held at 50° C. to 99° C. preferably for at least 1 hour. This aging step mainly controls pore characteristics of the catalyst, to enhance its reaction activity. [0067]
  • The aged gel slurry as the catalyst precursor is treated by filtration, settling, centrifugal separation or evaporation to adjust content of the water-containing solvent, and formed into a shape by tablet making, extrusion, rotary granulation or the like. The catalyst may be cylindrical, table-shaped, spherical or others, such as that having a four-leaf section. It is important for the catalyst to have a shape and size which allow to control packing density in the reactor. It is preferable to adjust size of the catalyst pellets, which is porous, for increasing packing density. Catalyst diameter is normally in a range from 0.5 mm to 20 mm on the average, viewed from increasing packing density and controlling pressure loss. [0068]
  • The catalyst pellets formed in the step (3) are then dried and calcined in the step (4). They may be dried by one of many methods, e.g., air-drying, drying in hot wind, drying under heating and freeze drying. They are calcined at 150° C. to 700° C. at which they are held for 1 hour to 20 hours in an oxidative, reducing, inert, sulfiding, nitriding, carbonizing or steam atmosphere depending on their specific purposes. [0069]
  • The hydrotreating catalyst of the present invention has a specific surface area of 10 m[0070] 2/g to 1000 m2/g (preferably 200 m2/g to 800 m2/g), total pore volume of 0.1 ml/g to 2 ml/g (preferably 0.2 ml/g to 1.5 ml/g) and average pore diameter of 4 Å to 1000 Å (preferably 10 Å to 600 Å), is high in homogeneity, contains a crystalline component, and is suitable as the catalyst for hydrotreating a hydro-carbon oil.
  • The present invention provides a hydrotreating catalyst, applicable to all types of the reactions proceeding in the presence of hydrogen, in particular hydrofinishing, hydrodesulfurization, hydrodenitrogenation, hydrodearomatization, hydroisomerization, hydrocracking, hydrodewaxing, hydrodemetallization and the like. The process of the present invention for hydrotreating a hydrocarbon oil is described as follows. [0071]
  • The hydrotreating process of the present invention includes all of the reactions, e.g., hydrofining, hydrodesulfurization, hydrodenitrogenation, hydrodearomatization, hydroisomerization, hydrocracking, hydrodewaxing, hydrodemetallization, occurring when hydrocarbon oils are brought into contact with hydrogen in the presence of the hydrotreating catalyst of the present invention under hydrotreating conditions. The hydrotreating conditions can be optionally selected for the desired reactions. The hydrotreating catalyst of the present invention is particularly suitable for the hydrodesulfurization of hydrocarbon oils. [0072]
  • Hydrocarbon oils which can be treated by the hydrotreating process of the present invention are not limited. They include petroleum-derived oils, e.g., atmospheric distillates, atmospheric residue, vacuum distillates, vacuum residue, cracked distillates, raffinates, hydrotreated oils, deasphalted oils, slack wax, Fischer-Tropsch wax and a mixture thereof. They also include oils derived from tar sand, shale oil, coal-liquefied oil, and a mixture thereof. The catalyst of the present invention is particularly suitable for treating vacuum, cracked and straight-run distillates to remove their sulfur- and nitrogen-containing compounds which are difficult to remove. [0073]
  • A vacuum distillate, produced by treating atmospheric residue under a vacuum, boils at around 370° C. to 610° C., and contains significant quantities of sulfur, nitrogen and metals, e.g., at 2.0 wt. % and 800 wt.ppm for sulfur and nitrogen. The sulfur-containing compounds include 4-methylbenzothiophene and 4,6-dimethyl-benzothiophene. The nitrogen-containing compounds include pyridines, amines and amides which are basic, and pyrroles which are weakly basic. The metals include nickel, vanadium and iron. The catalyst produced by the method of the present invention can treat these vacuum distillates most efficiently to remove sulfur and nitrogen. [0074]
  • Cracked distillates are the fractions boiling at around 200° C. or higher, produced by thermal cracking (e.g., coking or visbreaking) of residue, or light cycle gas oil (LCGO) or heavy cycle gas oil (HCGO) produced by a fluid catalytic cracking unit. [0075]
  • The atmospheric distillates which can be treated by the hydrotreating process of the present invention include straight-run naphtha, heavy naphtha and kerosene fractions. They also include gasoline components produced by various cracking units, e.g., catalytically cracked naphtha, thermally cracked naphtha and steam-cracked naphtha, and other light fractions used as fuel components which boil at around 250° C. or lower. [0076]
  • The hydrotreating conditions are not limited. They can be adequately selected for specific situations, e.g., type of hydrocarbon oil to be treated and desired reactions, and target desulfurization and denitrogenation levels. The preferable conditions are reaction temperature: 150° C. to 500° C., more preferably 200° C. to 450° C.; reaction pressure: 1 kg/cm[0077] 2 to 350 kg/cm2, more preferably 5 kg/cm to 300 kg/cm2; hydrogen-containing treat gas rate: 301/1 to 2000 1/1, more preferably 351/1 to 1800 1/1; and liquid hourly space velocity: 0.01 V/H/V to 20.0 V/H/V, more preferably 0.05 V/H/V to 10.0 V/H/V. They are most preferably 250° C. to 400° C. as reaction temperature, 40 kg/cm2 to 100 kg/cm2 as reaction pressure, 180 1/1 to 230 l/l as hydrogen-containing treat gas rate and 0.8 V/H/V to 1.5 V/H/V as liquid hourly space velocity. Hydrogen content in treat gas is normally in a range from 60% to 100%.
  • The hydrotreating catalyst of the present invention exhibits high activities for, e.g., desulfurization, denitrogenation and dearomatization and also high activity maintenance capacity therefor, and can achieve with stability required performance, e.g., desulfurization rate, for extended periods under the severe conditions which would deactivate the conventional catalyst in a short time, in particular under low reaction pressure. [0078]
  • Hydrotreatment of a hydrocarbon oil over the catalyst of the present invention can be effected in any type of reactor, e.g., fixed, fluidized, ebullated or moving bed type. A fixed bed type is a normal choice, for its simpler process and higher operability. Two or more reactors may be connected in series for deeper hydrotreatment. This is a particularly preferable configuration, when heavy oil is to be treated. Hydrocarbon oil may be brought into contact with a hydrogen-containing treat gas either co-currently or counter-currently. [0079]
  • EXAMPLES
  • The present invention is described more concretely by EXAMPLES, which by no means limit the present invention. [0080]
  • Homogeneity and crystallinity of the catalyst were analyzed by the following methods: [0081]
  • Homogeneity [0082]
  • Homogeneity of the catalyst was determined by an electron probe microanalyzer (EPMA, Shimadzu's EPM-810Q) under the following conditions: [0083]
  • Sample preparation [0084]
  • The catalyst sample embedded in a polyester resin was cut to produce a smooth section, which was coated with carbon black. [0085]
  • Measurement conditions [0086]
  • Acceleration voltage: 15 KV [0087]
  • Sample current: 0.05 μA [0088]
  • Beam size: 1 μm in diameter [0089]
  • Measurement lines: Co-Kα, Mo-Kα, Ni-Kα, Zn-Kα, and Ru-Lα[0090]
  • EPMA line analysis: The catalyst was measured in the diametral direction at intervals of 1 μm steps. [0091]
  • EPMA plane analysis: Distribution of each element was analyzed in a square 200 by 140 μm. [0092]
  • Crystallinity [0093]
  • X-ray diffraction (XRD) spectral pattern. [0094]
  • The catalyst sample was analyzed by an X-ray diffractometer (Philips, goniometer, PW1820/00, high-voltage generator: PW1730/10, controller: PW1710/00, software: PW1877PC-APD ver. 3.6 g) under the following conditions: [0095]
    Tube anode Cu
    Generator tension
    40 kV
    Generator current 40 mA
    Divergence slit AUTOMATIC
    Receiving slit 0.2
    Sample spinner ON
    Monochrometer used YES
    Start angle
    20°
    End angle 75°
    Step size 0.02
    Time per step 20
  • Example 1 (NCMSAH19)
  • A homogeneous solution of 130.1 g of aluminum isopropoxide [Al(i—OC[0096] 3H7)3] dissolved in 820.7 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 13.9 g of tetraethoxysilane [Si(OC2H5)4] was added with stirring at 80° C. for 3 hours.
  • Then, 11.2 g of 12-molybdo-1-phosphoric acid [H[0097] 3(PM12O40.6H2O)] and 2.3 g of nickel nitrate [Ni(NO3)2.6H2O)] were added to the above solution, with stirring at 80° C. for 17 hours, to prepare a homogeneous solution.
  • Pure water (98 ml) was added dropwise at 80° C. to the above homogeneous solution at 1 ml/min, to prepare a slurry containing the precipitate formed as a result of hydrolysis. [0098]
  • On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NCMSAH19. Its chemical composition is given in Table 1. [0099]
  • The catalyst NCMSAH19 had a hydrogenation-active component at 0.051 mol/mol, and N[0100] max: 812, Nmin: 486 and N0: 685 for the Mo component, Nmax: 1370, Nmin: 899 and N0: 1147 for the Co component, and Nmax: 366, Nmin: 171 and N0: 257 for the Ni component as the EPMA line analysis results. The Nmax-Nmin (hereinafter referred to as [A]) and 2×[3×(N0)0.5+0.2×N0 (hereinafter referred to as [B] of the relationship (1) were calculated for each of the Mo, Co and Ni components. The results are given in Table 7. As shown, each of these components satisfied the relationship (1). It had a diffraction line at 2θ=65.4° in the XRD pattern.
  • Tables 7 and 8 gives properties and reaction activities of the catalysts prepared in EXAMPLES and COMPARATIVE EXAMPLES, respectively. [0101]
  • Example 2 (NCMSAH23)
  • A homogeneous solution of 116.4 g of aluminum isopropoxide [Al(i-OC[0102] 3H7)3] dissolved in 849.9 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 12.4 g of tetraethoxysilane [Si(OC2H5)4] was added with stirring at 80° C. for 3 hours.
  • Then, 14.0 g of 12-molybdo-1-phosphoric acid [H[0103] 3(PM12O40.6H2O)], 14.0 g of cobalt nitrate [Co(NO3)2.6H2O)] and 2.3 g of nickel nitrate [Ni(NO3)2.6H2O)] were added to the above solution, with stirring at 80° C. for 17 hours, to prepare a homogeneous solution.
  • Pure water (175 ml) was added dropwise at 80° C. to the above homogeneous solution at 1 ml/min, to prepare a slurry containing the precipitate formed as a result of hydrolysis. [0104]
  • On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NCMSAH23. Its chemical composition is given in Table 1. [0105]
  • The catalyst NCMSAH23 had a hydrogenation-active component at 0.069 mol/mol, and N[0106] max: 1150, Nmin: 630 and N0: 925 for the Mo component, Nmax: 2104, Nmin: 1250 and N0: 1627 for the Co component, and Nmax: 378, Nmin: 175 and N0: 275 for the Ni component as the EPMA line analysis results. The terms [A] and [B] of the relationship (1) were calculated for each of the Mo, Co and Ni components, in a manner similar to that for EXAMPLE 1. The results are given in Table 7. As shown, each of these components satisfied the relationship (1). It had diffraction lines at 2θ=36.8, 45.5 and 66.2° in the XRD pattern.
  • Example 3 (NCMSAH19-1)
  • The same procedure as used for EXAMPLE 1 was repeated, except stirring time for preparing the homogeneous solution was extended from 17 hours to 25 hours, to prepare the catalyst NCMSAH19-1. The measured content of the hydrogenation-active component, homogeneity and crystallinity are given in Tables 1 and 2. [0107]
  • Example 4 (CMPDSAH02)
  • A homogeneous solution of 116.9 g of aluminum isopropoxide [Al(i—OC[0108] 3H7)3] dissolved in 782.0 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 12.5 g of tetraethoxysilane [Si(OC2H5)4] was added with stirring at 80° C. for 3 hours.
  • Then, 14.0 g of 12-molybdo-1-phosphoric acid [H[0109] 3(PM12O40.6H2O)] and 15.5 g of cobalt nitrate [Co(NO3)2.6H2O)] were added to the above solution, with stirring at 80° C. for 17 hours, to prepare a homogeneous solution.
  • An aqueous solution of 0.4 g of palladium nitrate [Pd(NO[0110] 3)2] dissolved in 176 ml of pure water was added dropwise at 80° C. to the above homogeneous solution at 1 ml/min, to prepare a slurry containing the precipitate formed as a result of hydrolysis.
  • On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst CMPDSAH02. [0111]
  • The catalyst CMPDSAH02 had a hydrogenation-active component at 0.068 mol/mol, and N[0112] max: 1209, Nmin: 664 and N0: 993 for the Mo component, Nmax: 2232, Nmin: 1382 and N0: 1713 for the Co component, and Nmax: 0, Nmin: 0 and N0: 0 for the Pd component as the EPMA line analysis results. The calculated terms [A] and [B] of the relationship (1) are given in Table 7. It had diffraction lines at 2θ=33.9 and 65.9° in the XRD pattern.
  • Example 5 (NMPt/20862R1)
  • A homogeneous solution of 136.1 g of aluminum isopropoxide [Al(i—OC[0113] 3H7)3] dissolved in 870.0 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 29.4 g of tetraethoxysilane [Si(OC2H5)4] was added with stirring at 80° C. for 3 hours.
  • Then, 5.8 g of nickel nitrate [Ni(NO[0114] 3)2.6H2O)] and 0.13 g of chloroplatinic acid [H2PtCl6.6H2O)] were added to the above solution, with stirring at 80° C. for 17 hours, to prepare a homogeneous solution.
  • An aqueous solution of 7.4 g of ammonium 7-molybdate [(NH[0115] 4)6Mo7O24.4H2O)] dissolved in 231 ml of pure water was added dropwise at 80° C. to the above homogeneous solution at 1 ml/min, to prepare a slurry containing the precipitate formed as a result of hydrolysis.
  • On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NMPt/20862R1. [0116]
  • The catalyst NMPt/20862R1 had a hydrogenation-active component at 0.027 mol/mol, and N[0117] max: 544, Nmin: 269 and N0: 417 for the Mo component, Nmax: 745, Nmin: 402 and N0: 575 for the Co component, and Nmax: 0, Nmin: 0 and N0: 0 for the Pt component as the EPMA line analysis results. The calculated terms [A] and [B] of the relationship (1) are given in Table 7. It had a diffraction line at 2θ=65.5° in the XRD pattern.
  • Example 6 (NMZ/50SAH13R3)
  • A homogeneous solution of 84.1 g of aluminum isopropoxide [Al(i-OC[0118] 3H7)3] dissolved in 829.6 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 72.8 g of tetraethoxysilane [Si(OC2H5)4] was added with stirring at 80° C. for 3 hours.
  • Then, 5.8 g of nickel nitrate [Ni(NO[0119] 3)2.6H2O)] and 1.8 g of zinc nitrate [Zn(NO3)2.6H2O)] were added to the above solution, with stirring at 80° C. for 17 hours, to prepare a homogeneous solution.
  • An aqueous solution of 7.4 g of ammonium 7-molybdate [(NH[0120] 4)6Mo7O24.4H2O)] dissolved in 237 ml of pure water was added dropwise at 80° C. to the above homogeneous solution at 1 ml/min, to prepare a slurry containing the precipitate formed as a result of hydrolysis.
  • On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NMZ/50SAH13R3. [0121]
  • The catalyst NMZ/50SAH13R3 F had a hydrogenation-active component at 0.027 mol/mol, and N[0122] max: 471, Nmin: 235 and N0: 352 for the Mo component, Nmax: 833, Nmin: 437 and N0: 626 for the Ni component, and Nmax: 654, Nmin: 328 and N0: 492 for the Zn component as the EPMA line analysis results. The calculated terms [A] and [B] of the relationship (1) are given in Table 7. It had a diffraction line at 2□=65.4° in the XRD pattern.
  • Example 7 (NM/ZSAH03)
  • A homogeneous solution of 75.1 g of aluminum isopropoxide [Al(i—OC[0123] 3H7)3] dissolved in 687.1 g of hexylene glycol was prepared with stirring at 80° C. for 4 hours, to which 29.9 g of zirconium isopropoxide [Zr(i—OC3H7)4] and 26.0 g of tetraethoxysilane [Si(OC2H5)4] were added with stirring at 80° C. for 3 hours.
  • Then, 9.7 g of nickel niytrate [Ni(NO[0124] 3)2.6H2O)] was added to the above solution, with stirring at 80° C. for 17 hours, to prepare a homogeneous solution.
  • Then, an aqueous solution of 12.3 g of ammonium 7-molybdate [(NH[0125] 4)6Mo7O24.4H2O)] dissolved in 177 ml of pure water was added dropwise at 80° C. to the above homogeneous solution at 1 ml/min, to prepare a slurry containing the precipitate formed as a result of hydrolysis.
  • On completion of the agitation, the slurry was allowed to stand for 88 hours, while kept at 90° C., for aging. On completion of the aging, the slurry was treated to remove the supernatant liquid, evaporated and solidified by a rotary evaporator, and calcined at 650° C. in a flow of air, to prepare the catalyst NM/ZSAH03. [0126]
  • The catalyst NM/ZSAH03 had a hydrogenation-active component at 0.054 mol/mol, and N[0127] max: 855, Nmin: 512 and N0: 722 for the Mo component, and Nmax: 1178, Nmin: 666 and N0: 910 for the Ni component as the EPMA line analysis results. The calculated terms [A] and [B] of the relationship (1) are given in Table 7. It had a diffraction line at 2θ=65.3° in the XRD pattern.
  • COMPARATIVE EXAMPLE 1
  • Pure water (2.0 L) was heated to about 70° C., to which caustic soda was added to prepare alkaline water of pH around 12. An aqueous solution of aluminum sulfate (aluminum sulfate: 518 g and pure water: 710 g) was added to the above alkaline water. The solution was adjusted at pH 8.4 to 8.8 with caustic soda or nitric acid, and aged at around 70° C. for around 0.5 hours, to form an aqueous solution containing the precipitate (gel) of aluminum hydrate. An aqueous solution of sodium silicate (No.3 water glass, pure water: 210 g) was added to the above aqueous solution. The mixed solution was adjusted at pH 8.8 to 9.2 with nitric acid, and aged at around 70° C. for around 0.5 hours, to form a slurry solution containing precipitated particles of alumina hydrate covered with silica hydrate. This slurry was filtrated, and the separated cake was washed with an aqueous solution of ammonium carbonate, until sodium content in the filtrate was decreased to 5 ppm or less. The cake was dried at 80° C. in a kneader to a moisture content at which it was moldable, and extruded into cylindrical pellets, 1.5 mm in diameter. The pellets were dried at 120° C. for 16 hours and calcined at 700° C. for 3 hours, to prepare the carrier. [0128]
  • The carrier was impregnated with an aqueous solution of ammonium 7-molybdate, and dried at 120° C. and calcined at 450° C. It was then impregnated with an aqueous solution of cobalt nitrate and nickel nitrate, and dried at 120° C. and calcined at 500° C., to prepare the comparative catalyst (a). [0129]
  • The comparative catalyst (a) had a hydrogenation-active component at 0.051 mol/mol, and N[0130] max: 1531, Nmin: 723 and N0: 1179 for the Mo component, Nmax: 1289, Nmin: 702 and N0: 1019 for the Co component, and Nmax: 349, Nmin: 128 and N0: 258 for the Ni component as the EPMA line analysis results. This catalyst failed to satisfy the relationship (1), as shown in Table 8. It had diffraction lines at 2θ=46.0 and 66.0° in the XRD pattern.
  • COMPARATIVE EXAMPLE 2
  • A mixture of 178.3 g of aluminum isopropoxide [Al(i—OC[0131] 3H7)3] and 765 ml of 2-methylpentane-2,4-diol [CH3CH(OH)CH2C(CH3)2OH] was stirred to react them with each other at 80° C. for 4 hours, to which 13.9 g of tetraethoxysilane [Si(OC2H5)4] was added with stirring at 80° C. for 20 hours, for further reactions. Water (196 ml) was added to the above reaction system at 1 ml/min, for hydrolysis at 80° C.
  • The effluent solution was aged at 90° C. for 72 hours, evaporated and solidified by a rotary evaporator, and calcined at 650° C. for 5 hours in a flow of air. The green compact thus prepared was molded by a tablet maker, 20 mm in diameter, at 2 tons/cm[0132] 2, into a carrier of 11%SiO2-Al2O3.
  • The carrier was impregnated with active metals by the following procedure: The impregnation solution was prepared by dissolving 11.2 g of 12-molybdo-1-phosphoric acid [H[0133] 3(PM12O40.6H2O)], 9.7 g of cobalt nitrate [Co(NO3)2.6H2O)], 2.3 g of nickel nitrate [Ni(NO3)2.6H2O)] and 5.8 g of citric acid in 44 g of a mixed solution of ammonia water and pure water, where ammonia water/pure water ratio was adjusted to make the solution with the solutes completely dissolved at pH 9.
  • The carrier was mixed with the impregnation solution by adding the latter dropwise onto the former. The impregnated carrier was dried at 110° C. all night, and calcined at 500° C. for 3 hours in a flow of air, to prepare the comparative catalyst (b). [0134]
  • The comparative catalyst (b) thus prepared had a composition of silica: 8.0 wt. %, alumina: 65.0 wt. %, molybdenum oxide: 20.0 wt. %, cobalt oxide: 5.0 wt. %, nickel oxide: 1.2 wt. % and phosphorus oxide: 0.8 wt. %, and properties of specific surface area: 244 m[0135] 2/g and total pore volume: 0.43 ml/g.
  • The comparative catalyst (b) had a hydrogenation-active component at 0.051 mol/mol, and N[0136] max: 1392, Nmin: 759 and N0: 1072 for the Mo component, Nmax: 1228, Nmin: 737 and N0: 926 for the Co component, and Nmax: 367, Nmin: 155 and N0: 245 for the Ni component as the EPMA line analysis results. This catalyst failed to satisfy the relationship (1), as shown in Table 8. It had a diffraction line at 2θ=65.5° in the XRD pattern.
  • COMPARATIVE EXAMPLE 3
  • 3 g of ruthenium trichloride was dissolved in 80 g of ethylene glycol, put in a 300 ml beaker, to which 91.0 g of tetraethoxysilane and 23.6 g of triethyl borate were added, and the mixture was heated at 70° C. for 3 hours, with stirring. Next, 12 g of water was added to the above solution, and kept at the same temperature for 1 hour with stirring, to which another 12 g of water was added. When stirred at the same temperature, the solution was solidified like agar. It was allowed to stand at 25° C. all night, crushed into pieces of adequate size, transferred to a 300 ml eggplant-shaped flask, and dried at 100° C. for 24 hours under a vacuum using an evaporator. The dried gel was finely crushed, and thermally treated at 400° C. for 8 hours in a flow of hydrogen, to prepare the comparative catalyst (c). The comparative catalyst (c) had N[0137] max: 193, Nmin: 82 and N0: 121 for the Ru component as the EPMA line analysis results, which satisfied the relationship (1). However, it showed no diffraction line in the XRD pattern (FIG. 2). It had a hydrogenation-active component at 0.007 mol/mol.
    TABLE 1
    EXAMPLES COMPARATIVE
    5 6 7 EXAMPLES
    1 2 3 4 NMPt/ NMZ/ NM/ 1 2 3
    Catalysts NCMSAH19 NCMSAH23 NCMSAH19-1 CMPDSAH02 20862R1 50SAH13R3 ZSAH03 a b c
    Chemical
    Composition
    (wt. %)
    MoO3 20.0 25.0 20.0 25.0 12.0 12.0 20.0 20.0 20.0
    CoO 5.0 7.5 5.0 8.0 5.0 5.0
    NiO 1.2 1.2 1.2 3.0 3.0 5.0 1.2 1.2
    Pt 0.1
    Pd 0.4
    Ru 3.8
    ZnO 1.0
    Al2O3 65.0 58.1 65.0 58.4 67.9 42.0 37.5 65.0 65.0
    SiO2 8.0 7.2 8.0 7.2 17.0 42.0 15.0 8.8 8.0 84.7
    ZrO2 22.5
    B2O3 11.5
    P2O5 0.8 1.0 0.8 1.0 0.8
    Hydrogenation- 0.051 0.069 0.051 0.068 0.027 0.030 0.054 0.051 0.047 0.007
    Active Component,
    Total Content
    on the Total
    Mols (mol/mol)
    Specific Surface 434 307 420 336 300 212 240 262 244 399
    Area (m2/g)
    Total Pore 0.94 1.02 0.90 0.99 0.56 0.34 0.43 0.42 0.43 0.10
    Volume (ml/g)
  • [0138]
    TABLE 2
    EXAMPLES COMPARATIVE
    5 6 7 EXAMPLES
    1 2 3 4 NMPt/ NMZ/ NM/ 1 2 3
    Catalysts NCMSAH19 NCMSAH23 NCMSAH19-1 CMPDSAH02/ 20862R1 50SAH13R3 ZSAH03 a b c
    Homogeneity
    EPMA line
    analysis results
    Mo Component
    Nmax 812 1150 893 1209 544 471 855 1531 1392
    Nmin 486 630 535 664 269 235 521 723 759
    No 685 925 754 993 417 352 722 1179 1072
    Co Component
    Nmax 1370 2104 1507 2232 1289 1228
    Nmin 899 1250 989 1382 702 737
    No 1147 1627 1262 1713 1019 926
    Ni Component
    Nmax 366 378 384 745 833 1178 349 367
    Nmin 171 175 180 402 437 666 128 155
    No 257 275 270 575 626 910 258 245
    Other Pd Pt Zn Ru
    Hydrogenation-
    active
    Components
    Nmax 0 0 654 193
    Nmin 0 0 328 82
    No 0 0 492 121
    Crystallinity: Observed Observed Observed Observed Observed Observed Ob- Ob- Ob- Not
    Diffraction Line served served served Ob-
    served
  • Evaluation of Catalyst Activity [0139]
  • The catalysts prepared by EXAMPLES and COMPARATIVE EXAMPLES were evaluated for their activity by hydrotreating a hydrocarbon oil under the following conditions. The results of evaluation of the catalyst activities are given in Table 6. [0140]
  • (1) Evaluation of hydrodesulfurization (HDS) activity with light gas oil (LGO-D) from a Middle Eastern crude: [0141]
  • Test oil properties, reactor system and reaction conditions are given in Table 3. [0142]
  • The test was conducted by the following procedure: [0143]
  • The catalyst (4.6 g) packed in a reactor was treated with a hydrogen gas containing 5% of H[0144] 2S flown at 200 cc/min, for sulfiding under the following temperature program:
  • The catalyst was heated from room temperature to 200° C. in 30 min, at which it was held for 30 min, to 340° C. in 30 min, at which it was held for 2 hours, and then cooled to 200° C. in 30 min. [0145]
  • LGO-D (approximately 25 cc) was introduced into the reactor when the sulfided catalyst was cooled to 170° C. After LGO-D went through the catalyst bed, reactor pressure was increased, and then temperature was also increased to 320° C. in 30 min, for the HDS reactions. Catalyst HDS activity was determined by measuring sulfur content of the product obtained 10 hours after LGO-D was charged. [0146]
  • HDS activity was determined by the following formula: [0147]
  • HDS activity=(Liquid Hourly Space Velocity per Unit Catalyst Weight)×[1/S 0.5−1/S 0 0.5]
  • wherein, S and S[0148] 0 are sulfur contents of the product and feed.
  • (2) Evaluation of hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodearomatization (HDA), hydroisomerization (HI), and hydrocracking (HC) activities with a model feed. [0149]
  • The evaluation test conditions are given in Table 4. [0150]
  • The evaluation test was conducted using a 50 ml flow type autoclave by the following procedure: [0151]
  • The catalyst (0.5 g) put in the autoclave reactor was treated with a hydrogen gas containing 5% of H[0152] 2S flown at 200 cc/min, for sulfidation under the following temperature program:
  • The catalyst was heated from room temperature to 200° C. in 30 min, at which it was held for 30 min, to 340° C. in 30 min, at which it was held for 2 hours, and then cooled to 200° C. in 30 min. [0153]
  • A test oil for each test was passed into the reactor when the sulfided catalyst was cooled to 200° C. On completion of passing the test oil, reactor pressure was increased to 9 kg/cm[0154] 2-G, and then temperature was also increased to 310° C. in 30 min, for the hydrotreating reactions under the conditions given in Table 4.
  • Hydrodesulfurization(HDS), hydrodenitrogenation(HDN), hydrodearomatization (HDA), hydroisomerization(HI), and hydrocracking(HC) activities were determined by the following formulae: [0155]
  • HDS activity (DBT)=(Liquid Hourly Space Velocity per Unit Catalyst Weight)×[(N DBT,0 −N DBT)/(N DBT,0)]
  • wherein, N[0156] DBT and NDBT,0 are dibenzothiophene contents of the product and feed.
  • HDS activity (4,6DMDBT)=(Liquid Hourly Space Velocity per Unit Catalyst Weight)×[(N 4,6DMDBT,0 −N 4,6DMDBT)/(N 4,6DMDBT,0)]
  • wherein, N[0157] 4,6DMDBT and N4,6DMDBT,0 are 4,6 dimethyldibenzothiophene contents of the product and feed.
  • HDN activity=(Liquid Hourly Space Velocity per Unit Catalyst Weight)×(N N)/(N N,0 −N N)
  • wherein, N[0158] N,0 is quinoline content of the feed and NN is a total content of propylcyclohexane, propylcyclohexane and propylbenzene in the product.
  • HDA activity=(Liquid Hourly Space Velocity per Unit Catalyst Weight)×(N A)/(N A,0 −N A)
  • wherein, N[0159] A,0 is 1-methylnaphthalene content of the feed and NA is a total content of 2-methylnaphthalene, methyl tetralin, methyl decalin, alkyl benzene and alkyl toluene in the product.
  • HI activity=(Total area of peaks at a retention time of 9.40 to 10.14 in the gas chromatogram obtained under the conditions given in Table 4,% on total area of all peaks). [0160]
  • HC activity=(Total area of peaks at a retention time of 4.8 to 5.18 in the gas chromatogram obtained under the conditions given in Table 4,% on total area of all peaks). [0161]
  • The activity assessment results are given in Table 6. [0162]
    TABLE 3
    LGO-D
    Test oil
    Specific gravity (15/4° C.) 0.846
    Sulfur (wt. %) 0.92
    Nitrogen (wt. ppm) 91.0
    Aromatics (wt. %) 26.8
    Reactor: Fixed-bed, flow type reactor
    Reactor inner diameter: 10 mm
    Catalyst charged (g): 4.6
    Reactor conditions:
    Reactor temperature (° C.) 320
    Reactor pressure (kg/cm2-G) 9
    Liquid hourly space velocity (hr−1) 0.5
    Hydrogen/oil ratio (SCF/B) 800
  • [0163]
    TABLE 4
    Test Conditions
    1 2 3
    Test Oil
    Composition (wt. %)
    n-C16 99.20 99.13 89.20
    DBT 0.50 0.50 0.50
    4,6-DMDBT 0.30 0.30 0.30
    Quinoline 0.07
    1-Methyl naphthalene 10
    Reactor temperature (° C.) 310 310 310
    Liquid hourly space velocity (hr−1)
    per unit catalyst weight 1.0 1.0 1.0
    Hydrogen/oil ratio (SCF/B) 2000 2000 2000
  • [0164]
    TABLE 5
    Gas chromatograph: GL Science, GC-353 (FID)
    Column: J & W Scientific, DB-1
    Inner diameter: 0.25 mm
    Film thickness: 1 □m
    Length: 60 m
    Analysis conditions: Oven temperature: 250° C.
    Injection temperature: 250° C.
    Detector temperature: 250° C.
  • [0165]
    TABLE 6
    EXAMPLES COMPARATIVE
    1 2 3 4 5 6 7 EXAMPLES
    NCM- NCM- NCM- CMPDSAH02 NMP1/ NMZ/ 1 2 3
    Catalysts SAH19 SAH23 SAH19-1 /20862R1 50SAH13R3 ZSAH03 NM a b c
    Catalyst activity
    Hydrodesulfurization activity(HDS)
    HDS(LGO-D) 3.4 4.0 3.3 2.3 2.2
    HDS(4,6-DMDBT) 15.0  21.6  14.0  17.6  22.0  13.4 20.9  11.4  11.0  0  
    HDS(DBT) 88   89   88   81   54   56   62   48   45   2.2
    Hydrodenitorogenation activity
    HDN 6.9 11.2  5.8 5.0 0.3
    Hydrocracking activity
    HG  0.03  0.04  0.03  0.04  0.11  0.05  0.04  0.03  0.04
    Hydrodearomatization activity
    HDA 5.3 5.2 5.0 6.4 4.2 4.0  0.07
    Hydrosomerization activity
    HI  0.68  0.68  0.67  0.67  3.07  0.36  1.17  1.00  0.01
  • [0166]
    TABLE 7
    Active
    Component
    Total
    Content on Homogeneity
    the Total A B Crystall- Activites
    EXAM- Moles Nmax 2 × [3 × (No)0 5 + * A ≦ nity HDS
    PLES (mol/mol) Nmin 0.2 × No] B XRD LGO-D 4,6-DMDBT DBT HDN HC HDA HI
    1 NCMSAH19 0.051 Mo 326 431 O Observed 3.4 15.0 88 0.03 5.3 0.68
    Co 471 662 O
    Ni 195 199 O
    2 NCMSAH23 0.069 Mo 520 552 O Observed 4.0 21.6 89  6.9 0.04 0.68
    Co 854 893 O
    Ni 203 209 O
    3 NCMSAH19-1 0.051 Mo 358 466 O Observed 3.3 14.0 88 0.03 5.2 0.67
    Co 518 718 O
    Ni 204 207 O
    4 CMPDSAH02 0.068 Mo 545 586 O Observed 17.6 81 0.04 5.0 0.67
    Co 850 934 O
    Pd O
    5 NMPt/ 0.027 Mo 275 289 O Observed 22.0 54 0.11 3.07
    2082R1 Ni 343 374 O
    Pt O
    6 NMZ/ 0.027 Mo 236 253 O Observed 13.4 56
    50SAHBR3 Ni 396 400 O
    Zn 326 330 O
    7 NM/ZSAH03 0.054 Mo 343 450 O Observed 20.9 62 11.2 0.05 6.4 0.36
    Ni 512 545 O
  • [0167]
    TABLE 8
    Active
    Component
    COM- Total
    PARA- Content on Homogeneity
    TIVE the Total A B Crystall- Activities
    EXAM- Moles Nmax 2 × [3 × (No)0 5 + * A ≦ nity HDS
    PLES (mol/mol) Nmin 0.2 × No] B XRD LGO-D 4,6-DMDBT DBT HDN HC HDA HI
    1  a 0.051 Mo 808 678 X Observed 2.3 11.4 48 5.8 0.04  4.2 1.17
    Co 587 599 O
    Ni 221 200 X
    2  b 0.051 Mo 633 625 X Observed 2.2 11.0 45 5.0 0.03  4.0 1.00
    Co 491 553 O
    Ni 211 192 X
    3  c 0.007 Ru 111 114 O Not  2.2 0.3 0.04 0.07 0.01
    Observed
  • It is found, based on the results of EXAMPLES and COMPARATIVE EXAMPLES, that the hydrotreating catalyst prepared by any one of EXAMPLES which has a specific content of hydrogenation-active component(s), satisfies the relationship (1) representing homogeneity and contains a crystalline component, shows more notable effects in, e.g., desulfurization activity, than those prepared by COMPARATIVE EXAMPLES. It is particularly noted that satisfying the relationship (1) significantly contributes to improved desulfurization activity, as shown in Table 7. It is also noted that the hydrotreating catalyst of the present invention, satisfying the relationship (1), shows especially high activities for desulfurization (e.g., of 4,6-DMDBT) and isomerization, when incorporated with selected active component(s), e.g., the catalyst prepared by EXAMPLE 5. [0168]

Claims (3)

1. A process for hydrotreating a hydrocarbon oil under hydrotreating conditions in the presence of hydrogen by bringing the hydrocarbon oil into contact with the hydrotreating catalyst of claim 11.
2. The process for hydrotreating a hydrocarbon oil according to claim 1, wherein said hydrocarbon oil is at least one selected from the group consisting of straight-run naphtha, catalytically cracked naphtha, steam-cracked naphtha, thermally cracked naphtha, light gas oil, vacuum gas oil, catalytically cracked gas oil and thermally cracked gas oil.
3. The process for hydrotreating a hydrocarbon oil according to claim 2, wherein said hydrocarbon oil is at least one selected from the group consisting of light gas oil, vacuum gas oil and cracked gas oil.
US10/045,860 1999-10-07 2001-10-19 Version with markings to show changes made Abandoned US20020112991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/045,860 US20020112991A1 (en) 1999-10-07 2001-10-19 Version with markings to show changes made

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28742499A JP2001104790A (en) 1999-10-07 1999-10-07 Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil using it
JP287424/1999 1999-10-07
US09/652,954 US6436870B1 (en) 1999-10-07 2000-08-31 Hydrotreating catalyst for hydrotreating hydrocarbon oils
US10/045,860 US20020112991A1 (en) 1999-10-07 2001-10-19 Version with markings to show changes made

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/652,954 Division US6436870B1 (en) 1999-10-07 2000-08-31 Hydrotreating catalyst for hydrotreating hydrocarbon oils

Publications (1)

Publication Number Publication Date
US20020112991A1 true US20020112991A1 (en) 2002-08-22

Family

ID=17717157

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/652,954 Expired - Fee Related US6436870B1 (en) 1999-10-07 2000-08-31 Hydrotreating catalyst for hydrotreating hydrocarbon oils
US10/045,860 Abandoned US20020112991A1 (en) 1999-10-07 2001-10-19 Version with markings to show changes made

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/652,954 Expired - Fee Related US6436870B1 (en) 1999-10-07 2000-08-31 Hydrotreating catalyst for hydrotreating hydrocarbon oils

Country Status (5)

Country Link
US (2) US6436870B1 (en)
EP (1) EP1090682A1 (en)
JP (1) JP2001104790A (en)
CA (1) CA2322359A1 (en)
SG (1) SG102595A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191754A (en) * 2013-04-17 2013-07-10 上海兖矿能源科技研发有限公司 Catalyst for hydrogenation refining of Fischer-Tropsch synthetic oil, as well as preparation method and application thereof

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061277A1 (en) * 2000-09-25 2002-05-23 Engelhard Corporation Non-pyrophoric water-gas shift reaction catalysts
DE10127927A1 (en) * 2001-06-08 2002-12-12 Sued Chemie Ag Production of adsorption agent granules, useful as catalysts for the treatment of aromatic compounds or mixtures, comprises removal of specified amount of the initial amount of the aluminum oxide content.
WO2003002253A1 (en) * 2001-06-27 2003-01-09 Japan Energy Corporation Method for producing hydro-refining catalyst
FR2841798B1 (en) * 2002-07-03 2005-03-04 Inst Francais Du Petrole HYDROTREATMENT CATALYST CONTAINING A NITROGEN ORGANIC COMPOUND AND USE THEREOF
FR2850393B1 (en) * 2003-01-27 2005-03-04 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESS
AR043242A1 (en) * 2003-02-24 2005-07-20 Shell Int Research PREPARATION AND USE OF A CATALYST COMPOSITION
AR043243A1 (en) 2003-02-24 2005-07-20 Shell Int Research CATALYST COMPOSITION, ITS PREPARATION AND USE
US7776784B2 (en) * 2003-07-14 2010-08-17 Nippon Oil Corporation Hydrodesulfurization catalyst and hydrodesulfurization process for gasoline fractions
US8158841B2 (en) * 2004-03-25 2012-04-17 Japan Oil, Gas And Metals National Corporation Hydrotreating method
JP4471717B2 (en) * 2004-04-14 2010-06-02 日揮触媒化成株式会社 Hydrocarbon hydrotreating catalyst composition and hydrocarbon oil hydrotreating method using the catalyst composition.
JP5027391B2 (en) * 2004-06-01 2012-09-19 出光興産株式会社 Hydrocracking catalyst for waxy feedstock
US20050269245A1 (en) * 2004-06-03 2005-12-08 Huve Laurent G Process for desulphurising and dewaxing a hydrocarbon feedstock boiling in the gasoil boiling range
CN101035881B (en) 2004-09-08 2010-10-13 国际壳牌研究有限公司 Hydrocracking catalyst composition
US7955401B2 (en) * 2007-07-16 2011-06-07 Conocophillips Company Hydrotreating and catalytic dewaxing process for making diesel from oils and/or fats
WO2009065878A2 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Method for the start-up of a catalytic process
BRPI0911062B1 (en) * 2008-04-10 2018-06-05 Shell Internationale Research Maatschappij B.V. CATALYTIC SYSTEM, METHOD FOR TREATMENT OF RAW FEED AND CATALASIDOR UNDERSTANDING HYDROGENATION METALS AND A SUPPORT
US8734634B2 (en) 2008-04-10 2014-05-27 Shell Oil Company Method for producing a crude product, method for preparing a diluted hydrocarbon composition, crude products, diluents and uses of such crude products and diluents
EP2199371A1 (en) * 2008-12-15 2010-06-23 Total Raffinage Marketing Process for aromatic hydrogenation and cetane value increase of middle distillate feedstocks
FR2940143B1 (en) * 2008-12-18 2015-12-11 Inst Francais Du Petrole HYDRODEMETALLATION AND HYDRODESULFURIZATION CATALYSTS AND IMPLEMENTATION IN A SINGLE FORMULATION CHAINING PROCESS
US8262905B2 (en) 2009-03-19 2012-09-11 Shell Oil Company Oil and polar additive impregnated composition useful in the catalytic hydroprocessing of hydrocarbons, a method of making such catalyst, and a process of using such catalyst
EA020295B1 (en) 2009-04-21 2014-10-30 Альбемарл Юроп Спрл Hydrotreating catalyst containing phosphorus and boron
AU2010288616B9 (en) 2009-08-24 2014-12-18 Albemarle Europe Sprl Solutions and catalysts comprising Group VI metal, Group VIII metal, phosphorous and an additive
US9132421B2 (en) 2009-11-09 2015-09-15 Shell Oil Company Composition useful in the hydroprocessing of a hydrocarbon feedstock
FR2984762B1 (en) * 2011-12-21 2014-04-25 IFP Energies Nouvelles CATALYTIC ADSORBENT FOR CAPTURING ARSENIC AND SELECTIVE HYDRODESULFURATION OF CATALYTIC CRACKING SPECIES
CN103769118B (en) * 2012-10-24 2017-05-17 中国石油化工股份有限公司 Heavy oil hydrogenation catalyst and preparation method thereof
JP6433434B2 (en) * 2013-01-08 2018-12-05 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Method for optimizing catalyst packing for hydrocracking processes
JP2014173025A (en) * 2013-03-11 2014-09-22 Jx Nippon Oil & Energy Corp Hydrogenation purification method for vacuum gas oil
JP6378902B2 (en) * 2014-03-10 2018-08-22 日本ケッチェン株式会社 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst
US10563138B2 (en) * 2016-12-21 2020-02-18 Saudi Arabian Oil Company Method for optimizing catalyst loading for hydrocracking process
US11413606B2 (en) 2019-08-05 2022-08-16 King Fahd University Of Petroleum And Minerals ZrCe-SBA-15-NiMo Hydrodesulfurization catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287050A (en) * 1980-02-28 1981-09-01 Phillips Petroleum Co. Catalytic hydrodesulfurization of organic compounds employing alumina promoted with zinc titanate, cobalt and molybdenum as the catalytic agent
US4837193A (en) * 1984-04-25 1989-06-06 Toa Nenryo Kogyo Kabushiki Kaisha Hydrotreating catalyst and process of manufacture
US5152885A (en) * 1990-12-18 1992-10-06 Exxon Research And Engineering Company Hydrotreating process using noble metal supported catalysts

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2352795A1 (en) * 1972-10-23 1974-05-02 Toa Nenryo Kogyo Kk METHOD OF MANUFACTURING A CATALYST FOR HYDROCARBON CONVERSION
JPS5328149B2 (en) * 1974-03-30 1978-08-12
JPS5814258B2 (en) * 1974-04-19 1983-03-18 トウアネンリヨウコウギヨウ カブシキガイシヤ The name of the tank isotenkayo.
US4460698A (en) * 1981-11-13 1984-07-17 Standard Oil Company (Indiana) Hydrocarbon conversion catalyst
JPS6183603A (en) 1984-09-07 1986-04-28 Agency Of Ind Science & Technol Preparation of amorphous compound metal oxide
US4626339A (en) * 1984-09-28 1986-12-02 Exxon Research And Engineering Company Supported chromium-molybdenum and tungsten sulfide catalysts
US4591429A (en) * 1984-09-28 1986-05-27 Exxon Research And Engineering Co. Hydrotreating process employing catalysts comprising a supported mixture of a sulfide of a promoter metal, trivalent chromium and molybdenum or tungsten
US4801570A (en) * 1984-12-28 1989-01-31 Exxon Research And Engineering Company Process for preparing a supported, promoted molybdenum and/or tungsten sulfide hydroprocessing catalyst
US4792541A (en) * 1984-12-28 1988-12-20 Exxon Research And Engineering Company Hydrotreating catalysts comprising supported, mixed metal sulfide of iron promoted Mo and W and their uses
EP0204314B1 (en) * 1985-06-05 1990-11-14 Nippon Oil Co. Ltd. Catalyst for hydrotreatment of heavy oils
JPS62241252A (en) 1986-04-11 1987-10-21 Jeol Ltd Linked scan mass spectrometry
US5244858A (en) * 1990-03-23 1993-09-14 Cosmo Research Institute Catalyst composition for hydrodesulfurization of hydrocarbon oil and process for producing the same
DE69104247T2 (en) 1990-03-23 1995-03-09 Cosmo Oil Co Ltd Process for the preparation thereof of a catalyst composition for the hydrogenative desulfurization of hydrocarbon oil.
JPH0813329B2 (en) 1990-03-28 1996-02-14 株式会社コスモ総合研究所 Process for producing hydrodesulfurization catalyst composition for hydrocarbon oil
US5229347A (en) 1991-05-08 1993-07-20 Intevep, S.A. Catalyst for mild hydrocracking of cracked feedstocks and method for its preparation
JPH06226101A (en) 1993-02-03 1994-08-16 Sekiyu Sangyo Kasseika Center Preparation of hydrodesulfurization catalyst for hydrocarbon oil
IT1276726B1 (en) 1995-06-15 1997-11-03 Eniricerche Spa MESOPOROUS ALUMINUM GEL AND PROCEDURE FOR ITS PREPARATION
EP0968764A4 (en) * 1997-11-18 2001-10-17 Tonen Corp Hydrotreating catalyst and processes for hydrotreating hydrocarbon oil with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287050A (en) * 1980-02-28 1981-09-01 Phillips Petroleum Co. Catalytic hydrodesulfurization of organic compounds employing alumina promoted with zinc titanate, cobalt and molybdenum as the catalytic agent
US4837193A (en) * 1984-04-25 1989-06-06 Toa Nenryo Kogyo Kabushiki Kaisha Hydrotreating catalyst and process of manufacture
US5152885A (en) * 1990-12-18 1992-10-06 Exxon Research And Engineering Company Hydrotreating process using noble metal supported catalysts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191754A (en) * 2013-04-17 2013-07-10 上海兖矿能源科技研发有限公司 Catalyst for hydrogenation refining of Fischer-Tropsch synthetic oil, as well as preparation method and application thereof

Also Published As

Publication number Publication date
SG102595A1 (en) 2004-03-26
US6436870B1 (en) 2002-08-20
JP2001104790A (en) 2001-04-17
CA2322359A1 (en) 2001-04-07
EP1090682A1 (en) 2001-04-11

Similar Documents

Publication Publication Date Title
US6436870B1 (en) Hydrotreating catalyst for hydrotreating hydrocarbon oils
US6576584B1 (en) Method for producing hydrotreating catalyst
US10507458B2 (en) Hydrotreating catalyst and process for preparing the same
CA1249570A (en) Hydrotreating catalyst and process of manufacture
RU2338591C2 (en) Obtaining and using catalytic compositions
US6267874B1 (en) Hydrotreating catalyst and processes for hydrotreating hydrocarbon oil with the same
JP2547115B2 (en) Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same
JP4242055B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
EP0992285A1 (en) Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil
US5094993A (en) Hydrotreating catalysts
US5494875A (en) Alumina-containing carrier and hydrofining catalyst for hydrocarbon oils
EP0448117A1 (en) Process for producing a catalyst composition for hydrodesulphurization of hydrocarbon oil.
JP4245226B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP4319812B2 (en) Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method
JP2020185534A (en) Hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil using the catalyst
JP2789489B2 (en) Hydrodesulfurization catalyst composition for hydrocarbon oil, method for producing the same, and hydrodesulfurization method using the same
JP3782887B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
JPH0576758A (en) Catalyst for hydrogenation treatment
JPH0813328B2 (en) Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
CN118019584A (en) Layered catalyst reactor system and method for hydroprocessing hydrocarbon feedstocks
JPH0813329B2 (en) Process for producing hydrodesulfurization catalyst composition for hydrocarbon oil
JP2001314770A (en) Catalyst for hydrogenating heavy hydrocarbon oil and hydrogenating method to use the same
JPH11179208A (en) Catalyst for hydrogenation of hydrocarbon oil
JPS62106991A (en) Catalyst for hydrogenation
JPH06269670A (en) Production of catalyst composition for hydrogenation treatment of hydrocarbon oil

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE