JP6378902B2 - Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst - Google Patents

Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst Download PDF

Info

Publication number
JP6378902B2
JP6378902B2 JP2014046245A JP2014046245A JP6378902B2 JP 6378902 B2 JP6378902 B2 JP 6378902B2 JP 2014046245 A JP2014046245 A JP 2014046245A JP 2014046245 A JP2014046245 A JP 2014046245A JP 6378902 B2 JP6378902 B2 JP 6378902B2
Authority
JP
Japan
Prior art keywords
catalyst
group
periodic table
metal
hydrotreating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014046245A
Other languages
Japanese (ja)
Other versions
JP2015167936A (en
Inventor
研司 野中
研司 野中
金井 勇樹
勇樹 金井
靖生 豊吉
靖生 豊吉
陽平 西森
陽平 西森
豊和 小林
豊和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ketjen Co Ltd
Original Assignee
Nippon Ketjen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014046245A priority Critical patent/JP6378902B2/en
Application filed by Nippon Ketjen Co Ltd filed Critical Nippon Ketjen Co Ltd
Priority to DK15710931.5T priority patent/DK3116647T3/en
Priority to ES15710931T priority patent/ES2702206T3/en
Priority to CN201580013046.XA priority patent/CN106457236B/en
Priority to PCT/JP2015/001018 priority patent/WO2015136873A1/en
Priority to US15/124,756 priority patent/US20170073592A1/en
Priority to HUE15710931A priority patent/HUE042533T2/en
Priority to BR112016020914-1A priority patent/BR112016020914B1/en
Priority to CA2941844A priority patent/CA2941844C/en
Priority to EP15710931.5A priority patent/EP3116647B1/en
Priority to PL15710931T priority patent/PL3116647T3/en
Priority to TW104107550A priority patent/TWI642482B/en
Publication of JP2015167936A publication Critical patent/JP2015167936A/en
Application granted granted Critical
Publication of JP6378902B2 publication Critical patent/JP6378902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0209Esters of carboxylic or carbonic acids
    • B01J35/615
    • B01J35/633
    • B01J35/635
    • B01J35/647
    • B01J35/67
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Description

本発明は、炭化水素油に含まれる硫黄、窒素等の不純物を除去する水素化処理触媒、当該触媒の製造方法およびその利用方法に関する。   The present invention relates to a hydrotreating catalyst for removing impurities such as sulfur and nitrogen contained in hydrocarbon oil, a method for producing the catalyst, and a method for using the catalyst.

近年、世界的な大気環境改善の動向を踏まえて、主要燃料となる留出油の水素化精製を行なう水素化処理触媒のより一層の性能向上が強く求められている。
通常、炭化水素油の水素化処理触媒としては、アルミナ、シリカ等の無機耐熱性担体に、モリブデンとコバルトやニッケル等の水素化活性金属成分を焼成担持したものが一般的である。
しかしながら、近年、触媒性能の更なる向上を図るため、以下に例示するように、担体の改質や触媒金属の担持方法などに様々な工夫や提案がなされている。
In recent years, there has been a strong demand for further improvement in the performance of hydrotreating catalysts that perform hydrorefining of distillate oil, which is the main fuel, in light of the global trend for improving the atmospheric environment.
In general, a hydrocarbon oil hydrotreating catalyst is generally prepared by firing and supporting a hydrogenation active metal component such as molybdenum and cobalt or nickel on an inorganic heat-resistant carrier such as alumina or silica.
However, in recent years, in order to further improve the catalyst performance, various ideas and proposals have been made for the reforming of the carrier and the method for supporting the catalytic metal as exemplified below.

特許文献1は、アルカリ土類金属の酸化物を0.1〜10重量%含有するアルカリ土類金属酸化物−シリカ−アルミナ担体上に周期律表6B族、8族元素から選ばれる活性成分を担持してなる水素化処理触媒を提案している。
しかしながら、当該触媒の比表面積は200m2/g以上と高いことからその平均細孔直径は狭く、炭化水素分子の触媒細孔内の拡散が不十分となることで、広範囲な沸点範囲を有する留出油の脱硫には十分に対応できないという問題点が残されている。
Patent Document 1 discloses an active ingredient selected from Group 6B and Group 8 elements on an alkaline earth metal oxide-silica-alumina carrier containing 0.1 to 10% by weight of an alkaline earth metal oxide. A hydrotreating catalyst is proposed.
However, since the specific surface area of the catalyst is as high as 200 m 2 / g or more, the average pore diameter is narrow, and the diffusion of hydrocarbon molecules in the catalyst pores is insufficient. There remains a problem that it cannot sufficiently cope with desulfurization of the oil.

特許文献2では、炭化水素油の超深度脱硫を行なう触媒として、慣用の酸化物担体に第VIB族金属、第VIII族金属、リンと有機添加剤を存在させた触媒が提案されている。
しかしながら、特許文献2は担体改質や触媒の物理性状などの最適化に係わる具体的な情報に乏しく、この文献の記載を基にして脱硫、脱窒素活性を最適化させた触媒の開発は困難である。
Patent Document 2 proposes a catalyst in which a Group VIB metal, a Group VIII metal, phosphorus and an organic additive are present in a conventional oxide support as a catalyst for performing ultra-deep desulfurization of hydrocarbon oil.
However, Patent Document 2 lacks specific information related to optimization of carrier reforming and physical properties of the catalyst, and it is difficult to develop a catalyst with optimized desulfurization and denitrogenation activity based on the description of this document. It is.

特許文献3には、シリカ、マグネシア、アルミナを含む酸化物担体に周期律表第VIa族金属、第VIII族金属および二価アルコールを担持した水素化脱硫脱窒素用触媒が提案されている。
しかしながら、当該触媒に含まれるマグネシアは担体基準で12〜35重量%(計算値)と非常に多く、シリカやアルミナを基体とした担体の細孔物性や酸性度の制御が難しいという欠点を有する。
Patent Document 3 proposes a hydrodesulfurization and denitrification catalyst in which a Group VIa metal, a Group VIII metal and a dihydric alcohol are supported on an oxide support containing silica, magnesia, and alumina.
However, the amount of magnesia contained in the catalyst is very large as 12 to 35% by weight (calculated value) on the basis of the carrier, and it has a drawback that it is difficult to control the pore properties and acidity of the carrier based on silica or alumina.

特許文献4は、非晶質のシリカ−アルミナ触媒支持体に少なくとも1種の金属、改質剤を含む炭素質供給原料の水素化処理触媒を提案している。
ここで適用可能な触媒支持体として、シリカ−アルミナ−ジルコニア、シリカ−アルミナ−酸化トリウム、シリカ−アルミナ−酸化チタンやシリカ−アルミナ−酸化マグネシウム等の例示があるものの、このような三元系担体の具体的な製法、組成については何も開示されていない。従って、この文献の記載を基にして脱硫、脱窒素活性を最適化させた触媒の開発は困難である。
Patent Document 4 proposes a carbonaceous feedstock hydrotreating catalyst comprising an amorphous silica-alumina catalyst support containing at least one metal and a modifier.
Examples of the catalyst support applicable here include silica-alumina-zirconia, silica-alumina-thorium oxide, silica-alumina-titanium oxide, and silica-alumina-magnesium oxide. No specific manufacturing method or composition is disclosed. Therefore, it is difficult to develop a catalyst with optimized desulfurization and denitrogenation activity based on the description in this document.

特開2000−5601号公報JP 2000-5601 A 特開2000−313890号公報JP 2000-313890 A 特開2001−310133号公報JP 2001-310133 A 特表2012−532212号公報Special table 2012-532212 gazette

本発明が解決しようとする課題は、炭化水素油の水素化処理触媒として、従来以上に優れた水素化処理(水素化、脱硫、脱窒素)性能を有する触媒と、その製造方法、並びにその触媒を用いる炭化水素油の水素化処理方法の提供にある。   The problem to be solved by the present invention is as a hydrotreating catalyst for hydrocarbon oils, a catalyst having a hydrotreating (hydrogenation, desulfurization, denitrogenation) performance superior to conventional ones, a production method thereof, and the catalyst It is in the provision of the hydrotreating method of hydrocarbon oil using.

本発明者らは、従来技術の上記問題点に鑑みて、特に触媒担体の細孔表面の効率的な改質と細孔構造の最適化に焦点を当てて鋭意研究を重ねた結果、特定量の周期表第2族金属を含むシリカ−アルミナ担体に、水素化活性成分と有機添加物を担持して得られる触媒が、炭化水素油の水素化処理に極めて有効であることを見出し、本発明を完成するに至った。   In view of the above-mentioned problems of the prior art, the present inventors have conducted extensive research focusing on efficient reforming of the pore surface of the catalyst support and optimization of the pore structure. It was found that a catalyst obtained by supporting a hydrogenation active component and an organic additive on a silica-alumina support containing a metal of Group 2 of the periodic table is extremely effective for hydrotreating hydrocarbon oils. It came to complete.

即ち本発明は、アルミナとシリカに加えて、周期表第2族金属から選ばれる少なくとも1種の金属を含む無機多孔質担体に、周期表第6族金属から選ばれる少なくとも1種の金属、周期表第8〜10族金属から選ばれる少なくとも1種の金属および有機添加物が担持されている炭化水素油の水素化処理触媒である。   That is, the present invention provides an inorganic porous support containing at least one metal selected from Group 2 metals of the periodic table in addition to alumina and silica, to at least one metal selected from Group 6 metals of the periodic table, It is a hydrotreating catalyst of hydrocarbon oil carrying at least one metal selected from Table 8-10 metals and organic additives.

また、本発明の水素化処理触媒は、周期表第2族金属から選ばれる少なくとも1種の金属含有量が酸化物触媒基準で0.3〜2質量%であり、シリカの含有量が酸化物触媒基準で5〜10質量%である。そして、平均細孔直径は10〜20nm、比表面積は100〜160m2/g、全細孔容積が0.3〜0.6ml/gである。 In the hydrotreating catalyst of the present invention, the content of at least one metal selected from Group 2 metals of the periodic table is 0.3 to 2% by mass based on the oxide catalyst, and the content of silica is an oxide. 5 to 10% by mass based on the catalyst. The average pore diameter is 10 to 20 nm, the specific surface area is 100 to 160 m 2 / g, and the total pore volume is 0.3 to 0.6 ml / g.

また本発明の炭化水素油の水素化処理触媒の製造方法は、アルミナとシリカに加えて周期表第2族金属から選ばれる少なくとも1種の金属を含む水和物を730〜860℃でか焼して得られた無機多孔質担体に、周期表第6族金属から選ばれる少なくとも1種の金属、周期表第8〜10族金属から選ばれる少なくとも1種の金属および有機添加物を含む含浸液を含浸させ質量減少割合が3〜60質量%となるように有機添加物が触媒上に残存する条件で乾燥するものである。   The method for producing a hydrocarbon oil hydrotreating catalyst according to the present invention includes calcining a hydrate containing at least one metal selected from Group 2 metals of the periodic table in addition to alumina and silica at 730 to 860 ° C. An impregnating solution containing at least one metal selected from Group 6 metals of the periodic table, at least one metal selected from Group 8 to 10 metals of the periodic table, and an organic additive in the inorganic porous carrier obtained as described above And the organic additive is dried under the condition that the organic additive remains on the catalyst so that the mass reduction ratio becomes 3 to 60% by mass.

さらに本発明の炭化水素油の水素化処理方法は、炭化水素油と本発明の水素化処理触媒を、反応温度300〜450℃、水素分圧1〜20MPa、液空間速度0.1〜10hr-1、水素/油比50〜1,200Nm3/klの条件で接触させるものである。 Furthermore, the hydrotreating method of the hydrocarbon oil of the present invention comprises a hydrocarbon oil and a hydrotreating catalyst of the present invention, wherein the reaction temperature is 300 to 450 ° C., the hydrogen partial pressure is 1 to 20 MPa, the liquid space velocity is 0.1 to 10 hr −. 1 , contact with hydrogen / oil ratio of 50 to 1,200 Nm 3 / kl.

本発明の水素化処理触媒を用いることにより、従来の触媒以上に炭化水素油から硫黄、窒素等の不純物を効率よく除去し炭化水素油のアップグレード化を可能とする。   By using the hydrotreating catalyst of the present invention, impurities such as sulfur and nitrogen are efficiently removed from the hydrocarbon oil more than the conventional catalyst, and the hydrocarbon oil can be upgraded.

(1)担体
以下、本発明について詳細に説明する。本発明の触媒に用いられる担体は、シリカ−アルミナを基体として、特定量の周期表第2族金属酸化物を含有するものである。
シリカ原料としては、各種のケイ素化合物、例えばアルカリ金属ケイ酸塩、アルコキシシラン、四塩化ケイ素、オルトケイ酸エステル、シリコーン、シリカゾル、シリカゲルなどを用いることができる。
また、アルミナ原料では、アルミニウムの水酸化物(バイヤライト、ギブサイト、ダイアスポア、ベーマイト、擬ベーマイト等)、塩化物、硝酸塩、硫酸塩、アルコキシド、アルミン酸アルカリ金属塩、その他の無機塩、有機塩やアルミナゾルを用いることができる。
一方、周期表第2族金属酸化物の原料物質としては、酸化物、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物、以下同様)、水酸化物、水素化物、硝酸塩、炭酸塩、硫酸塩、有機酸塩等が挙げられる。周期表第2族元素としては、マグネシウム、カルシウム、ストロンチウム、バリウムが適用できるが、マグネシウム、カルシウムが好ましく、活性の観点から特に好ましいのはマグネシウムである。
(1) Carrier Hereinafter, the present invention will be described in detail. The carrier used for the catalyst of the present invention contains a specific amount of a Group 2 metal oxide in the periodic table with silica-alumina as a base.
As the silica raw material, various silicon compounds such as alkali metal silicate, alkoxysilane, silicon tetrachloride, orthosilicate ester, silicone, silica sol, silica gel and the like can be used.
In addition, alumina raw materials include aluminum hydroxide (bayerite, gibbsite, diaspore, boehmite, pseudoboehmite, etc.), chloride, nitrate, sulfate, alkoxide, alkali metal aluminate, other inorganic salts, organic salts, Alumina sol can be used.
On the other hand, as raw materials for Group 2 metal oxides of the periodic table, oxides, halides (fluorides, chlorides, bromides, iodides, the same shall apply hereinafter), hydroxides, hydrides, nitrates, carbonates, sulfuric acids Examples include salts and organic acid salts. As the Group 2 element of the periodic table, magnesium, calcium, strontium, and barium can be applied, but magnesium and calcium are preferable, and magnesium is particularly preferable from the viewpoint of activity.

シリカ−アルミナ−周期表第2族金属酸化物担体は、共沈法や混練法などで調製された第2族金属を含むシリカ−アルミナ水和物を焼成することで得られる。
前記水和物は、シリカ、アルミナの原料と第2族金属化合物との共沈、アルミナ水和物、ケイ素化合物と第2族金属化合物との混練、アルミナ−第2族金属の水和物とケイ素化合物との混合や、ケイ素化合物−第2族金属の混合物とアルミナ水和物の混練などの種々の方法で調製できる。
シリカ−アルミナ−周期表第2族金属酸化物担体に水素化活性金属や有機添加物を担持して触媒化した後のシリカ成分は、酸化物触媒基準で3〜12質量%、好ましくは5〜10質量%、より好ましくは6〜9質量%である。
一方、周期表第2族金属酸化物は、酸化物触媒基準で0.3〜2質量%、好ましくは0.4〜1.8質量%、より好ましくは0.5〜1.5質量%である。
The silica-alumina-periodic table Group 2 metal oxide support can be obtained by firing silica-alumina hydrate containing a Group 2 metal prepared by a coprecipitation method or a kneading method.
The hydrate includes silica, coprecipitation of an alumina raw material and a Group 2 metal compound, alumina hydrate, kneading of a silicon compound and a Group 2 metal compound, and an alumina-Group 2 metal hydrate. It can be prepared by various methods such as mixing with a silicon compound or kneading a mixture of a silicon compound-Group 2 metal and alumina hydrate.
Silica-alumina-silica component after supporting the hydrogenation active metal or organic additive on the Group 2 metal oxide support of the periodic table and catalyzing is 3 to 12% by mass, preferably 5 to 5% based on the oxide catalyst. It is 10 mass%, More preferably, it is 6-9 mass%.
On the other hand, the Group 2 metal oxide of the periodic table is 0.3 to 2% by mass, preferably 0.4 to 1.8% by mass, more preferably 0.5 to 1.5% by mass based on the oxide catalyst. is there.

周期表第2族金属含有のシリカ−アルミナ水和物は、必要に応じて細孔構造の制御のために塩酸、硫酸、硝酸、有機酸(ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、クエン酸、グルコン酸など)、アンモニア、水酸化ナトリウム等の水溶液を添加して解膠操作を行ない、成形性の向上のため混練した後、所望の形状(ペレット、球、押出物など)に成形する。
成形物は、通常、空気中、730〜860℃(雰囲気温度ではなく、成形物の物質温度として)、好ましくは740〜850℃、より好ましくは750〜840℃の温度で0.1〜3時間、好ましくは0.5〜2時間のか焼し担体とする。
Silica-alumina hydrate containing a Group 2 metal in the periodic table contains hydrochloric acid, sulfuric acid, nitric acid, organic acids (formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, Malic acid, tartaric acid, citric acid, gluconic acid, etc.), aqueous solution of ammonia, sodium hydroxide, etc. is added to perform the peptization operation, and after kneading to improve moldability, the desired shape (pellet, sphere, extrusion) Etc.).
The molded article is usually 730 to 860 ° C. in the air (as the material temperature of the molded article, not the ambient temperature), preferably 740 to 850 ° C., more preferably 750 to 840 ° C. for 0.1 to 3 hours. The calcined carrier is preferably 0.5 to 2 hours.

上記工程で得られた担体に、水素化活性成分と有機添加物を添加して、乾燥処理を施すことでこれらを担持する。
添加方法に特に制限は無く、例えば含浸法、塗布法、吹付け法などの様々な工業的な手法を適用できるが、作業性や添加効率の観点から含浸法が好ましい。 含浸法の手法である吸着法、平衡吸着法、ポアフィリング法、Incipient Wetness法、蒸発乾固法、スプレー法等は何れも本願発明に適用可能であるが、作業性の観点からはポアフィリング法が好ましい。
水素活性成分や有機添加物の添加の順序も特に限定されることなく、逐次、あるいは同時に添加することができる。含浸法の場合、各成分を各種極性有機溶媒、水や水−極性有機溶媒混合物に溶解した溶液が使用できるが、最も好ましい溶媒は水である。
The hydrogenation active component and the organic additive are added to the support obtained in the above step, and these are supported by drying treatment.
The addition method is not particularly limited, and various industrial methods such as impregnation method, coating method, spraying method and the like can be applied, but the impregnation method is preferable from the viewpoint of workability and addition efficiency. The impregnation method, adsorption method, equilibrium adsorption method, pore filling method, incipient wetness method, evaporation to dryness method, spray method, etc. are all applicable to the present invention, but from the viewpoint of workability, the pore filling method Is preferred.
The order of addition of the hydrogen active component and the organic additive is not particularly limited, and can be added sequentially or simultaneously. In the case of the impregnation method, a solution in which each component is dissolved in various polar organic solvents, water, or a water-polar organic solvent mixture can be used, but the most preferable solvent is water.

(2)担持成分
担持する水素化活性成分のうち周期表第6族元素としては、クロム、モリブデン、タングステンから選ばれる少なくとも1種である。これらの元素は単独でも使用でき、その場合、経済性や活性の観点から、モリブデン、タングステン、特にモリブデンが好ましい。
また、原料油の反応性や反応装置の操業条件に応じて、組合せて使用してもよい。組合せを行なう場合、クロム−モリブデン、クロム−タングステン、モリブデン−タングステン、クロム−モリブデン−タングステンが例示できる。
担持量は全ての周期表第6族元素酸化物の合計として酸化物触媒基準で10〜40質量%、好ましくは15〜35質量%、更に好ましくは20〜30質量%である。10質量%未満では触媒活性が低く、40質量%を超えても活性の増分は無い。
周期表第6族元素の原料としては、クロム酸塩、モリブデン酸塩、タングステン酸塩、三酸化物、ハロゲン化物、ヘテロポリ酸、ヘテロポリ酸塩などが挙げられる。
(2) Supported component The Group 6 element of the periodic table among the supported hydrogenation active components is at least one selected from chromium, molybdenum, and tungsten. These elements can be used alone, and in that case, molybdenum, tungsten, and particularly molybdenum are preferable from the viewpoint of economy and activity.
Moreover, you may use it combining according to the reactivity of raw material oil, or the operating conditions of a reactor. In the case of combination, chromium-molybdenum, chromium-tungsten, molybdenum-tungsten, chromium-molybdenum-tungsten can be exemplified.
The supported amount is 10 to 40% by mass, preferably 15 to 35% by mass, and more preferably 20 to 30% by mass as a total of all Group 6 element oxides of the periodic table. If it is less than 10% by mass, the catalyst activity is low, and if it exceeds 40% by mass, there is no increase in activity.
Examples of the raw material of the Group 6 element of the periodic table include chromate, molybdate, tungstate, trioxide, halide, heteropolyacid, heteropolyacid salt and the like.

水素化活性成分の周期表第8〜10族元素は、鉄、コバルト、ニッケルが挙げられる。これらの元素それぞれ単独で使用でき、経済性や活性の観点から、コバルト、ニッケルが好ましい。
さらに原料油の反応性、反応装置の操業条件に応じて、組合せて使用することもできる。組合せの場合、鉄−コバルト、鉄−ニッケル、コバルト−ニッケル、鉄−コバルト−ニッケルが例示できる。
担持量は全ての周期表第8〜10族元素酸化物の合計として酸化物触媒基準で0.5〜15質量%、好ましくは1〜10質量%、更に好ましくは2〜6質量%である。担持量が0.5質量%未満では触媒活性が不十分であり、15質量%を超えても活性の増加はない。
担持に使用する鉄、コバルト、ニッケルの化合物としては、酸化物、水酸化物、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩、有機酸塩などが使用できる。
水素化活性成分の含浸溶液を調製する場合、周期表第6族元素、周期表第8〜10族元素でそれぞれ単独に調製してもよいし、両者を混合した均一溶液にしてもよい。
Examples of the Group 8-10 elements of the periodic table of the hydrogenation active component include iron, cobalt, and nickel. Each of these elements can be used alone, and cobalt and nickel are preferred from the viewpoints of economy and activity.
Furthermore, it can also be used in combination according to the reactivity of the feedstock and the operating conditions of the reactor. In the case of a combination, iron-cobalt, iron-nickel, cobalt-nickel, iron-cobalt-nickel can be exemplified.
The supported amount is 0.5 to 15% by mass, preferably 1 to 10% by mass, and more preferably 2 to 6% by mass on the basis of the oxide catalyst as the sum of all group 8-10 element oxides of the periodic table. If the supported amount is less than 0.5% by mass, the catalytic activity is insufficient, and if it exceeds 15% by mass, there is no increase in activity.
As the iron, cobalt and nickel compounds used for loading, oxides, hydroxides, halides, sulfates, nitrates, carbonates, organic acid salts and the like can be used.
When preparing the impregnation solution of the hydrogenation active component, each of the periodic table group 6 elements and the periodic table groups 8 to 10 elements may be prepared independently, or a homogeneous solution in which both are mixed may be used.

水素化活性成分の含浸溶液には、必要に応じて溶液のpH調整、液安定性や触媒の水素化活性を向上させるため、アンモニア水、過酸化水素水、硝酸、硫酸、塩酸、リン酸、フッ化水素酸等を添加してもよい。
なお、リン酸は触媒成分として添加することもでき、その場合の添加量範囲は、酸化物触媒基準でリン酸化物として0.5〜15質量%、好ましくは1〜10質量%、更に好ましくは2〜8質量%である。添加できるリン酸としては、オルトリン酸、ピロリン酸、メタリン酸、ホスホン酸、ジホスホン酸、ホスフィン酸、ポリリン酸やそれらの有機塩、無機塩等が挙げられる。
なお、リン酸は、水素化活性成分の含浸液に添加する以外に、シリカ−アルミナ−周期表第2族金属酸化物担体の調製過程で添加量の一部または全量を含有させてもよい。
In order to improve the pH adjustment of the solution, the liquid stability and the hydrogenation activity of the catalyst, the impregnation solution of the hydrogenation active component is aqueous ammonia, hydrogen peroxide, nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, Hydrofluoric acid or the like may be added.
In addition, phosphoric acid can also be added as a catalyst component, and the addition amount range in that case is 0.5 to 15% by mass, preferably 1 to 10% by mass, more preferably 1 to 10% by mass as phosphorous oxide based on the oxide catalyst It is 2-8 mass%. Examples of phosphoric acid that can be added include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, phosphonic acid, diphosphonic acid, phosphinic acid, polyphosphoric acid, their organic salts, and inorganic salts.
In addition to adding the phosphoric acid to the impregnation liquid of the hydrogenation active component, a part or all of the addition amount may be contained in the preparation process of the silica-alumina-periodic table group 2 metal oxide support.

有機添加物は以下に示すような水溶性有機化合物であり、多価アルコール類とそれらのエーテル類、多価アルコール類またはエーテル類のエステル類、糖類、カルボン酸類やそれらの塩類、アミノ酸類やそれら塩類、各種キレート剤などから選ばれる。   Organic additives are water-soluble organic compounds as shown below, such as polyhydric alcohols and their ethers, polyhydric alcohols or ether esters, saccharides, carboxylic acids and their salts, amino acids and their Selected from salts, various chelating agents and the like.

多価アルコール類とそれらのエーテル類としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、イソプロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール(1,2−、1,3−、1,4−、2,3−)、ペンタンジオール(例えば1,5−、他の異性体を含む)、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコール、ヘキサンジオール(例えば1,2−、1,6−、他の異性体を含む)、ヘキシレングリコール、ポリビニルアルコール、ポリエチレングリコール(平均分子量200〜600)、ポリプロピレングリコール(水溶性に限る)、グリセリン、トリメチロールエタン、トリメチロールプロパン、ヘキサントリオール(例えば1,2,6−、他の異性体を含む)、エリトリトール、ペンタエリトリトール等の多価アルコール類とそれらのエーテル類(メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、セカンダリーブチル、ターシャリーブチルやこれらの任意の組合せから選ばれるモノエーテル、ジエーテル、トリエーテルで水溶性のもの)が例示される。   Examples of polyhydric alcohols and ethers thereof include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, isopropylene glycol, dipropylene glycol, tripropylene glycol, butanediol (1,2-, 1,3-, 1 , 4-, 2,3-), pentanediol (for example, 1,5-, including other isomers), 3-methyl-1,5-pentanediol, neopentyl glycol, hexanediol (for example, 1,2- 1,6-, including other isomers), hexylene glycol, polyvinyl alcohol, polyethylene glycol (average molecular weight 200 to 600), polypropylene glycol (limited to water solubility), glycerin, trimethylolethane, trimethylolpropane, Hexanetriol (eg, 1.2) , 6-, including other isomers), polyhydric alcohols such as erythritol and pentaerythritol, and ethers thereof (methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl and any of these) And water-soluble monoethers, diethers, and triethers selected from the above combinations).

多価アルコール類またはエーテル類のエステル類としては、上記多価アルコール類または前記エーテル類のエステル類(蟻酸、酢酸等のモノエステル、ジエステル、トリエステルで水溶性のもの)が例示される。   Examples of the esters of polyhydric alcohols or ethers include the above-mentioned polyhydric alcohols or esters of the ethers (monoesters such as formic acid and acetic acid, diesters and triesters which are water-soluble).

糖類としては、グルコース、フルクトース、異性化糖、ガラクトース、マルトース、ラクトース、スクロース、トレハロース、澱粉、デキストリン、ペクチン、グリコーゲン、カードラン等の糖類が例示される。   Examples of the saccharide include saccharides such as glucose, fructose, isomerized sugar, galactose, maltose, lactose, sucrose, trehalose, starch, dextrin, pectin, glycogen, and curdlan.

カルボン酸類やそれらの塩類としては、蟻酸、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、マレイン酸、フマル酸、酒石酸、クエン酸(無水物、一水和物)、リンゴ酸、グルコン酸、グルタル酸等のカルボン酸類やそれらの塩類が例示される。   Carboxylic acids and their salts include formic acid, acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid (anhydride, monohydrate), malic acid, gluconic acid, Examples thereof include carboxylic acids such as glutaric acid and salts thereof.

アミノ酸類やそれら塩類としては、アスパラギン酸、アラニン、アルギニン、グリシン、グルタミン酸等のアミノ酸類やそれら塩類が例示される。   Examples of amino acids and salts thereof include amino acids such as aspartic acid, alanine, arginine, glycine, and glutamic acid, and salts thereof.

各種キレート剤としては、エチレンジアミン(EDA)、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、テトラエチレンペンタミン(TEPA)、ペンタエチレンヘキサミン(PEHA)、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチルテトラアンミン六酢酸(TTHA)、ヒドロキシエチルイミノ二酢酸(HIDA)、1,3−プロパンジアミン四酢酸(PDTA)、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸(PDTA−OH)、トランス−1,2−シクロヘキサンジアミン四酢酸(CyDTA)、グリコールエーテルジアミノ四酢酸(GEDTA)、ニトリロ三酢酸(NTA)、ジヒドロキシエチルグリシン(DHEG)、(S,S)−エチレンジアミン−N,N’−二コハク酸(EDDS)等の各種キレート剤が例示される。
上記の有機添加物は、単独または適宜組合せて使用することができる。
Various chelating agents include ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid. (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethyltetraamminehexaacetic acid (TTHA), hydroxyethyliminodiacetic acid (HIDA), 1,3-propanediaminetetraacetic acid (PDTA), 1,3-diamino-2-hydroxypropane Tetraacetic acid (PDTA-OH), trans-1,2-cyclohexanediaminetetraacetic acid (CyDTA), glycol ether diaminotetraacetic acid (GEDTA), nitrilotriacetic acid (NTA), dihydroxy Glycine (DHEG), (S, S) - ethylenediamine -N, various chelating agents such as N'- disuccinic acid (EDDS) are exemplified.
The above organic additives can be used alone or in appropriate combination.

有機添加物の添加量は、周期表第6族元素及び周期表第8〜10族元素の合計モル数の0.05〜3倍量であり、好ましくは0.08〜2.8倍量、特に好ましくは0.1〜2.5倍量である。0.05倍モル未満では触媒性能の向上効果が見られない。3倍モルを超えても活性の増分はない。
なお、水素化活性成分の添加との関係であるが、水素化活性成分と有機添加物の添加の順序に制限はない。即ち、水素化活性成分の添加前や添加後に別の溶液として添加してもよいし、水素化活性成分との均一溶液として同時に添加してもよい。さらに水素化活性成分溶液、有機添加物溶液またはこれらの均一溶液は、溶液の粘度や担体の細孔容積(吸水量)に応じて、一度にまたは複数回に分けて添加してもよい。
The addition amount of the organic additive is 0.05 to 3 times the total number of moles of the periodic table group 6 element and the periodic table group 8 to 10 elements, preferably 0.08 to 2.8 times, Particularly preferably, the amount is 0.1 to 2.5 times. If the amount is less than 0.05 moles, no improvement in catalyst performance is observed. There is no increase in activity beyond the 3-fold mole.
Although there is a relationship with the addition of the hydrogenation active component, the order of addition of the hydrogenation active component and the organic additive is not limited. That is, it may be added as a separate solution before or after the addition of the hydrogenation active component, or may be added simultaneously as a homogeneous solution with the hydrogenation active component. Further, the hydrogenation active component solution, the organic additive solution or a homogeneous solution thereof may be added at once or divided into a plurality of times depending on the viscosity of the solution and the pore volume (water absorption amount) of the carrier.

水素化活性成分、有機添加物の添加を終えた後は、後述する乾燥処理を施すことで周期表第6族元素、周期表第8〜10族元素および有機添加物が担体に担持された完成触媒となる。上記成分の担持の際、乾燥処理で止めて焼成しないことにより、従来の焼成触媒よりも優れた活性を有する触媒を得ることができる。
この乾燥処理では、有機添加物が基本的な骨格構造を変えず(結晶水、水素イオン、水酸化物イオン、アンモニウムイオン等の付加や脱離は考慮しない)、少なくともその一部が水素化活性成分に相互作用(分子間力、水素結合、共有結合、イオン結合、配位結合等)を及ぼして残存していることが望ましい。
有機添加物の残存割合の目安として、完成触媒を空気中550℃で1時間加熱したときの質量減少割合が3〜60質量%、好ましくは4〜55質量%、特に好ましくは5〜50質量%の範囲内であることが好ましい。質量減少割合が3質量%に満たない場合、担持した有機添加物の揮散、分解等が起きており、水素化活性金属成分との相互作用が不十分となることで触媒活性の向上は見られない。60質量%を超えるような場合、予備硫化工程時に生成する多量の水で有機添加物が流出してしまい、触媒活性の向上が図れない。
After completing the addition of the hydrogenation active component and the organic additive, the drying process described later is performed to complete the periodic table group 6 element, the periodic table group 8 to 10 element, and the organic additive supported on the carrier. It becomes a catalyst. When the above components are supported, a catalyst having an activity superior to that of the conventional calcined catalyst can be obtained by stopping by the drying treatment and not firing.
In this drying process, organic additives do not change the basic skeletal structure (addition and desorption of water of crystallization, hydrogen ions, hydroxide ions, ammonium ions, etc. are not taken into account), at least a part of which is hydrogenating activity It is desirable that the components remain by interacting with each other (intermolecular force, hydrogen bond, covalent bond, ionic bond, coordination bond, etc.).
As a measure of the remaining ratio of the organic additive, the mass reduction ratio when the finished catalyst is heated in air at 550 ° C. for 1 hour is 3 to 60 mass%, preferably 4 to 55 mass%, particularly preferably 5 to 50 mass%. It is preferable to be within the range. When the mass reduction ratio is less than 3% by mass, volatilization and decomposition of the supported organic additive occurs, and the catalytic activity is improved due to insufficient interaction with the hydrogenation active metal component. Absent. In the case of exceeding 60% by mass, the organic additive flows out with a large amount of water produced during the preliminary sulfidation step, and the catalytic activity cannot be improved.

上述のような有機添加物と水素化活性成分と相互作用を保持できるならば、乾燥方法に特に制限はない。例えば、空気中や不活性ガス中での対流伝熱乾燥(熱風乾燥)、輻射伝熱乾燥(赤外線、遠赤外線乾燥)、伝導伝熱乾燥、マイクロ波乾燥、凍結乾燥や減圧乾燥などの種々の工業的な手法が適用できる。乾燥条件も特に限定されることはなく、有機添加物の揮散、分解条件に合わせて適宜設定できる。
最も簡便な乾燥方法に熱風乾燥があるが、その場合、例えば空気中や不活性ガス(窒素ガス、希ガス、炭酸ガス、低酸素雰囲気等)中で、上記のように有機添加物の基本骨格を変えないような温度や時間として、例えば30〜250℃(雰囲気温度ではなく乾燥物の物質温度として)、好ましくは50〜220℃、より好ましくは80〜180℃で、さらに好ましくは90〜150℃で、0.1〜3時間といった条件が挙げられる。なお、本願触媒の製造段階での物質温度とは、当業者が用いる任意の手法、例えば熱電対によって測定されるものである。
The drying method is not particularly limited as long as the interaction between the organic additive and the hydrogenation active component as described above can be maintained. For example, convection heat transfer drying (hot air drying), radiant heat transfer drying (infrared, far infrared drying), conduction heat transfer drying, microwave drying, freeze drying, vacuum drying, etc. Industrial techniques can be applied. The drying conditions are not particularly limited, and can be appropriately set according to the volatilization and decomposition conditions of the organic additive.
The simplest drying method is hot air drying. In this case, for example, in the air or in an inert gas (nitrogen gas, rare gas, carbon dioxide gas, low oxygen atmosphere, etc.), the basic skeleton of the organic additive as described above. As a temperature and time that do not change the temperature, for example, 30 to 250 ° C. (not as an ambient temperature but a dry substance temperature), preferably 50 to 220 ° C., more preferably 80 to 180 ° C., and still more preferably 90 to 150 Examples of the conditions include 0.1 to 3 hours at ° C. The substance temperature in the production stage of the catalyst of the present application is measured by any method used by those skilled in the art, for example, a thermocouple.

(3)完成した触媒の性状
完成した触媒が良好な触媒性能を発揮するには、以下の物性、細孔構造を有することが望ましい。即ち、平均細孔直径は9〜20nm、好ましくは10〜18nm、より好ましくは11〜16nmである。平均細孔直径が9nm未満では炭化水素油の細孔内拡散が不十分となり、20nmを超えると比表面積が低下するため触媒性能は低下する。
また、全細孔容積は、0.3〜0.6ml/gが好ましく、より好ましくは0.4〜0.5ml/gである。0.3ml/g以下では炭化水素油を細孔内に拡散させるのに不十分であり、0.6ml/gを超えた場合、反応器に触媒を充填した場合、触媒の絶対質量が軽くなる(触媒活性成分量が減少する)ため、十分な触媒性能が現れない。
ここで、触媒の細孔の均一さを示す指標として、平均細孔直径±1.5nmの範囲の直径を有する細孔容積の割合が、全細孔容積に対して20〜60%、好ましくは22〜58%である細孔構造を有することが望ましい。20%未満では反応に寄与しない微小細孔や表面積の低い大細孔の割合が増加し、60%を超える場合は、比較的分子サイズの大きな炭化水素油の細孔内拡散が阻害されることで触媒活性の低下を招く。なお、本発明の触媒の細孔径分布は、平均細孔直径やその近傍を中心とする単峰性の分布である。
比表面積は、100〜170m2/gが望ましく、より好ましい範囲は110〜160m2/g、さらに好ましくは115〜150m2/gである。100m2/g未満では触媒性能が不十分であり、170m2/gを超えると平均細孔直径が小さくなりすぎるため、反応中に細孔閉塞等が起こりやすくなる。
(3) Properties of the completed catalyst In order for the completed catalyst to exhibit good catalytic performance, it is desirable to have the following physical properties and pore structure. That is, the average pore diameter is 9 to 20 nm, preferably 10 to 18 nm, more preferably 11 to 16 nm. When the average pore diameter is less than 9 nm, the diffusion of the hydrocarbon oil in the pores is insufficient, and when it exceeds 20 nm, the specific surface area is decreased and the catalyst performance is decreased.
Further, the total pore volume is preferably 0.3 to 0.6 ml / g, more preferably 0.4 to 0.5 ml / g. If it is 0.3 ml / g or less, it is insufficient for diffusing the hydrocarbon oil into the pores. If it exceeds 0.6 ml / g, the absolute mass of the catalyst becomes light when the reactor is filled with the catalyst. (The amount of catalytically active component is reduced), so sufficient catalytic performance does not appear.
Here, as an index indicating the uniformity of the pores of the catalyst, the ratio of the pore volume having a diameter in the range of the average pore diameter ± 1.5 nm is 20 to 60% with respect to the total pore volume, preferably It is desirable to have a pore structure that is 22-58%. If it is less than 20%, the proportion of micropores that do not contribute to the reaction or large pores with a low surface area increases, and if it exceeds 60%, diffusion of the hydrocarbon oil having a relatively large molecular size into the pores is inhibited. This leads to a decrease in catalytic activity. The pore size distribution of the catalyst of the present invention is a unimodal distribution centering on the average pore diameter and its vicinity.
Specific surface area, 100~170m 2 / g is desirable, more preferably in the range of 110~160m 2 / g, more preferably from 115~150m 2 / g. If it is less than 100 m 2 / g, the catalyst performance is insufficient, and if it exceeds 170 m 2 / g, the average pore diameter becomes too small, and pore clogging or the like tends to occur during the reaction.

なお、細孔構造(細孔容積、平均細孔直径、細孔径分布等)は水銀圧入法(接触角140°、表面張力480dyn/cm)、比表面積はBET法でそれぞれ得られた値である。完成触媒の細孔構造、比表面積の測定や水素化活性成分の担持量定量に際しては、完成触媒を空気中450℃で1時間処理して水分や有機物を除去したものを測定対象とし、ここで得られた分析、測定値を酸化物触媒基準での値としている。なお、水素化活性成分や担体構成成分の定量では、蛍光X線分析装置を用いた。   The pore structure (pore volume, average pore diameter, pore size distribution, etc.) is a value obtained by the mercury intrusion method (contact angle 140 °, surface tension 480 dyn / cm), and the specific surface area is a value obtained by the BET method. . When measuring the pore structure and specific surface area of the finished catalyst and determining the supported amount of the hydrogenation active component, the finished catalyst was treated at 450 ° C. in air for 1 hour to remove moisture and organic matter. The obtained analysis and measurement values are values based on oxide catalyst standards. Note that an X-ray fluorescence analyzer was used for quantification of the hydrogenation active component and the carrier component.

なお、触媒は通常、予備硫化操作を施してから使用されるが、この予備硫化操作は反応塔内または反応塔外でも可能である。
予備硫化方法としては、加熱状態、水素雰囲気下で硫黄分を含む灯油や軽油留分を用いたり、これらの油に二硫化炭素、ブタンチオール、ジメチルジスルフィド(DMDS)、ジターシャリーノニルポリスルフィド(TNPS)等の硫化剤を適量添加したものを用いての液相での硫化や、加熱水素気流中で硫化水素や二硫化炭素を硫化剤として用いる気相硫化法等が適用できる。
The catalyst is usually used after being subjected to a preliminary sulfidation operation, but this preliminary sulfidation operation can be performed inside or outside the reaction column.
As a preliminary sulfidation method, kerosene and light oil fractions containing sulfur in a heated state and hydrogen atmosphere are used, and carbon disulfide, butanethiol, dimethyl disulfide (DMDS), ditertiary nonyl polysulfide (TNPS) are used for these oils. It is possible to apply sulfidization in a liquid phase using a suitable amount of a sulfurizing agent such as a gas phase, or a gas phase sulfiding method using hydrogen sulfide or carbon disulfide as a sulfiding agent in a heated hydrogen stream.

(4)炭化水素油
本発明の触媒による水素化処理の対象となる炭化水素油は、ASTM D−2887またはD−2887拡張手法に基づいて、90%沸点温度が560℃以下、好ましくは540℃以下、初留点が100℃以上、好ましくは150℃以上の留出油である。
具体的には、主として石油系のナフサ、直留灯油、直留軽油、重質軽油、減圧軽油、重質減圧軽油等が例示できるが、水素化分解装置、熱分解装置や流動接触分解装置から得られる灯軽油留分(ライトサイクル油やコーカー軽油など)や重油直接脱硫装置由来の灯軽油留分に加え、石炭由来または動植物系のバイオマス由来の灯軽油相当留分、以上列記した留出分の任意の混合油も包含される。
なお、処理する原料油中のバナジウムやニッケルといった金属分は、5質量ppm以下、好ましくは1質量ppm以下、残留炭素分は1質量%以下、好ましくは0.9質量%以下であることが望ましいが、前記の金属分や残留炭素分の含有量を満たすように、原料留出油に減圧軽油、常圧残油、減圧残油、溶剤脱瀝油、石炭液化油、頁岩油、タールサンド油等の重質油を混合して処理することもできる。
(4) Hydrocarbon oil The hydrocarbon oil to be hydrotreated with the catalyst of the present invention has a 90% boiling point temperature of 560 ° C. or less, preferably 540 ° C., based on the ASTM D-2887 or D-2887 extended method. Hereinafter, it is a distillate having an initial boiling point of 100 ° C or higher, preferably 150 ° C or higher.
Specific examples include petroleum-based naphtha, straight-run kerosene, straight-run light oil, heavy light oil, vacuum gas oil, heavy vacuum gas oil, etc., from hydrocracking equipment, thermal cracking equipment and fluid catalytic cracking equipment. In addition to the kerosene fraction obtained (light cycle oil, coker diesel oil, etc.), kerosene fraction derived from heavy oil direct desulfurization equipment, fractions equivalent to kerosene derived from coal or animal and plant biomass, the distillates listed above Any mixed oil is also included.
The metal content such as vanadium and nickel in the raw material oil to be treated is 5 mass ppm or less, preferably 1 mass ppm or less, and the residual carbon content is 1 mass% or less, preferably 0.9 mass% or less. However, in order to satisfy the above-mentioned metal content and residual carbon content, the raw material distillate should be vacuum gas oil, atmospheric residue, vacuum residue, solvent defoaming oil, coal liquefied oil, shale oil, tar sand oil. It is also possible to mix and process heavy oil such as.

(5)水素化処理方法
本発明の水素化処理触媒は、固定床、沸騰床、移動床等の反応器で、前記の炭化水素油を水素の存在下での水素化、水素化脱硫、水素化脱窒素、水素化脱酸素、水素化分解、水素化異性化等を行なう種々の水素化処理反応に使用できる。本発明の水素化処理触媒のより好ましい用途は、石油系留出油の脱硫、脱窒素、特には灯油又は軽油留分中の硫黄分を80質量ppm以下、さらには10質量ppm以下に低減することである。
水素化処理装置で使用する場合、反応条件は原料油種にもよるが、水素分圧1〜20MPa、好ましくは3〜18MPa、水素/油比50〜1,200Nm3/kl、好ましくは、100〜1,000Nm3/kl、液空間速度0.1〜10h-1、好ましくは、0.5〜8h-1、反応温度300〜450℃、好ましくは320〜430℃で使用するのが一般的である。
(5) Hydrotreating method The hydrotreating catalyst of the present invention is a reactor such as a fixed bed, a boiling bed, a moving bed, etc., in which the hydrocarbon oil is hydrogenated, hydrodesulfurized, hydrogenated in the presence of hydrogen. It can be used in various hydrotreating reactions for hydrodenitrogenation, hydrodeoxygenation, hydrocracking, hydroisomerization and the like. The hydrotreating catalyst of the present invention is more preferably used for desulfurization and denitrogenation of petroleum distillate, particularly reducing sulfur content in kerosene or light oil fraction to 80 mass ppm or less, and further to 10 mass ppm or less. That is.
When used in a hydrotreating apparatus, the reaction conditions depend on the type of raw material oil, but the hydrogen partial pressure is 1 to 20 MPa, preferably 3 to 18 MPa, the hydrogen / oil ratio is 50 to 1,200 Nm 3 / kl, preferably 100 ˜1,000 Nm 3 / kl, liquid space velocity 0.1 to 10 h −1 , preferably 0.5 to 8 h −1 , reaction temperature 300 to 450 ° C., preferably 320 to 430 ° C. It is.

以下に示す実施例によって、更に本発明を具体的に説明する。ただし、下記実施例は何ら本発明を限定するものではない。
〔触媒の調製〕
(実施例1)
温水の水道水を入れたタンクに硫酸アルミニウム、アルミン酸ソーダおよび水ガラスを添加、混合することで、シリカ−アルミナ水和物ゲル(シリカ/アルミナ質量比:8.5/91.5)を調製した。
溶液から水和物を分離し、温水を用いて不純物を洗浄除去した後、硝酸を添加し、次いで、炭酸マグネシウム(酸化物触媒基準、酸化マグネシウムとして0.5質量%)を加え、混練機を用いて加熱混練して水分率を調整した後、押出し成形し、空気中、780℃で1.5時間か焼することでシリカ−アルミナ−マグネシア担体を得た。
この担体に対して、酸化物触媒基準で三酸化モリブデン22質量%、酸化コバルト4質量%、酸化リン3質量%となるように、三酸化モリブデン、塩基性炭酸コバルト、リン酸と有機添加物としてクエン酸一水和物、ポリエチレングリコール(平均分子量200)(有機添加物は、モリブデンとコバルトの合計モル数に対して、クエン酸一水和物、ポリエチレングリコールをそれぞれ0.1倍モル、0.3倍モル量添加)を含有する水溶液を含浸し、含浸物の温度が120℃となる条件で、2時間、空気中で熱風乾燥処理して触媒Aを得た。
触媒Aの物性、化学組成を表1に示す。
The following examples further illustrate the present invention. However, the following examples do not limit the present invention.
(Preparation of catalyst)
Example 1
A silica-alumina hydrate gel (silica / alumina mass ratio: 8.5 / 91.5) is prepared by adding and mixing aluminum sulfate, sodium aluminate and water glass into a tank containing hot tap water. did.
After separating the hydrate from the solution and washing away impurities using warm water, nitric acid was added, then magnesium carbonate (based on oxide catalyst, 0.5% by mass as magnesium oxide) was added, and the kneader was After adjusting the moisture content by heating and kneading, extrusion molding was carried out, followed by calcination in air at 780 ° C. for 1.5 hours to obtain a silica-alumina-magnesia carrier.
Molybdenum trioxide, basic cobalt carbonate, phosphoric acid, and organic additives so that the carrier is 22% by mass of molybdenum trioxide, 4% by mass of cobalt oxide, and 3% by mass of phosphorus oxide based on the oxide catalyst. Citric acid monohydrate, polyethylene glycol (average molecular weight 200) (The organic additive is 0.1 times the moles of citric acid monohydrate and polyethylene glycol, and 0.1 mol, respectively, relative to the total number of moles of molybdenum and cobalt. A catalyst A was obtained by impregnating an aqueous solution containing 3 times the molar amount) and drying with hot air in air for 2 hours under the condition that the temperature of the impregnated product was 120 ° C.
Table 1 shows the physical properties and chemical composition of Catalyst A.

(実施例2)
実施例1で、有機添加物であるクエン酸一水和物、ポリエチレングリコール(平均分子量200)を、モリブデンとコバルトの合計モル数に対してそれぞれ0.05倍モル量用いた以外は実施例1と同様の方法で触媒Bを調製した。
触媒Bの物性、化学組成を表1に示す。
(Example 2)
Example 1 Example 1 except that citric acid monohydrate and polyethylene glycol (average molecular weight 200), which are organic additives, were used in a molar amount 0.05 times the total number of moles of molybdenum and cobalt. Catalyst B was prepared in the same manner as above.
Table 1 shows the physical properties and chemical composition of Catalyst B.

(実施例3)
炭酸マグネシウムの添加量を酸化物触媒基準で酸化マグネシウムとして0.8質量%とした以外は、実施例1と同様の方法で触媒Cを調製した。
触媒Cの物性、化学組成を表1に示す。
(Example 3)
Catalyst C was prepared in the same manner as in Example 1, except that the amount of magnesium carbonate added was 0.8% by mass as magnesium oxide based on the oxide catalyst.
The physical properties and chemical composition of the catalyst C are shown in Table 1.

(実施例4)
炭酸マグネシウムに換えて炭酸カルシウムとした以外は実施例1と同様の方法で触媒Dを調製した。
触媒Dの物性、化学組成を表1に示す。
Example 4
Catalyst D was prepared in the same manner as in Example 1 except that calcium carbonate was used instead of magnesium carbonate.
Table 1 shows the physical properties and chemical composition of catalyst D.

(実施例5)
混練機にシリカゾル、擬ベーマイト粉を入れ(シリカ/アルミナ質量比:8.5/91.5)、炭酸マグネシウム(酸化物触媒基準、酸化マグネシウムとして0.5質量%)、イオン交換水、クエン酸を投入し混練後、加熱混練して水分率を調整した後、押出し成形し、空気中、780℃で1.5時間か焼することでシリカ−アルミナ−マグネシア担体を得た。
この担体に対して、酸化物触媒基準で三酸化モリブデン22質量%、酸化ニッケル4質量%、酸化リン5質量%となるように、三酸化モリブデン、塩基性炭酸ニッケル、リン酸と有機添加物としてジエチレングリコール(有機添加物は、モリブデンとニッケルの合計モル数に対して0.4倍モル量添加)を含有する水溶液を含浸し、含浸物の温度が120℃となる条件で、2時間、空気中で熱風乾燥処理して触媒Eを得た。
触媒Eの物性、化学組成を表1に示す。
(Example 5)
Silica sol and pseudo boehmite powder are put into a kneader (silica / alumina mass ratio: 8.5 / 91.5), magnesium carbonate (based on oxide catalyst, 0.5% by mass as magnesium oxide), ion-exchanged water, citric acid Was added, kneaded, heated and kneaded to adjust the moisture content, extruded, and calcined in air at 780 ° C. for 1.5 hours to obtain a silica-alumina-magnesia carrier.
Molybdenum trioxide, basic nickel carbonate, phosphoric acid and organic additives so that the carrier is 22% by mass of molybdenum trioxide, 4% by mass of nickel oxide, and 5% by mass of phosphorus oxide based on the oxide catalyst. Impregnated with an aqueous solution containing diethylene glycol (the organic additive is added in a molar amount of 0.4 times the total number of moles of molybdenum and nickel), and the temperature of the impregnated product is 120 ° C. for 2 hours in the air The catalyst E was obtained by drying with hot air.
Table 1 shows the physical properties and chemical composition of the catalyst E.

(比較例1)
温水の水道水を入れたタンクに硫酸アルミニウムとアルミン酸ソーダを添加、混合することで、アルミナ水和物を調製した。溶液から水和物を分離し、温水を用いて不純物を洗浄除去した後、硝酸を添加し、次いで、混練機を用いて加熱混練して水分率を調整した後、押出し成形し、空気中、680℃で1.5時間か焼することでアルミナ担体を得た。
この担体に対して、酸化物触媒基準で三酸化モリブデン22質量%、酸化コバルト4質量%、酸化リン3質量%となるように、三酸化モリブデン、塩基性炭酸コバルト、リン酸と有機添加物としてクエン酸一水和物、ポリエチレングリコール(平均分子量200)(有機添加物は、モリブデンとコバルトの合計モル数に対して、クエン酸一水和物、ポリエチレングリコールをそれぞれ0.1倍モル、0.3倍モル量添加)を含有する水溶液を含浸し、含浸物の温度が120℃となる条件で、2時間、空気中で熱風乾燥処理して触媒Fを得た。
触媒Fの物性、化学組成を表1に示す。
(Comparative Example 1)
Alumina hydrate was prepared by adding and mixing aluminum sulfate and sodium aluminate to a tank containing hot tap water. After separating the hydrate from the solution and washing and removing impurities using warm water, nitric acid is added, and after adjusting the moisture content by heating and kneading using a kneader, extrusion molding, in the air, An alumina support was obtained by calcination at 680 ° C. for 1.5 hours.
Molybdenum trioxide, basic cobalt carbonate, phosphoric acid, and organic additives so that the carrier is 22% by mass of molybdenum trioxide, 4% by mass of cobalt oxide, and 3% by mass of phosphorus oxide based on the oxide catalyst. Citric acid monohydrate, polyethylene glycol (average molecular weight 200) (The organic additive is 0.1 times the moles of citric acid monohydrate and polyethylene glycol, and 0.1 mol, respectively, relative to the total number of moles of molybdenum and cobalt. A catalyst F was obtained by impregnating an aqueous solution containing 3 times the molar amount) and drying with hot air in air for 2 hours under the condition that the temperature of the impregnated product was 120 ° C.
The physical properties and chemical composition of catalyst F are shown in Table 1.

(比較例2)
実施例1で炭酸マグネシウムを使用せず、シリカ−アルミナ水和物の成形物を890℃でか焼した以外は実施例1と同様の方法で触媒Gを調製した。
触媒Gの物性、化学組成を表1に示す。
(Comparative Example 2)
Catalyst G was prepared in the same manner as in Example 1 except that magnesium carbonate was not used in Example 1 and the silica-alumina hydrate molded product was calcined at 890 ° C.
Table 1 shows the physical properties and chemical composition of the catalyst G.

(比較例3)
実施例1で、炭酸マグネシウムの添加量を2.1質量%とした以外は実施例1と同様の方法で触媒Hを調製した。
触媒Hの物性、化学組成を表1に示す。
(Comparative Example 3)
Catalyst H was prepared in the same manner as in Example 1 except that the amount of magnesium carbonate added was 2.1% by mass in Example 1.
Table 1 shows the physical properties and chemical composition of the catalyst H.

(比較例4)
混練機に擬ベーマイト粉、イオン交換水、硝酸を投入し十分に混練後、加熱混練して水分率を調整した後、押出し成形し、空気中、680℃で1.5時間か焼することでアルミナ担体を得た。
この担体に対して、酸化物触媒基準で三酸化モリブデン22質量%、酸化ニッケル4質量%、酸化リン5質量%となるように、三酸化モリブデン、塩基性炭酸ニッケル、リン酸と有機添加物としてジエチレングリコール(有機添加物は、モリブデンとニッケルの合計モル数に対して0.4倍モル量添加)を含有する水溶液を含浸し、含浸物の温度が120℃となる条件で、2時間、空気中で熱風乾燥処理して触媒Iを得た。
触媒Iの物性、化学組成を表1に示す。
(Comparative Example 4)
Pseudo boehmite powder, ion-exchanged water and nitric acid are put into a kneading machine, kneaded thoroughly, heated and kneaded to adjust the moisture content, extruded, and calcined in air at 680 ° C. for 1.5 hours. An alumina support was obtained.
Molybdenum trioxide, basic nickel carbonate, phosphoric acid and organic additives so that the carrier is 22% by mass of molybdenum trioxide, 4% by mass of nickel oxide, and 5% by mass of phosphorus oxide based on the oxide catalyst. Impregnated with an aqueous solution containing diethylene glycol (the organic additive is added in a molar amount of 0.4 times the total number of moles of molybdenum and nickel), and the temperature of the impregnated product is 120 ° C. for 2 hours in the air The catalyst I was obtained by drying with hot air.
The physical properties and chemical composition of Catalyst I are shown in Table 1.

Figure 0006378902
Figure 0006378902

〔水素化活性試験〕
1.軽油水素化処理試験
実施例1〜4、比較例1〜3の触媒を固定床小型流通反応機に充填した後、表2の軽油にジメチルジスルフィドを添加した硫化油(全硫黄分として2.5質量%相当)による予備硫化を行なった後、表2の原料油に切り替えて表3の条件で水素化処理試験を実施した。
試験で得られた生成油の硫黄分をそれぞれ蛍光X線法で測定し、式(1)、(2)に基づいて容量基準の比活性を求めた。
試験結果を表6に示す。
[Hydrogenation activity test]
1. Gas oil hydrotreating test After the catalysts of Examples 1 to 4 and Comparative Examples 1 to 3 were charged into a fixed bed small flow reactor, sulfurized oil in which dimethyl disulfide was added to the light oil in Table 2 (2.5% as total sulfur content). After preliminary sulfidation by the equivalent of mass%, the hydrotreating test was conducted under the conditions shown in Table 3 by switching to the feedstock oil in Table 2.
The sulfur content of the product oil obtained in the test was measured by the fluorescent X-ray method, and the specific activity based on volume was determined based on the formulas (1) and (2).
The test results are shown in Table 6.

Figure 0006378902
Figure 0006378902

Figure 0006378902
Figure 0006378902

Figure 0006378902
Figure 0006378902

上式中、LHSVは液空間速度、kは反応速度定数、nは反応次数、Xは原料油中の、Yは生成油中の硫黄分の質量割合である。   In the above formula, LHSV is the liquid space velocity, k is the reaction rate constant, n is the reaction order, X is in the feedstock, and Y is the mass proportion of sulfur in the product oil.

2.減圧軽油水素化処理試験
実施例5および比較例4の触媒を固定床小型流通反応機に充填し、前記表2の軽油にジメチルジスルフィドを添加した硫化油(全硫黄分として2.5質量%相当)による予備硫化を行なった後、表4の原料油に切り替え、表5の条件で、減圧軽油の水素化処理試験を行なった。
試験で得られた生成油の硫黄分を蛍光X線法で、窒素分を酸化分解化学発光法で測定し、式(3)〜(5)に基づいて容量基準の比活性を求めた。
評価結果は表7に示した。
2. Gas oil hydrotreating test under reduced pressure The catalyst of Example 5 and Comparative Example 4 was charged into a fixed bed small flow reactor, and sulfur oil obtained by adding dimethyl disulfide to the light oil in Table 2 (corresponding to 2.5% by mass as the total sulfur content) ) Was then switched to the feedstock oil shown in Table 4, and a hydrogenation test of vacuum gas oil was conducted under the conditions shown in Table 5.
The sulfur content of the product oil obtained in the test was measured by the fluorescent X-ray method and the nitrogen content was measured by the oxidative decomposition chemiluminescence method, and the specific activity based on the capacity was determined based on the formulas (3) to (5).
The evaluation results are shown in Table 7.

Figure 0006378902
Figure 0006378902

Figure 0006378902
Figure 0006378902

Figure 0006378902
Figure 0006378902

上式中、LHSVは液空間速度、kは反応速度定数、nは反応次数、Xは原料油中の硫黄または窒素分の、Yは生成油中の硫黄または窒素分の質量割合である。なお、lnは自然対数の表記である。   In the above formula, LHSV is the liquid space velocity, k is the reaction rate constant, n is the reaction order, X is the sulfur or nitrogen content in the feed oil, and Y is the mass proportion of sulfur or nitrogen content in the product oil. Note that ln is a natural logarithm.

Figure 0006378902
Figure 0006378902

表6中のエネルギー消費指数とは、触媒の調製過程で要した燃料、電気使用量を熱量に換算し、比較例1での数値に対する実施例1〜4、比較例1〜3の数値の比を100倍したものである。 The energy consumption index in Table 6 is the ratio of the numerical values of Examples 1 to 4 and Comparative Examples 1 to 3 with respect to the numerical values in Comparative Example 1 by converting the amount of fuel and electricity used in the preparation process of the catalyst into the amount of heat. Is multiplied by 100.

Figure 0006378902
Figure 0006378902

表7中のエネルギー消費指数とは、触媒の調製過程で要した燃料、電気使用量を熱量に換算し、比較例4での数値に対する比較例4、実施例5の数値の比を100倍したものである。   The energy consumption index in Table 7 is the amount of fuel and electricity used in the preparation process of the catalyst, converted into heat, and the ratio of the numerical values in Comparative Example 4 and Example 5 to the numerical values in Comparative Example 4 was multiplied by 100. Is.

軽油および減圧軽油の水素化処理試験結果(表6、7)から、本発明のシリカ−アルミナ−周期表第2族金属酸化物担体を使用した水素化処理触媒は、従来のアルミナ系担体を用いた使用触媒に比べて優れた水素化脱硫、水素化脱窒素活性を示していることが分かる。
なお、比較例2の触媒は、周期表第2族金属を含まないシリカ−アルミナ担体を用いているが、その軽油脱硫活性は実施例とほぼ同等である。
しかしながら、実施例触媒と同様の細孔構造を有する触媒を得るためには、担体製造工程で高温のか焼温度を必要とするため、商業的な製造においてはエネルギーコストが割高となるといった欠点を有する。
本願発明の触媒は、従来に増して触媒活性が高く、製造面においてもエネルギー消費量を抑えた経済性の高い触媒であることが分かる。
From the hydrotreating test results of light oil and vacuum gas oil (Tables 6 and 7), the hydrotreating catalyst using the silica-alumina-periodic group 2 metal oxide carrier of the present invention uses a conventional alumina carrier. It can be seen that the hydrodesulfurization and hydrodenitrogenation activities are superior to those of the used catalysts.
In addition, although the catalyst of the comparative example 2 uses the silica-alumina support | carrier which does not contain a periodic table group 2 metal, the light oil desulfurization activity is substantially equivalent to an Example.
However, in order to obtain a catalyst having the same pore structure as that of the example catalyst, a high calcination temperature is required in the carrier production process, so that there is a disadvantage that the energy cost is high in commercial production. .
It can be seen that the catalyst of the present invention is a highly economical catalyst that has higher catalytic activity than conventional ones, and has reduced energy consumption in terms of production.

Claims (8)

アルミナとシリカに加えて、周期表第2族金属から選ばれる少なくとも1種の金属を含む無機多孔質担体に、周期表第6族金属から選ばれる少なくとも1種の金属、周期表第8〜10族金属から選ばれる少なくとも1種の金属および有機添加物が担持されている炭化水素油の水素化処理触媒であって、
周期表第2族金属から選ばれる少なくとも1種の金属の含有量が酸化物触媒基準で0.3〜2質量%であり、
周期表第8〜10族金属は、鉄、コバルト、ニッケルから選ばれ、
有機添加物は、多価アルコール類とそれらのエーテル類、多価アルコール類またはエーテル類のエステル類、糖類、カルボン酸類やそれらの塩類、アミノ酸類やそれら塩類、及びキレート剤からなる群より選ばれる少なくとも1種であり、
シリカの含有量が酸化物触媒基準で3〜12質量%であり、
平均細孔直径が9〜20nm、比表面積が100〜170m 2 /g、全細孔容積が0.3〜0.6ml/gである、
上記の水素化処理触媒
In addition to alumina and silica, an inorganic porous carrier containing at least one metal selected from Group 2 metals of the periodic table is used, and at least one metal selected from Group 6 metals of the periodic table is used. A hydrotreating catalyst for hydrocarbon oil carrying at least one metal selected from group metals and an organic additive ,
The content of at least one metal selected from Group 2 metals of the periodic table is 0.3 to 2% by mass based on the oxide catalyst,
The Group 8-10 metal of the periodic table is selected from iron, cobalt, nickel,
The organic additive is selected from the group consisting of polyhydric alcohols and their ethers, polyhydric alcohols or esters of ethers, saccharides, carboxylic acids and their salts, amino acids and their salts, and chelating agents. At least one,
The content of silica is 3 to 12% by mass based on the oxide catalyst,
The average pore diameter is 9 to 20 nm, the specific surface area is 100 to 170 m 2 / g, and the total pore volume is 0.3 to 0.6 ml / g.
Said hydrotreating catalyst .
有機添加物の含有量が周期表第6族元素及び周期表第8〜10族元素の合計モル数の0.05〜3倍量である請求項に記載の水素化処理触媒。 The hydrotreating catalyst according to claim 1 , wherein the content of the organic additive is 0.05 to 3 times the total number of moles of the Group 6 element of the periodic table and the Group 8 to 10 elements of the periodic table. 周期表第2族金属がマグネシウム又はカルシウムであり、周期表第6族金属がモリブデン又はタングステンであり、周期表第8〜10族金属がコバルト及び又はニッケルである請求項1又は2に記載の水素化処理触媒。 The hydrogen according to claim 1 or 2 , wherein the Group 2 metal of the periodic table is magnesium or calcium, the Group 6 metal of the periodic table is molybdenum or tungsten, and the Group 8-10 metal of the periodic table is cobalt and / or nickel. Catalyst. さらに触媒成分としてリン酸が、酸化物触媒基準で0.5〜15質量%担持されている請求項1〜3のいずれか1項に記載の水素化処理触媒。 The hydroprocessing catalyst according to any one of claims 1 to 3 , wherein phosphoric acid is further supported as a catalyst component in an amount of 0.5 to 15% by mass based on the oxide catalyst. 請求項1〜4のいずれか1項に記載の水素化処理触媒の製造方法であって、
アルミナとシリカに加えて周期表第2族金属から選ばれる少なくとも1種の金属を含む水和物を730〜860℃でか焼して得られた無機多孔質担体に、周期表第6族金属から選ばれる少なくとも1種の金属、周期表第8〜10族金属から選ばれる少なくとも1種の
金属および有機添加物を含む含浸液を含浸し、質量減少割合が3〜60質量%となるように有機添加物が触媒上に残存する条件で乾燥することを特徴とする炭化水素油の水素化処理触媒の製造方法。
It is a manufacturing method of the hydroprocessing catalyst of any one of Claims 1-4,
In addition to alumina and silica, an inorganic porous support obtained by calcining a hydrate containing at least one metal selected from Group 2 metals of the Periodic Table at 730 to 860 ° C. is used. Impregnating an impregnating liquid containing at least one metal selected from the group consisting of at least one metal selected from Group 8 to 10 metals of the periodic table and an organic additive, so that the mass reduction ratio is 3 to 60% by mass. A method for producing a hydrotreating catalyst for hydrocarbon oil, wherein the organic additive is dried under the condition that the catalyst remains on the catalyst.
周期表第2族金属がマグネシウム又はカルシウムであり、周期表第6族金属がモリブデン又はタングステンであり、周期表第8〜10族金属がコバルト及び又はニッケルである請求項に記載の水素化処理触媒の製造方法。 The hydrogenation treatment according to claim 5 , wherein the Group 2 metal of the periodic table is magnesium or calcium, the Group 6 metal of the periodic table is molybdenum or tungsten, and the Group 8-10 metal of the periodic table is cobalt and / or nickel. A method for producing a catalyst. 炭化水素油と請求項1〜4のいずれか1項に記載の水素化処理触媒を、反応温度300〜450℃、水素分圧1〜20MPa、液空間速度0.1〜10hr-1、水素/油比50〜1,200Nm3/klの条件で接触させる炭化水素油の水素化処理方法。 A hydrocarbon oil and the hydrotreating catalyst according to any one of claims 1 to 4 are mixed with a reaction temperature of 300 to 450 ° C, a hydrogen partial pressure of 1 to 20 MPa, a liquid space velocity of 0.1 to 10 hr -1 , hydrogen / A method for hydrotreating a hydrocarbon oil to be brought into contact under an oil ratio of 50 to 1,200 Nm 3 / kl. 炭化水素油が、石油系のナフサ、直留灯油、直留軽油、重質軽油、減圧軽油及び重質減圧軽油からなる群より選ばれる留出油である請求項に記載の水素化処理方法。 The hydrotreating method according to claim 7 , wherein the hydrocarbon oil is a distillate selected from the group consisting of petroleum-based naphtha, straight-run kerosene, straight-run light oil, heavy light oil, vacuum gas oil, and heavy vacuum gas oil. .
JP2014046245A 2014-03-10 2014-03-10 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst Active JP6378902B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2014046245A JP6378902B2 (en) 2014-03-10 2014-03-10 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst
CA2941844A CA2941844C (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating process for hydrocarbon oil using the catalyst
CN201580013046.XA CN106457236B (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method for producing the catalyst, and method for hydrotreating hydrocarbon oil using the catalyst
PCT/JP2015/001018 WO2015136873A1 (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating process for hydrocarbon oil using the catalyst
US15/124,756 US20170073592A1 (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating process for hydrocarbon oil using the catalyst
HUE15710931A HUE042533T2 (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating process for hydrocarbon oil using the catalyst
DK15710931.5T DK3116647T3 (en) 2014-03-10 2015-02-27 HYDROGEN TREATMENT CATALYST, METHOD FOR PREPARING THE CATALYST, AND METHOD FOR HYDROGEN TREATMENT OF CARBON HYDRADIC OIL USING THE CATALYST.
ES15710931T ES2702206T3 (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method to produce the catalyst and hydrotreating process for hydrocarbon oil using the catalyst
EP15710931.5A EP3116647B1 (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating process for hydrocarbon oil using the catalyst
PL15710931T PL3116647T3 (en) 2014-03-10 2015-02-27 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating process for hydrocarbon oil using the catalyst
BR112016020914-1A BR112016020914B1 (en) 2014-03-10 2015-02-27 hydrotreating catalyst, catalyst production method and hydrotreating process for hydrocarbon oil using the catalyst
TW104107550A TWI642482B (en) 2014-03-10 2015-03-10 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating process for hydrocarbon oil using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046245A JP6378902B2 (en) 2014-03-10 2014-03-10 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2015167936A JP2015167936A (en) 2015-09-28
JP6378902B2 true JP6378902B2 (en) 2018-08-22

Family

ID=52693013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046245A Active JP6378902B2 (en) 2014-03-10 2014-03-10 Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst

Country Status (12)

Country Link
US (1) US20170073592A1 (en)
EP (1) EP3116647B1 (en)
JP (1) JP6378902B2 (en)
CN (1) CN106457236B (en)
BR (1) BR112016020914B1 (en)
CA (1) CA2941844C (en)
DK (1) DK3116647T3 (en)
ES (1) ES2702206T3 (en)
HU (1) HUE042533T2 (en)
PL (1) PL3116647T3 (en)
TW (1) TWI642482B (en)
WO (1) WO2015136873A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023184B1 (en) * 2014-07-04 2019-12-27 IFP Energies Nouvelles HIGH MOLYBDEN DENSITY HYDROTREATMENT CATALYST AND PREPARATION METHOD.
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
FR3076746B1 (en) * 2018-01-15 2022-07-01 Ifp Energies Now METHOD FOR PREPARING A PARTICULAR CATALYST FOR SELECTIVE HYDROGENATION BY MIXING AND IMPREGNATION
KR102079120B1 (en) * 2018-06-18 2020-02-19 한국과학기술연구원 Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same
FR3083136A1 (en) * 2018-06-27 2020-01-03 IFP Energies Nouvelles CATALYST BASED ON A BUTENEDIOIC ACID ESTER AND ITS USE IN A HYDROPROCESSING AND / OR HYDROCRACKING PROCESS
FR3083142A1 (en) * 2018-06-27 2020-01-03 IFP Energies Nouvelles CATALYST BASED ON 1,5-PENTANEDIOL DERIVATIVES AND ITS USE IN A HYDROPROCESSING AND / OR HYDROCRACKING PROCESS
CN111318286B (en) * 2018-12-13 2023-08-01 中国石油化工股份有限公司 Hydrotreating catalyst and preparation method thereof
CN111822007B (en) * 2019-04-19 2022-08-12 中国石油化工股份有限公司 Preparation method of hydrotreating catalyst
CN113019445B (en) * 2019-12-25 2023-10-10 中国石油化工股份有限公司 Modified hydrotreating catalyst carrier, catalyst, preparation method and application thereof
US20220323944A1 (en) * 2020-02-11 2022-10-13 Hindustan Petroleum Corporation Limited A composition for dispersed hydrodesulfurization catalyst and process for preparation of the same
CN112973714B (en) * 2021-03-24 2023-04-07 甘肃农业大学 Catalyst for preparing cyclopentene, preparation method and application thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806701B2 (en) * 1992-06-01 1998-09-30 出光興産株式会社 Method for producing hydrotreating catalyst and method for hydrotreating heavy oil using the catalyst
JP2900771B2 (en) * 1992-11-18 1999-06-02 住友金属鉱山株式会社 Method for producing catalyst for hydrotreating hydrocarbon oil
JPH06339635A (en) * 1993-06-01 1994-12-13 Japan Energy Corp Preparation of hydrogenation catalyst
JPH0731878A (en) * 1993-07-20 1995-02-03 Idemitsu Kosan Co Ltd Preparation of catalyst carrier and hydrogenation of heavy oil using metal-carrying catalyst prepared from this carrier
JP2000008050A (en) * 1998-06-19 2000-01-11 Tonen Corp Catalyst for hydrotreatment and hydrotreatment of hydrocarbon oil using the same
JP3782893B2 (en) * 1998-06-23 2006-06-07 東燃ゼネラル石油株式会社 Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
CA2302969A1 (en) 1999-04-02 2000-10-02 Akzo Nobel Nv Process for effecting ultra-deep hds of hydrocarbon feedstocks
JP2001104790A (en) * 1999-10-07 2001-04-17 Tonengeneral Sekiyu Kk Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil using it
JP2001310133A (en) * 2000-04-28 2001-11-06 Sumitomo Metal Mining Co Ltd Catalyst for hydrodesulfurizatin and denitrification of hydrocarbon oil and its production method
TWI240750B (en) * 2001-06-27 2005-10-01 Japan Energy Corp Method for manufacturing hydrorefining catalyst
CN1181165C (en) * 2001-12-30 2004-12-22 中国石化集团齐鲁石油化工公司 Selective hydrogenation catalyst
JP2005013848A (en) * 2003-06-25 2005-01-20 Petroleum Energy Center Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst
FR2880822B1 (en) * 2005-01-20 2007-05-11 Total France Sa HYDROTREATING CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF
JP5909036B2 (en) * 2005-12-14 2016-04-26 アドヴァンスト・リファイニング・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Method for producing hydrotreating catalyst
US8563456B2 (en) * 2008-10-03 2013-10-22 Chevron U.S.A. Inc. Hydrodemetallization catalyst and process
US9187702B2 (en) 2009-07-01 2015-11-17 Chevron U.S.A. Inc. Hydroprocessing catalyst and method of making the same
CN102639237A (en) * 2009-08-24 2012-08-15 阿尔比马尔欧洲有限公司 Solutions and catalysts comprising group vi metal, group viii metal, phosphorous and an additive
JP5635752B2 (en) * 2009-09-25 2014-12-03 日本ケッチェン株式会社 Method for producing hydrotreating catalyst, and hydrotreating method for hydrocarbon oil using the catalyst
CN103480410B (en) * 2012-06-12 2016-08-24 中国石油化工股份有限公司 Catalyst with hydrogenation catalyst effect and its preparation method and application and hydrotreating method

Also Published As

Publication number Publication date
US20170073592A1 (en) 2017-03-16
CA2941844C (en) 2022-11-01
ES2702206T3 (en) 2019-02-27
CN106457236A (en) 2017-02-22
PL3116647T3 (en) 2019-05-31
BR112016020914A2 (en) 2017-08-15
TWI642482B (en) 2018-12-01
WO2015136873A1 (en) 2015-09-17
JP2015167936A (en) 2015-09-28
EP3116647B1 (en) 2018-10-03
HUE042533T2 (en) 2019-07-29
BR112016020914B1 (en) 2021-07-06
EP3116647A1 (en) 2017-01-18
DK3116647T3 (en) 2019-01-07
TW201545815A (en) 2015-12-16
CN106457236B (en) 2020-07-21
CA2941844A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6378902B2 (en) Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst
JP5635752B2 (en) Method for producing hydrotreating catalyst, and hydrotreating method for hydrocarbon oil using the catalyst
US10464054B2 (en) Catalyst based on γ-ketovaleric acid and use thereof in a hydrotreatment and/or hydrocracking process
JP7138119B2 (en) Method for adding organic compounds to porous solids in gas phase
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
CA2983518C (en) Hydrotreating catalyst containing metal organic sulfides on doped supports
CN111632613A (en) Process for preparing hydroprocessing catalysts
CN104673374A (en) Hydrotreatment Process For Diesel Implementing A Catalyst Sequence
JP4571885B2 (en) Hydrotreating catalyst, method for producing the same, and hydrotreating method
AU2020273798A1 (en) A catalyst for hydrotreating hydrocarbon oil and a method of hydrotreating hydrocarbon oil using the catalyst
JP5863096B2 (en) Method for producing hydrotreating catalyst
CN107486251B (en) Preparation method of hydrogenation catalyst and hydrogenation catalyst prepared by same
CN113559875B (en) Hydrogenation catalyst, preparation method and application thereof
CN107486250B (en) Preparation method of dipping solution and dipping solution prepared by method
CN107486216B (en) Preparation method of dipping solution and dipping solution prepared by method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6378902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250