US20020112794A1 - Microwave plasma chemical synthesis of ultrafine powders - Google Patents
Microwave plasma chemical synthesis of ultrafine powders Download PDFInfo
- Publication number
- US20020112794A1 US20020112794A1 US10/114,993 US11499302A US2002112794A1 US 20020112794 A1 US20020112794 A1 US 20020112794A1 US 11499302 A US11499302 A US 11499302A US 2002112794 A1 US2002112794 A1 US 2002112794A1
- Authority
- US
- United States
- Prior art keywords
- microwave
- plasma
- reaction products
- plasma zone
- powders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000843 powder Substances 0.000 title claims abstract description 63
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 11
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 29
- 239000000376 reactant Substances 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000002923 metal particle Substances 0.000 claims 1
- 238000004157 plasmatron Methods 0.000 abstract description 20
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 210000002381 plasma Anatomy 0.000 description 57
- 239000007789 gas Substances 0.000 description 35
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 238000010791 quenching Methods 0.000 description 12
- 230000000171 quenching effect Effects 0.000 description 12
- 239000012159 carrier gas Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000011882 ultra-fine particle Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052702 rhenium Inorganic materials 0.000 description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000012705 liquid precursor Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- ZIZHEHXAMPQGEK-UHFFFAOYSA-N dirhenium decacarbonyl Chemical group [Re].[Re].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] ZIZHEHXAMPQGEK-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003701 mechanical milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
- H05B6/806—Apparatus for specific applications for laboratory use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/126—Microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
- B22F9/305—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis of metal carbonyls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/20—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
- C01B13/22—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
- C01B13/28—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides using a plasma or an electric discharge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/072—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
- C01B21/0722—Preparation by direct nitridation of aluminium
- C01B21/0724—Preparation by direct nitridation of aluminium using a plasma
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/07—Producing by vapour phase processes, e.g. halide oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/461—Microwave discharges
- H05H1/463—Microwave discharges using antennas or applicators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0881—Two or more materials
- B01J2219/0883—Gas-gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/12—Processes employing electromagnetic waves
- B01J2219/1203—Incoherent waves
- B01J2219/1206—Microwaves
- B01J2219/1209—Features relating to the reactor or vessel
- B01J2219/1221—Features relating to the reactor or vessel the reactor per se
- B01J2219/1224—Form of the reactor
- B01J2219/1227—Reactors comprising tubes with open ends
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/12—Processes employing electromagnetic waves
- B01J2219/1203—Incoherent waves
- B01J2219/1206—Microwaves
- B01J2219/1248—Features relating to the microwave cavity
- B01J2219/1269—Microwave guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/339—Synthesising components
Definitions
- This invention relates to the field of microwave synthesis of materials, particularly, ultrafine powders having an average particle size ⁇ 500 nm.
- Ultrafine metallic and ceramic powders have unique properties, and have the potential to contribute to significant advances in the field of electronics, solid lubricants, capacitors, batteries, sensors, thermal management substrates, and additives for the cosmetic and pharmaceutical industries. Ultrafine powders also find applications in optical coatings, slurries used for polishing, and in magnetic storage devices. Parts produced out of ultrafine particles/powders demonstrate improved mechanical, optical, and thermal properties. Conventionally, ultrafine powders have been produced by a variety of techniques including mechanical milling, flame pyrolysis, sol-gel, laser ablation, vapor deposition, and evaporation-condensation techniques.
- Low power (1-2.5 kW) microwave generated plasmas have been used in many deposition, etching, and substrate processing operations.
- Low power microwave systems operate at plasma temperatures of less than 700° C.
- deposition and etching chamber are traditionally made out of brass and bronze or even copper, with quartz tube lining in some cases. These chambers or applicators can withstand 700° C. without much cooling requirements.
- the present invention includes an apparatus and method for producing materials, preferably ultrafine powders, using microwave plasma chemical synthesis.
- the principle components of a microwave machine in accordance with the invention are: (1) a microwave generator, such as a magnetron, and (2) a microwave applicator.
- a magnetron produces microwaves by the interaction of electrons traveling in electric and magnetic fields (often referred to as “crossed fields”). This interaction coupled with high DC voltage between the cathode and the anode results in microwaves.
- Microwaves thus generated are then passed through waveguides before they arrive at the head of the applicator.
- Microwave applicators are devices that are designed to heat a material by exposing it to a microwave field in a controlled environment.
- the applicator is referred to as “plasmatron,” wherein the high energy microwave electrons ionize and dissociate the injected gas thus releasing large amounts of energy.
- the energy thus released is utilized to initiate a chemical reaction between the desired reactants.
- the interaction between the chemical species results in ultrafine powders with the desired chemical and physical characteristics. Due to rapid quenching that takes place in the reactor column the powder sizes are very fine. By controlling the diameter and length of the column, it is therefore possible to control the particle size.
- This apparatus can produce ultrafine powders of pure metals, such as iron, cobalt, nickel, tungsten, and rhenium; metal oxides, such as iron oxide; metal nitrides, such as titanium nitride; metal carbides; and many other ceramics, such as aluminum nitride, titanium dioxide, and aluminum dioxide.
- the apparatus also enables the continuous production of ultrafine particles/powders of pure metals, metal oxides, metal carbides, and metal nitrides, particularly tungsten, molybdenum, iron, cobalt, nickel, aluminum, titanium dioxide, and aluminum nitride, in contrast to the batch processes of the prior art.
- the invention includes an apparatus for the microwave synthesis of materials.
- the apparatus includes a microwave generator, waveguides through which microwaves generated by the microwave generator passes into a plasma zone in which a plasma heats the reactants to form reaction products, a plasma gas inlet offset at an angle so that plasma gas passing through the inlet enters the plasma zone in a spiral-shaped pattern, and a reaction products collector downstream from the plasma zone for collecting the reaction products.
- the invention includes an apparatus for the microwave synthesis of materials.
- the apparatus includes a microwave generator, waveguides through which microwaves generated by the microwave generator passes into a plasma zone in which a plasma heats reactants to form reaction products, a microwave damper at a side of the plasma zone away from the waveguide for damping microwaves that have passed through the plasma zone to thereby reduce the power of a reflected microwave by at least 60%, and a reaction products collector downstream from the plasma zone for collecting the reaction products.
- the invention includes a method for the microwave synthesis of materials.
- the method includes introducing a plasma gas into a microwave applicator, introducing at least one reactant into the microwave applicator, generating a microwave in a microwave generator, directing the microwave into the microwave applicator containing the plasma gas to create a heated plasma in a plasma zone, absorbing the microwave to reduce the microwave reflection off of a surface of the microwave applicator by at least 60%, and causing a reaction in the plasma zone thereby converting at least one reactant into a reaction product.
- FIG. 1 is a schematic of a microwave plasma chemical synthesis apparatus according to an embodiment of the invention
- FIG. 2( a ) is a schematic of a powder feeding device which may be used with the invention.
- FIG. 2( b ) is a schematic of a chemical vapor feeding device which may be used in another embodiment of the invention.
- the device that generates the microwave is illustrated in FIG. 1 and is called a “magnetron.”
- the primary factors that determine the choice of a particular magnetron are the power and frequency of the microwave required for initiating and sustaining the plasma chemical reaction. For example, continuously variable magnetron input power between 1-6 kW is generated at a frequency of 2425-2475 MHZ.
- the power of the microwave dictates the production rate of the metallic and ceramic powders.
- the microwave generated by the magnetron can operate in either transverse electromagnetic (TEM), transverse electric (TE), or transverse magnetic (TM) modes.
- TEM transverse electromagnetic
- TE transverse electric
- TM transverse magnetic
- the TE or TM wave is generated in a waveguide, which is typically a hollow conducting pipe having either a rectangular or circular cross-section.
- the present invention preferably uses a rectangular waveguide and the microwaves preferably operate in the TE mode (TE 01 ) where 0 or 1 are the field distributions for this mode of propagation, which are generated by the rectangular waveguides.
- the microwaves thus propagated are directed towards the applicator, referred to as the “plasmatron,” where they ionize the plasma-forming gas, resulting in a “plasma” zone.
- a microwave damper preferably a water-cooled glass tube, a water-cooled rectangular aluminum tube, or other water filled damping system, is positioned after the plasmatron and opposite to the rectangular waveguide.
- This damper absorbs microwaves to prevent their reflection back into the magnetron. Reflected microwaves can propagate back through the plasma zone and into the magnetron where they cancel out incident microwaves. This condition drastically reduces the efficiency of the deposition apparatus and inhibits the plasma temperature that can be attained. For example, if the incident, or forward power of the microwave is 6 kW, and the reflected power is 4 kW, the effective power, that is, the power of the microwave that creates the plasma is only 2 kW.
- Prior art devices either completely lack any capability of eliminating reflected microwaves or use a metallic plate which must continually be repositioned due to the dynamic nature and unpredictability of the plasma contained within the plasma zone.
- the metallic plate If the metallic plate is not precisely placed, the reflected waves become out of phase with the incident waves, canceling them out. Thus, positioning the plate becomes an inevitable step in preparing the microwave system for production. Moreover, the operator's freedom of dynamically modifying the parameters of the system is severely restricted by the need to continually adjust the plates to find the optimal position within the apparatus.
- the damper of the present apparatus diminishes the strength of the reflected wave, thereby reducing the adverse effect of the reflected wave regardless of its phase. This gives the operator a faster equipment preparation time, and provides him the freedom of continually adjusting the operating characteristics of the apparatus.
- the microwave damper of this invention reduces the power of the reflected microwave by 60-100%, preferably by an amount greater than 80-85%.
- Various types of gases can be used depending on the desired powder and powder characteristics.
- Candidate plasma gases include hydrogen, oxygen, helium, argon, nitrogen, methane, or a combination of the above. Ionization of the gas results in the release of large amounts of energy, which will instantly vaporize the chemicals being injected into the plasmatron thereby initiating the desired chemical reaction.
- the temperature in the plasmatron is typically between 500-1100° C.
- the plasma-forming gas carries the reaction products into the reactor column where they are rapidly quenched using, for example, a double-walled, water-cooled stainless steel column with quartz lining.
- the gas may be introduced through an axial, radial, or angled inlet.
- the plasma gas is introduced into the plasmatron using a spiral gas flow pattern which confines the plasma to the central region of the plasmatron thereby preventing it from damaging the plasmatron walls or reaction column material.
- the spiral pattern creates a cyclone-like pattern with a central low pressure section which controls the dimensions of the plasma. Therefore, higher energies and higher temperatures may be used to produce smaller, better quality, and more uniform powders than otherwise would be attainable with a lower power system.
- the spiral gas flow pattern may be produced by introducing the plasma gas into the reaction zone at an oblique angle.
- One manner of doing so is by offsetting the inlet port at an angle between 0-90°, preferably angled at 15°.
- the gas may be introduced through a single inlet port or through multiple (e.g., four) inlet ports circumferentially arranged about the reaction zone. It is also possible to introduce the reactants obliquely into the reaction zone either before or after being entrained in the plasma gas.
- the quenching rate, reactor column diameter, and the length influence the powder size and distribution.
- the quenching rate depends on the cooling water temperature, which may vary from 20° C. to ⁇ 5° C.; the lower the temperature, the finer the particle size.
- the reactor column diameter preferably varies from 2-6′′ depending on the particle size distribution required.
- the reaction column length preferably varies from 8-12′′ and is a function of the temperature drop desired before the ultrafine particles enter the filter bag.
- the filter bag is designed to withstand temperatures in the range of 300-600° C. The construction of the rest of the apparatus and the raw material feeding device varies with the desired end product as is evident from the examples.
- a particularly useful advantage of this invention is the ability to generate ultrafine powders with a powder particle size smaller than 10-500 nm, preferably smaller than 100 nm but having a substantially uniform particle size distribution.
- a relatively narrow particle size distribution is advantageous because of the influence the particle size has on powder densification characteristics and the final material properties.
- a uniform size distribution that may be maintained and controlled enables the end product manufacturer to better predict and control the properties of the final product.
- This invention enables a particle size distribution 50 nm or less (as measured, for example, by a Laser Scattering Particle Size Analyzer).
- the parameters can be varied to produce varying size distributions, e.g, from 50 nm or less to 100 nm or more, across the entire range of average particle sizes (e.g., from less than 10 nm to greater than 1 micron).
- the distribution may also be controlled to be more symmetrical about the mean than prior art processes, and can approximate a normal distribution if so desired.
- FIG. 1 is a schematic of a device according to the invention.
- a microwave generator 1 which may include a magnetron is used to generate microwaves.
- a continuously variable input power of greater than 1 kW, preferably greater than 3-6 kW, and more preferably greater than 5-6 kW, may be generated at a frequency of 2425-2475 MHZ.
- the microwaves thus generated are carried through rectangular waveguides 2 to the plasmatron 3 .
- the plasmatron is a microwave applicator wherein the microwaves ionize the gas which can be injected both radially and axially through an injector port 6 .
- the plasmatron also includes a feed port for attaching a raw material dosing device 5 .
- the chemical interaction of the reactants in the form of starting powders or vapors takes place in the plasmatron.
- the powders formed are instantaneously quenched in a reaction column 4 .
- the rapid dissociation of the reactants followed by quenching results in the production of the ultrafine powders.
- the reaction column preferably used in the invention is longer than conventional reaction columns thereby enabling the user to produce ultrafine particles not capable of being produced in the prior art devices. Specifically, the longer reaction column in combination with higher temperatures, gives the reaction an opportunity to continue as a residual reaction which may cause the reactants and products to melt, evaporate, and recondense thereby enabling a size heretofore unattainable.
- the powders passing through the reaction column are still hot.
- the heat associated with the ultrafine powders is removed using a heat exchanger 7 .
- the powders pass through the heat exchanger into a powder collector 8 .
- the powder collector is preferably a stainless steel container including a filter bag which retains the powders while the gases are removed through an exhaust located downstream from the powder collector.
- FIG. 2( a ) is a schematic of a powder feeding device which may be connected to the feed port located in the plasmatron.
- This device preferably includes a motor located near the powder zone 9 , which rotates a blade to continuously create an aerosol, which is also a driving force for the powders to be fed into the injection port.
- the powders may be carried to the powder zone through a piston support 10 which is driven by a motor 11 .
- FIG. 2( b ) is a schematic of a chemical vapor feeding device which may be used with the invention.
- Liquid precursors such as metal carbonyls are injected into the plasmatron from, for example, a double-walled stainless steel container 13 , which may be continuously heated by water pipes ( 14 , 15 ). Vapors of the liquid precursors are then fed into the plasmatron 3 through electrically heated hose 12 in order to prevent any condensation.
- the ultrafine powders formed are quenched in the reactor column 4 , and subsequently collected in the stainless steel container which houses a filter bag to retain the fine powders and allow the gases to pass through the exhaust.
- Ultrafine powders of pure tungsten powders were produced using a tungsten carbonyl, specifically tungsten hexacarbonyl, as the raw material and nitrogen as the carrier gas and also as the plasma gas.
- the plasma gas flow rate was 2-2.2 m 3 /min and that of the carrier gas was 0.3-0.4 m 3 /min.
- the plasma temperature was 600-650° C.
- the powder feed rate was 25-30 gm/hr
- the quenching water flow rate was 2.4-2.5 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 4.5 kW
- the reflected power was 1.2 kW
- the operating frequency was 2400 MHZ.
- the particles so produced had a particle size of less than 50 nm.
- Ultrafine powders of molybdenum were produced using molybdenum carbonyl, specifically molybdenum hexacarbonyl, as the raw material and nitrogen as the carrier gas and also the plasma gas.
- the plasma gas flow rate was 2.5-3.0 m 3 /min and that of the carrier gas was 0.4-0.6 m 3 /min.
- the plasma temperature was 1000-1200° C.
- the powder feed rate was 20-25 gm/hr
- the quenching water flow rate was 1.5-1.8 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 3.5 kW
- the reflected power was 0.6 kW
- the operating frequency was 2400 MHZ.
- the produced powders had a particle size less than 50 nm.
- the plasma gas flow rate was 3.5-4.0 m 3 /min and that of the carrier gas was 1.2-1.5 m 3 /min.
- the plasma temperature was 1100-1200° C.
- the powder feed rate was 25-30 gm/hr
- the quenching water flow rate was 2.0-2.2 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 3.5 kW
- the reflected power was 0.7 kW
- the operating frequency was 2450 MHZ.
- Ultrafine powders of cobalt with a particle size less than 40 nm were produced when cobalt carbonyl, specifically cobalt octacarbonyl, were fed into the plasmatron with argon as the plasma gas.
- the plasma gas flow rate was 2.5-2.6 m 3 /min and that of the carrier gas was 0.3-0.5 m 3 /min.
- the plasma temperature was 900-950° C.
- the powder feed rate was 50-60 gm/hr
- the quenching water flow rate was 1.8-2.0 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 3.5 kW
- the reflected power was 0.9 kW
- the operating frequency was 2400 MHZ.
- Ultrafine powders of rhenium were produced with an average particle size of 70 nm using rhenium carbonyl, specifically rhenium hexacarbonyl as the rate material precursor.
- Argon was used as the plasma gas.
- the plasma gas flow rate was 2-2.2 m 3 /min and that of the carrier gas was 0.3-0.4 m 3 /min.
- the plasma temperature was 1200° C.
- the powder feed rate was 25-30 gm/hr
- the quenching water flow rate was 2.4-2.5 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 4.5 kW
- the reflected power was 0.6 kW
- the operating frequency was 2450 MHZ.
- Ultrafine powders of iron with a particle size less than 20 nm were produced when vapors of iron pentacarbonyl were fed into the plasmatron with argon as the plasma gas.
- the plasma gas flow rate was 3-3.4 m 3 /min and that of the carrier gas was 0.3-0.4 m 3 /min.
- the plasma temperature was 900-950° C.
- the powder feed rate was 50-60 gm/hr
- the quenching water flow rate was 2.0-2.5 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 4 kW
- the reflected power was 0.7 kW
- the operating frequency was 2450 MHZ.
- Ultrafine powders of titanium dioxide with a particle size less than 40 nm were produced when vapors of titanium tetrachloride dissolved in water were injected into an oxygen plasma.
- the plasma gas flow rate was 2-2.2 m 3 /min and that of the carrier gas was 0.3-0.4 m 3 /min.
- the plasma temperature was 600-650° C.
- the powder feed rate was 25-30 gm/hr
- the quenching waterflow rate was 2.4-2.5 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 4.5 kW, the reflected power as 1.2 kW, and the operating frequency was 2400 MHZ.
- Ultrafine powders of nickel with a particle size less than 40 nm were produced when vapors of nickel pentacarbonyl were fed into the plasmatron with argon as the plasma gas.
- the plasma gas flow rate was 2-2.2 m 3 /min and that of the carrier gas was 0.3-0.4 m 3 /min.
- the plasma temperature was 600-650° C.
- the powder feed rate was 25-30 gm/hr
- the quenching water flow rate was 2.4-2.5 liter/min at 20° C.
- the reactor column diameter was 48 mm and its length was 10′′.
- the microwave forward power was 4.5 kW
- the reflected power was 1.2 kW
- the operating frequency was 2400 MHZ.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Toxicology (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Clinical Laboratory Science (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Glanulating (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The present invention relates to the production of ultrafine powders using a microwave plasma apparatus and chemical synthesis technique. Microwaves generated by a magnetron (1) are passed through waveguides (2) before they arrive at the head of a plasmatron (3). These high energy microwaves ionize a plasma gas, thus releasing large amounts of energy. The energy thus released is utilized to initiate and sustain chemical reactions between the desired elements being pumped in a spiral pattern into the plasmatron (3). The reaction products are quenched rapidly in a reactor column (4) into ultrafine powders.
Description
- 1. Field of the Invention
- This invention relates to the field of microwave synthesis of materials, particularly, ultrafine powders having an average particle size <500 nm.
- 2. Description of the Related Art
- Ultrafine metallic and ceramic powders have unique properties, and have the potential to contribute to significant advances in the field of electronics, solid lubricants, capacitors, batteries, sensors, thermal management substrates, and additives for the cosmetic and pharmaceutical industries. Ultrafine powders also find applications in optical coatings, slurries used for polishing, and in magnetic storage devices. Parts produced out of ultrafine particles/powders demonstrate improved mechanical, optical, and thermal properties. Conventionally, ultrafine powders have been produced by a variety of techniques including mechanical milling, flame pyrolysis, sol-gel, laser ablation, vapor deposition, and evaporation-condensation techniques.
- Low power (1-2.5 kW) microwave generated plasmas have been used in many deposition, etching, and substrate processing operations. Low power microwave systems operate at plasma temperatures of less than 700° C., deposition and etching chamber are traditionally made out of brass and bronze or even copper, with quartz tube lining in some cases. These chambers or applicators can withstand 700° C. without much cooling requirements.
- The application of microwaves to synthesize metallic and ceramic powders offers unique benefits, especially in producing particles of submicron size with controlled compositions and phases.
- The present invention includes an apparatus and method for producing materials, preferably ultrafine powders, using microwave plasma chemical synthesis. The principle components of a microwave machine in accordance with the invention are: (1) a microwave generator, such as a magnetron, and (2) a microwave applicator. A magnetron produces microwaves by the interaction of electrons traveling in electric and magnetic fields (often referred to as “crossed fields”). This interaction coupled with high DC voltage between the cathode and the anode results in microwaves. Microwaves thus generated are then passed through waveguides before they arrive at the head of the applicator.
- Microwave applicators are devices that are designed to heat a material by exposing it to a microwave field in a controlled environment. In the present invention, the applicator is referred to as “plasmatron,” wherein the high energy microwave electrons ionize and dissociate the injected gas thus releasing large amounts of energy. The energy thus released is utilized to initiate a chemical reaction between the desired reactants. The interaction between the chemical species results in ultrafine powders with the desired chemical and physical characteristics. Due to rapid quenching that takes place in the reactor column the powder sizes are very fine. By controlling the diameter and length of the column, it is therefore possible to control the particle size. This apparatus can produce ultrafine powders of pure metals, such as iron, cobalt, nickel, tungsten, and rhenium; metal oxides, such as iron oxide; metal nitrides, such as titanium nitride; metal carbides; and many other ceramics, such as aluminum nitride, titanium dioxide, and aluminum dioxide. The apparatus also enables the continuous production of ultrafine particles/powders of pure metals, metal oxides, metal carbides, and metal nitrides, particularly tungsten, molybdenum, iron, cobalt, nickel, aluminum, titanium dioxide, and aluminum nitride, in contrast to the batch processes of the prior art.
- Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the process and apparatus, particularly pointed out in the written description and claims hereof, as well as the appended drawings.
- To achieve these and other advantages, and in accordance with the purpose of the invention as embodied and broadly described, the invention includes an apparatus for the microwave synthesis of materials. The apparatus includes a microwave generator, waveguides through which microwaves generated by the microwave generator passes into a plasma zone in which a plasma heats the reactants to form reaction products, a plasma gas inlet offset at an angle so that plasma gas passing through the inlet enters the plasma zone in a spiral-shaped pattern, and a reaction products collector downstream from the plasma zone for collecting the reaction products.
- In another aspect, the invention includes an apparatus for the microwave synthesis of materials. The apparatus includes a microwave generator, waveguides through which microwaves generated by the microwave generator passes into a plasma zone in which a plasma heats reactants to form reaction products, a microwave damper at a side of the plasma zone away from the waveguide for damping microwaves that have passed through the plasma zone to thereby reduce the power of a reflected microwave by at least 60%, and a reaction products collector downstream from the plasma zone for collecting the reaction products.
- In yet another aspect, the invention includes a method for the microwave synthesis of materials. The method includes introducing a plasma gas into a microwave applicator, introducing at least one reactant into the microwave applicator, generating a microwave in a microwave generator, directing the microwave into the microwave applicator containing the plasma gas to create a heated plasma in a plasma zone, absorbing the microwave to reduce the microwave reflection off of a surface of the microwave applicator by at least 60%, and causing a reaction in the plasma zone thereby converting at least one reactant into a reaction product.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
- The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate one/several embodiment(s) of the invention and, together with the description, serve to explain the principles of the invention.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the objects, advantages, and principles of the invention.
- In the drawings:
- FIG. 1 is a schematic of a microwave plasma chemical synthesis apparatus according to an embodiment of the invention;
- FIG. 2(a) is a schematic of a powder feeding device which may be used with the invention; and
- FIG. 2(b) is a schematic of a chemical vapor feeding device which may be used in another embodiment of the invention.
- The device that generates the microwave is illustrated in FIG. 1 and is called a “magnetron.” The primary factors that determine the choice of a particular magnetron are the power and frequency of the microwave required for initiating and sustaining the plasma chemical reaction. For example, continuously variable magnetron input power between 1-6 kW is generated at a frequency of 2425-2475 MHZ. The power of the microwave dictates the production rate of the metallic and ceramic powders. The microwave generated by the magnetron can operate in either transverse electromagnetic (TEM), transverse electric (TE), or transverse magnetic (TM) modes. The TE or TM wave is generated in a waveguide, which is typically a hollow conducting pipe having either a rectangular or circular cross-section.
- The present invention preferably uses a rectangular waveguide and the microwaves preferably operate in the TE mode (TE01) where 0 or 1 are the field distributions for this mode of propagation, which are generated by the rectangular waveguides.
- The microwaves thus propagated are directed towards the applicator, referred to as the “plasmatron,” where they ionize the plasma-forming gas, resulting in a “plasma” zone.
- A microwave damper, preferably a water-cooled glass tube, a water-cooled rectangular aluminum tube, or other water filled damping system, is positioned after the plasmatron and opposite to the rectangular waveguide. This damper absorbs microwaves to prevent their reflection back into the magnetron. Reflected microwaves can propagate back through the plasma zone and into the magnetron where they cancel out incident microwaves. This condition drastically reduces the efficiency of the deposition apparatus and inhibits the plasma temperature that can be attained. For example, if the incident, or forward power of the microwave is 6 kW, and the reflected power is 4 kW, the effective power, that is, the power of the microwave that creates the plasma is only 2 kW. Prior art devices either completely lack any capability of eliminating reflected microwaves or use a metallic plate which must continually be repositioned due to the dynamic nature and unpredictability of the plasma contained within the plasma zone.
- If the metallic plate is not precisely placed, the reflected waves become out of phase with the incident waves, canceling them out. Thus, positioning the plate becomes an inevitable step in preparing the microwave system for production. Moreover, the operator's freedom of dynamically modifying the parameters of the system is severely restricted by the need to continually adjust the plates to find the optimal position within the apparatus.
- In contrast, the damper of the present apparatus diminishes the strength of the reflected wave, thereby reducing the adverse effect of the reflected wave regardless of its phase. This gives the operator a faster equipment preparation time, and provides him the freedom of continually adjusting the operating characteristics of the apparatus. The microwave damper of this invention reduces the power of the reflected microwave by 60-100%, preferably by an amount greater than 80-85%.
- Various types of gases can be used depending on the desired powder and powder characteristics. Candidate plasma gases include hydrogen, oxygen, helium, argon, nitrogen, methane, or a combination of the above. Ionization of the gas results in the release of large amounts of energy, which will instantly vaporize the chemicals being injected into the plasmatron thereby initiating the desired chemical reaction. The temperature in the plasmatron is typically between 500-1100° C. The plasma-forming gas carries the reaction products into the reactor column where they are rapidly quenched using, for example, a double-walled, water-cooled stainless steel column with quartz lining. The gas may be introduced through an axial, radial, or angled inlet. Preferably, the plasma gas is introduced into the plasmatron using a spiral gas flow pattern which confines the plasma to the central region of the plasmatron thereby preventing it from damaging the plasmatron walls or reaction column material. Specifically, the spiral pattern creates a cyclone-like pattern with a central low pressure section which controls the dimensions of the plasma. Therefore, higher energies and higher temperatures may be used to produce smaller, better quality, and more uniform powders than otherwise would be attainable with a lower power system.
- The spiral gas flow pattern may be produced by introducing the plasma gas into the reaction zone at an oblique angle. One manner of doing so is by offsetting the inlet port at an angle between 0-90°, preferably angled at 15°. The gas may be introduced through a single inlet port or through multiple (e.g., four) inlet ports circumferentially arranged about the reaction zone. It is also possible to introduce the reactants obliquely into the reaction zone either before or after being entrained in the plasma gas.
- The quenching rate, reactor column diameter, and the length influence the powder size and distribution. The quenching rate depends on the cooling water temperature, which may vary from 20° C. to −5° C.; the lower the temperature, the finer the particle size. The reactor column diameter preferably varies from 2-6″ depending on the particle size distribution required. The reaction column length preferably varies from 8-12″ and is a function of the temperature drop desired before the ultrafine particles enter the filter bag. The filter bag is designed to withstand temperatures in the range of 300-600° C. The construction of the rest of the apparatus and the raw material feeding device varies with the desired end product as is evident from the examples.
- A particularly useful advantage of this invention is the ability to generate ultrafine powders with a powder particle size smaller than 10-500 nm, preferably smaller than 100 nm but having a substantially uniform particle size distribution. A relatively narrow particle size distribution is advantageous because of the influence the particle size has on powder densification characteristics and the final material properties. A uniform size distribution that may be maintained and controlled enables the end product manufacturer to better predict and control the properties of the final product.
- Existing processes result in relatively wide and unpredictable particle size distributions. In some cases, the distribution may be bimodal or asymmetrical.
- This invention, however, enables a particle size distribution 50 nm or less (as measured, for example, by a Laser Scattering Particle Size Analyzer). Moreover, the parameters can be varied to produce varying size distributions, e.g, from 50 nm or less to 100 nm or more, across the entire range of average particle sizes (e.g., from less than 10 nm to greater than 1 micron). The distribution may also be controlled to be more symmetrical about the mean than prior art processes, and can approximate a normal distribution if so desired.
- FIG. 1 is a schematic of a device according to the invention. A microwave generator1, which may include a magnetron is used to generate microwaves. A continuously variable input power of greater than 1 kW, preferably greater than 3-6 kW, and more preferably greater than 5-6 kW, may be generated at a frequency of 2425-2475 MHZ. The microwaves thus generated are carried through
rectangular waveguides 2 to theplasmatron 3. - The plasmatron is a microwave applicator wherein the microwaves ionize the gas which can be injected both radially and axially through an
injector port 6. The plasmatron also includes a feed port for attaching a rawmaterial dosing device 5. The chemical interaction of the reactants in the form of starting powders or vapors takes place in the plasmatron. The powders formed are instantaneously quenched in areaction column 4. The rapid dissociation of the reactants followed by quenching results in the production of the ultrafine powders. The reaction column preferably used in the invention is longer than conventional reaction columns thereby enabling the user to produce ultrafine particles not capable of being produced in the prior art devices. Specifically, the longer reaction column in combination with higher temperatures, gives the reaction an opportunity to continue as a residual reaction which may cause the reactants and products to melt, evaporate, and recondense thereby enabling a size heretofore unattainable. - After formation, the powders passing through the reaction column are still hot. The heat associated with the ultrafine powders is removed using a heat exchanger7. The powders pass through the heat exchanger into a
powder collector 8. The powder collector is preferably a stainless steel container including a filter bag which retains the powders while the gases are removed through an exhaust located downstream from the powder collector. - FIG. 2(a) is a schematic of a powder feeding device which may be connected to the feed port located in the plasmatron. This device preferably includes a motor located near the powder zone 9, which rotates a blade to continuously create an aerosol, which is also a driving force for the powders to be fed into the injection port. The powders may be carried to the powder zone through a
piston support 10 which is driven by a motor 11. - FIG. 2(b) is a schematic of a chemical vapor feeding device which may be used with the invention. Liquid precursors such as metal carbonyls are injected into the plasmatron from, for example, a double-walled
stainless steel container 13, which may be continuously heated by water pipes (14, 15). Vapors of the liquid precursors are then fed into theplasmatron 3 through electricallyheated hose 12 in order to prevent any condensation. The ultrafine powders formed are quenched in thereactor column 4, and subsequently collected in the stainless steel container which houses a filter bag to retain the fine powders and allow the gases to pass through the exhaust. - Ultrafine powders of pure tungsten powders were produced using a tungsten carbonyl, specifically tungsten hexacarbonyl, as the raw material and nitrogen as the carrier gas and also as the plasma gas. The plasma gas flow rate was 2-2.2 m3/min and that of the carrier gas was 0.3-0.4 m3/min. The plasma temperature was 600-650° C., the powder feed rate was 25-30 gm/hr and the quenching water flow rate was 2.4-2.5 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 4.5 kW, the reflected power was 1.2 kW, and the operating frequency was 2400 MHZ. The particles so produced had a particle size of less than 50 nm.
- Ultrafine powders of molybdenum were produced using molybdenum carbonyl, specifically molybdenum hexacarbonyl, as the raw material and nitrogen as the carrier gas and also the plasma gas. The plasma gas flow rate was 2.5-3.0 m3/min and that of the carrier gas was 0.4-0.6 m3/min. The plasma temperature was 1000-1200° C., the powder feed rate was 20-25 gm/hr, and the quenching water flow rate was 1.5-1.8 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 3.5 kW, the reflected power was 0.6 kW, and the operating frequency was 2400 MHZ. The produced powders had a particle size less than 50 nm.
- Ultrafine powders of aluminum nitride (AlN) with a particle size less than 60 nm, were produced using aluminum powder and ammonia as the carrier gas and a combination of argon (30%) and nitrogen (70%) as the plasma gas. The plasma gas flow rate was 3.5-4.0 m3/min and that of the carrier gas was 1.2-1.5 m3/min. The plasma temperature was 1100-1200° C., the powder feed rate was 25-30 gm/hr, and the quenching water flow rate was 2.0-2.2 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 3.5 kW, the reflected power was 0.7 kW, and the operating frequency was 2450 MHZ.
- Ultrafine powders of cobalt with a particle size less than 40 nm were produced when cobalt carbonyl, specifically cobalt octacarbonyl, were fed into the plasmatron with argon as the plasma gas. The plasma gas flow rate was 2.5-2.6 m3/min and that of the carrier gas was 0.3-0.5 m3/min. The plasma temperature was 900-950° C., the powder feed rate was 50-60 gm/hr, and the quenching water flow rate was 1.8-2.0 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 3.5 kW, the reflected power was 0.9 kW, and the operating frequency was 2400 MHZ.
- Ultrafine powders of rhenium were produced with an average particle size of 70 nm using rhenium carbonyl, specifically rhenium hexacarbonyl as the rate material precursor. Argon was used as the plasma gas. The plasma gas flow rate was 2-2.2 m3/min and that of the carrier gas was 0.3-0.4 m3/min. The plasma temperature was 1200° C., the powder feed rate was 25-30 gm/hr, and the quenching water flow rate was 2.4-2.5 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 4.5 kW, the reflected power was 0.6 kW, and the operating frequency was 2450 MHZ.
- Ultrafine powders of iron with a particle size less than 20 nm were produced when vapors of iron pentacarbonyl were fed into the plasmatron with argon as the plasma gas. The plasma gas flow rate was 3-3.4 m3/min and that of the carrier gas was 0.3-0.4 m3/min. The plasma temperature was 900-950° C., the powder feed rate was 50-60 gm/hr, and the quenching water flow rate was 2.0-2.5 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 4 kW, the reflected power was 0.7 kW, and the operating frequency was 2450 MHZ.
- Ultrafine powders of titanium dioxide with a particle size less than 40 nm were produced when vapors of titanium tetrachloride dissolved in water were injected into an oxygen plasma. The plasma gas flow rate was 2-2.2 m3/min and that of the carrier gas was 0.3-0.4 m3/min. The plasma temperature was 600-650° C., the powder feed rate was 25-30 gm/hr, and the quenching waterflow rate was 2.4-2.5 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 4.5 kW, the reflected power as 1.2 kW, and the operating frequency was 2400 MHZ.
- Ultrafine powders of nickel with a particle size less than 40 nm were produced when vapors of nickel pentacarbonyl were fed into the plasmatron with argon as the plasma gas. The plasma gas flow rate was 2-2.2 m3/min and that of the carrier gas was 0.3-0.4 m3/min. The plasma temperature was 600-650° C., the powder feed rate was 25-30 gm/hr, and the quenching water flow rate was 2.4-2.5 liter/min at 20° C. The reactor column diameter was 48 mm and its length was 10″. The microwave forward power was 4.5 kW, the reflected power was 1.2 kW, and the operating frequency was 2400 MHZ.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed process and product without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (20)
1. An apparatus for the microwave synthesis of materials, comprising:
a microwave generator;
a waveguide through which a microwave generated by said microwave generator passes into a plasma zone in which a plasma heats reactants to form reaction products;
a plasma gas inlet offset at an angle so that plasma gas passing through the inlet enters the plasma zone in a spiral-shaped pattern; and
a reaction products collector downstream from said plasma zone for collecting the reaction products.
2. The apparatus of claim 1 , wherein said plasma zone comprises a microwave damper at a side of the plasma zone away from the waveguide for damping microwaves that have passed through the plasma zone to thereby reduce the power of a reflected microwave by at least 60%.
3. The apparatus of claim 2 , wherein the microwave damper is a water cooled glass tube.
4. The apparatus of claim 2 , wherein the microwave damper is a water cooled metal tube.
5. The apparatus of claim 2 , wherein the microwave damper is a water cooled rectangular tube.
6. The apparatus of claim 1 , comprising a column located between the plasma zone and the reaction products collector for cooling the reaction products leaving the plasma zone.
7. The apparatus of claim 6 , wherein the column is 8-12″ long.
8. The apparatus of claim 1 , comprising a plurality of plasma gas inlets.
9. The apparatus of claim 1 , wherein the plasma gas inlet is offset at an angle between 5-30°.
10. The apparatus of claim 1 , wherein the plasma gas inlet is offset at 15°.
11. An apparatus for the microwave synthesis of materials, comprising:
a microwave generator;
a waveguide through which a microwave generated by said microwave generator passes into a plasma zone in which a plasma heats reactants to form reaction products;
a microwave damper at a side of the plasma zone away from the waveguide for damping microwaves that have passed through the plasma zone to thereby reduce the power of a reflected microwave by at least 60%; and
a reaction products collector downstream from said plasma zone for collecting the reaction products.
12. A method for the microwave synthesis of materials, said method comprising:
introducing a plasma gas into a microwave applicator;
introducing at least one reactant into the microwave applicator;
generating a microwave in a microwave generator;
directing the microwave into the microwave applicator containing the plasma gas to create a heated plasma in a plasma zone;
absorbing the microwave to reduce the microwave reflection off of a surface of the microwave applicator by at least 60%; and
causing a reaction in the plasma zone thereby converting the at least one reactant into a reaction product.
13. The method of claim 12 , further comprising:
introducing the plasma gas into the microwave applicator in a spiral shaped pattern.
14. The method of claim 12 , further comprising:
introducing the plasma gas into the microwave applicator at an oblique angle to thereby produce a spiral shaped pattern.
15. The method of claim 12 , wherein at least one reactant is a powder material.
16. The method of claim 13 , wherein at least one reactant is chemical vapor.
17. An aggregate of powders consisting essentially of particles having an average particle size less than 1 micron, and a particle size distribution of less than 50 nm.
18. The aggregate of powders of claim 17 , wherein the particles are metal particles.
19. The aggregate of powders of claim 17 , wherein the particles are ceramic particles.
20. The aggregate of powders of claim 19 , wherein the ceramic particles are selected from the group consisting of oxides, carbides and nitrides.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/114,993 US20020112794A1 (en) | 1996-11-04 | 2002-04-04 | Microwave plasma chemical synthesis of ultrafine powders |
US10/384,586 US20030172772A1 (en) | 1996-11-04 | 2003-03-11 | Microwave plasma chemical synthesis of ultrafine powders |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3018896P | 1996-11-04 | 1996-11-04 | |
PCT/US1997/020917 WO1998019965A1 (en) | 1996-11-04 | 1997-11-04 | Microwave plasma chemical synthesis of ultrafine powders |
US09/262,848 US6409851B1 (en) | 1996-11-04 | 1999-03-05 | Microwave plasma chemical synthesis of ultrafine powders |
US10/114,993 US20020112794A1 (en) | 1996-11-04 | 2002-04-04 | Microwave plasma chemical synthesis of ultrafine powders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/262,848 Division US6409851B1 (en) | 1996-11-04 | 1999-03-05 | Microwave plasma chemical synthesis of ultrafine powders |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/384,586 Division US20030172772A1 (en) | 1996-11-04 | 2003-03-11 | Microwave plasma chemical synthesis of ultrafine powders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020112794A1 true US20020112794A1 (en) | 2002-08-22 |
Family
ID=21852978
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/262,848 Expired - Lifetime US6409851B1 (en) | 1996-11-04 | 1999-03-05 | Microwave plasma chemical synthesis of ultrafine powders |
US10/114,993 Abandoned US20020112794A1 (en) | 1996-11-04 | 2002-04-04 | Microwave plasma chemical synthesis of ultrafine powders |
US10/384,586 Abandoned US20030172772A1 (en) | 1996-11-04 | 2003-03-11 | Microwave plasma chemical synthesis of ultrafine powders |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/262,848 Expired - Lifetime US6409851B1 (en) | 1996-11-04 | 1999-03-05 | Microwave plasma chemical synthesis of ultrafine powders |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/384,586 Abandoned US20030172772A1 (en) | 1996-11-04 | 2003-03-11 | Microwave plasma chemical synthesis of ultrafine powders |
Country Status (6)
Country | Link |
---|---|
US (3) | US6409851B1 (en) |
EP (1) | EP0946414B1 (en) |
JP (1) | JP2001504753A (en) |
AT (1) | ATE298728T1 (en) |
DE (1) | DE69733660T2 (en) |
WO (1) | WO1998019965A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060037533A1 (en) * | 2004-06-22 | 2006-02-23 | Vladimir Belashchenko | High velocity thermal spray apparatus |
US20060108332A1 (en) * | 2004-11-24 | 2006-05-25 | Vladimir Belashchenko | Plasma system and apparatus |
US20060269436A1 (en) * | 2005-05-31 | 2006-11-30 | Cabot Corporation | Process for heat treating metal powder and products made from the same |
WO2014153318A1 (en) * | 2013-03-18 | 2014-09-25 | Amastan Llc | Method for the production of multiphase composite materials using microwave plasma process |
US9023259B2 (en) | 2012-11-13 | 2015-05-05 | Amastan Technologies Llc | Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
US9206085B2 (en) | 2012-11-13 | 2015-12-08 | Amastan Technologies Llc | Method for densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
US9643891B2 (en) | 2012-12-04 | 2017-05-09 | Amastan Technologies Llc | Method for making amorphous particles using a uniform melt-state in a microwave generated plasma torch |
US10639712B2 (en) | 2018-06-19 | 2020-05-05 | Amastan Technologies Inc. | Process for producing spheroidized powder from feedstock materials |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
US20210146432A1 (en) * | 2019-11-18 | 2021-05-20 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
CN113401868A (en) * | 2021-08-04 | 2021-09-17 | 大连理工大学 | Device for preparing hydrogen and sulfur by decomposing hydrogen sulfide by using atmospheric pressure microwave plasma torch |
US11148202B2 (en) | 2015-12-16 | 2021-10-19 | 6K Inc. | Spheroidal dehydrogenated metals and metal alloy particles |
US11311938B2 (en) * | 2019-04-30 | 2022-04-26 | 6K Inc. | Mechanically alloyed powder feedstock |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
US11611130B2 (en) | 2019-04-30 | 2023-03-21 | 6K Inc. | Lithium lanthanum zirconium oxide (LLZO) powder |
US11855278B2 (en) | 2020-06-25 | 2023-12-26 | 6K, Inc. | Microcomposite alloy structure |
US11919071B2 (en) | 2020-10-30 | 2024-03-05 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
US11963287B2 (en) | 2020-09-24 | 2024-04-16 | 6K Inc. | Systems, devices, and methods for starting plasma |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
US12042861B2 (en) | 2021-03-31 | 2024-07-23 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010042649A (en) * | 1999-02-12 | 2001-05-25 | 베리 아이클스 | Chemical vapor deposition of tungsten nitride |
AUPR186200A0 (en) * | 2000-12-04 | 2001-01-04 | Tesla Group Holdings Pty Limited | Plasma reduction processing of materials |
AU2002220358B2 (en) * | 2000-12-04 | 2007-11-29 | Plasma Technologies Pty Ltd | Plasma reduction processing of materials |
DE10120484A1 (en) * | 2001-04-25 | 2002-10-31 | Degussa | Method and device for the thermal treatment of powdery substances |
WO2002089536A1 (en) * | 2001-04-27 | 2002-11-07 | David Systems & Technology, S.L. | Method for plasma-catalytic conversion of fuels that can be used in an internal combustion engine or a gas turbine into a synthetic gas and the plasma-catalytic converter used for same |
US7670623B2 (en) | 2002-05-31 | 2010-03-02 | Materials Modification, Inc. | Hemostatic composition |
FR2841904B1 (en) * | 2002-07-03 | 2004-08-20 | Inst Nat Sante Rech Med | THROMBIN CLAVABLE X FACTOR ANALOGS |
ATE330327T1 (en) | 2002-07-23 | 2006-07-15 | Iplas Gmbh | PLASMA REACTOR FOR CARRYING OUT GAS REACTIONS AND METHOD FOR THE PLASMA-ASSISTED CONVERSION OF GASES |
US7560160B2 (en) * | 2002-11-25 | 2009-07-14 | Materials Modification, Inc. | Multifunctional particulate material, fluid, and composition |
US20060027539A1 (en) * | 2003-05-02 | 2006-02-09 | Czeslaw Golkowski | Non-thermal plasma generator device |
CN100438965C (en) * | 2003-08-28 | 2008-12-03 | 泰克纳等离子系统公司 | Process for the synthesis, separation and purification of powder materials |
US7893182B2 (en) | 2003-10-15 | 2011-02-22 | Dow Corning Corporation | Manufacture of resins |
US8051859B2 (en) * | 2003-10-27 | 2011-11-08 | Philip Morris Usa Inc. | Formation and deposition of sputtered nanoscale particles in cigarette manufacture |
EP2138458A1 (en) * | 2004-04-19 | 2009-12-30 | SDC Materials, LLC | High throughput discovery of materials through vapor phase synthesis |
US7717001B2 (en) * | 2004-10-08 | 2010-05-18 | Sdc Materials, Inc. | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
JP2009536093A (en) * | 2006-05-09 | 2009-10-08 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing suspension of nanoparticulate solid |
US7967891B2 (en) * | 2006-06-01 | 2011-06-28 | Inco Limited | Method producing metal nanopowders by decompositon of metal carbonyl using an induction plasma torch |
US7776303B2 (en) * | 2006-08-30 | 2010-08-17 | Ppg Industries Ohio, Inc. | Production of ultrafine metal carbide particles utilizing polymeric feed materials |
US8748785B2 (en) * | 2007-01-18 | 2014-06-10 | Amastan Llc | Microwave plasma apparatus and method for materials processing |
US9173967B1 (en) * | 2007-05-11 | 2015-11-03 | SDCmaterials, Inc. | System for and method of processing soft tissue and skin with fluids using temperature and pressure changes |
JP2009024246A (en) * | 2007-07-23 | 2009-02-05 | Toyota Motor Corp | Method for producing metal nanoparticle |
US9630162B1 (en) * | 2007-10-09 | 2017-04-25 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
JP2009095685A (en) * | 2007-10-12 | 2009-05-07 | Tokyo Electron Ltd | Powder production apparatus and method |
US8507401B1 (en) | 2007-10-15 | 2013-08-13 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
EP2131633A1 (en) * | 2008-05-28 | 2009-12-09 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of cooling a microwave plasma and system for selective destruction of chemical molecules using this method |
JP5769287B2 (en) * | 2009-12-05 | 2015-08-26 | 国立研究開発法人産業技術総合研究所 | Method for producing metal fine particles |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US9039916B1 (en) | 2009-12-15 | 2015-05-26 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for copper copper-oxide |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
DE102010034311A1 (en) * | 2010-08-13 | 2012-02-16 | Mtu Aero Engines Gmbh | Apparatus for manufacturing, repairing and/or replacing a component, comprises a powder production device for producing a powder, a powder processing device that solidifies the powder produced by the production device and a collecting unit |
EP2425916B1 (en) * | 2010-09-01 | 2014-11-12 | Directa Plus S.p.A. | Multiple feeder reactor for the production of nanoparticles of metal |
RU2455061C2 (en) * | 2010-10-06 | 2012-07-10 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Method of producing nanodisperse powders in microwave discharge plasma and device to this end |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
AU2012299065B2 (en) | 2011-08-19 | 2015-06-04 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
KR101372469B1 (en) * | 2011-10-20 | 2014-03-12 | 인하대학교 산학협력단 | Methods and apparatus for manufacturing nano sized low melting glass powder |
US10477665B2 (en) * | 2012-04-13 | 2019-11-12 | Amastan Technologies Inc. | Microwave plasma torch generating laminar flow for materials processing |
RU2493102C1 (en) * | 2012-04-23 | 2013-09-20 | Общество с ограниченной ответственностью "НОРМИН" | Method of obtaining nano-size powder of aluminium gamma-oxide |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
CN105592921A (en) | 2013-07-25 | 2016-05-18 | Sdc材料公司 | Washcoats and coated substrates for catalytic converters and method for manufacturing and using same |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
CN105848756A (en) | 2013-10-22 | 2016-08-10 | Sdc材料公司 | Compositions of lean NOx trap |
CN103730319A (en) * | 2013-12-23 | 2014-04-16 | 苏州市奥普斯等离子体科技有限公司 | Novel powder plasma processing device |
RU2561614C1 (en) * | 2014-03-20 | 2015-08-27 | Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения РАН" | Method of producing ultra-dispersed titanium carbide powder |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10543534B2 (en) * | 2016-11-09 | 2020-01-28 | Amastan Technologies Inc. | Apparatus and method for the production of quantum particles |
RU2693989C1 (en) * | 2018-08-21 | 2019-07-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) | Method of producing structurally gradient powder materials (versions) |
US11633710B2 (en) | 2018-08-23 | 2023-04-25 | Transform Materials Llc | Systems and methods for processing gases |
AU2019325589B2 (en) | 2018-08-23 | 2023-08-31 | Transform Materials Llc | Systems and methods for processing gases |
RU2692144C1 (en) * | 2018-10-05 | 2019-06-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) | Device for production of structurally gradient powder materials (versions) |
CN111250723A (en) * | 2018-12-03 | 2020-06-09 | 上海大境海洋新材料有限公司 | Method for producing spherical tungsten alloy powder by radio frequency plasma |
GB201819684D0 (en) * | 2018-12-03 | 2019-01-16 | C Tech Innovation Ltd | Production of nitrogen oxides |
EP3931146B1 (en) * | 2019-02-26 | 2024-04-03 | Maat Energy Company | Device and method for improving specific energy requirement of plasma pyrolyzing or reforming systems |
RU2725457C1 (en) * | 2019-09-04 | 2020-07-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) | Method of producing structurally gradient and dispersion-strengthened powder materials (versions) |
CN116921685B (en) * | 2023-09-15 | 2023-12-08 | 西安赛隆增材技术股份有限公司 | Method and device for preparing powder by utilizing microwave plasma |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4022872A (en) * | 1975-11-12 | 1977-05-10 | Ppg Industries, Inc. | Process for preparing finely-divided refractory powders |
US4353885A (en) * | 1979-02-12 | 1982-10-12 | Ppg Industries, Inc. | Titanium diboride article and method for preparing same |
US4423303A (en) * | 1980-05-06 | 1983-12-27 | Tokyo Shibaura Denki Kabushiki Kaisha | Apparatus for treating powdery materials utilizing microwave plasma |
FR2616614B1 (en) * | 1987-06-10 | 1989-10-20 | Air Liquide | MICROWAVE PLASMA TORCH, DEVICE COMPRISING SUCH A TORCH AND METHOD FOR MANUFACTURING POWDER USING THE SAME |
JPH01188416A (en) * | 1988-01-19 | 1989-07-27 | Furukawa Electric Co Ltd:The | Production of oxide superconducting powder |
JPH03214600A (en) * | 1990-01-17 | 1991-09-19 | Nippon Koshuha Kk | Microwave heated plasma reaction device |
DE4214724C2 (en) * | 1992-05-04 | 1995-05-18 | Starck H C Gmbh Co Kg | Fine-particle oxide ceramic powder |
DE4214722C2 (en) * | 1992-05-04 | 1994-08-25 | Starck H C Gmbh Co Kg | Finely divided metal powder |
DE4214725C2 (en) * | 1992-05-04 | 1995-04-20 | Starck H C Gmbh Co Kg | Fine-particle non-oxide ceramic powder |
DE4214723C2 (en) * | 1992-05-04 | 1994-08-25 | Starck H C Gmbh Co Kg | Finely divided metal powder |
US5358695A (en) * | 1993-01-21 | 1994-10-25 | Physical Sciences, Inc. | Process for producing nanoscale ceramic powders |
TW285746B (en) * | 1994-10-26 | 1996-09-11 | Matsushita Electric Ind Co Ltd | |
JP2843900B2 (en) * | 1995-07-07 | 1999-01-06 | 工業技術院長 | Method for producing oxide-particle-dispersed metal-based composite material |
US5876480A (en) * | 1996-02-20 | 1999-03-02 | The United States Of America As Represented By The Secretary Of The Navy | Synthesis of unagglomerated metal nano-particles at membrane interfaces |
US5788738A (en) * | 1996-09-03 | 1998-08-04 | Nanomaterials Research Corporation | Method of producing nanoscale powders by quenching of vapors |
US5850064A (en) * | 1997-04-11 | 1998-12-15 | Starfire Electronics Development & Marketing, Ltd. | Method for photolytic liquid phase synthesis of silicon and germanium nanocrystalline materials |
US6090858A (en) * | 1998-03-18 | 2000-07-18 | Georgia Tech Reseach Corporation | Shape control method for nanoparticles for making better and new catalysts |
-
1997
- 1997-11-04 EP EP97948319A patent/EP0946414B1/en not_active Expired - Lifetime
- 1997-11-04 WO PCT/US1997/020917 patent/WO1998019965A1/en active IP Right Grant
- 1997-11-04 JP JP52190198A patent/JP2001504753A/en not_active Ceased
- 1997-11-04 AT AT97948319T patent/ATE298728T1/en not_active IP Right Cessation
- 1997-11-04 DE DE69733660T patent/DE69733660T2/en not_active Expired - Lifetime
-
1999
- 1999-03-05 US US09/262,848 patent/US6409851B1/en not_active Expired - Lifetime
-
2002
- 2002-04-04 US US10/114,993 patent/US20020112794A1/en not_active Abandoned
-
2003
- 2003-03-11 US US10/384,586 patent/US20030172772A1/en not_active Abandoned
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060037533A1 (en) * | 2004-06-22 | 2006-02-23 | Vladimir Belashchenko | High velocity thermal spray apparatus |
US7608797B2 (en) | 2004-06-22 | 2009-10-27 | Vladimir Belashchenko | High velocity thermal spray apparatus |
US20060108332A1 (en) * | 2004-11-24 | 2006-05-25 | Vladimir Belashchenko | Plasma system and apparatus |
WO2006058258A1 (en) * | 2004-11-24 | 2006-06-01 | Vladimir Belashchenko | Plasma system and apparatus |
US7750265B2 (en) * | 2004-11-24 | 2010-07-06 | Vladimir Belashchenko | Multi-electrode plasma system and method for thermal spraying |
US20060269436A1 (en) * | 2005-05-31 | 2006-11-30 | Cabot Corporation | Process for heat treating metal powder and products made from the same |
US20100233013A1 (en) * | 2005-05-31 | 2010-09-16 | Cabot Corporation | Process For Heat Treating Metal Powder And Products Made From The Same |
US8562765B2 (en) | 2005-05-31 | 2013-10-22 | Global Advanced Metals, Usa, Inc. | Process for heat treating metal powder and products made from the same |
US9206085B2 (en) | 2012-11-13 | 2015-12-08 | Amastan Technologies Llc | Method for densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
US9023259B2 (en) | 2012-11-13 | 2015-05-05 | Amastan Technologies Llc | Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
US9259785B2 (en) | 2012-11-13 | 2016-02-16 | Amastan Technologies Llc | Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
US9643891B2 (en) | 2012-12-04 | 2017-05-09 | Amastan Technologies Llc | Method for making amorphous particles using a uniform melt-state in a microwave generated plasma torch |
WO2014153318A1 (en) * | 2013-03-18 | 2014-09-25 | Amastan Llc | Method for the production of multiphase composite materials using microwave plasma process |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
US11839919B2 (en) | 2015-12-16 | 2023-12-12 | 6K Inc. | Spheroidal dehydrogenated metals and metal alloy particles |
US11148202B2 (en) | 2015-12-16 | 2021-10-19 | 6K Inc. | Spheroidal dehydrogenated metals and metal alloy particles |
US11577314B2 (en) | 2015-12-16 | 2023-02-14 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
US11471941B2 (en) | 2018-06-19 | 2022-10-18 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
US10639712B2 (en) | 2018-06-19 | 2020-05-05 | Amastan Technologies Inc. | Process for producing spheroidized powder from feedstock materials |
US11273491B2 (en) | 2018-06-19 | 2022-03-15 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
US11465201B2 (en) | 2018-06-19 | 2022-10-11 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
US11611130B2 (en) | 2019-04-30 | 2023-03-21 | 6K Inc. | Lithium lanthanum zirconium oxide (LLZO) powder |
US11311938B2 (en) * | 2019-04-30 | 2022-04-26 | 6K Inc. | Mechanically alloyed powder feedstock |
US11633785B2 (en) | 2019-04-30 | 2023-04-25 | 6K Inc. | Mechanically alloyed powder feedstock |
US11717886B2 (en) * | 2019-11-18 | 2023-08-08 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US20210146432A1 (en) * | 2019-11-18 | 2021-05-20 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
US11855278B2 (en) | 2020-06-25 | 2023-12-26 | 6K, Inc. | Microcomposite alloy structure |
US11963287B2 (en) | 2020-09-24 | 2024-04-16 | 6K Inc. | Systems, devices, and methods for starting plasma |
US11919071B2 (en) | 2020-10-30 | 2024-03-05 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
US12042861B2 (en) | 2021-03-31 | 2024-07-23 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
CN113401868A (en) * | 2021-08-04 | 2021-09-17 | 大连理工大学 | Device for preparing hydrogen and sulfur by decomposing hydrogen sulfide by using atmospheric pressure microwave plasma torch |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
Also Published As
Publication number | Publication date |
---|---|
EP0946414A4 (en) | 2000-02-02 |
ATE298728T1 (en) | 2005-07-15 |
US6409851B1 (en) | 2002-06-25 |
JP2001504753A (en) | 2001-04-10 |
WO1998019965A1 (en) | 1998-05-14 |
EP0946414B1 (en) | 2005-06-29 |
DE69733660D1 (en) | 2005-08-04 |
DE69733660T2 (en) | 2006-05-18 |
US20030172772A1 (en) | 2003-09-18 |
EP0946414A1 (en) | 1999-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6409851B1 (en) | Microwave plasma chemical synthesis of ultrafine powders | |
EP0822572B1 (en) | Method for plasma treatment of a surface | |
US6396214B1 (en) | Device for producing a free cold plasma jet | |
CA2581806C (en) | Plasma synthesis of nanopowders | |
CA2221624C (en) | Microwave-driven plasma spraying apparatus and method for spraying | |
US10780647B2 (en) | Broadband microwave processing system | |
US6472632B1 (en) | Method and apparatus for direct electrothermal-physical conversion of ceramic into nanopowder | |
US20140287162A1 (en) | Microwave plasma apparatus and method for materials processing | |
RU2455119C2 (en) | Method to produce nanoparticles | |
US5643365A (en) | Method and device for plasma vapor chemical deposition of homogeneous films on large flat surfaces | |
RU2200058C1 (en) | Method of performing homogeneous and heterogeneous reactions by means of plasma | |
US5159173A (en) | Apparatus for reducing plasma constriction by intermediate injection of hydrogen in RF plasma gun | |
US5360485A (en) | Apparatus for diamond deposition by microwave plasma-assisted CVPD | |
US5095189A (en) | Method for reducing plasma constriction by intermediate injection of hydrogen in RF plasma gun | |
JPH0357199A (en) | Microwave hot plasma torch | |
JPH08236293A (en) | Microwave plasma torch and plasma generating method | |
Sathiyamoorthy | Plasma spouted/fluidized bed for materials processing | |
JP2023545718A (en) | plasma gas reactor | |
JPS6054996A (en) | Synthesis of diamond | |
KR20090103530A (en) | Synthesis system for silicon carbide nanopowders | |
RU2414993C2 (en) | Method of producing nanopowder using low-pressure transformer-type induction charge and device to this end | |
Cappelli et al. | Plasma-jet deposition of diamond | |
Zhu et al. | Design and development of the dc plasma reactor for the synthesis of ultrafine powders | |
Boulos et al. | RF Inductively Coupled Plasma Torches | |
Barankova et al. | New hybrid source of cold atmospheric plasma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |