US20020104505A1 - Composite full circle crankshaft counterweight - Google Patents
Composite full circle crankshaft counterweight Download PDFInfo
- Publication number
- US20020104505A1 US20020104505A1 US09/779,890 US77989001A US2002104505A1 US 20020104505 A1 US20020104505 A1 US 20020104505A1 US 77989001 A US77989001 A US 77989001A US 2002104505 A1 US2002104505 A1 US 2002104505A1
- Authority
- US
- United States
- Prior art keywords
- counterweight
- inserts
- assembly
- counterweight assembly
- crankshaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/02—Engines with reciprocating-piston pumps; Engines with crankcase pumps
- F02B33/04—Engines with reciprocating-piston pumps; Engines with crankcase pumps with simple crankcase pumps, i.e. with the rear face of a non-stepped working piston acting as sole pumping member in co-operation with the crankcase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/28—Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/28—Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same
- F16F15/283—Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same for engine crankshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
Definitions
- the invention relates generally to a crankshaft counterweight for an internal combustion engine.
- a crankshaft for an internal combustion engine typically comprises a shaft having at least one eccentric crankpin.
- a rod connects the engine's piston to the crankpin so that linear movement of the piston is translated to rotation of the main shaft.
- an eccentric mass is attached to the shaft to counterbalance the mass of the crankpin, rod, and the piston.
- the crankshaft can either have double counterweights or be cantilevered. With a double counterweight crankshaft, force from the piston is applied at a point, or at points that distribute the force evenly between the bearings supporting the shaft.
- a balanced crankshaft has, for each piston, two closely spaced counterweights, joined by a crank pin to which a rod is connected. Each counterweight is attached to a shaft.
- a cantilevered crankshaft has only one counterweight and shaft.
- a “T” shaped counterweight For two-cycle engines, it is common to use a “T” shaped counterweight. A crank pin is attached near the bottom of the stem of “T”. One shaft (in the case of a cantilevered crankshaft) or two shafts (in the case of a balanced crankshaft) are attached to the counterweight(s) at its dimensional center.
- a “T” shaped counterweight is not strictly or literally in the form of a “T.” Rather, the “T” description suggests a relative distribution of mass to a side opposite of the crank pin and perpendicular to its axis of rotation. Shapes that are closer to that of a triangle or a triangle with two squeezed sides are also considered “T” shaped counterweights.
- T shaped counterweights are typically made from a single piece of metal, but have also been constructed using “laminations” or a multiple, stacked plates cut in a “T” shape and joined by, for example, pins. Examples of these types of counterweights are shown in U.S. Pat. No. 4,342,236. Most of the mass of a “T” shaped counterweight is concentrated where it is most effective, while reducing the overall mass of the counterweight.
- two-cycle engines To transfer a charge of a fuel and air mixture from a carburetor into a cylinder, a process referred to as scavenging, two-cycle engines typically draw into the engine's crankcase the charge using a pressure decrease generated by upstroke of the piston. The down stroke of the piston then compresses, and thereby pressurizes, the charge prior to an intake port opening on the cylinder. The relatively higher pressure of the charge causes it to flow into the relative lower pressure cylinder. Increasing the pressure differential enhances scavenging of the cylinder. Better scavenging tends to improve engine performance and reduce emissions. Because the volume that the piston displaces during movement is fixed, decreasing the volume of voids within the crankcase will tend to increase pressure within the crankcase and thus improve scavenging.
- This example of a “full circle” counterweight has several problems.
- the counterweight is made of forged steel in order to make it into a circular shape with most of its mass concentrated in the thick “T”-shaped area.
- Forging the counterweight is a relatively expensive process.
- Another example, useful for laminate-constructed counterweights is to cut openings in each of the inner layers of the laminate to form in each layer a “T” shape surrounded by a circle, and attach complete, circular shaped layers on the outside to seal the voids created by the openings in the inner layers on the outer layers, thus creating sealed voids.
- manufacture and assembly of this type of full circle counterweight is relatively complicated, and extra mass is added in places where it is not useful for counterbalance.
- the invention relates to an improved full circle counterweight for a crankshaft of an internal combustion engine that overcomes one or more of the problems with prior art.
- the full circle counterweight assembly in the disclosed example includes a counterweight that is shaped generally like that of a conventional “T”-shaped counterweight. Like a conventional “T” shaped counterweight, it includes openings for receiving a crank pin and a shaft.
- the T-shaped metal counterweight is partially encased within a retainer in the form of a drawn metal cup.
- the full circle counterweight assembly tends to be more easily and less expensively made.
- the metal counterweight, cup and lightweight inserts can be assembled according to standard, relatively low cost methods.
- the assembly is relatively simple, as it involves relatively few parts and steps.
- the full circle counterweight finds particular advantage in two-cycle engines of the type used in power tools and equipment, as such engines must be both lightweight and easily manufactured to reduce cost, while meeting increasingly stringent emission requirements.
- FIG. 1 is a view of a full circle counterweight assembly.
- FIG. 2 is a cross-section of the full circle counterweight assembly of FIG. 1, taken along section line 2 - 2 .
- FIG. 3 is a cross-section of the full circle counterweight assembly of FIG. 1 taken along section line 3 - 3 .
- FIG. 4 is a cross-section of an engine including the full circle counterweight of FIG. 1.
- FIG. 5 is a partial cross-section of the engine of FIG. 4, taken through the full circle counterweight and crankcase.
- FIG. 6 is a partial cross-section of the crankshaft of the engine partially shown in FIG. 5, taken along section line 6 - 6 .
- full circle counterweight assembly 10 includes a “T” shaped counterweight, which is generally designated 12 , and a retainer in the form of drawn metal cup 20 that holds inserts 18 next to the stem of the T-shaped counterweight.
- the “T”-shaped counterweight includes a stem portion 12 a in which is formed openings 14 and 16 for a shaft and crankpin, respectively, and a cross portion 12 b, which contains most of the mass of the counterweight and is disposed on the side of the dimensional center of the counterweight opposite opening 16 .
- cross-portion 12 b has a semi-circular or curved outer diameter that fits the curvature of retainer cup 20 .
- Axis 15 is the center of the retainer cup 20 , shaft(s), and the axis of rotation of the counterweight assembly 10 .
- a crank pin (not shown) is fitted into opening 16 in a conventional manner.
- Conventional methods, including relatively low-cost methods, may be used to fabricate the counterweight of metal.
- the counterweight could be, if desired, of laminate construction.
- Inserts 18 are, as compared to the metal counterweights, made of a much less dense material, and thus relatively lightweight. They may be made, for example, from a plastic such as nylon or other material that has a sufficiently high melting point to resist melting in the engine, tends not to degrade in the presence of the fuel and oil within an engine's crankcase, and that is of density substantially less than of the metal used to form the counterweightSuitable materials with lower density than the counterweight for inserts 18 include materials such as plastic, aluminum, and magnesium, composite materials, and materials with closed cells, such as honeycombs, foam, or closed cell plastic.
- Cup 20 may be made from a thin durable metal such as steel.
- the diameter of the retainer cup is approximately the diameter path of the rotating counterweight.
- the edge of the retainer cup 20 is bent over edges of the counterweight 12 and inserts 18 .
- crankshaft opening 14 is aligned with a corresponding opening 21 in the retainer cup's back wall 20 .
- the retainer may take on a form closer to that of a ring. Inserts 18 are then placed into the open regions in retainer cup 20 so that an insert 18 is placed on each flank of the stem of the “T” shaped counterweight 12 .
- an extended edge of retainer cup 20 is bent inward towards the center of retainer cup 20 and down over counterweight 12 and inserts 18 to form a retaining edge or lip 22 .
- the length of retaining edge 22 need only be of sufficient length to retain inserts 18 firmly in position, and to keep the retainer firmly attached to the counterweight 12 .
- Outer edges of inserts 18 and counterweight 12 may be notched to a depth of the thickness of the lip 22 to receive the lip, thus reducing the profile of the counterweight assembly allowing clearance of the void within the crankcase required for the counterweight to be reduced.
- inserts 18 may be cored to remove mass, by milling for example, to create voids 24 . These voids face inwardly, toward the retainer cup and sit against the cup's back wall.
- two-cycle engine 26 is an example of one use of counterweight assembly 10 .
- the engine includes a piston 28 mounted for reciprocating movement within a cylinder 29 formed in cylinder block 30 .
- the piston includes a wrist pin 32 for connecting it to an eyelet 34 of rod 36 .
- On an opposite end of rod 36 is a second eyelet 38 for connecting to crankpin 40 .
- the crank pin is connected to counterweight assembly 10 .
- Connected to the counterweight assembly is shaft 42 .
- a muffler 44 for receiving exhaust from cylinder 29 .
- Shaft 42 transmits power through a transmission system to a working element that is not shown.
- the shaft and full circle counterweight assembly is mounted within crankcase 46 . As shown in FIG.
- the crankshaft with illustrated engine 26 has two full circle counterweight assemblies 10 and two shafts 42 joined back-to-back to form a balanced crankshaft.
- the engine is mounted to a chassis 48 of a chain saw of known construction. A saw, not shown, depends from one side of the engine and chassis, as does a pair of handles. No particular configuration of engine or tool is intended to be implied by the example.
- the counterweight assembly 10 may be used with either cantilevered or balanced crankshafts.
- Other examples of tools are vegetation trimmers, brushcutters, hedge trimmers, lawn mowers, edgers, and leaf blowers, for which it is advantageous to use two-stroke engines for weight and cost considerations.
- Lightweight inserts 18 fill what would otherwise be void within the crankcase 46 .
- Crankcase is preferably constructed to provide only the clearance necessary for the various moving parts. The inserts thus reduce the volume within the crankcase that would otherwise be necessary for clearance.
- a full circle counterweight with light weight inserts and a retainer holding them to a T-shaped counterweight thus contributes to increased power and lower exhaust emissions through improved crankcase compression in crank case scavenged engines, while maintaining good rotational balance for a crankshaft and good manufactureability.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
- The invention relates generally to a crankshaft counterweight for an internal combustion engine.
- A crankshaft for an internal combustion engine typically comprises a shaft having at least one eccentric crankpin. A rod connects the engine's piston to the crankpin so that linear movement of the piston is translated to rotation of the main shaft. In order to balance rotation an eccentric mass is attached to the shaft to counterbalance the mass of the crankpin, rod, and the piston. The crankshaft can either have double counterweights or be cantilevered. With a double counterweight crankshaft, force from the piston is applied at a point, or at points that distribute the force evenly between the bearings supporting the shaft. Typically, a balanced crankshaft has, for each piston, two closely spaced counterweights, joined by a crank pin to which a rod is connected. Each counterweight is attached to a shaft. A cantilevered crankshaft has only one counterweight and shaft.
- For two-cycle engines, it is common to use a “T” shaped counterweight. A crank pin is attached near the bottom of the stem of “T”. One shaft (in the case of a cantilevered crankshaft) or two shafts (in the case of a balanced crankshaft) are attached to the counterweight(s) at its dimensional center. A “T” shaped counterweight is not strictly or literally in the form of a “T.” Rather, the “T” description suggests a relative distribution of mass to a side opposite of the crank pin and perpendicular to its axis of rotation. Shapes that are closer to that of a triangle or a triangle with two squeezed sides are also considered “T” shaped counterweights. “T” shaped counterweights are typically made from a single piece of metal, but have also been constructed using “laminations” or a multiple, stacked plates cut in a “T” shape and joined by, for example, pins. Examples of these types of counterweights are shown in U.S. Pat. No. 4,342,236. Most of the mass of a “T” shaped counterweight is concentrated where it is most effective, while reducing the overall mass of the counterweight.
- To transfer a charge of a fuel and air mixture from a carburetor into a cylinder, a process referred to as scavenging, two-cycle engines typically draw into the engine's crankcase the charge using a pressure decrease generated by upstroke of the piston. The down stroke of the piston then compresses, and thereby pressurizes, the charge prior to an intake port opening on the cylinder. The relatively higher pressure of the charge causes it to flow into the relative lower pressure cylinder. Increasing the pressure differential enhances scavenging of the cylinder. Better scavenging tends to improve engine performance and reduce emissions. Because the volume that the piston displaces during movement is fixed, decreasing the volume of voids within the crankcase will tend to increase pressure within the crankcase and thus improve scavenging.
- Some of the volume of the voids within the crankcase is necessary to accommodate the sweep of the counterweight. Because the swept volume of the counterweight in particular “T” shaped counterweights is significantly greater than the actual volume of the counterweight, it is desirable to fill this void. One prior art approach is to extend the shape of the counterweight to form a full circle. Most of circle is relatively thin, but it includes a much thicker, “T”-shaped portion forming the counterweight and support for attaching a crank pin and crankshaft. A drawn metal cup having a circular shape is attached to the edges of the extended counterweight to enclose voids on either side of the thick “T” shape and the extended edge.
- This example of a “full circle” counterweight has several problems. First, the counterweight is made of forged steel in order to make it into a circular shape with most of its mass concentrated in the thick “T”-shaped area. Forging the counterweight is a relatively expensive process. Second, because the steel extends to the edges of the circle, the overall mass of the counterweight is increased. Further, the mass is added in places where it is not useful for counterbalance. Not only is the additional weight an extra load on the engine, it is also detrimental to balance of the crankshaft.
- Another example, useful for laminate-constructed counterweights, is to cut openings in each of the inner layers of the laminate to form in each layer a “T” shape surrounded by a circle, and attach complete, circular shaped layers on the outside to seal the voids created by the openings in the inner layers on the outer layers, thus creating sealed voids. However, manufacture and assembly of this type of full circle counterweight is relatively complicated, and extra mass is added in places where it is not useful for counterbalance.
- The invention relates to an improved full circle counterweight for a crankshaft of an internal combustion engine that overcomes one or more of the problems with prior art.
- The invention, as defined by the claims, is disclosed below as part of a detailed description of an example of two-cycle engine for a power tool having a full-circle counterweight assembly.
- The full circle counterweight assembly in the disclosed example includes a counterweight that is shaped generally like that of a conventional “T”-shaped counterweight. Like a conventional “T” shaped counterweight, it includes openings for receiving a crank pin and a shaft. The T-shaped metal counterweight is partially encased within a retainer in the form of a drawn metal cup. Two lightweight spacers, made for example from plastic, fill voids on opposite sides of the stem of the “T” shaped counterweight. Edges of the cup are folded over to retain the inserts within the cup, and to retain the cup on the metal counterweight. As compared to the prior art, little additional weight is added to make the counterweight full circle. Further, as compared to prior art, the full circle counterweight assembly tends to be more easily and less expensively made. The metal counterweight, cup and lightweight inserts can be assembled according to standard, relatively low cost methods. The assembly is relatively simple, as it involves relatively few parts and steps. The full circle counterweight finds particular advantage in two-cycle engines of the type used in power tools and equipment, as such engines must be both lightweight and easily manufactured to reduce cost, while meeting increasingly stringent emission requirements.
- FIG. 1 is a view of a full circle counterweight assembly.
- FIG. 2 is a cross-section of the full circle counterweight assembly of FIG. 1, taken along section line2-2.
- FIG. 3 is a cross-section of the full circle counterweight assembly of FIG. 1 taken along section line3-3.
- FIG. 4 is a cross-section of an engine including the full circle counterweight of FIG. 1.
- FIG. 5 is a partial cross-section of the engine of FIG. 4, taken through the full circle counterweight and crankcase.
- FIG. 6 is a partial cross-section of the crankshaft of the engine partially shown in FIG. 5, taken along section line6-6.
- In the following detailed description of an example of an embodiment of the invention, like reference characters refer to like parts.
- Referring to FIGS. 1, 2 and3, full
circle counterweight assembly 10 includes a “T” shaped counterweight, which is generally designated 12, and a retainer in the form of drawnmetal cup 20 that holdsinserts 18 next to the stem of the T-shaped counterweight. The “T”-shaped counterweight includes astem portion 12 a in which is formedopenings cross portion 12 b, which contains most of the mass of the counterweight and is disposed on the side of the dimensional center of the counterweightopposite opening 16. As can be seen from the drawings,cross-portion 12 b has a semi-circular or curved outer diameter that fits the curvature ofretainer cup 20. Ends of either one or two shafts (not shown) are fitted into opening 14 in a conventional manner. Axis 15 is the center of theretainer cup 20, shaft(s), and the axis of rotation of thecounterweight assembly 10. A crank pin (not shown) is fitted into opening 16 in a conventional manner. Conventional methods, including relatively low-cost methods, may be used to fabricate the counterweight of metal. The counterweight could be, if desired, of laminate construction. - Inserts18 are, as compared to the metal counterweights, made of a much less dense material, and thus relatively lightweight. They may be made, for example, from a plastic such as nylon or other material that has a sufficiently high melting point to resist melting in the engine, tends not to degrade in the presence of the fuel and oil within an engine's crankcase, and that is of density substantially less than of the metal used to form the counterweightSuitable materials with lower density than the counterweight for
inserts 18 include materials such as plastic, aluminum, and magnesium, composite materials, and materials with closed cells, such as honeycombs, foam, or closed cell plastic. -
Cup 20 may be made from a thin durable metal such as steel. The diameter of the retainer cup is approximately the diameter path of the rotating counterweight. To hold theinserts 18 within the retainer cup, and to hold the retainer cup on thecounterweight 12, the edge of theretainer cup 20 is bent over edges of thecounterweight 12 and inserts 18. Duringassembly crankshaft opening 14 is aligned with a corresponding opening 21 in the retainer cup'sback wall 20. Depending on the size of the opening, the retainer may take on a form closer to that of a ring.Inserts 18 are then placed into the open regions inretainer cup 20 so that aninsert 18 is placed on each flank of the stem of the “T” shapedcounterweight 12. - After the inserts are fitted, an extended edge of
retainer cup 20 is bent inward towards the center ofretainer cup 20 and down overcounterweight 12 and inserts 18 to form a retaining edge orlip 22. The length of retainingedge 22 need only be of sufficient length to retaininserts 18 firmly in position, and to keep the retainer firmly attached to thecounterweight 12. Outer edges ofinserts 18 andcounterweight 12 may be notched to a depth of the thickness of thelip 22 to receive the lip, thus reducing the profile of the counterweight assembly allowing clearance of the void within the crankcase required for the counterweight to be reduced. To further reduce weight, inserts 18 may be cored to remove mass, by milling for example, to createvoids 24. These voids face inwardly, toward the retainer cup and sit against the cup's back wall. - Referring to FIGS. 4, 5 and6 two-
cycle engine 26 is an example of one use ofcounterweight assembly 10. The engine includes apiston 28 mounted for reciprocating movement within acylinder 29 formed incylinder block 30. The piston includes a wrist pin 32 for connecting it to an eyelet 34 ofrod 36. On an opposite end ofrod 36 is asecond eyelet 38 for connecting tocrankpin 40. The crank pin is connected tocounterweight assembly 10. Connected to the counterweight assembly isshaft 42. Also shown is amuffler 44 for receiving exhaust fromcylinder 29.Shaft 42 transmits power through a transmission system to a working element that is not shown. The shaft and full circle counterweight assembly is mounted withincrankcase 46. As shown in FIG. 6, the crankshaft with illustratedengine 26 has two fullcircle counterweight assemblies 10 and twoshafts 42 joined back-to-back to form a balanced crankshaft. In the particular example in FIG. 4, the engine is mounted to achassis 48 of a chain saw of known construction. A saw, not shown, depends from one side of the engine and chassis, as does a pair of handles. No particular configuration of engine or tool is intended to be implied by the example. For example, thecounterweight assembly 10 may be used with either cantilevered or balanced crankshafts. Other examples of tools are vegetation trimmers, brushcutters, hedge trimmers, lawn mowers, edgers, and leaf blowers, for which it is advantageous to use two-stroke engines for weight and cost considerations. - Lightweight inserts18 fill what would otherwise be void within the
crankcase 46. Crankcase is preferably constructed to provide only the clearance necessary for the various moving parts. The inserts thus reduce the volume within the crankcase that would otherwise be necessary for clearance. A full circle counterweight with light weight inserts and a retainer holding them to a T-shaped counterweight thus contributes to increased power and lower exhaust emissions through improved crankcase compression in crank case scavenged engines, while maintaining good rotational balance for a crankshaft and good manufactureability.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/779,890 US6418902B1 (en) | 2001-02-08 | 2001-02-08 | Composite full circle crankshaft counterweight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/779,890 US6418902B1 (en) | 2001-02-08 | 2001-02-08 | Composite full circle crankshaft counterweight |
Publications (2)
Publication Number | Publication Date |
---|---|
US6418902B1 US6418902B1 (en) | 2002-07-16 |
US20020104505A1 true US20020104505A1 (en) | 2002-08-08 |
Family
ID=25117906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/779,890 Expired - Lifetime US6418902B1 (en) | 2001-02-08 | 2001-02-08 | Composite full circle crankshaft counterweight |
Country Status (1)
Country | Link |
---|---|
US (1) | US6418902B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130032116A1 (en) * | 2010-04-23 | 2013-02-07 | Steyr Motors Gmbh | Reciprocating-piston internal combustion engine with mass balancing device |
US10125809B2 (en) * | 2016-08-01 | 2018-11-13 | GM Global Technology Operations LLC | Crankshaft assemblies and methods of manufacturing the same |
US10267261B2 (en) | 2016-08-01 | 2019-04-23 | GM Global Technology Operations LLC | Methods of joining components in vehicle assemblies |
US10408163B2 (en) | 2016-08-01 | 2019-09-10 | GM Global Technology Operations LLC | Polymeric composite engine assembly and methods of heating and cooling said assembly |
US10486378B2 (en) | 2016-08-01 | 2019-11-26 | GM Global Technology Operations LLC | Methods of manufacturing vehicle assemblies |
CN112727905A (en) * | 2020-12-25 | 2021-04-30 | 重庆隆鑫通航发动机制造有限公司 | Crankshaft assembly and engine |
US11852071B2 (en) | 2020-03-30 | 2023-12-26 | Husqvarna Ab | Crankshaft, power unit, two stroke piston engine, and hand-held power tool |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE341703T1 (en) * | 2003-04-28 | 2006-10-15 | Brp Rotax Gmbh & Co Kg | MASS BALANCER FOR AN INTERNAL COMBUSTION ENGINE |
US20050287026A1 (en) * | 2004-06-28 | 2005-12-29 | Stockhausen Joel A | Low density counterweight for eccentric driven pump |
US7021268B1 (en) | 2004-10-29 | 2006-04-04 | Brunswick Corporation | Crankshaft with airflow inducing surfaces |
US7617810B1 (en) | 2007-12-03 | 2009-11-17 | Brunswick Corporation | Counterweight shaft construction which reduces lubricant aeration |
DE102008009556A1 (en) * | 2008-02-16 | 2009-08-20 | Schaeffler Kg | Balance shaft of an internal combustion engine |
JP4696153B2 (en) * | 2008-12-15 | 2011-06-08 | 日立アプライアンス株式会社 | Rotary compressor |
JP5649937B2 (en) * | 2010-12-02 | 2015-01-07 | 株式会社やまびこ | Crankshaft filling member |
US8918994B2 (en) * | 2012-10-17 | 2014-12-30 | Ford Global Technologies, Llc | Balancing a pendulum-absorber crankshaft |
US9347519B2 (en) * | 2013-11-11 | 2016-05-24 | Ford Global Technologies, Llc | Strap mounting for pendulum dampers |
KR101755496B1 (en) * | 2016-09-09 | 2017-07-10 | 현대자동차 주식회사 | Power train |
JP7517858B2 (en) * | 2020-04-07 | 2024-07-17 | 株式会社やまびこ | Rotating body |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US465699A (en) | 1891-12-22 | Crank-shaft | ||
US276910A (en) | 1883-05-01 | Steam-engine crank-shaft | ||
US962445A (en) | 1907-05-11 | 1910-06-28 | William R Donaldson | Filler or junk plate for the crank-cases of explosive-engines. |
US1336546A (en) | 1918-12-27 | 1920-04-13 | Wall Arthur William | Crank or crank-shaft of internal-combustion engines |
US1337081A (en) | 1919-05-31 | 1920-04-13 | Olarence A Kuem | Crank-shaft |
US1534411A (en) | 1924-01-03 | 1925-04-21 | Lyman J Potter | Method and means of counterbalancing crankshafts |
US1749807A (en) | 1926-04-22 | 1930-03-11 | Ford Motor Co | Crank shaft |
US2643145A (en) | 1949-06-18 | 1953-06-23 | Mill Engineering & Supply Co | Built-up crankshaft for reciprocating machinery |
US3748925A (en) * | 1970-04-09 | 1973-07-31 | Perkins Engines Ltd | Crankshaft balance weights and method of assembly |
US4046028A (en) | 1976-02-19 | 1977-09-06 | Vachris Paul F | Crank shaft |
US4342236A (en) | 1978-09-27 | 1982-08-03 | Everts Robert G | Crankshaft with laminated counterweight |
US4319498A (en) | 1979-06-11 | 1982-03-16 | Mcwhorter Edward M | Reciprocating engine |
US4630498A (en) | 1982-07-30 | 1986-12-23 | Briggs & Stratton Corp. | Laminated wheel assembly |
US4708107A (en) | 1985-08-15 | 1987-11-24 | Stinebaugh Donald E | Compact pressure-boosted internal combustion engine |
US4819593A (en) | 1988-04-28 | 1989-04-11 | Briggs & Stratton Corporation | Pivoting balancer system |
US5265566A (en) | 1991-12-23 | 1993-11-30 | General Motors Corporation | Assembled seal disc for a crankshaft |
US5282397A (en) | 1992-03-19 | 1994-02-01 | Briggs & Stratton Corporation | Engine balancing system having at least one pivoting counterbalance weight |
US5295411A (en) | 1993-06-22 | 1994-03-22 | Speckhart Frank H | Torsional vibration absorber system |
US5435059A (en) | 1993-10-18 | 1995-07-25 | Chawla; Mohinder P. | Advance balancing process for crankshaft |
US5476369A (en) | 1994-07-25 | 1995-12-19 | Tecumseh Products Company | Rotor counterweight insert apparatus |
US5597293A (en) | 1995-12-11 | 1997-01-28 | Carrier Corporation | Counterweight drag eliminator |
US5931051A (en) | 1996-02-16 | 1999-08-03 | Ott; Vern D. | Vibration dampener for a rotating shaft |
SE506343C2 (en) | 1996-04-09 | 1997-12-08 | Electrolux Ab | Device in a two-stroke internal combustion engine |
SE507566C2 (en) | 1996-05-31 | 1998-06-22 | Electrolux Ab | Crankshaft bearing with drainage channel for internal combustion engine |
US5899120A (en) | 1997-05-20 | 1999-05-04 | Panther Machine, Inc. | Crankshaft with laminated counterweight |
US6026776A (en) * | 1997-06-26 | 2000-02-22 | Winberg; Randy S. | Internal crankshaft vibration damper |
US6135727A (en) * | 1999-02-16 | 2000-10-24 | Tecumseh Products Company | Detachably affixed counterweight and method of assembly |
-
2001
- 2001-02-08 US US09/779,890 patent/US6418902B1/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130032116A1 (en) * | 2010-04-23 | 2013-02-07 | Steyr Motors Gmbh | Reciprocating-piston internal combustion engine with mass balancing device |
US8746200B2 (en) * | 2010-04-23 | 2014-06-10 | Steyr Motors Gmbh | Reciprocating-piston internal combustion engine with mass balancing device |
US10125809B2 (en) * | 2016-08-01 | 2018-11-13 | GM Global Technology Operations LLC | Crankshaft assemblies and methods of manufacturing the same |
US10267261B2 (en) | 2016-08-01 | 2019-04-23 | GM Global Technology Operations LLC | Methods of joining components in vehicle assemblies |
US10408163B2 (en) | 2016-08-01 | 2019-09-10 | GM Global Technology Operations LLC | Polymeric composite engine assembly and methods of heating and cooling said assembly |
US10486378B2 (en) | 2016-08-01 | 2019-11-26 | GM Global Technology Operations LLC | Methods of manufacturing vehicle assemblies |
US11852071B2 (en) | 2020-03-30 | 2023-12-26 | Husqvarna Ab | Crankshaft, power unit, two stroke piston engine, and hand-held power tool |
CN112727905A (en) * | 2020-12-25 | 2021-04-30 | 重庆隆鑫通航发动机制造有限公司 | Crankshaft assembly and engine |
Also Published As
Publication number | Publication date |
---|---|
US6418902B1 (en) | 2002-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6418902B1 (en) | Composite full circle crankshaft counterweight | |
US5873333A (en) | Motorcycle with twin crankshaft mechanism | |
CA2207729C (en) | Lubricating system in 4-cycle engine | |
EP0884455B1 (en) | Internal combustion engine | |
US20070056552A1 (en) | Efficiencies for piston engines or machines | |
US6145488A (en) | Reduced volume scavenging system for two cycle engines | |
EP0241243A3 (en) | Reciprocatory internal combustion engines | |
US6216649B1 (en) | Low emission two-cycle internal combustion engine for powering a portable tool | |
EP0872651B1 (en) | Flex-rod | |
GB2280221A (en) | Uniflow scavenged two-stroke portable tool engine | |
WO1994010424A1 (en) | Opposed piston engines | |
JPS6033978B2 (en) | 2 stroke axial piston engine | |
US3759238A (en) | Balancing system | |
US6748909B2 (en) | Internal combustion engine driving a compressor | |
US6763586B2 (en) | Method of producing a crank arm for a crankshaft | |
US6293243B1 (en) | Short-stroke internal combustion engine | |
EP0662192B1 (en) | An internal combustion engine | |
US6062180A (en) | Device for increasing crankcase compression in an internal combustion engine | |
JPH08178010A (en) | Motion converter and reciprocating engine | |
US11754113B2 (en) | Rotary body | |
CN212250243U (en) | Two-stroke engine and crank structure thereof | |
US4708106A (en) | Acute angle crankarm transmitting reciprocating motion in a rotary fashion | |
JP2745009B2 (en) | Fastening structure of split crankcase for two-cycle engine | |
JP2564776B2 (en) | V-type multi-cylinder 2-cycle engine | |
JPH0650387A (en) | Balancer device for single cylinder engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WCI OUTDOOR PRODUCTS, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ERICSON, SCOTT;REEL/FRAME:011553/0583 Effective date: 20010206 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: ELECTROLUX PROFESSIONAL OUTDOOR PRODUCTS, INC., OH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WCI OUTDOOR PRODUCTS, INC.;REEL/FRAME:015008/0444 Effective date: 20010101 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: HUSQVARNA OUTDOOR PRODUCTS INC.,GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELECTROLUX PROFESSIONAL OUTDOOR PRODUCTS, INC.;REEL/FRAME:017458/0752 Effective date: 20060101 Owner name: HUSQVARNA OUTDOOR PRODUCTS INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELECTROLUX PROFESSIONAL OUTDOOR PRODUCTS, INC.;REEL/FRAME:017458/0752 Effective date: 20060101 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: HUSQVARNA CONSUMER OUTDOOR PRODUCTS N.A., INC., NO Free format text: CHANGE OF NAME;ASSIGNOR:HUSQVARNA OUTDOOR PRODUCTS INC.;REEL/FRAME:032377/0980 Effective date: 20080829 |
|
AS | Assignment |
Owner name: HUSQVARNA AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUSQVARNA CONSUMER OUTDOOR PRODUCTS N.A., INC.;REEL/FRAME:032472/0682 Effective date: 20140224 |