US20020085954A1 - Inorganic permeation layer for micro-electric device - Google Patents
Inorganic permeation layer for micro-electric device Download PDFInfo
- Publication number
- US20020085954A1 US20020085954A1 US10/029,472 US2947201A US2002085954A1 US 20020085954 A1 US20020085954 A1 US 20020085954A1 US 2947201 A US2947201 A US 2947201A US 2002085954 A1 US2002085954 A1 US 2002085954A1
- Authority
- US
- United States
- Prior art keywords
- sol
- micro
- electronic device
- surfactant
- permeation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000011148 porous material Substances 0.000 claims abstract description 22
- 238000000151 deposition Methods 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 46
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- 230000009870 specific binding Effects 0.000 claims description 30
- 230000027455 binding Effects 0.000 claims description 28
- 239000004094 surface-active agent Substances 0.000 claims description 25
- 239000000377 silicon dioxide Substances 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 5
- 239000011550 stock solution Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000009987 spinning Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 238000004377 microelectronic Methods 0.000 abstract description 6
- 238000009826 distribution Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 75
- 239000000499 gel Substances 0.000 description 53
- 239000000463 material Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000000376 reactant Substances 0.000 description 13
- 108091034117 Oligonucleotide Proteins 0.000 description 12
- 229920000936 Agarose Polymers 0.000 description 11
- 239000002243 precursor Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 108010090804 Streptavidin Proteins 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 229910021339 platinum silicide Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 150000004703 alkoxides Chemical class 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910020776 SixNy Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000005459 micromachining Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- -1 silicon alkoxide Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical group N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 102000034238 globular proteins Human genes 0.000 description 2
- 108091005896 globular proteins Proteins 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000002535 lyotropic effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 238000001393 microlithography Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229940045145 uridine Drugs 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241000588731 Hafnia Species 0.000 description 1
- 229910013703 M(OH)x Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003086 Ti–Pt Inorganic materials 0.000 description 1
- 229910010977 Ti—Pd Inorganic materials 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002164 ion-beam lithography Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000002444 silanisation Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910009112 xH2O Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/04—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/04—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
- C07K1/045—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers using devices to improve synthesis, e.g. reactors, special vessels
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/04—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
- C07K1/047—Simultaneous synthesis of different peptide species; Peptide libraries
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/24—Extraction; Separation; Purification by electrochemical means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0014—RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0014—RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
- G11C13/0019—RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising bio-molecules
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/701—Organic molecular electronic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
- B01J2219/00317—Microwell devices, i.e. having large numbers of wells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/00527—Sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00585—Parallel processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/0059—Sequential processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00596—Solid-phase processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/0061—The surface being organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00612—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00621—Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00623—Immobilisation or binding
- B01J2219/00626—Covalent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00623—Immobilisation or binding
- B01J2219/0063—Other, e.g. van der Waals forces, hydrogen bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00632—Introduction of reactive groups to the surface
- B01J2219/00637—Introduction of reactive groups to the surface by coating it with another layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00639—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
- B01J2219/00641—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being continuous, e.g. porous oxide substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00639—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
- B01J2219/00644—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being present in discrete locations, e.g. gel pads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00653—Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00659—Two-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00686—Automatic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00686—Automatic
- B01J2219/00689—Automatic using computers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00709—Type of synthesis
- B01J2219/00713—Electrochemical synthesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00725—Peptides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00731—Saccharides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00853—Employing electrode arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0636—Integrated biosensor, microarrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/069—Absorbents; Gels to retain a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
- B01L2400/0421—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/11—Compounds covalently bound to a solid support
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/06—Libraries containing nucleotides or polynucleotides, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/10—Libraries containing peptides or polypeptides, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/12—Libraries containing saccharides or polysaccharides, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B60/00—Apparatus specially adapted for use in combinatorial chemistry or with libraries
- C40B60/14—Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/04—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Definitions
- This invention pertains to the design, fabrication, and uses of a self-addressable, self-assembling microelectronic system which can actively carry out and control multi-step and multiplex reactions in microscopic formats.
- these reactions include molecular biological reactions, such as nucleic acid hybridizations, antibody/antigen reactions, clinical diagnostics, and biopolymer synthesis.
- the invention relates to an inorganic permeation layer for the micro-electric device.
- Sol-gel has been employed as a monolithic gel deposition on a variety of substrates. See, for example, U.S. Pat. No. 4,652,467 and U.S. Pat. No. 5,224,972, both issued to Brinker et al.
- metal alkoxides of network forming cations e.g., Si, Al, B, Ti, P, and optionally soluble salts of modifying cations, are used as glass precursors.
- alcoholic solutions catalyzed by additions of acid or base the alkoxides are partially or completely hydrolyzed and then polymerized to form molecules of glass-like oxide networks linked by bridging oxygen atoms. This technique is readily adapted to preparation of multicomponent oxide solutions as well as single component systems.
- reaction 1 can be varied, e.g., from about 1-20.
- reaction 2 does not go to completion, i.e., colloidal particles of anhydrous oxides do not result.
- the solution stiffens to a gel.
- sol-gel materials are tailored through stoichiometry, aging, drying conditions and method of deposition. Emphasis for examining these parameters has been on silicate-based systems, which has led to microporous monoliths and thin films (pore size ⁇ 2 nm). The most prominent applications of sol-gel synthesis have been the development of mesoporous (pore size from 2 nm to 50 nm) materials that possess well-defined pore morphology. To generate this pore morphology, a method known as surfactant templating has been devised.
- This approach is based on the ability for a ternary system, consisting of water, ethanol and surfactant, to develop a three dimensional structure (or a lyotropic phase) that may be described as cubic, hexagonal, lamellar or isotropic, depending upon the molar ratio of the three components.
- a ternary system consisting of water, ethanol and surfactant
- the formation of these phases is sometimes referred as liquid crystal templating.
- the introduction of a hyrdolyzed silicon alkoxide precursor once hyrolyzed, infiltrates the water rich regions and forms in inorganic ‘shell’ around the hydrophobic surfactant.
- the organic surfactant phase Upon drying and heating in excess of 400° C., the organic surfactant phase is removed, leaving behind the inorganic, silica shell with porosity defined by the once present surfactant phase.
- the pore sizes range from 2 nm to 100 nm depending upon the nature of the surfactant.
- the silica wall thickness ranges from 1 nm to 10 nm, which relies on processing parameters such as aging, pH and temperature.
- sol-gel chemistry in thin film deposition contemplates the use of sol-gel as a permeation layer for an electrical micro-array devices.
- Current permeation layers for electric micro-arrays are organic monomers or polymers with undefined pure size and porosity that swell when exposed to an aqueous solution.
- sol-gel as a permeation layer for an electrical micro-assay device solves the above limitations of organic permeation layers by providing a permeation layer that has controllable porosity and pore size and is not susceptible to swelling when exposed to an aqueous solution.
- sol-gel processing provides a means for fabricating thin films (up to 1 micron) with pre-determined pore size, pore size distribution, pore morphology, surface area and porosity.
- the sol-gel support may be tailored to achieve a variety of porous characteristics, suited for a specified application or assay. Since sol-gel materials are based on metal alkoxide precursor chemistry or metal oxide colloidal suspensions, the resulting material is inorganic. Thus, a rigid support is formed that will maintain its physical properties when immersed in aqueous solutions (resistance to swelling) and remain chemically resistant to biological and electrochemically generated products.
- sol-gel chemistry is based upon silicate precursor chemistry, but may be applied to other inorganic systems that include alumina, titania, zirconia, hafnia, germania, borates and phosphates. These systems alone or in combination with silica may be implemented to yield a robust, yet porous sol-gel permeation layer.
- sol-gel chemistry is amenable for large-scale manufacturing in which coatings may be applied at the wafer level rather than on the individual chip.
- Inorganic membranes synthesized by sol-gel chemistry have been applied as a permeation layer and as a support for attachment chemistry. In both instances, the sol-gel layer acted as a base-layer for the subsequent attachment layer.
- Attachment layer chemistry includes at least two methods: agarose/streptavidin and direct-attachment to the permeation layer. In the first example, a thin layer of agarose/streptavidin was directly deposited on the sol-gel film. Passive attachment, electronic attachment and reverse dot blot hybridizations were achieved with this permeation and attachment layer configuration. In a second example, the direct attachment of oligonucleotides was attained by bonding the capture probes to the sol-gel, followed by passive hybridization.
- FIG. 1 is the cross-section of three self-addressable micro-locations fabricated using microlithographic techniques
- FIG. 2 is the cross-section of a microlithographically fabricated micro-location
- FIG. 3 is a schematic representation of a self-addressable 64 micro-location chip which was actually fabricated, addressed with oligonucleotides, and tested;
- FIGS. 4 a and 4 b show the mechanism the device uses to electronically concentrate analyte or reactant molecules at a specific micro-location
- FIGS. 5 a , 5 b , 5 c and 5 d show the self-directed assembly of a device with three specific oligonucleotide binding entities (SSO-A, SSO-B, and SSO-C);
- FIG. 6 is a schematic of a sol-gel permeation layer and an agarose/streptavidin attachment layer
- FIG. 7 is a first micro photograph of the capture of oligonucleotides to the agarose/streptavidin attachment layer of FIG. 6;
- FIG. 8 is a second micro photograph of the capture of oligonucleotides to the agarose/streptavidin attachment layer of FIG. 6.
- FIG. 9 is a schematic of a sol-gel permeation layer also functioning as an attachment layer
- FIG. 10 is a micro photograph of the binding of a ribo-uridine capture probe to the sol-gel layer of FIG. 9;
- FIG. 11 is a graphical representation of the passive hybridization of the sol-gel permeation layer/attachment layer of FIG. 9.
- the devices and the related methodologies of this invention allow important molecular biology and diagnostic reactions to be carried out under complete electronic control.
- the basic concept of this invention is a microelectronic device with specially designed addressable microscopic locations. Each micro-location has a derivatized surface for the attachment of specific binding entities (i.e., an attachment layer), a permeation layer, and an underlying direct current (DC) micro-electrode.
- the device After the initial fabrication of the basic microelectronic structure, the device is able to self-direct the addressing of each specific micro-location with specific binding entities.
- the self-addressed device is subsequently able to actively carry out multi-step, combinatorial, and multiplex reactions at any of its micro-locations.
- the device is able to electronically direct and control the rapid movement and concentration of analytes and reactants to or from any of its micro-locations.
- the ability of the device to electronically control the dynamic aspects of various reactions provides a number of new and important advantages and improvements.
- each micro-location must have an underlying functioning DC mode micro-electrode.
- Other considerations for the design and fabrication of a device include, but are not limited to, materials compatibilities, nature of the specific binding entities and the subsequent reactants and analytes, and the number of micro-locations.
- a functioning DC mode micro-electrode is meant a micro-electrode biased either positively or negatively, operating in a direct current mode (either continuous or pulse), which can affect or cause the free field electrophoretic transport of charged specific binding entities, reactants, or analytes to or from any location on the device, or in the sample solution.
- the free field electrophoretic transport of molecules is not dependent on the electric field produced being bounded or confined by dielectrical material.
- a device can be designed to have as few as two addressable micro-locations or as many as hundreds of thousands of micro-locations.
- a complex device with a large number of micro-locations is fabricated using microlithography techniques. Fabrication is carried out on silicon or other suitable substrate materials, such as glass, silicon dioxide, plastic, or ceramic materials. These microelectronic “chip” designs would be considered large scale array or multiplex analysis devices.
- a device with a small number of micro-locations would be fabricated using micro-machining techniques.
- Addressable micro-locations can be of any shape, preferably round, square, or rectangular.
- the size of an addressable micro-location can be of any size, preferably range from sub-micron ( ⁇ 0.5 ⁇ m) to several centimeters (cm), with 5 ⁇ m to 100 ⁇ m being the most preferred size range for devices fabricated using microlithographic techniques, and 100 ⁇ m to 5 millimeters being the most preferred size range for devices fabricated using the micro-machining techniques.
- To make micro-locations smaller than the resolution of microlithographic methods would require techniques such as electron beam lithography, ion beam lithography, or molecular beam epitaxy. While microscopic locations are desirable for analytical and diagnostic type applications, larger addressable locations (e.g., larger than 2 mm) are desirable for preparative scale biopolymer synthesis.
- micro-locations have been created by using microlithographic and/or micro-machining techniques
- chemical techniques are used to create the specialized attachment and permeation layers which would allow the DC mode micro-electrodes under the micro-locations to: (1) affect or cause the free field electrophoretic transport of specific (charged) binding entities from any location; (2) concentrate and covalently attach the specific binding entities to the specially modified surface of the specific micro-location; and (3) continue to actively function in the DC mode after the attachment of specific binding entities so that other reactants and analytes can be transported to or from the micro-locations.
- FIG. 1 shows a basic design of self-addressable micro-locations fabricated using microlithographic techniques.
- the three micro-locations ( 10 ) (ML- 1 , ML- 2 , ML- 3 ) are formed on the surface of metal sites ( 12 ) which have been deposited on an insulator layer/base material.
- the metal sites ( 12 ) serve as the underlying micro-electrode structures ( 10 ).
- An insulator material separates the metal sites ( 12 ) from each other. Insulator materials include, but are not limited to, silicon dioxide, glass, resist, rubber, plastic, or ceramic materials.
- FIG. 2 shows the basic features of an individual micro-location ( 10 ) formed on a microlithographically produced metal site ( 12 ).
- the addressable micro-location is formed on the metal site ( 12 ), and incorporates an oxidation layer ( 20 ), a permeation layer ( 22 ), an attachment layer ( 24 ), and a binding entity layer ( 26 ).
- the metal oxide layer provides a base for the coupling of the permeation layer.
- the permeation layer provides spacing between the metal surface and the attachment/binding entity layers and allows solvent molecules, small counter-ions, and gases to freely pass to and from the metal surface.
- the thickness of the permeation layer for microlithographically produced devices can range from approximately 1 nanometer (nm) to 10 microns ( ⁇ m), with 2 nm to 1 ⁇ m being the most preferred.
- the attachment layer provides a base for the binding of the binding entities.
- the thickness of the attachment layer for microlithographically produced devices can range from 0.5 nm to 1 ⁇ m, with 1 nm to 200 nm being the most preferred.
- the permeation and attachment layers can be formed from the same material.
- the specific binding entities are covalently coupled to the attachment layer, and form the specific binding entity layer.
- the specific binding entity layer is usually a mono-layer of the specific binding molecules. However, in some cases the binding entity layer can have several or even many layers of binding molecules.
- oligonucleotide binding entities can be attached to one type of micro-location surface without causing a loss of the DC mode function, i.e., the underlying micro-electrode can still cause the rapid free field electrophoretic transport of other analyte molecules to or from the surface to which the oligonucleotide binding entities are attached.
- large globular protein binding entities e.g., antibodies
- they may effectively insulate the surface and cause a decrease or a complete loss of the DC mode function.
- Appropriate modification of the attachment layer would have to be carried out so as to either reduce the number of large binding entities (e.g., large globular proteins) or provide spacing between the binding entities on the surface.
- the spacing between micro-locations is determined by the ease of fabrication, the requirement for detector resolution between micro-locations, and the number of micro-locations desired on a device.
- particular spacings between micro-locations, or special arrangement or geometry of the micro-locations is not necessary for device function, in that any combination of micro-locations (i.e., underlying micro-electrodes) can operate over the complete device area.
- the device accomplishes this by attaching the specific binding molecules and subsequent analytes and reactants to the surface of an addressable micro-location. Free field electrophoretic propulsion provides for the rapid and direct transport of any charged molecule between any and all locations on the device.
- micro-location grouping patterns have to be changed and spacing distances increased proportionally, or multi-layer circuitry can be fabricated into the basic device.
- a device will contain some un-addressed, or plain micro-locations which serve other functions. These micro-locations can be used to store reagents, to temporarily hold reactants or analytes, and as disposal units for excess reactants, analytes, or other interfering components in samples. Other unaddressed micro-locations can be used in combination with the addressed micro-locations to affect or influence the reactions that are occurring at these specific micro-locations. These micro-locations add to intra-device activity and control. It is also possible for the micro-locations to interact and transport molecules between two separate devices. This provides a mechanism for loading a working device with binding entities or reactants from a storage device, and for copying or replicating a device.
- FIG. 3 shows a matrix type device containing 64 addressable micro-locations ( 30 ).
- a 64 micro-location device is a convenient design, which fits with standard microelectronic chip packaging components. Such a device is fabricated on a silicon chip approximately 1 cm ⁇ 1 cm, with a central area approximately 750 ⁇ m ⁇ 750 ⁇ m containing the 64 micro-locations.
- Each micro-location ( 32 ) is approximately 50 ⁇ m square with 50 ⁇ m spacing between neighboring micro-locations.
- Connective circuitry for each individual underlying micro-electrode runs to an outside perimeter (10 mm ⁇ 10 mm) of metal contact pads (300 ⁇ m square) ( 34 ).
- a raised inner perimeter can be formed between the area with the micro-locations and the contact pads, producing a cavity which can hold approximately 2 to 10 microliters ( ⁇ l) of a sample solution.
- the “chip” can be mounted in a standard quad package, and the chip contact pads ( 34 ) wired to the quad package pins. The packaged chip can then be plugged into a microprocessor controlled DC power supply and multimeter apparatus which can control and operate the device.
- the devices like the sixty-four microelectrode device ( 30 ) shown in FIG. 3 can be fabricated using relatively simple mask designs and standard microlithographic techniques.
- the base substrate material would be a 4-inch diameter silicon wafer, approximately 20 mils thick.
- the first processing step is to grow an insulating thermal silicon dioxide 0.5 to 1.0 microns into the wafer.
- platinum silicide (PtSi) electrodes a thin layer ( ⁇ 50 nm) of amorphous silicon (a-Si) is deposited over the surface of the wafer by means of a sputter deposition system.
- photo resist would be spun onto the wafer (i.e., Shippley Photo Resist 3612) and then exposed with the negative image of the metal wiring defining the electrodes, the wire bond pads, and the metal traces connecting the electrodes to the wire bond pads.
- a thin layer ( ⁇ 50 nm) of platinum (Pt) is sputter deposited over the entire surface of the wafer.
- Pt platinum
- the Pt and patterned a-Si are alloyed together in a tube furnace, forming PtSi.
- the unalloyed Pt is then removed using an aqua regia etch, leaving only the patterned PtSi.
- an electronically insulating top dielectric (either silicon dioxide (SiO 2 ) or silicon nitride (Si x N y ) or a combination of the two) is deposited over the entire wafer by means of a Plasma Enhanced Vapor Deposition (PECVD) system. Again standard photolithography techniques are used to pattern openings in photo resist above electrodes and the wire bond pads, and again a plasma etcher is used to etch down through the top dielectric to the PtSi. At this point the wafer can be diced into individual chips.
- PECVD Plasma Enhanced Vapor Deposition
- the bottom dielectric electrically insulates the PtSi from the silicon substrate
- the top dielectric PECVD SiO 2 and/or Si x N y
- Other metal systems other than PtSi can be used to fabricate the electrodes (i.e., Ti—Pt, TiW—Pt, Ti—Au, Ti—Pd, C) and would have processing steps consistent with patterning techniques for those material systems.
- the ideal material system is a PtSi metalization and a layer of PECVD SiO 2 covered by a layer of PECVD Si x N y for the top dielectric.
- the PtSi provides Si/SiO 2 attachment sites on the surface of the electrode for the permeation layer.
- the PECVD SiO 2 provides attachment sites to the dielectric well walls while the PECVD Si x N y provides a dense ion barrier that inhibits the DNA attachment chemistry used on the permeation layer.
- micro-electrode locations on the device are ready to be modified with specialized permeation and attachment layers.
- the objective is to create on the micro-electrode an intermediate permeation layer with selective diffusion properties and an attachment surface layer with optimal binding properties.
- the attachment layer should have from 10 5 to 10 7 functionalized locations per square micron ( ⁇ m 2 ) for the optimal attachment of specific binding entities.
- the attachment of specific binding entities must not overcoat or insulate the surface so as to prevent the underlying micro-electrode from functioning.
- a functional device requires some fraction ( ⁇ 5% to 25%) of the actual metal micro-electrode surface to remain accessible to solvent (H 2 O) molecules, and to allow the diffusion of ions (e.g., H + and OH ⁇ ) and electrolysis gases (e.g., O 2 and H 2 ) to occur.
- ions e.g., H + and OH ⁇
- electrolysis gases e.g., O 2 and H 2
- the intermediate permeation layer must also allow diffusion to occur. Additionally, the permeation layer should have a pore limit property which inhibits or impedes the larger binding entities, reactants, and analytes from physical contact with the micro-electrode surface. The permeation layer keeps the active micro-electrode surface physically distinct from the binding entity layer of the micro-location device.
- the sol-gel compositions are comprised of tetraethyl orthosilicate, ethanol, de-ionized water, hydrochloric acid and surfactant. Specifically, tetraethyl orthosilicate, sub-stoichiometric concentration of water, 200 proof ethanol, and hydrochloric acid are added to a boiling flask in the above listed order:
- the solution is refluxed at 60° C. for 90 minutes while magnetically stirring. After cooling this “stock solution” to room temperature, a portion of the partially hydrolyzed metal alkoxide solution may be extracted and mixed with additional de-ionized water and HCl: Volume 34.5 mL stock solution 1.38 mL de-ionized water 4.14 mL 0.07 M HCl Final Preferred Molar Ratio Final Molar Ratio Range TEOS 1.0 TEOS 1.0 H 2 O 5.1 H 2 O 1.0-40.0 EtOH 22 EtOH 0.0-40.0 HCl 0.0039 HCl 0.0001-0.1
- the solution is diluted with ethanol in a ratio of 2:1 (2 parts ethanol to 1 part sol-gel solution).
- a surfactant such as cetyltrimethylammonium bromide (or CTAB) may be added to the solution.
- CTAB cetyltrimethylammonium bromide
- the concentration of CTAB ranges from 1 wt. % to 5 wt. % depending upon the desired pore morphology.
- the chips After spin coating, the chips are placed in a furnace and heated at a rate of 1° C./min until 450° C. is attained. The temperature is held at this point for 3 hours before slowly cooling to room temperature.
- the sol-gel film that remains consists of more than 99% SiO 2 .
- the average pore size of the sol-gel films was estimated to be 25 ⁇ according to TEM evaluation of films prepared with similar compositions.
- the surface of this material may be functionalized by silanization techniques to provide favorable attachment chemistries.
- a thin layer of agarose/streptavidin was deposited onto a ⁇ 500 nm thick sol-gel coating.
- BODIPY-Texas Red labeled oligonucleotides T 12
- Columns 1, 2 and 5 of FIG. 7 show specific hybridization, columns 2 and 4 show non-specific hybridization.
- FIG. 9 direct attachment of oligonucleotides at either the 3′ or 5′ end has also been achieved on the sol-gel permeation layer, itself.
- FIG. 10 an example of direct attachment is provided.
- Treatment of the sol-gel layer with aminopropyltrimethoxysilane yields a surface covered with amines that can readily bind a fluorescently labeled capture probe modified with ribo-uridine.
- an ATA5-riboU capture probe was attached to the sol-gel surface and then passively hybridized to RCA5-BTR (10 ⁇ M). The best results rendered an average of 6760 MFI/sec.
- FIG. 11 shows a bar graph comparing the passive hybridization (measured by fluorescence) of oligonucleotides directly to the sol-gel permeation layer as a function of concentration, time and pH.
- the sol-gel layer may act as a membrane that permits ionic conduction (agarose) or as an ionic conducting membrane that doubles as a support for the binding of an attachment layer.
- Surfactant templated sol-gel materials have not been previously employed as a membrane on electrodes for electrochemically addressed reactions or assays. In either case, the porous nature of the sol-gel layer is of utmost importance is controlled via processing conditions and the lyotropic phase formed upon the addition of surfactant.
- the sol-gel chemistry is not limited to the composition, components and synthesis procedure listed.
- sol-gel processing is easily modified by altering the following parameters: (1) water to TEOS ration, (2) HCl concentration, (3) type of catalyst (acid or base), (4) concentration of solvent (EtOH), (5) type of precursor, (6) method of synthesis (i.e., use a one step catalysis procedure instead of the two-step procedure) and (7) pH value. Since sol-gel synthesis is performed in the liquid phase, the addition of components such as surfactants, drying control agents, organic/inorganic dopants, organically modified precursors, non-silicate based precursors and polymers may be included in the batch process.
- components such as surfactants, drying control agents, organic/inorganic dopants, organically modified precursors, non-silicate based precursors and polymers may be included in the batch process.
- sol-gel materials is not limited to inorganic precursors (alumina, titania, etc.). If additional mechanical and chemical properties, such as flexibility and hydrophobicity, respectively, are sought then organically modified silicate precursors may be introduced.
- This class of compounds includes metal alkoxide or metal halide precursors that have at least one moiety that is a non-oxide group (i.e., a Si—C bond).
- Most of the organically modified precursors employ an alkyl group bonded to the Si atom. This alkyl group may stand alone as an alkyl group such as ethyltrimethoxysilane or may provide an additional functional group such as an epoxy in 3-glycidoxypropyltrimethoxysilane. If these organic groups are introduced, however, the heating temperature will be greatly reduced to preserve these functionalities.
- the devices are able to electronically self-address each micro-location with a specific binding entity.
- the device itself directly affects or causes the transport and attachment of specific binding entities to specific micro-locations.
- the device self-assembles itself in the sense that no outside process, mechanism, or equipment is needed to physically direct, position, or place a specific binding entity at a specific micro-location. This self-addressing process is both rapid and specific, and can be carried out in either a serial or parallel manner.
- a device can be serially addressed with specific binding entities by maintaining the selected micro-location in a DC mode and at the opposite charge (potential) to that of a specific binding entity. All other micro-locations are maintained at the same charge as the specific binding entity. In cases where the binding entity is not in excess of the attachment sites on the micro-location, it is necessary to activate only one other micro-electrode to affect the electrophoretic transport to the specific micro-location.
- the specific binding entity is rapidly transported (in a few seconds, or preferably less than a second) through the solution, and concentrated directly at the specific micro-location where it immediately becomes bonded to the special surface.
- the ability to electronically concentrate reactants or analytes ( 70 ) on a specific micro-location ( 72 ) is shown in FIGS.
- FIGS. 5 a through 5 b show the serial process for addressing specific micro-locations ( 81 , 83 , 85 ) with specific oligonucleotide binding entities ( 82 , 84 , 86 ).
- the parallel process for addressing micro-locations simply involves simultaneously activating a large number (particular group or line) of micro-electrodes so that the same specific binding entity is transported, concentrated, and reacted with more than one specific micro-locations.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Nanotechnology (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Immunology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Microbiology (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Pharmacology & Pharmacy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fluid Mechanics (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
Abstract
The present invention pertains to a method of, and a device created by, depositing an inorganic permeation layer on a micro-electronic device for molecular biological reactions. The permeation layer is preferably sol-gel. The sol-gel permeation layer can be created with pre-defined porosity, pore size distribution, pore morphology, and surface area. The sol-gel permeation layer may also function as the attachment layer of the micro-electric device.
Description
- This application is a continuation of U.S. application Ser. No. 09/354,931, filed Jul. 15, 1999, which is a continuation-in-part of U.S. application Ser. No. 08/986,065, filed Dec. 5, 1997, which is a continuation-in-part of U.S. application Ser. No. 08/534,454, filed Sep. 27, 1995, which is a continuation-in-part of U.S. application Ser. No. 08/304,657, filed Sep. 9, 1994, now U.S. Pat. No. 5,632,957 (which has been continued as application Ser. No. 08/859,644, filed May 20, 1997), which is a continuation-in-part of Ser. No. 08/271,882, filed Jul. 7, 1994, which is a continuation-in-part of Ser. No. 08/146,504, filed Nov. 1, 1993, now U.S. Pat. No. 5,605,662, and a continuation-in-part of Ser. No. 08/708,262, filed Sep. 6, 1996.
- This invention pertains to the design, fabrication, and uses of a self-addressable, self-assembling microelectronic system which can actively carry out and control multi-step and multiplex reactions in microscopic formats. In particular, these reactions include molecular biological reactions, such as nucleic acid hybridizations, antibody/antigen reactions, clinical diagnostics, and biopolymer synthesis. More specifically, the invention relates to an inorganic permeation layer for the micro-electric device.
- Sol-gel has been employed as a monolithic gel deposition on a variety of substrates. See, for example, U.S. Pat. No. 4,652,467 and U.S. Pat. No. 5,224,972, both issued to Brinker et al. In this process, metal alkoxides of network forming cations, e.g., Si, Al, B, Ti, P, and optionally soluble salts of modifying cations, are used as glass precursors. In alcoholic solutions catalyzed by additions of acid or base, the alkoxides are partially or completely hydrolyzed and then polymerized to form molecules of glass-like oxide networks linked by bridging oxygen atoms. This technique is readily adapted to preparation of multicomponent oxide solutions as well as single component systems.
- The net reactions which describe this process are generally represented as:
- M(OR)n +xH2O→M(OHx (OR)n−x +x ROH (1)
- M(OH)x(OR)n−x→MOn/2 +x/2H2O+(n−x) (2)
- where x in
reaction 1 can be varied, e.g., from about 1-20. Generally,reaction 2 does not go to completion, i.e., colloidal particles of anhydrous oxides do not result. When the growing polymers link together to form an infinite network, the solution stiffens to a gel. - The chemistry involved in the formation of these monolithic gels is well documented in the prior art. See, e.g., (1) Brinker et al, “Sol-gel Transition in Simple Silicates”, J. Non-Cryst. Solids, 48 (1982) 47-64; (2) Brinker et al, “Sol-gel Transition in Simple Silicates II”, J. Non-Cryst. Solids, 63 (1984) 45-59; (3) Schaefer et al, “Characterization of Polymers and Gels by Intermediate Angle X-ray Scattering”, presented at the International Union of Pure and Applied Chemists MAC-RO'82, Amherst, Mass., Jul. 12, 1982; (4) Pettit et al, Sol-Gel Protective Coatings for Black Chrome Solar Selective Films, SPIE Vol. 324, Optical Coatings for Energy Efficiency and Solar Applications, (pub. by the Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash.) (1982) 176-183; (5) Brinker et al, “Relationships Between the Sol to Gel and Gel to Glass Conversions”, Proceedings of the International Conference on Ultrastructure Processing of Ceramics, Glasses, and Composites, (John Wiley and Sons, N.Y.) (1984); (6) Brinker et al, “Conversion of Monolithic Gels to Glasses in a Multicomponent Silicate Glass System”, J. Materials Sci., 16 (1981) 1980-1988; (7) Brinker et al, “A Comparison Between the Densification Kinetics of Colloidal and Polymeric Silica Gels”, Mat. Res. Soc. Symp. Proc. Vol. 32 (1984), 25-32; all of which disclosures are entirely incorporated by reference herein. For example, much work has been done in characterizing the relationship between the properties of a monolithic, bulk gel prepared by these systems and of the properties of the solution from which such gel is made. For instance, the relationship between solution characteristics such as pH and water content for a given solution chemical composition and the size and nature of the polymer which results in solution, and the relationship between such polymer properties and the characteristics of the finally produced gel, e.g., the degree of crosslinking, the porosity of the gel, etc., have been well studied and discussed in these references.
- The fact that gel formation can be retarded by making the solutions sufficiently dilute, e.g., less than 10% equivalent oxides, is known. In such dilutions, more typically 2-5% equivalent oxides, the solution can be applied to various substrates by conventional processes. Under such circumstances, the partially hydrolyzed glass-like polymers react chemically with the substrate surface, thereby achieving complete wetting.
- The physical properties of sol-gel materials are tailored through stoichiometry, aging, drying conditions and method of deposition. Emphasis for examining these parameters has been on silicate-based systems, which has led to microporous monoliths and thin films (pore size<2 nm). The most prominent applications of sol-gel synthesis have been the development of mesoporous (pore size from 2 nm to 50 nm) materials that possess well-defined pore morphology. To generate this pore morphology, a method known as surfactant templating has been devised. This approach is based on the ability for a ternary system, consisting of water, ethanol and surfactant, to develop a three dimensional structure (or a lyotropic phase) that may be described as cubic, hexagonal, lamellar or isotropic, depending upon the molar ratio of the three components. The formation of these phases is sometimes referred as liquid crystal templating. In general, the introduction of a hyrdolyzed silicon alkoxide precursor, once hyrolyzed, infiltrates the water rich regions and forms in inorganic ‘shell’ around the hydrophobic surfactant. Upon drying and heating in excess of 400° C., the organic surfactant phase is removed, leaving behind the inorganic, silica shell with porosity defined by the once present surfactant phase. The pore sizes range from 2 nm to 100 nm depending upon the nature of the surfactant. The silica wall thickness ranges from 1 nm to 10 nm, which relies on processing parameters such as aging, pH and temperature.
- However, none of the known uses of sol-gel chemistry in thin film deposition contemplates the use of sol-gel as a permeation layer for an electrical micro-array devices. Current permeation layers for electric micro-arrays are organic monomers or polymers with undefined pure size and porosity that swell when exposed to an aqueous solution. The previously not contemplated use of sol-gel as a permeation layer for an electrical micro-assay device solves the above limitations of organic permeation layers by providing a permeation layer that has controllable porosity and pore size and is not susceptible to swelling when exposed to an aqueous solution.
- Current methods for synthesizing permeation layers involve the utilization of monomers or polymers to form a membrane with undefined pore size and porosity. Furthermore, these permeation layers (i.e. agarose and synthetic polymers) may swell when exposed to an aqueous solution.
- To circumvent these obstacles, sol-gel processing provides a means for fabricating thin films (up to 1 micron) with pre-determined pore size, pore size distribution, pore morphology, surface area and porosity. With these capabilities the sol-gel support may be tailored to achieve a variety of porous characteristics, suited for a specified application or assay. Since sol-gel materials are based on metal alkoxide precursor chemistry or metal oxide colloidal suspensions, the resulting material is inorganic. Thus, a rigid support is formed that will maintain its physical properties when immersed in aqueous solutions (resistance to swelling) and remain chemically resistant to biological and electrochemically generated products.
- Typically, sol-gel chemistry is based upon silicate precursor chemistry, but may be applied to other inorganic systems that include alumina, titania, zirconia, hafnia, germania, borates and phosphates. These systems alone or in combination with silica may be implemented to yield a robust, yet porous sol-gel permeation layer. In addition, sol-gel chemistry is amenable for large-scale manufacturing in which coatings may be applied at the wafer level rather than on the individual chip.
- Inorganic membranes synthesized by sol-gel chemistry have been applied as a permeation layer and as a support for attachment chemistry. In both instances, the sol-gel layer acted as a base-layer for the subsequent attachment layer. Attachment layer chemistry includes at least two methods: agarose/streptavidin and direct-attachment to the permeation layer. In the first example, a thin layer of agarose/streptavidin was directly deposited on the sol-gel film. Passive attachment, electronic attachment and reverse dot blot hybridizations were achieved with this permeation and attachment layer configuration. In a second example, the direct attachment of oligonucleotides was attained by bonding the capture probes to the sol-gel, followed by passive hybridization.
- FIG. 1 is the cross-section of three self-addressable micro-locations fabricated using microlithographic techniques;
- FIG. 2 is the cross-section of a microlithographically fabricated micro-location;
- FIG. 3 is a schematic representation of a self-addressable 64 micro-location chip which was actually fabricated, addressed with oligonucleotides, and tested;
- FIGS. 4a and 4 b show the mechanism the device uses to electronically concentrate analyte or reactant molecules at a specific micro-location;
- FIGS. 5a, 5 b, 5 c and 5 d show the self-directed assembly of a device with three specific oligonucleotide binding entities (SSO-A, SSO-B, and SSO-C);
- FIG. 6 is a schematic of a sol-gel permeation layer and an agarose/streptavidin attachment layer;
- FIG. 7 is a first micro photograph of the capture of oligonucleotides to the agarose/streptavidin attachment layer of FIG. 6;
- FIG. 8 is a second micro photograph of the capture of oligonucleotides to the agarose/streptavidin attachment layer of FIG. 6.
- FIG. 9 is a schematic of a sol-gel permeation layer also functioning as an attachment layer;
- FIG. 10 is a micro photograph of the binding of a ribo-uridine capture probe to the sol-gel layer of FIG. 9; and
- FIG. 11 is a graphical representation of the passive hybridization of the sol-gel permeation layer/attachment layer of FIG. 9.
- The devices and the related methodologies of this invention allow important molecular biology and diagnostic reactions to be carried out under complete electronic control. The basic concept of this invention is a microelectronic device with specially designed addressable microscopic locations. Each micro-location has a derivatized surface for the attachment of specific binding entities (i.e., an attachment layer), a permeation layer, and an underlying direct current (DC) micro-electrode. After the initial fabrication of the basic microelectronic structure, the device is able to self-direct the addressing of each specific micro-location with specific binding entities. The self-addressed device is subsequently able to actively carry out multi-step, combinatorial, and multiplex reactions at any of its micro-locations. The device is able to electronically direct and control the rapid movement and concentration of analytes and reactants to or from any of its micro-locations. The ability of the device to electronically control the dynamic aspects of various reactions provides a number of new and important advantages and improvements.
- In order for a device to carry out multi-step and multiplex reactions, its crucial electronic components must be able to maintain active operation in aqueous solutions. To satisfy this requirement, each micro-location must have an underlying functioning DC mode micro-electrode. Other considerations for the design and fabrication of a device include, but are not limited to, materials compatibilities, nature of the specific binding entities and the subsequent reactants and analytes, and the number of micro-locations.
- By “a functioning DC mode micro-electrode” is meant a micro-electrode biased either positively or negatively, operating in a direct current mode (either continuous or pulse), which can affect or cause the free field electrophoretic transport of charged specific binding entities, reactants, or analytes to or from any location on the device, or in the sample solution.
- Within the scope of this invention, the free field electrophoretic transport of molecules is not dependent on the electric field produced being bounded or confined by dielectrical material.
- A device can be designed to have as few as two addressable micro-locations or as many as hundreds of thousands of micro-locations. In general, a complex device with a large number of micro-locations is fabricated using microlithography techniques. Fabrication is carried out on silicon or other suitable substrate materials, such as glass, silicon dioxide, plastic, or ceramic materials. These microelectronic “chip” designs would be considered large scale array or multiplex analysis devices. A device with a small number of micro-locations would be fabricated using micro-machining techniques.
- Addressable micro-locations can be of any shape, preferably round, square, or rectangular. The size of an addressable micro-location can be of any size, preferably range from sub-micron (˜0.5 μm) to several centimeters (cm), with 5 μm to 100 μm being the most preferred size range for devices fabricated using microlithographic techniques, and 100 μm to 5 millimeters being the most preferred size range for devices fabricated using the micro-machining techniques. To make micro-locations smaller than the resolution of microlithographic methods would require techniques such as electron beam lithography, ion beam lithography, or molecular beam epitaxy. While microscopic locations are desirable for analytical and diagnostic type applications, larger addressable locations (e.g., larger than 2 mm) are desirable for preparative scale biopolymer synthesis.
- After micro-locations have been created by using microlithographic and/or micro-machining techniques, chemical techniques are used to create the specialized attachment and permeation layers which would allow the DC mode micro-electrodes under the micro-locations to: (1) affect or cause the free field electrophoretic transport of specific (charged) binding entities from any location; (2) concentrate and covalently attach the specific binding entities to the specially modified surface of the specific micro-location; and (3) continue to actively function in the DC mode after the attachment of specific binding entities so that other reactants and analytes can be transported to or from the micro-locations.
- A. DESIGN PARAMETERS
- FIG. 1 shows a basic design of self-addressable micro-locations fabricated using microlithographic techniques. The three micro-locations (10) (ML-1, ML-2, ML-3) are formed on the surface of metal sites (12) which have been deposited on an insulator layer/base material. The metal sites (12) serve as the underlying micro-electrode structures (10). An insulator material separates the metal sites (12) from each other. Insulator materials include, but are not limited to, silicon dioxide, glass, resist, rubber, plastic, or ceramic materials.
- FIG. 2 shows the basic features of an individual micro-location (10) formed on a microlithographically produced metal site (12). The addressable micro-location is formed on the metal site (12), and incorporates an oxidation layer (20), a permeation layer (22), an attachment layer (24), and a binding entity layer (26). The metal oxide layer provides a base for the coupling of the permeation layer. The permeation layer provides spacing between the metal surface and the attachment/binding entity layers and allows solvent molecules, small counter-ions, and gases to freely pass to and from the metal surface. The thickness of the permeation layer for microlithographically produced devices can range from approximately 1 nanometer (nm) to 10 microns (μm), with 2 nm to 1 μm being the most preferred. The attachment layer provides a base for the binding of the binding entities. The thickness of the attachment layer for microlithographically produced devices can range from 0.5 nm to 1 μm, with 1 nm to 200 nm being the most preferred. In some cases, the permeation and attachment layers can be formed from the same material. The specific binding entities are covalently coupled to the attachment layer, and form the specific binding entity layer. The specific binding entity layer is usually a mono-layer of the specific binding molecules. However, in some cases the binding entity layer can have several or even many layers of binding molecules.
- Certain design and functional aspects of the permeation and attachment layer are dictated by the physical (e.g., size and shape) and the chemical properties of the specific binding entity molecules. They are also dictated to some extent by the physical and chemical properties of the reactant and analyte molecules, which will be subsequently transported and bound to the micro-location. For example, oligonucleotide binding entities can be attached to one type of micro-location surface without causing a loss of the DC mode function, i.e., the underlying micro-electrode can still cause the rapid free field electrophoretic transport of other analyte molecules to or from the surface to which the oligonucleotide binding entities are attached. However, if large globular protein binding entities (e.g., antibodies) are attached to the same type of surface, they may effectively insulate the surface and cause a decrease or a complete loss of the DC mode function. Appropriate modification of the attachment layer would have to be carried out so as to either reduce the number of large binding entities (e.g., large globular proteins) or provide spacing between the binding entities on the surface.
- The spacing between micro-locations is determined by the ease of fabrication, the requirement for detector resolution between micro-locations, and the number of micro-locations desired on a device. However, particular spacings between micro-locations, or special arrangement or geometry of the micro-locations is not necessary for device function, in that any combination of micro-locations (i.e., underlying micro-electrodes) can operate over the complete device area. Nor is it necessary to enclose the device or confine the micro-locations with dielectric boundaries. This is because complex electronic field patterns or dielectric boundaries are not required to selectively move, separate, hold, or orient specific molecules in the space or medium between any of the electrodes. The device accomplishes this by attaching the specific binding molecules and subsequent analytes and reactants to the surface of an addressable micro-location. Free field electrophoretic propulsion provides for the rapid and direct transport of any charged molecule between any and all locations on the device.
- As the number of micro-locations increases beyond several hundred, the complexity of the underlying circuitry of the micro-locations increases. In this case the micro-location grouping patterns have to be changed and spacing distances increased proportionally, or multi-layer circuitry can be fabricated into the basic device.
- In addition to micro-locations which have been addressed with specific binding entities, a device will contain some un-addressed, or plain micro-locations which serve other functions. These micro-locations can be used to store reagents, to temporarily hold reactants or analytes, and as disposal units for excess reactants, analytes, or other interfering components in samples. Other unaddressed micro-locations can be used in combination with the addressed micro-locations to affect or influence the reactions that are occurring at these specific micro-locations. These micro-locations add to intra-device activity and control. It is also possible for the micro-locations to interact and transport molecules between two separate devices. This provides a mechanism for loading a working device with binding entities or reactants from a storage device, and for copying or replicating a device.
- FIG. 3 shows a matrix type device containing 64 addressable micro-locations (30). A 64 micro-location device is a convenient design, which fits with standard microelectronic chip packaging components. Such a device is fabricated on a silicon chip approximately 1 cm×1 cm, with a central area approximately 750 μm×750 μm containing the 64 micro-locations. Each micro-location (32) is approximately 50 μm square with 50 μm spacing between neighboring micro-locations. Connective circuitry for each individual underlying micro-electrode runs to an outside perimeter (10 mm×10 mm) of metal contact pads (300 μm square) (34). A raised inner perimeter can be formed between the area with the micro-locations and the contact pads, producing a cavity which can hold approximately 2 to 10 microliters (μl) of a sample solution. The “chip” can be mounted in a standard quad package, and the chip contact pads (34) wired to the quad package pins. The packaged chip can then be plugged into a microprocessor controlled DC power supply and multimeter apparatus which can control and operate the device.
- B. FABRICATION PROCEDURES
- 1. Microlithography Fabrication Steps
- General microlithographic or photolithographic techniques can be used for fabrication of the complex “chip” type device, which has a large number of individually addressable microelectrodes. The conventional electronics for addressing these electrodes can be located on the chip in the form of an integrated circuit or off the chip on a printed circuit board. While the fabrication of an array of microelectrodes does not require complex photolithography, the selection of materials requires special considerations in order for such electrodes to operate in an aqueous environment.
- The devices like the sixty-four microelectrode device (30) shown in FIG. 3 can be fabricated using relatively simple mask designs and standard microlithographic techniques. Generally, the base substrate material would be a 4-inch diameter silicon wafer, approximately 20 mils thick. For fabricating microelectrode arrays whose electronic addressing is controlled off chip, the first processing step is to grow an insulating thermal silicon dioxide 0.5 to 1.0 microns into the wafer. In the case of fabricating platinum silicide (PtSi) electrodes a thin layer (˜50 nm) of amorphous silicon (a-Si) is deposited over the surface of the wafer by means of a sputter deposition system. Using standard optolithography techniques, photo resist would be spun onto the wafer (i.e., Shippley Photo Resist 3612) and then exposed with the negative image of the metal wiring defining the electrodes, the wire bond pads, and the metal traces connecting the electrodes to the wire bond pads. After the photo resist is removed and a thin layer (˜50 nm) of platinum (Pt) is sputter deposited over the entire surface of the wafer. The Pt and patterned a-Si are alloyed together in a tube furnace, forming PtSi. The unalloyed Pt is then removed using an aqua regia etch, leaving only the patterned PtSi. At this point an electronically insulating top dielectric (either silicon dioxide (SiO2) or silicon nitride (SixNy) or a combination of the two) is deposited over the entire wafer by means of a Plasma Enhanced Vapor Deposition (PECVD) system. Again standard photolithography techniques are used to pattern openings in photo resist above electrodes and the wire bond pads, and again a plasma etcher is used to etch down through the top dielectric to the PtSi. At this point the wafer can be diced into individual chips.
- The bottom dielectric (thermal SiO2) electrically insulates the PtSi from the silicon substrate, while the top dielectric (PECVD SiO2 and/or SixNy) electrically insulates the wire traces from the aqueous solution. Other metal systems other than PtSi can be used to fabricate the electrodes (i.e., Ti—Pt, TiW—Pt, Ti—Au, Ti—Pd, C) and would have processing steps consistent with patterning techniques for those material systems. In the case of the electro-deposited permeation layers, the ideal material system is a PtSi metalization and a layer of PECVD SiO2 covered by a layer of PECVD SixNy for the top dielectric. The PtSi provides Si/SiO2 attachment sites on the surface of the electrode for the permeation layer. The PECVD SiO2 provides attachment sites to the dielectric well walls while the PECVD SixNy provides a dense ion barrier that inhibits the DNA attachment chemistry used on the permeation layer.
- 2. Permeation and Attachment Layer Formation Steps
- At this point the micro-electrode locations on the device are ready to be modified with specialized permeation and attachment layers. The objective is to create on the micro-electrode an intermediate permeation layer with selective diffusion properties and an attachment surface layer with optimal binding properties. The attachment layer should have from 105 to 107 functionalized locations per square micron (μm2) for the optimal attachment of specific binding entities. However, the attachment of specific binding entities must not overcoat or insulate the surface so as to prevent the underlying micro-electrode from functioning. A functional device requires some fraction (˜5% to 25%) of the actual metal micro-electrode surface to remain accessible to solvent (H2O) molecules, and to allow the diffusion of ions (e.g., H+ and OH−) and electrolysis gases (e.g., O2 and H2) to occur.
- The intermediate permeation layer must also allow diffusion to occur. Additionally, the permeation layer should have a pore limit property which inhibits or impedes the larger binding entities, reactants, and analytes from physical contact with the micro-electrode surface. The permeation layer keeps the active micro-electrode surface physically distinct from the binding entity layer of the micro-location device.
- In terms of the primary device function, this design allows the electrolysis reactions required for electrophoretic transport to occur on micro-electrode surface, but avoids adverse electrochemical effects to the binding entities, reactants, and analytes. Sol-gel has been found to have benefits as a permeation layer not present in organic compounds, including pre-defined porosity, pore size, por size distribution, pore morphology and surface area.
- The sol-gel compositions are comprised of tetraethyl orthosilicate, ethanol, de-ionized water, hydrochloric acid and surfactant. Specifically, tetraethyl orthosilicate, sub-stoichiometric concentration of water, 200 proof ethanol, and hydrochloric acid are added to a boiling flask in the above listed order:
-
Volume Molar Ratio 61 mL Tetraethyl orthosilicate (Aldrich) 1.0 61 mL absolute ethanol (200 proof, Quantum) 4.0 4.87 mL de-ionized water (Milli-Q) 1.0 0.2 mL 0.07 M HCl 5 × 10−5 - The solution is refluxed at 60° C. for 90 minutes while magnetically stirring. After cooling this “stock solution” to room temperature, a portion of the partially hydrolyzed metal alkoxide solution may be extracted and mixed with additional de-ionized water and HCl:
Volume 34.5 mL stock solution 1.38 mL de-ionized water 4.14 mL 0.07 M HCl Final Preferred Molar Ratio Final Molar Ratio Range TEOS 1.0 TEOS 1.0 H2O 5.1 H2O 1.0-40.0 EtOH 22 EtOH 0.0-40.0 HCl 0.0039 HCl 0.0001-0.1 - After these components are mixed for 15 minutes, the solution is diluted with ethanol in a ratio of 2:1 (2 parts ethanol to 1 part sol-gel solution). To generate the appropriate pore size, a surfactant such as cetyltrimethylammonium bromide (or CTAB) may be added to the solution. The concentration of CTAB ranges from 1 wt. % to 5 wt. % depending upon the desired pore morphology. Once the surfactant has completely dissolved, the sol is ready for deposition by spin coating. The chips are spin coated for 20 sec. to 30 sec. at a rate that ranges from 1500 rpm to 6000 rpm. Prior deposition of the liquid onto the chip, however, the solution is passed through a 0.2 μm filter. After spin coating, the chips are placed in a furnace and heated at a rate of 1° C./min until 450° C. is attained. The temperature is held at this point for 3 hours before slowly cooling to room temperature. The sol-gel film that remains consists of more than 99% SiO2. The average pore size of the sol-gel films was estimated to be 25 Å according to TEM evaluation of films prepared with similar compositions.
- Subsequently, the surface of this material may be functionalized by silanization techniques to provide favorable attachment chemistries. In a first iteration, as shown in FIG. 6, a thin layer of agarose/streptavidin was deposited onto a ˜500 nm thick sol-gel coating. As shown in FIG. 7, by applying the established biotin-streptavidin attachment chemistry BODIPY-Texas Red labeled oligonucleotides (T12) were electronically bound to the agarose layer in a capture loading experiment with a 20 nanomolar biotinylated capture probe.
Columns columns - In FIG. 9, direct attachment of oligonucleotides at either the 3′ or 5′ end has also been achieved on the sol-gel permeation layer, itself. In FIG. 10, an example of direct attachment is provided. Treatment of the sol-gel layer with aminopropyltrimethoxysilane yields a surface covered with amines that can readily bind a fluorescently labeled capture probe modified with ribo-uridine. In this instance, an ATA5-riboU capture probe was attached to the sol-gel surface and then passively hybridized to RCA5-BTR (10 μM). The best results rendered an average of 6760 MFI/sec. FIG. 11 shows a bar graph comparing the passive hybridization (measured by fluorescence) of oligonucleotides directly to the sol-gel permeation layer as a function of concentration, time and pH.
- The above data demonstrate the first electric field assisted biological assays performed on a sol-gel substrate, complete with attachment chemistry. In the examples cited above, the sol-gel layer may act as a membrane that permits ionic conduction (agarose) or as an ionic conducting membrane that doubles as a support for the binding of an attachment layer. Surfactant templated sol-gel materials have not been previously employed as a membrane on electrodes for electrochemically addressed reactions or assays. In either case, the porous nature of the sol-gel layer is of utmost importance is controlled via processing conditions and the lyotropic phase formed upon the addition of surfactant. The sol-gel chemistry is not limited to the composition, components and synthesis procedure listed. Instead, numerous formulations are possible and are attributed to the versatility of sol-gel processing. For example, the cited composition is easily modified by altering the following parameters: (1) water to TEOS ration, (2) HCl concentration, (3) type of catalyst (acid or base), (4) concentration of solvent (EtOH), (5) type of precursor, (6) method of synthesis (i.e., use a one step catalysis procedure instead of the two-step procedure) and (7) pH value. Since sol-gel synthesis is performed in the liquid phase, the addition of components such as surfactants, drying control agents, organic/inorganic dopants, organically modified precursors, non-silicate based precursors and polymers may be included in the batch process.
- The modification of sol-gel materials is not limited to inorganic precursors (alumina, titania, etc.). If additional mechanical and chemical properties, such as flexibility and hydrophobicity, respectively, are sought then organically modified silicate precursors may be introduced. This class of compounds includes metal alkoxide or metal halide precursors that have at least one moiety that is a non-oxide group (i.e., a Si—C bond). Most of the organically modified precursors employ an alkyl group bonded to the Si atom. This alkyl group may stand alone as an alkyl group such as ethyltrimethoxysilane or may provide an additional functional group such as an epoxy in 3-glycidoxypropyltrimethoxysilane. If these organic groups are introduced, however, the heating temperature will be greatly reduced to preserve these functionalities.
- 3. Self-directed addressing of the devices
- The devices are able to electronically self-address each micro-location with a specific binding entity. The device itself directly affects or causes the transport and attachment of specific binding entities to specific micro-locations. The device self-assembles itself in the sense that no outside process, mechanism, or equipment is needed to physically direct, position, or place a specific binding entity at a specific micro-location. This self-addressing process is both rapid and specific, and can be carried out in either a serial or parallel manner.
- A device can be serially addressed with specific binding entities by maintaining the selected micro-location in a DC mode and at the opposite charge (potential) to that of a specific binding entity. All other micro-locations are maintained at the same charge as the specific binding entity. In cases where the binding entity is not in excess of the attachment sites on the micro-location, it is necessary to activate only one other micro-electrode to affect the electrophoretic transport to the specific micro-location. The specific binding entity is rapidly transported (in a few seconds, or preferably less than a second) through the solution, and concentrated directly at the specific micro-location where it immediately becomes bonded to the special surface. The ability to electronically concentrate reactants or analytes (70) on a specific micro-location (72) is shown in FIGS. 4a and 4 b. All other micro-locations remain unaffected by that specific binding entity. Any unreacted binding entity is removed by reversing the polarity of that specific micro-location, and electrophoresing it to a disposal location. The cycle is repeated until all desired micro-locations are addressed with their specific binding entities. FIGS. 5a through 5 b show the serial process for addressing specific micro-locations (81, 83, 85) with specific oligonucleotide binding entities (82, 84, 86).
- The parallel process for addressing micro-locations simply involves simultaneously activating a large number (particular group or line) of micro-electrodes so that the same specific binding entity is transported, concentrated, and reacted with more than one specific micro-locations.
Claims (24)
1. An electronic device adapted to received a solution comprising:
a substrate;
a plurality of selectively addressable electrodes on the substrate; and
a permeation layer adjacent the electrodes, the permeation layer being a sol-gel composition; and
an electric source for selectively addressing the electrodes.
2. The electronic device of claim 1 wherein the sol-gel composition is comprised of silicon dioxide.
3. The electronic device of claim 2 wherein the silicon dioxide sol-gel composition is formed from tetraethyl orthosilicate, ethanol, de-ionized water, hydrochloric acid and a surfactant.
4. The electronic device of claim 3 wherein the surfactant is cetyltrimethylammonium bromide.
5. The electronic device of claim 3 wherein the concentration of the surfactant is selected from 1 weight percent to 5 weight percent to generate a predetermined pore size in the sol-gel.
6. The electronic device of claim 1 further comprising:
an attachment layer adjacent the permeation layer and having selective binding properties for specific binding entities.
7. The electronic device of claim 1 further comprising:
an attachment layer integral with the permeation layer and having selective binding properties for specific binding entities.
8. An electronic device adapted to receive a solution comprising:
a substrate;
a plurality of selectively addressable electrodes on the substrate; and
a permeation layer adjacent the electrodes, the permeation layer being a silicon dioxide composition.
9. The electronic device of claim 8 wherein the silicon dioxide composition is formed from tetraethyl orthosilicate, ethanol, de-ionized water, hydrochloric acid and a surfactant.
10. The electronic device of claim 9 wherein the surfactant is cetyltrimethylammonium bromide.
11. The electronic device of claim 9 wherein the concentration of the surfactant is selected from 1 weight percent to 5 weight percent to generate a predetermined pore size in the silicon dioxide composition.
12. The electronic device of claim 8 further comprising:
an attachment layer adjacent the permeation layer with selective binding properties for specific binding entities.
13. The electronic device of claim 8 further comprising:
an attachment layer integral with the permeation layer and having selective binding properties for specific binding entities.
14. A method for forming an electronic device adapted to receive a solution comprising:
providing a substrate;
locating a plurality of selectively addressable electrodes on the substrate; and
forming a permeation layer adjacent the electrodes, the permeation layer being a sol-gel composition.
15. The method of claim 14 wherein the sol-gel composition is comprised of silicon dioxide.
16. The method of claim 15 wherein the silicon dioxide sol-gel composition is formed from tetraethyl orthosilicate, ethanol, de-ionized water, hydrochloric acid and a surfactant.
17. The method of claim 16 wherein the surfactant is cetyltrimethylammonium bromide.
18. The method of claim 16 wherein the concentration of the surfactant is selected from 1 weight percent to 5 weight percent to generate a predetermined pore size in the sol-gel.
19. The method of claim 14 further comprising:
forming an attachment layer adjacent the permeation layer with selective binding properties for specific binding entities.
20. A method of forming a permeation layer for use on an electronic device comprising:
mixing tetraethylorthosilicate, an alcohol, water and an acid to form a stock solution;
mixing the stock solution with additional water and additional acid;
adding additional alcohol;
adding a surfactant to form a sol-gel solution;
depositing the sol-gel solution on a substrate;
spinning the substrate; and
heating the substrate.
21. The method of claim 20 wherein the surfactant is cetyltrimethylammonium bromide, the acid is hydrochloric acid and the alcohol is ethanol.
22. The method of claim 21 wherein the final molar ratio is tetraethylorthosilicate=about 1.0, water=about 0.0 to about 40.0, ethanol=about 0.0 to about 40.0 and hydrochloric acid=about 0.0001 to about 0.1.
23. The method of claim 20 wherein the weight percent of the surfactant is from 1 weight percent to 5 weight percent.
24. The method of claim 20 wherein the amount of surfactant is varied to vary the pore size in the permeation layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/029,472 US20020085954A1 (en) | 1993-11-01 | 2001-10-22 | Inorganic permeation layer for micro-electric device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/146,504 US5605662A (en) | 1993-11-01 | 1993-11-01 | Active programmable electronic devices for molecular biological analysis and diagnostics |
US08/271,882 US6017696A (en) | 1993-11-01 | 1994-07-07 | Methods for electronic stringency control for molecular biological analysis and diagnostics |
US08/304,657 US5632957A (en) | 1993-11-01 | 1994-09-09 | Molecular biological diagnostic systems including electrodes |
US08/534,454 US5849486A (en) | 1993-11-01 | 1995-09-27 | Methods for hybridization analysis utilizing electrically controlled hybridization |
US70826296A | 1996-09-06 | 1996-09-06 | |
US08/986,065 US6051380A (en) | 1993-11-01 | 1997-12-05 | Methods and procedures for molecular biological analysis and diagnostics |
US09/354,931 US6306348B1 (en) | 1993-11-01 | 1999-07-15 | Inorganic permeation layer for micro-electric device |
US10/029,472 US20020085954A1 (en) | 1993-11-01 | 2001-10-22 | Inorganic permeation layer for micro-electric device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/354,931 Continuation US6306348B1 (en) | 1993-11-01 | 1999-07-15 | Inorganic permeation layer for micro-electric device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020085954A1 true US20020085954A1 (en) | 2002-07-04 |
Family
ID=23395504
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/354,931 Expired - Fee Related US6306348B1 (en) | 1993-11-01 | 1999-07-15 | Inorganic permeation layer for micro-electric device |
US10/029,472 Abandoned US20020085954A1 (en) | 1993-11-01 | 2001-10-22 | Inorganic permeation layer for micro-electric device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/354,931 Expired - Fee Related US6306348B1 (en) | 1993-11-01 | 1999-07-15 | Inorganic permeation layer for micro-electric device |
Country Status (7)
Country | Link |
---|---|
US (2) | US6306348B1 (en) |
EP (1) | EP1204853A4 (en) |
JP (1) | JP2003505046A (en) |
KR (1) | KR20020029905A (en) |
AU (1) | AU769715B2 (en) |
CA (1) | CA2379762A1 (en) |
WO (1) | WO2001006496A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2870143A1 (en) * | 2004-05-12 | 2005-11-18 | Commissariat Energie Atomique | SOL-GEL METHOD OF FUNCTIONALIZING A SURFACE OF A SOLID SUBSTRATE. |
EP1673476A1 (en) * | 2003-10-16 | 2006-06-28 | Hong Kong DNA Chips Limited | Apparatus and methods for detecting nucleic acid in biological samples |
US20070173051A1 (en) * | 2004-03-12 | 2007-07-26 | Curt Nelson | Method and/or system for forming a thin film |
US20090320456A1 (en) * | 2006-06-15 | 2009-12-31 | Ecocat Oy | Apparatus for treating diesel exhaust gases |
US20100197524A1 (en) * | 2007-07-31 | 2010-08-05 | Georgia Tech Research Corporation | Electrochemical biosensor arrays and instruments and methods of making and using same |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7314708B1 (en) * | 1998-08-04 | 2008-01-01 | Nanogen, Inc. | Method and apparatus for electronic synthesis of molecular structures |
US7582421B2 (en) * | 1993-11-01 | 2009-09-01 | Nanogen, Inc. | Methods for determination of single nucleic acid polymorphisms using a bioelectronic microchip |
US6306348B1 (en) * | 1993-11-01 | 2001-10-23 | Nanogen, Inc. | Inorganic permeation layer for micro-electric device |
US6379897B1 (en) | 2000-11-09 | 2002-04-30 | Nanogen, Inc. | Methods for gene expression monitoring on electronic microarrays |
US6818110B1 (en) * | 1997-09-30 | 2004-11-16 | Symyx Technologies, Inc. | Combinatorial electrochemical deposition and testing system |
AU4058500A (en) * | 1999-03-30 | 2000-10-16 | Nanogen, Inc. | Single nucleotide polymorphic discrimination by electronic dot blot assay on semiconductor microchips |
US6750023B2 (en) * | 1999-09-02 | 2004-06-15 | Corning Incorporated | Porous inorganic substrate for high-density arrays |
JP5181157B2 (en) * | 1999-09-30 | 2013-04-10 | ハミダ・フォー・ライフ・ベスローテン・フェンノートシャップ | Biomolecule attachment sites on microelectronic arrays |
US6303082B1 (en) * | 1999-12-15 | 2001-10-16 | Nanogen, Inc. | Permeation layer attachment chemistry and method |
US6824669B1 (en) | 2000-02-17 | 2004-11-30 | Motorola, Inc. | Protein and peptide sensors using electrical detection methods |
JP5102920B2 (en) * | 2001-02-22 | 2012-12-19 | 株式会社アルバック | Method for forming multilayer film of porous SOG film |
US6602400B1 (en) | 2000-06-15 | 2003-08-05 | Motorola, Inc. | Method for enhanced bio-conjugation events |
US20040161789A1 (en) * | 2000-08-30 | 2004-08-19 | Tanner Cameron W. | Porous inorganic substrate for high-density arrays |
US7776571B2 (en) * | 2000-12-12 | 2010-08-17 | Autogenomics, Inc. | Multi-substrate biochip unit |
DE10122659A1 (en) * | 2001-05-10 | 2002-12-05 | Infineon Technologies Ag | Biochip arrangement |
GB2377026A (en) * | 2001-06-29 | 2002-12-31 | Imp College Innovations Ltd | Electrically addressable electrochemical cell array |
US20030138819A1 (en) * | 2001-10-26 | 2003-07-24 | Haiqing Gong | Method for detecting disease |
US7338760B2 (en) | 2001-10-26 | 2008-03-04 | Ntu Ventures Private Limited | Sample preparation integrated chip |
AU2002352903A1 (en) * | 2001-11-21 | 2003-06-10 | University Of Massachusetts | Mesoporous materials and methods |
US6960298B2 (en) * | 2001-12-10 | 2005-11-01 | Nanogen, Inc. | Mesoporous permeation layers for use on active electronic matrix devices |
US20050221283A1 (en) * | 2001-12-11 | 2005-10-06 | Mahant Vijay K | Biochip |
US20030113832A1 (en) * | 2001-12-14 | 2003-06-19 | Lauf Robert J. | Apparatus and method for assaying electrophysiological effects |
US7601493B2 (en) * | 2002-07-26 | 2009-10-13 | Nanogen, Inc. | Methods and apparatus for screening and detecting multiple genetic mutations |
JP2005538921A (en) * | 2002-09-17 | 2005-12-22 | スリーエム イノベイティブ プロパティズ カンパニー | Porous surfactant-mediated metal oxide film |
GB0227424D0 (en) * | 2002-11-25 | 2002-12-31 | Univ Warwick | Coatings |
US7384779B2 (en) | 2004-04-12 | 2008-06-10 | Corning Incorporated | Porous substrate plates and the use thereof |
US7687103B2 (en) * | 2006-08-31 | 2010-03-30 | Gamida For Life B.V. | Compositions and methods for preserving permeation layers for use on active electronic matrix devices |
US20090154127A1 (en) * | 2007-12-18 | 2009-06-18 | Ting-Hao Lin | PCB Embedded Electronic Elements Structure And Method Thereof |
US20120045368A1 (en) | 2010-08-18 | 2012-02-23 | Life Technologies Corporation | Chemical Coating of Microwell for Electrochemical Detection Device |
EP2906935B1 (en) | 2012-10-12 | 2018-04-04 | Sage Science, Inc. | Side-eluting molecular fractionator |
ITTO20130264A1 (en) * | 2013-03-29 | 2014-09-30 | St Microelectronics Srl | MICROREACTOR AND METHOD TO LOAD A LIQUID INTO THE MICROREACTOR |
CN103604727B (en) * | 2013-11-26 | 2017-02-15 | 兰州大学 | Ground aerosol movement integrated observation system |
CN106028928B (en) * | 2014-04-16 | 2019-06-07 | 株式会社日立制作所 | NMR imaging device and RF method for shimming |
EP3207163B1 (en) | 2014-10-15 | 2020-05-27 | Sage Science, Inc. | Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation |
WO2017087979A1 (en) | 2015-11-20 | 2017-05-26 | Washington University | Preparative electrophoretic method for targeted purification of genomic dna fragments |
DE102016208970A1 (en) | 2016-05-24 | 2017-11-30 | Robert Bosch Gmbh | A method of making an electromigration resistant crystalline transition metal silicide layer, corresponding layer sequence, and microheater |
WO2018187779A1 (en) | 2017-04-07 | 2018-10-11 | Sage Science, Inc. | Systems and methods for detection of genetic structural variation using integrated electrophoretic dna purification |
Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981671A (en) * | 1975-09-22 | 1976-09-21 | Cincinnati Milacron, Inc. | Liquid reaction molding press |
US4205028A (en) * | 1979-01-11 | 1980-05-27 | Ferro Corporation | Forming protective skin on intricately molded product |
US4284399A (en) * | 1980-06-23 | 1981-08-18 | American Optical Corporation | Contact lens mold |
US4497763A (en) * | 1980-07-21 | 1985-02-05 | Pont-A-Mousson S.A. | Method for injection moulding coated parts from plastics material |
US4552633A (en) * | 1982-09-29 | 1985-11-12 | Japan Atomic Energy Research Institute | Fine particulate for use in clinical testing and a process for producing thereof |
US4787963A (en) * | 1987-05-04 | 1988-11-29 | Syntro Corporation | Method and means for annealing complementary nucleic acid molecules at an accelerated rate |
US4897228A (en) * | 1986-07-30 | 1990-01-30 | Hitachi, Ltd. | Method for producing optical disk base |
US5026785A (en) * | 1989-05-12 | 1991-06-25 | The United States Of America As Represented By The Department Of Health And Human Services | Avidin and streptavidin modified water-soluble polymers such as polyacrylamide, and the use thereof in the construction of soluble multivalent macromolecular conjugates |
US5034428A (en) * | 1986-06-19 | 1991-07-23 | Board Of Regents Of The University Of Washington | Immobilized biomolecules and method of making same |
US5104931A (en) * | 1989-03-22 | 1992-04-14 | Rohm Gmbh Chemische Fabrik | Process for the production of immobilized antibodies |
US5151217A (en) * | 1990-03-26 | 1992-09-29 | Imperial Chemical Industries Plc | Micro-emulsions |
US5164162A (en) * | 1990-05-21 | 1992-11-17 | The Dow Chemical Company | Mixing head with sleeved quieting chamber |
US5171782A (en) * | 1987-06-25 | 1992-12-15 | Norsolor | Invert microlatices useful as flotation and drainage additives and for absorption and retention of aqueous fluids |
US5217492A (en) * | 1982-09-29 | 1993-06-08 | Bio-Metric Systems, Inc. | Biomolecule attachment to hydrophobic surfaces |
US5238613A (en) * | 1987-05-20 | 1993-08-24 | Anderson David M | Microporous materials |
US5244799A (en) * | 1987-05-20 | 1993-09-14 | Anderson David M | Preparation of a polymeric hydrogel containing micropores and macropores for use as a cell culture substrate |
US5334310A (en) * | 1991-10-21 | 1994-08-02 | Cornell Research Foundation, Inc. | Column with macroporous polymer media |
US5405618A (en) * | 1989-11-21 | 1995-04-11 | Minnesota Mining And Manufacturing Company | Biomosaic polymer obtained by emulsion polymerization of hydrophobic monomers in the presence of bioactive materials |
US5445934A (en) * | 1989-06-07 | 1995-08-29 | Affymax Technologies N.V. | Array of oligonucleotides on a solid substrate |
US5460872A (en) * | 1993-03-26 | 1995-10-24 | W. L. Gore & Associates, Inc. | Process for coating microporous substrates and products therefrom |
US5478893A (en) * | 1989-01-05 | 1995-12-26 | Siska Diagnostics Inc. | End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids |
US5496509A (en) * | 1991-10-16 | 1996-03-05 | Dai Nippon Toryo Co., Ltd. | Method for producing molded product |
US5510074A (en) * | 1993-02-23 | 1996-04-23 | Schlumberger Industries | Method for manufacturing smart cards |
US5521229A (en) * | 1994-01-28 | 1996-05-28 | Minnesota Mining And Manufacturing Company | Polymers having substantially nonporous bicontinuous structures prepared by the photopolymerization of microemulsions |
US5527670A (en) * | 1990-09-12 | 1996-06-18 | Scientific Generics Limited | Electrochemical denaturation of double-stranded nucleic acid |
US5534132A (en) * | 1995-05-04 | 1996-07-09 | Vreeke; Mark | Electrode and method for the detection of an affinity reaction |
US5605662A (en) * | 1993-11-01 | 1997-02-25 | Nanogen, Inc. | Active programmable electronic devices for molecular biological analysis and diagnostics |
US5632957A (en) * | 1993-11-01 | 1997-05-27 | Nanogen | Molecular biological diagnostic systems including electrodes |
US5648482A (en) * | 1990-06-22 | 1997-07-15 | Hoffmann-La Roche Inc. | Primers targeted to CYP2D6 gene for detecting poor metabolizers of drugs |
US5653939A (en) * | 1991-11-19 | 1997-08-05 | Massachusetts Institute Of Technology | Optical and electrical methods and apparatus for molecule detection |
US5667667A (en) * | 1992-04-24 | 1997-09-16 | Isis Innovation Limited | Electrochemical treatment of surfaces |
US5744627A (en) * | 1994-01-28 | 1998-04-28 | Prolinx, Inc. | Boronic compound complexing reagents and complexes |
US5770369A (en) * | 1993-12-10 | 1998-06-23 | California Institute Of Technology | Nucleic acid mediated electron transfer |
US5777148A (en) * | 1994-01-28 | 1998-07-07 | Prolinx, Inc. | Boronic compound complexing reagents and highly stable complexes |
US5783054A (en) * | 1992-10-01 | 1998-07-21 | Australian Membrane And Biotechnology Research Institute | Method for producing improved sensor |
US5849486A (en) * | 1993-11-01 | 1998-12-15 | Nanogen, Inc. | Methods for hybridization analysis utilizing electrically controlled hybridization |
US5889104A (en) * | 1996-01-11 | 1999-03-30 | W. L. Gore & Associates, Inc. | Low dielectric constant material for use as an insulation element in an electronic device |
US5919523A (en) * | 1995-04-27 | 1999-07-06 | Affymetrix, Inc. | Derivatization of solid supports and methods for oligomer synthesis |
US5952398A (en) * | 1994-01-28 | 1999-09-14 | Minnesota Mining And Manufacturing Company | Polymerized microemulsion pressure sensitive adhesive compositions and methods of preparing and using same |
US5981734A (en) * | 1997-07-17 | 1999-11-09 | University Of Chicago | Methods for immobilizing nucleic acids on a gel substrate |
US6015666A (en) * | 1994-06-23 | 2000-01-18 | Bayer Aktiengesellschaft | Rapid DNA test for detecting quinolone-resistant Staphylococcus aureus pathogens in clinical material |
US6017696A (en) * | 1993-11-01 | 2000-01-25 | Nanogen, Inc. | Methods for electronic stringency control for molecular biological analysis and diagnostics |
US6031277A (en) * | 1997-01-31 | 2000-02-29 | Tokai Kogyo Kabushiki Kaisha | Multi-layered conducting devices and methods for manufacturing the same |
US6039897A (en) * | 1996-08-28 | 2000-03-21 | University Of Washington | Multiple patterned structures on a single substrate fabricated by elastomeric micro-molding techniques |
US6048690A (en) * | 1991-11-07 | 2000-04-11 | Nanogen, Inc. | Methods for electronic fluorescent perturbation for analysis and electronic perturbation catalysis for synthesis |
US6051380A (en) * | 1993-11-01 | 2000-04-18 | Nanogen, Inc. | Methods and procedures for molecular biological analysis and diagnostics |
US6054270A (en) * | 1988-05-03 | 2000-04-25 | Oxford Gene Technology Limited | Analying polynucleotide sequences |
US6064461A (en) * | 1994-08-12 | 2000-05-16 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for producing the same |
US6099783A (en) * | 1995-06-06 | 2000-08-08 | Board Of Trustees Operating Michigan State University | Photopolymerizable compositions for encapsulating microelectronic devices |
US6121489A (en) * | 1996-03-05 | 2000-09-19 | Trega Biosciences, Inc. | Selectively N-alkylated peptidomimetic combinatorial libraries and compounds therein |
US6121027A (en) * | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6136444A (en) * | 1995-02-02 | 2000-10-24 | Teijin Limited | Transparent conductive sheet |
US6143412A (en) * | 1997-02-10 | 2000-11-07 | President And Fellows Of Harvard College | Fabrication of carbon microstructures |
US6197145B1 (en) * | 1998-08-17 | 2001-03-06 | Ford Motor Company | Method of laminating a flexible circuit to a substrate |
US6197881B1 (en) * | 1999-08-18 | 2001-03-06 | Biopixel Ltd. | Electrically conductive copolymers and their preparation |
US6245249B1 (en) * | 1997-05-01 | 2001-06-12 | Fuji Xerox Co., Ltd. | Micro-structure and manufacturing method and apparatus |
US6264825B1 (en) * | 1998-06-23 | 2001-07-24 | Clinical Micro Sensors, Inc. | Binding acceleration techniques for the detection of analytes |
US6303082B1 (en) * | 1999-12-15 | 2001-10-16 | Nanogen, Inc. | Permeation layer attachment chemistry and method |
US6306348B1 (en) * | 1993-11-01 | 2001-10-23 | Nanogen, Inc. | Inorganic permeation layer for micro-electric device |
US6444111B1 (en) * | 1996-07-05 | 2002-09-03 | Combimatrix Corporation | Electrochemical solid phase synthesis of polymers |
US6458584B1 (en) * | 1996-12-23 | 2002-10-01 | University Of Chicago | Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable |
US6524517B1 (en) * | 1999-12-15 | 2003-02-25 | Nanogen, Inc. | Methods for molding and grafting highly uniform polymer layers onto electronic microchips |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885113A (en) * | 1987-08-20 | 1989-12-05 | Hoechst Celanese Corporation | Nonlinear optically responsive inorganic-organic composite compositions |
US5200051A (en) * | 1988-11-14 | 1993-04-06 | I-Stat Corporation | Wholly microfabricated biosensors and process for the manufacture and use thereof |
EP0583220B1 (en) * | 1992-07-15 | 1996-11-20 | Ciba-Geigy Ag | Coated material, its production and use |
US5364797A (en) * | 1993-05-20 | 1994-11-15 | Mobil Oil Corp. | Sensor device containing mesoporous crystalline material |
JP3452647B2 (en) * | 1994-07-25 | 2003-09-29 | トヨタ自動車株式会社 | Manufacturing method of ceramic structure |
US6592764B1 (en) * | 1997-12-09 | 2003-07-15 | The Regents Of The University Of California | Block copolymer processing for mesostructured inorganic oxide materials |
US6093302A (en) * | 1998-01-05 | 2000-07-25 | Combimatrix Corporation | Electrochemical solid phase synthesis |
-
1999
- 1999-07-15 US US09/354,931 patent/US6306348B1/en not_active Expired - Fee Related
-
2000
- 2000-06-09 JP JP2001511671A patent/JP2003505046A/en active Pending
- 2000-06-09 EP EP00951038A patent/EP1204853A4/en not_active Withdrawn
- 2000-06-09 CA CA 2379762 patent/CA2379762A1/en not_active Abandoned
- 2000-06-09 KR KR1020027000591A patent/KR20020029905A/en not_active Application Discontinuation
- 2000-06-09 AU AU64034/00A patent/AU769715B2/en not_active Ceased
- 2000-06-09 WO PCT/US2000/040181 patent/WO2001006496A1/en not_active Application Discontinuation
-
2001
- 2001-10-22 US US10/029,472 patent/US20020085954A1/en not_active Abandoned
Patent Citations (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981671A (en) * | 1975-09-22 | 1976-09-21 | Cincinnati Milacron, Inc. | Liquid reaction molding press |
US4205028B1 (en) * | 1979-01-11 | 1990-05-08 | Ferro Corp | |
US4205028A (en) * | 1979-01-11 | 1980-05-27 | Ferro Corporation | Forming protective skin on intricately molded product |
US4284399A (en) * | 1980-06-23 | 1981-08-18 | American Optical Corporation | Contact lens mold |
US4497763A (en) * | 1980-07-21 | 1985-02-05 | Pont-A-Mousson S.A. | Method for injection moulding coated parts from plastics material |
US4552633A (en) * | 1982-09-29 | 1985-11-12 | Japan Atomic Energy Research Institute | Fine particulate for use in clinical testing and a process for producing thereof |
US5217492A (en) * | 1982-09-29 | 1993-06-08 | Bio-Metric Systems, Inc. | Biomolecule attachment to hydrophobic surfaces |
US5034428A (en) * | 1986-06-19 | 1991-07-23 | Board Of Regents Of The University Of Washington | Immobilized biomolecules and method of making same |
US4897228A (en) * | 1986-07-30 | 1990-01-30 | Hitachi, Ltd. | Method for producing optical disk base |
US4787963A (en) * | 1987-05-04 | 1988-11-29 | Syntro Corporation | Method and means for annealing complementary nucleic acid molecules at an accelerated rate |
US5244799A (en) * | 1987-05-20 | 1993-09-14 | Anderson David M | Preparation of a polymeric hydrogel containing micropores and macropores for use as a cell culture substrate |
US5238613A (en) * | 1987-05-20 | 1993-08-24 | Anderson David M | Microporous materials |
US5171782A (en) * | 1987-06-25 | 1992-12-15 | Norsolor | Invert microlatices useful as flotation and drainage additives and for absorption and retention of aqueous fluids |
US6054270A (en) * | 1988-05-03 | 2000-04-25 | Oxford Gene Technology Limited | Analying polynucleotide sequences |
US5478893A (en) * | 1989-01-05 | 1995-12-26 | Siska Diagnostics Inc. | End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids |
US5104931A (en) * | 1989-03-22 | 1992-04-14 | Rohm Gmbh Chemische Fabrik | Process for the production of immobilized antibodies |
US5026785A (en) * | 1989-05-12 | 1991-06-25 | The United States Of America As Represented By The Department Of Health And Human Services | Avidin and streptavidin modified water-soluble polymers such as polyacrylamide, and the use thereof in the construction of soluble multivalent macromolecular conjugates |
US5445934A (en) * | 1989-06-07 | 1995-08-29 | Affymax Technologies N.V. | Array of oligonucleotides on a solid substrate |
US5405618A (en) * | 1989-11-21 | 1995-04-11 | Minnesota Mining And Manufacturing Company | Biomosaic polymer obtained by emulsion polymerization of hydrophobic monomers in the presence of bioactive materials |
US5151217A (en) * | 1990-03-26 | 1992-09-29 | Imperial Chemical Industries Plc | Micro-emulsions |
US5164162A (en) * | 1990-05-21 | 1992-11-17 | The Dow Chemical Company | Mixing head with sleeved quieting chamber |
US5648482A (en) * | 1990-06-22 | 1997-07-15 | Hoffmann-La Roche Inc. | Primers targeted to CYP2D6 gene for detecting poor metabolizers of drugs |
US5527670A (en) * | 1990-09-12 | 1996-06-18 | Scientific Generics Limited | Electrochemical denaturation of double-stranded nucleic acid |
US5496509A (en) * | 1991-10-16 | 1996-03-05 | Dai Nippon Toryo Co., Ltd. | Method for producing molded product |
US5453185A (en) * | 1991-10-21 | 1995-09-26 | Cornell Research Foundation, Inc. | Column with macroporous polymer media |
US5334310A (en) * | 1991-10-21 | 1994-08-02 | Cornell Research Foundation, Inc. | Column with macroporous polymer media |
US6048690A (en) * | 1991-11-07 | 2000-04-11 | Nanogen, Inc. | Methods for electronic fluorescent perturbation for analysis and electronic perturbation catalysis for synthesis |
US5653939A (en) * | 1991-11-19 | 1997-08-05 | Massachusetts Institute Of Technology | Optical and electrical methods and apparatus for molecule detection |
US5667667A (en) * | 1992-04-24 | 1997-09-16 | Isis Innovation Limited | Electrochemical treatment of surfaces |
US5783054A (en) * | 1992-10-01 | 1998-07-21 | Australian Membrane And Biotechnology Research Institute | Method for producing improved sensor |
US5510074A (en) * | 1993-02-23 | 1996-04-23 | Schlumberger Industries | Method for manufacturing smart cards |
US5460872A (en) * | 1993-03-26 | 1995-10-24 | W. L. Gore & Associates, Inc. | Process for coating microporous substrates and products therefrom |
US5849486A (en) * | 1993-11-01 | 1998-12-15 | Nanogen, Inc. | Methods for hybridization analysis utilizing electrically controlled hybridization |
US5929208A (en) * | 1993-11-01 | 1999-07-27 | Nanogen, Inc. | Methods for electronic synthesis of polymers |
US6051380A (en) * | 1993-11-01 | 2000-04-18 | Nanogen, Inc. | Methods and procedures for molecular biological analysis and diagnostics |
US6017696A (en) * | 1993-11-01 | 2000-01-25 | Nanogen, Inc. | Methods for electronic stringency control for molecular biological analysis and diagnostics |
US6306348B1 (en) * | 1993-11-01 | 2001-10-23 | Nanogen, Inc. | Inorganic permeation layer for micro-electric device |
US5632957A (en) * | 1993-11-01 | 1997-05-27 | Nanogen | Molecular biological diagnostic systems including electrodes |
US6245508B1 (en) * | 1993-11-01 | 2001-06-12 | Nanogen, Inc. | Method for fingerprinting utilizing an electronically addressable array |
US5605662A (en) * | 1993-11-01 | 1997-02-25 | Nanogen, Inc. | Active programmable electronic devices for molecular biological analysis and diagnostics |
US5770369A (en) * | 1993-12-10 | 1998-06-23 | California Institute Of Technology | Nucleic acid mediated electron transfer |
US5777148A (en) * | 1994-01-28 | 1998-07-07 | Prolinx, Inc. | Boronic compound complexing reagents and highly stable complexes |
US5952398A (en) * | 1994-01-28 | 1999-09-14 | Minnesota Mining And Manufacturing Company | Polymerized microemulsion pressure sensitive adhesive compositions and methods of preparing and using same |
US5521229A (en) * | 1994-01-28 | 1996-05-28 | Minnesota Mining And Manufacturing Company | Polymers having substantially nonporous bicontinuous structures prepared by the photopolymerization of microemulsions |
US5624973A (en) * | 1994-01-28 | 1997-04-29 | Minnesota Mining And Manufacturing Company | Polymers having substantially nonporous bicontinuous structures prepared by the photopolymerization of microemulsions |
US5744627A (en) * | 1994-01-28 | 1998-04-28 | Prolinx, Inc. | Boronic compound complexing reagents and complexes |
US6015666A (en) * | 1994-06-23 | 2000-01-18 | Bayer Aktiengesellschaft | Rapid DNA test for detecting quinolone-resistant Staphylococcus aureus pathogens in clinical material |
US6064461A (en) * | 1994-08-12 | 2000-05-16 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for producing the same |
US6136444A (en) * | 1995-02-02 | 2000-10-24 | Teijin Limited | Transparent conductive sheet |
US5919523A (en) * | 1995-04-27 | 1999-07-06 | Affymetrix, Inc. | Derivatization of solid supports and methods for oligomer synthesis |
US5534132A (en) * | 1995-05-04 | 1996-07-09 | Vreeke; Mark | Electrode and method for the detection of an affinity reaction |
US6099783A (en) * | 1995-06-06 | 2000-08-08 | Board Of Trustees Operating Michigan State University | Photopolymerizable compositions for encapsulating microelectronic devices |
US5889104A (en) * | 1996-01-11 | 1999-03-30 | W. L. Gore & Associates, Inc. | Low dielectric constant material for use as an insulation element in an electronic device |
US6121489A (en) * | 1996-03-05 | 2000-09-19 | Trega Biosciences, Inc. | Selectively N-alkylated peptidomimetic combinatorial libraries and compounds therein |
US6444111B1 (en) * | 1996-07-05 | 2002-09-03 | Combimatrix Corporation | Electrochemical solid phase synthesis of polymers |
US6039897A (en) * | 1996-08-28 | 2000-03-21 | University Of Washington | Multiple patterned structures on a single substrate fabricated by elastomeric micro-molding techniques |
US6458584B1 (en) * | 1996-12-23 | 2002-10-01 | University Of Chicago | Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable |
US6031277A (en) * | 1997-01-31 | 2000-02-29 | Tokai Kogyo Kabushiki Kaisha | Multi-layered conducting devices and methods for manufacturing the same |
US6143412A (en) * | 1997-02-10 | 2000-11-07 | President And Fellows Of Harvard College | Fabrication of carbon microstructures |
US6245249B1 (en) * | 1997-05-01 | 2001-06-12 | Fuji Xerox Co., Ltd. | Micro-structure and manufacturing method and apparatus |
US5981734A (en) * | 1997-07-17 | 1999-11-09 | University Of Chicago | Methods for immobilizing nucleic acids on a gel substrate |
US6121027A (en) * | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6264825B1 (en) * | 1998-06-23 | 2001-07-24 | Clinical Micro Sensors, Inc. | Binding acceleration techniques for the detection of analytes |
US6197145B1 (en) * | 1998-08-17 | 2001-03-06 | Ford Motor Company | Method of laminating a flexible circuit to a substrate |
US6197881B1 (en) * | 1999-08-18 | 2001-03-06 | Biopixel Ltd. | Electrically conductive copolymers and their preparation |
US6303082B1 (en) * | 1999-12-15 | 2001-10-16 | Nanogen, Inc. | Permeation layer attachment chemistry and method |
US6524517B1 (en) * | 1999-12-15 | 2003-02-25 | Nanogen, Inc. | Methods for molding and grafting highly uniform polymer layers onto electronic microchips |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1673476A1 (en) * | 2003-10-16 | 2006-06-28 | Hong Kong DNA Chips Limited | Apparatus and methods for detecting nucleic acid in biological samples |
US20080242562A1 (en) * | 2003-10-16 | 2008-10-02 | Hai Kang Life Corporation Limited | Apparatus and methods for detecting nucleic acid in biological samples |
EP1673476A4 (en) * | 2003-10-16 | 2010-01-06 | Hai Kang Life Corp Ltd | Apparatus and methods for detecting nucleic acid in biological samples |
US7888109B2 (en) | 2003-10-16 | 2011-02-15 | Hai Kang Life Corporation Limited | Apparatus and methods for detecting nucleic acid in biological samples |
US20070173051A1 (en) * | 2004-03-12 | 2007-07-26 | Curt Nelson | Method and/or system for forming a thin film |
FR2870143A1 (en) * | 2004-05-12 | 2005-11-18 | Commissariat Energie Atomique | SOL-GEL METHOD OF FUNCTIONALIZING A SURFACE OF A SOLID SUBSTRATE. |
WO2005113129A1 (en) * | 2004-05-12 | 2005-12-01 | Commissariat A L'energie Atomique | Sol-gel process for the functionalisation of a surface of a solid substrate |
US20090320456A1 (en) * | 2006-06-15 | 2009-12-31 | Ecocat Oy | Apparatus for treating diesel exhaust gases |
US20100197524A1 (en) * | 2007-07-31 | 2010-08-05 | Georgia Tech Research Corporation | Electrochemical biosensor arrays and instruments and methods of making and using same |
US8562806B2 (en) * | 2007-07-31 | 2013-10-22 | Georgia Tech Research Corporation | Electrochemical biosensor arrays and instruments and methods of making and using same |
Also Published As
Publication number | Publication date |
---|---|
AU769715B2 (en) | 2004-02-05 |
EP1204853A1 (en) | 2002-05-15 |
JP2003505046A (en) | 2003-02-12 |
KR20020029905A (en) | 2002-04-20 |
WO2001006496A1 (en) | 2001-01-25 |
CA2379762A1 (en) | 2001-01-25 |
EP1204853A4 (en) | 2006-04-12 |
AU6403400A (en) | 2001-02-05 |
US6306348B1 (en) | 2001-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6306348B1 (en) | Inorganic permeation layer for micro-electric device | |
KR100682919B1 (en) | Pattern forming method of fine metal thin layer, biomolecular fixing substrate and biochip using the same | |
Heller et al. | Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications | |
US6824866B1 (en) | Porous silica substrates for polymer synthesis and assays | |
EP0717749B1 (en) | Self-addressable self-assembling microelectronic systems and devices for molecular biological analysis and diagnostics | |
US6251595B1 (en) | Methods and devices for carrying out chemical reactions | |
US6780584B1 (en) | Electronic systems and component devices for macroscopic and microscopic molecular biological reactions, analyses and diagnostics | |
AU692800B2 (en) | Self-addressable self-assembling microelectronic systems and devices for molecular biological analysis nad diagnostics | |
US6897021B2 (en) | Reactive probe chip, composite substrate and method for fabrication of the same | |
JP2001525193A (en) | Self-addressable self-assembled microelectronic integrated systems, component devices, mechanisms, methods and methods for molecular biological analysis and diagnostics | |
US8372785B2 (en) | Method for immobilizing self-organizing material or fine particle on substrate, and substrate manufactured by using such method | |
JPH10505497A (en) | Automated molecular biological diagnostic system | |
JP2005512069A (en) | Mesoporous permeation layer for use in active electronic matrix devices | |
WO2006071696A2 (en) | Porous substrates and arrays comprising the same | |
US20030129740A1 (en) | Method of preparing substrate having functional group pattern for immobilizing physiological material | |
US8551759B2 (en) | Oligomer probe array and method of producing the same | |
US7314708B1 (en) | Method and apparatus for electronic synthesis of molecular structures | |
AU733500B2 (en) | Methods for electronic transport in molecular biological analysis and diagnostics | |
Bajaj | DNA hybridization: fundamental studies and applications in directed assembly | |
AU777515B2 (en) | Devices and systems for molecular biological reactions, analysis and diagnostics | |
Srivannavit | Design, fabrication and modeling of microreactor arrays for biochips and discovery research | |
JP2005058892A (en) | Porous body and manufacturing method therefor | |
Tang et al. | In situ synthesis of DNA micro-arrays using typography technique | |
AU5599099A (en) | Method for electronically controlled enzymatic reaction at an addressable location |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |