US20020074501A1 - Measurement of radiation dose and production of radiation image - Google Patents

Measurement of radiation dose and production of radiation image Download PDF

Info

Publication number
US20020074501A1
US20020074501A1 US09/773,770 US77377001A US2002074501A1 US 20020074501 A1 US20020074501 A1 US 20020074501A1 US 77377001 A US77377001 A US 77377001A US 2002074501 A1 US2002074501 A1 US 2002074501A1
Authority
US
United States
Prior art keywords
phosphor
radiation
green light
strength
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/773,770
Inventor
Yuji Isoda
Yasuo Iwabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to FUJI PHOTO FILM CO., LTD. reassignment FUJI PHOTO FILM CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISODA, YUJI, IWABUCHI, YASUO
Publication of US20020074501A1 publication Critical patent/US20020074501A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7768Chalcogenides with alkaline earth metals

Definitions

  • the present invention relates to measurements of a radiation dose or a dose of ultraviolet rays using a terbium-samarium co-activated rare earth activated alkaline earth metal rare earth oxide phosphor.
  • the invention further relates to new uses of the phosphor.
  • a phosphor emits a light by applying radiation such as UV light, electron beams, or X-rays, or by application of electric fields.
  • various phosphors have been hitherto studied and practically used for various purposes such as illumination (luminescent lamps), image displaying, and radiation measurement.
  • Display devises comprising phosphors are also known, for instance, CRT and VFD.
  • a radiation image storage panel i.e., stimulable phosphor sheet
  • the radiation image storage panel is favorably employed for a radiation image recording and reproducing method.
  • U.S. Pat. No. 5,391,884 discloses a phosphor and an X-ray imaging plate comprising the phosphor.
  • the disclosed phosphor contains an activated gadolinate host, and the host is essentially composed of oxygen atom and the complex composition having the following formula:
  • the above-mentioned phosphor absorbs X-rays, and emits light in a longer wavelength region. Further, if the phosphor having been exposed to the X rays is stimulated with light in the wavelength region of 600 to 1,200 nm, it emits a light (i.e., stimulated emission) having an intensity stronger than that given by the phosphor without Tb and Sm. Accordingly, U.S. Pat. No. 5,341,884 indicates that the disclosed phosphor gives stimulated emission advantageously employable for an X-ray imaging plate.
  • the co-pending U.S. Ser. No. 09/456,499 teaches at when the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor is excited with a radiation (e.g., UV light X-ray), it emits luminescence comprising both green component (which is thought to originate from Tb 3+ ) and red one (which is thought to originate from Sm 3+ ) Each luminescent component has a different response time to the excitation, and the ratio between them depends on the alkaline earth metal and the rare earth (which are the center metal atoms in the phosphor matrix). Therefore, the time difference between these luminescent components can be controlled by selecting the center metal atoms in the phosphor matrix.
  • a radiation e.g., UV light X-ray
  • the present inventors have made further studies on the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor and found out a number of interesting and industrially utilizable characteristics of the phosphor.
  • the invention resides in a method for measuring a radiation dose which comprises the steps of:
  • M II is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba
  • M III is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu
  • x and y are numbers satisfying the conditions of 0 ⁇ x ⁇ 0.1 and 0 ⁇ y ⁇ 0.1, respectively;
  • the invention also resides in a method of producing a radiation Page which comprises the steps of:
  • the invention further resides in a method for measuring a dose of ultraviolet rays which comprises the steps of:
  • the invention furthermore resides in a method for measuring a radiation dose which comprises the steps of:
  • the invention furthermore resides in a method of producing a radiation image which comprises the steps of:
  • examples of the radiations include X-rays, ionizing radiations such as ⁇ -rays, ⁇ -rays and ⁇ -rays, and neutron rays.
  • the ultraviolet rays are light having a wavelength region of 250 nm to 400 nm.
  • FIG. 1 shows an emission spectrum of BaGd 2 O 4 :0.002Tb,0.0002Sm phosphor excited with X-rays.
  • FIG. 2 shows time-dependency of the emission intensity of BaGd 2 O 4 :0.002Tb,0.0002Sm phosphor excited with X-rays in which the solid line 1 is for a green light and the dotted line 2 is for a red light.
  • FIG. 3 shows a model of time-dependency of emission intensity of a green light emitting from the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor of the invention.
  • FIG. 4 shows a model of time-dependency of emission intensity of a green light emitted by the known terbium-activated alkaline earth metal rare earth oxide phosphor.
  • FIG. 5 shows a schematic view of a typical dosimeter of the invention.
  • FIG. 6 graphically shows a curve (i.e., calibration curve) indicating a relationship between a radiation dose of X-rays and a variation of fluorescence strength per sec.
  • FIG. 7 graphically shows a ce (i.e., calibration curve) indicating a relationship between a dose of ultra-violet rays and a variation of fluorescence strength per sec.
  • FIG. 8 shows at ( 1 ) a schematic view of a typical radiation image storage panel employed in the invention dosimeter of the invention, and at ( 2 ) an enlarged section of the storage panel taken along the line I-I.
  • FIG. 9 graphically shows a curve (i.e., calibration curve) indicating a relationship between a radiation dose of X-rays and a variation of fluorescence strength (F).
  • an alkaline earth metal oxide and a rare earth oxide (which form in combination a precursor of the phosphor matrix) and terbium oxide and samarium oxide (which are oxides of the activator) are pulverized and mechanically stirred for mixing.
  • the obtained mixture is placed in a heat-resistance container such as an alumina crucible, a quartz boat or crucible, and then fired in an electric furnace.
  • a preferred temperature for the firing is in the range of 1,100 to 1,300° C., and more preferably is approx. 1,200° C.
  • As the firing atmosphere a nitrogen gas atmosphere is preferred.
  • the firing period is determined upon various conditions such as the amount of the mixture placed in the container, the firing temperature, and the temperature at which the product is taken out of the furnace. It generally is in the range of 1 to 5 hours, preferably 2 to 4 hours.
  • the temperature in the furnace is lowered and then the fired product is taken out.
  • the product can be further subjected to various known treatments such as pulverizing and sieving, if needed.
  • M II is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba
  • M III is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu
  • x and y are numbers satisfying the conditions of 0 ⁇ x ⁇ 0.1 and 0 ⁇ y ⁇ 0.1, respectively.
  • M II is Sr and/or Ba.
  • M III also preferably is Y and/or Gd.
  • x and y preferably satisfy the conditions of 0.0001 ⁇ x ⁇ 0.01 and 0.00001 ⁇ y ⁇ 0.001, respectively.
  • FIG. 1 shows an emission spectrum of the phosphor of BaGd 2 O 4 :0.002Tb,0.0002Sm (an example of the phosphor of the invention) excited with X-rays.
  • FIG. 2 shows time-dependency of the emission intensity of BaGd 2 O 4 :0.002Tb,0.0002Sm phosphor excited with X-rays.
  • the solid line 1 and the dotted line 2 represent green and red luminescent components, respectively.
  • the phosphor of the invention gives a luminescence comprising green component (approx. at 550 nm) and red one (approx. at 610 nm).
  • the luminescence centers of de green and red components are considered to be Tb 3+ and Sm 3+ , respectively.
  • FIG. 2 further shows that BaGd 2 O 4 :0.002Tb,0.0002Sm phosphor emits the green luminescent component later than it emits the red one by approx. 0.5 second.
  • the green component (originating from Tb 3+ ) exhibits a response to the excitation slower than the red one (originating from Sn 3+ ).
  • the red light can be seen immediately after the excitation, and then the green light can be seen approx. 0.5 second later.
  • the ratio between the green and red components varies according to the center metal atoms in the matrix (even if the activators are the same).
  • the time difference between these luminescent components can be controlled by optimizing the conditions of the phosphor matrix (e.g., by selecting the center metal atoms and/or by adjusting the ratio thereof). Further, in the case where the phosphor is excited with ultraviolet rays, the excitation maximums for the green and red components are approx. 315 nm and approx. 408 nm, respectively. Accordingly, it is possible to selectively excite the phosphor so that the green or red component can be predominantly obtained.
  • the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor of the invention is preferably employed in the form of a sheet containing the phosphor. See a sheet 10 of FIG. 5.
  • the sheet may contain a binder polymer which binds the phosphor in the form of particles.
  • the sheet generally is in a rectangular shape having a size of 1 to 100 cm ⁇ 1 to 100 cm, and a thickness of 1 to 1,000 ⁇ m.
  • the phosphor is preferably employed in the form of a radiation image storage panel 11 comprising a support sheet 12 and a layer 13 of the phosphor.
  • the layer of the phosphor preferably comprises phosphor particles and a binder polymer.
  • a protective layer 14 may be placed on the phosphor layer 13 .
  • the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor emits a green light and a red light when it is irradiated with X-rays.
  • a typical time-dependency of the green light is schematically illustrated in FIG. 3.
  • a typical time-dependency of a green light emitting from the known terbium activated alkaline earth metal rare earth oxide phosphor is illustrated in FIG. 4.
  • the green light emitting from the Th/Sm co-activated phosphor of the invention shows a variation of fluorescence strength which is not sharp, as compared with the variation of the fluorescence strength of the green light of the Tb-activated phosphor.
  • a calibration curve is prepared by applying a standard target radiation in a predetermined dose to the phosphor and measuring a variation per unit time (such as one second after excitation) of strength of a green light emitted by the phosphor, unknown radiation dose can be determined by repeating the same procedure and comparing the measured variation value with the calibration curve.
  • the phosphor of the invention can be employed as a dosimeter.
  • X-rays radiated by an X-ray tube are applied to a dosimeter sheet containing a phosphor of SaGd 2 O 4 :0.0001Tb,0.0003Sm to give a radiation dose of 1 to 100 mR, and a fluorescence emitting from the phosphor within one second is detected at a wavelength of 555 nm (green light, slit: 5 nm).
  • the above-mentioned phenomenon of the phosphor of the invention can be utilized for production of a radiation image if the green light is detected from each pixel imaginarily formed on a sheet such as a radiation image storage panel using a light-collecting means such as CC) and the detected green light is converted into a digital. data.
  • the digital data are collected from each pixel and processed to produce a two-dimensionally extended radiation image in the manners utilized in the know radiation image recording and reproducing method.
  • the phosphor of the invention further shows that the green light is also emitted when the phosphor is irradiated with ultraviolet rays.
  • the green light emitting after irradiation of ultraviolet rays shows a relationship between the dose of ultraviolet rays and the ratio of increase of the fluorescence strength of green light in a certain time range, as is illustrated in FIG. 7.
  • ultraviolet rays having a wavelength 315 nm are applied to a sheet containing a phosphor of BaGd 2 O 4 :0.0001Th,0.0003Sm to give a UV dose of 0.01 to 100 ⁇ W/cm 2 , and a fluorescence emitting within one second is detected at a wavelength of 555 nm (green light, slit: 5 nm).
  • the terbium (Tb3 + ) and samarium (Sn 3+ ) each of which forms an emission center of the phosphor of the invention to emit a green light and a red light, respectively show variations of their atomic valencies when irradiated with radiations such as X-rays, that thus irradiated phosphor shows variation of the fluorescence strength for each of green light and red light, and that there is a relationship (such as a linear relationship) of the variation of fluorescence strength between the green light and red light.
  • the phosphor of the invention can be employed as a dosimeter for measuring a radiation dose utilizing the above-mentioned relationship. A typical procedure is described below.
  • a sheet containing the phosphor is irradiated with ultraviolet rays, and a fluorescence strength of green light emitting from terbium, Io(Th) and a fluorescence strength of red light emitting from samarium, Io(Sm), are measured.
  • the excitation wavelength for terbium is approx. 315 nm, while that for samarium is approx. 408 nm. If the excitation wavelength of 315 nm is utilized, both of terbium and samarium are excited.
  • a target radiation i.e., radiation to be measured in its radiation dose
  • radiation such as X-rays
  • both of terbium and samarium vary in their atomic valencies.
  • the sheet is again subjected to irradiation of ultraviolet rays, to measure a strength of green fluorescence, I(Tb), and a strength of red fluorescence I(Sm).
  • I(Tb) green fluorescence
  • I(Sm) red fluorescence
  • the atomic valencies of Tb and Sm vary differently by the application of radiation, and the fluorescence strength varies in each of the green light and the red light.
  • a calibration curve representing the relationship between the radiation dose and the variation of fluorescence (F) can be prepared.
  • the variation of the atomic valencies of terbium and samarium is returned back to the original state after the emission of fluorescence by the irradiation of ultraviolet rays.
  • the procedure can be performed in the following manner.
  • a sheet containing BaGd 2 O 4 :0.0001Tb,0.0003Sm phosphor (i.e., dosimeter) is irradiated with ultraviolet rays (wavelength: 315 nm, dose; 0.8 ⁇ W/cm 2 ), and each of strengths of fluorescences [Io(Th), Io(Sm)] are measured at 555 nm (for green fluorescence, slit: 5 nm) and at 61.0 nm (for red fluorescence, slit: 5 nm).
  • the sheet is then subjected to X-ray irradiation (tube voltage W-40 kVP).
  • the sheet is again irradiated with the sane ultraviolet rays to measure each of strengths of fluorescences [I(Th), I(Sm)].
  • the measured strengths of fluorescences are incorporated into the aforementioned equation (i) to give the variation of fluorescence strength (F).
  • the variation of fluorescence strength (F) illustrated in FIG. 9 is obtained.
  • FIG. 9 is a calibration curve representing the relationship between the radiation dose of X-rays and the variation of fluorescence strength (F). Apparently, the relationship shown in FIG. 9 is linear.
  • a target radiation is applied to the sheet (i.e., dosimeter) and the fluorescence strengths are measured in the same manner, to obtain the variation of the fluorescence strength (F).
  • the obtained F value is applied to the calibration curve (e.g., that of FIG. 9), to determined the radiation dose of the applied X-rays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Luminescent Compositions (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A green light emitting from a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor which is composed of an oxygen atom and a composition of the formula:
MIIMIII 2 :xTb,ySm
[MII is Mg, Ca, Sr or Ba; MIII is Y, La, Gd or Liu; 0<x≦0.1; and 0<y≦0.1] upon irradiating a radiation or ultraviolet rays can be favorably employed for measuring the radiation or ultraviolet rays. The green light, if desired, in combination with a red light emitting the phosphor, is also employable for producing a radiation image.

Description

    FIELD OF THE INVENTION
  • The present invention relates to measurements of a radiation dose or a dose of ultraviolet rays using a terbium-samarium co-activated rare earth activated alkaline earth metal rare earth oxide phosphor. The invention further relates to new uses of the phosphor. [0001]
  • BACKGROUND OF THE INVENTION
  • A phosphor emits a light by applying radiation such as UV light, electron beams, or X-rays, or by application of electric fields. various phosphors have been hitherto studied and practically used for various purposes such as illumination (luminescent lamps), image displaying, and radiation measurement. Display devises comprising phosphors are also known, for instance, CRT and VFD. Also known is a radiation image storage panel (i.e., stimulable phosphor sheet) containing a stimulable phosphor. The radiation image storage panel is favorably employed for a radiation image recording and reproducing method. [0002]
  • U.S. Pat. No. 5,391,884 discloses a phosphor and an X-ray imaging plate comprising the phosphor. The disclosed phosphor contains an activated gadolinate host, and the host is essentially composed of oxygen atom and the complex composition having the following formula: [0003]
  • BaGd2 :yTb,zSm
  • [wherein, y and z are numbers satisfying the conditions of 0<y<1, 0<z<5, and 1×10[0004] −5<y+z<6.0].
  • The above-mentioned phosphor absorbs X-rays, and emits light in a longer wavelength region. Further, if the phosphor having been exposed to the X rays is stimulated with light in the wavelength region of 600 to 1,200 nm, it emits a light (i.e., stimulated emission) having an intensity stronger than that given by the phosphor without Tb and Sm. Accordingly, U.S. Pat. No. 5,341,884 indicates that the disclosed phosphor gives stimulated emission advantageously employable for an X-ray imaging plate. [0005]
  • The co-pending U.S. Ser. No. 09/456,499 teaches at when the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor is excited with a radiation (e.g., UV light X-ray), it emits luminescence comprising both green component (which is thought to originate from Tb[0006] 3+) and red one (which is thought to originate from Sm3+) Each luminescent component has a different response time to the excitation, and the ratio between them depends on the alkaline earth metal and the rare earth (which are the center metal atoms in the phosphor matrix). Therefore, the time difference between these luminescent components can be controlled by selecting the center metal atoms in the phosphor matrix.
  • SUMMARY OF THE INVENTION
  • The present inventors have made further studies on the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor and found out a number of interesting and industrially utilizable characteristics of the phosphor. [0007]
  • Accordingly, it is an object of the present invention to provide new uses of the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor. [0008]
  • Specifically, the invention resides in a method for measuring a radiation dose which comprises the steps of: [0009]
  • applying a target radiation to a dosimeter containing a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor which is composed of an oxygen atom and a composition of the formula (I): [0010]
  • MIIMIII 2 :xTb,ySm
  • in which M[0011] II is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba; MIII is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu; and x and y are numbers satisfying the conditions of 0<x≦0.1 and 0<y≦0.1, respectively; and
  • measuring a variation per unit time of strength of a green light emitted by the phosphor. [0012]
  • The invention also resides in a method of producing a radiation Page which comprises the steps of: [0013]
  • applying a radiation having passed through a target or having been radiated by a target onto a radiation image storage panel containing a layer of the above-identified terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor; [0014]
  • determining a variation per unit time of strength of a green light emitted by the phosphor in each pixel which is imaginarily set on the storage panel, to obtain two-dimensional image data for each pixel; and [0015]
  • producing a radiation image from the obtained image data. [0016]
  • The invention further resides in a method for measuring a dose of ultraviolet rays which comprises the steps of: [0017]
  • applying a target radiation to a means containing the above-identified terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor; and [0018]
  • measuring a variation per unit time of strength of a green light emitted by the phosphor. [0019]
  • The invention furthermore resides in a method for measuring a radiation dose which comprises the steps of: [0020]
  • applying ultraviolet rays to a dosimeter containing; the aforementioned terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor; [0021]
  • measuring a strength of a green light and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied; [0022]
  • applying a target radiation to the dosimeter, so as to cause variation of atomic valency for the terbium and samarium; [0023]
  • applying ultraviolet rays to the dosimeter to which the target radiation has been applied; [0024]
  • measuring a strength of green light and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied after application of the target radiation; and [0025]
  • comparing the former strengths of the green light and red light with the latter strengths of the green light and red light. [0026]
  • The invention furthermore resides in a method of producing a radiation image which comprises the steps of: [0027]
  • applying ultraviolet rays to a radiation image storage panel containing a layer of the aforementioned terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor; [0028]
  • measuring in each pixel which is imaginarily set on the storage panel, a strength of a green light and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied, to obtain two-dimensional image data for each pixel; [0029]
  • applying a radiation having passed through a target or having been radiated by a target onto a radiation image storage panel, so as to cause variation of atomic valency for the terbium and samarium in each pixel; [0030]
  • applying ultraviolet rays to the storage panel to which the target radiation has been applied; [0031]
  • determining in each pixel a strength of green light: and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied after application of the target radiation, to obtain two-dimensional image data for each pixel; and [0032]
  • processing the latter strengths of the green light and red light with reference to the former strengths of the green light and red light in each pixel, for producing a radiation image from the obtained image data. [0033]
  • Tn the invention, examples of the radiations include X-rays, ionizing radiations such as γ-rays, β-rays and α-rays, and neutron rays. The ultraviolet rays are light having a wavelength region of 250 nm to 400 nm.[0034]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows an emission spectrum of BaGd[0035] 2O4:0.002Tb,0.0002Sm phosphor excited with X-rays.
  • FIG. 2 shows time-dependency of the emission intensity of BaGd[0036] 2O4:0.002Tb,0.0002Sm phosphor excited with X-rays in which the solid line 1 is for a green light and the dotted line 2 is for a red light.
  • FIG. 3 shows a model of time-dependency of emission intensity of a green light emitting from the terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor of the invention. [0037]
  • FIG. 4 shows a model of time-dependency of emission intensity of a green light emitted by the known terbium-activated alkaline earth metal rare earth oxide phosphor. [0038]
  • FIG. 5 shows a schematic view of a typical dosimeter of the invention. [0039]
  • FIG. 6 graphically shows a curve (i.e., calibration curve) indicating a relationship between a radiation dose of X-rays and a variation of fluorescence strength per sec. [0040]
  • FIG. 7 graphically shows a ce (i.e., calibration curve) indicating a relationship between a dose of ultra-violet rays and a variation of fluorescence strength per sec. [0041]
  • FIG. 8 shows at ([0042] 1) a schematic view of a typical radiation image storage panel employed in the invention dosimeter of the invention, and at (2) an enlarged section of the storage panel taken along the line I-I.
  • FIG. 9 graphically shows a curve (i.e., calibration curve) indicating a relationship between a radiation dose of X-rays and a variation of fluorescence strength (F).[0043]
  • DETAILED DESCRIPTION OF THE INVENTION
  • A process for preparing a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor of the invention is described below. [0044]
  • In the first places an alkaline earth metal oxide and a rare earth oxide (which form in combination a precursor of the phosphor matrix) and terbium oxide and samarium oxide (which are oxides of the activator) are pulverized and mechanically stirred for mixing. The obtained mixture is placed in a heat-resistance container such as an alumina crucible, a quartz boat or crucible, and then fired in an electric furnace. A preferred temperature for the firing is in the range of 1,100 to 1,300° C., and more preferably is approx. 1,200° C. As the firing atmosphere, a nitrogen gas atmosphere is preferred. The firing period is determined upon various conditions such as the amount of the mixture placed in the container, the firing temperature, and the temperature at which the product is taken out of the furnace. It generally is in the range of 1 to 5 hours, preferably 2 to 4 hours. [0045]
  • After the firing, the temperature in the furnace is lowered and then the fired product is taken out. The product can be further subjected to various known treatments such as pulverizing and sieving, if needed. [0046]
  • The above-described preparation process gives a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor comprising oxygen atom and the composition represented by the formula (I): [0047]
  • MIIMIII 2 :xTb,ySm  (I)
  • [wherein, M[0048] II is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba; MIII is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu; and x and y are numbers satisfying the conditions of 0<x≦0.1 and 0<y≦0.1, respectively].
  • Preferably, M[0049] II is Sr and/or Ba. MIII also preferably is Y and/or Gd. Further, x and y preferably satisfy the conditions of 0.0001≦x≦0.01 and 0.00001≦y≦0.001, respectively.
  • The emission property of the phosphor of the invention is described below by referring to the attached drawings. [0050]
  • FIG. 1 shows an emission spectrum of the phosphor of BaGd[0051] 2O4:0.002Tb,0.0002Sm (an example of the phosphor of the invention) excited with X-rays.
  • FIG. 2 shows time-dependency of the emission intensity of BaGd[0052] 2O4:0.002Tb,0.0002Sm phosphor excited with X-rays. In FIG. 2, the solid line 1 and the dotted line 2 represent green and red luminescent components, respectively.
  • Even if the Ba is replaced with other alkaline earth metals such as Ca, Mg, or Sr, almost the same spectrum is obtained. Further, even if the Gd is replaced with other rare earth metals such as Y, La or Lu, almost the same spectrum is obtained. [0053]
  • As is shown in FIG. 1, the phosphor of the invention. gives a luminescence comprising green component (approx. at 550 nm) and red one (approx. at 610 nm). The luminescence centers of de green and red components are considered to be Tb[0054] 3+ and Sm3+, respectively.
  • FIG. 2 further shows that BaGd[0055] 2O4:0.002Tb,0.0002Sm phosphor emits the green luminescent component later than it emits the red one by approx. 0.5 second. In other words, the green component (originating from Tb3+) exhibits a response to the excitation slower than the red one (originating from Sn3+). Under observation with the human eyes, the red light can be seen immediately after the excitation, and then the green light can be seen approx. 0.5 second later. The ratio between the green and red components varies according to the center metal atoms in the matrix (even if the activators are the same). Accordingly, the time difference between these luminescent components can be controlled by optimizing the conditions of the phosphor matrix (e.g., by selecting the center metal atoms and/or by adjusting the ratio thereof). Further, in the case where the phosphor is excited with ultraviolet rays, the excitation maximums for the green and red components are approx. 315 nm and approx. 408 nm, respectively. Accordingly, it is possible to selectively excite the phosphor so that the green or red component can be predominantly obtained.
  • The terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor of the invention is preferably employed in the form of a sheet containing the phosphor. See a [0056] sheet 10 of FIG. 5. The sheet may contain a binder polymer which binds the phosphor in the form of particles. The sheet generally is in a rectangular shape having a size of 1 to 100 cm×1 to 100 cm, and a thickness of 1 to 1,000 μm.
  • Otherwise, as is illustrated in FIG. 8, the phosphor is preferably employed in the form of a radiation image storage panel [0057] 11 comprising a support sheet 12 and a layer 13 of the phosphor. The layer of the phosphor preferably comprises phosphor particles and a binder polymer. On the phosphor layer 13, a protective layer 14 may be placed. Possible structures and possible variations of the radiation image storage panel (i.e., stimulable phosphor sheet) are known and are applicable to the preparation of the radiation image storage panel containing the phosphor of the invention.
  • The terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor emits a green light and a red light when it is irradiated with X-rays. A typical time-dependency of the green light is schematically illustrated in FIG. 3. For comparison, a typical time-dependency of a green light emitting from the known terbium activated alkaline earth metal rare earth oxide phosphor is illustrated in FIG. 4. [0058]
  • As is apparent from comparison of FIG. 3 and FIG. 4, the green light emitting from the Th/Sm co-activated phosphor of the invention shows a variation of fluorescence strength which is not sharp, as compared with the variation of the fluorescence strength of the green light of the Tb-activated phosphor. [0059]
  • It has been now found by the inventors that there is a specific relationship (such as linear relationship) between the radiation dose of X-rays and the ratio of increase of the fluorescence strength of green light within a certain time range. The relationship is illustrated in FIG. 6. [0060]
  • Accordingly, if a calibration curve is prepared by applying a standard target radiation in a predetermined dose to the phosphor and measuring a variation per unit time (such as one second after excitation) of strength of a green light emitted by the phosphor, unknown radiation dose can be determined by repeating the same procedure and comparing the measured variation value with the calibration curve. Thus, the phosphor of the invention can be employed as a dosimeter. [0061]
  • For instance, X-rays radiated by an X-ray tube (W-40 kVp) are applied to a dosimeter sheet containing a phosphor of SaGd[0062] 2O4:0.0001Tb,0.0003Sm to give a radiation dose of 1 to 100 mR, and a fluorescence emitting from the phosphor within one second is detected at a wavelength of 555 nm (green light, slit: 5 nm).
  • The above-mentioned phenomenon of the phosphor of the invention can be utilized for production of a radiation image if the green light is detected from each pixel imaginarily formed on a sheet such as a radiation image storage panel using a light-collecting means such as CC) and the detected green light is converted into a digital. data. The digital data are collected from each pixel and processed to produce a two-dimensionally extended radiation image in the manners utilized in the know radiation image recording and reproducing method. [0063]
  • The phosphor of the invention further shows that the green light is also emitted when the phosphor is irradiated with ultraviolet rays. The green light emitting after irradiation of ultraviolet rays shows a relationship between the dose of ultraviolet rays and the ratio of increase of the fluorescence strength of green light in a certain time range, as is illustrated in FIG. 7. [0064]
  • For instance, ultraviolet rays having a wavelength 315 nm (or 240 nm) are applied to a sheet containing a phosphor of BaGd[0065] 2O4:0.0001Th,0.0003Sm to give a UV dose of 0.01 to 100 μW/cm2, and a fluorescence emitting within one second is detected at a wavelength of 555 nm (green light, slit: 5 nm).
  • It is further discovered by the present inventors that the terbium (Tb3[0066] +) and samarium (Sn3+) each of which forms an emission center of the phosphor of the invention to emit a green light and a red light, respectively, show variations of their atomic valencies when irradiated with radiations such as X-rays, that thus irradiated phosphor shows variation of the fluorescence strength for each of green light and red light, and that there is a relationship (such as a linear relationship) of the variation of fluorescence strength between the green light and red light.
  • Accordingly, the phosphor of the invention can be employed as a dosimeter for measuring a radiation dose utilizing the above-mentioned relationship. A typical procedure is described below. [0067]
  • A sheet containing the phosphor is irradiated with ultraviolet rays, and a fluorescence strength of green light emitting from terbium, Io(Th) and a fluorescence strength of red light emitting from samarium, Io(Sm), are measured. The excitation wavelength for terbium is approx. 315 nm, while that for samarium is approx. 408 nm. If the excitation wavelength of 315 nm is utilized, both of terbium and samarium are excited. [0068]
  • Subsequently, a target radiation (i.e., radiation to be measured in its radiation dose) is applied to the sheet having been irradiated with the ultraviolet rays. By the application of radiation such as X-rays, both of terbium and samarium vary in their atomic valencies. [0069]
  • Thereafter, the sheet is again subjected to irradiation of ultraviolet rays, to measure a strength of green fluorescence, I(Tb), and a strength of red fluorescence I(Sm). The atomic valencies of Tb and Sm vary differently by the application of radiation, and the fluorescence strength varies in each of the green light and the red light. [0070]
  • From the fluorescence strengths obtained in the above-mentioned procedure, the variation of strength, namely, F[Io(Tb),Io(Sm),I(Tb),I(Sm)] can be calculated according to one of the following equations (i) and (ii): [0071]
  • F=[I(Tb)/I(Sm)]/[Io(Tb)/Io(Sm)]  (i)
  • F=[I(Tb)−Io(Tb)]/I(Sm)  (ii)
  • Accordingly, a calibration curve representing the relationship between the radiation dose and the variation of fluorescence (F) can be prepared. The variation of the atomic valencies of terbium and samarium is returned back to the original state after the emission of fluorescence by the irradiation of ultraviolet rays. [0072]
  • In more detail, the procedure can be performed in the following manner. [0073]
  • A sheet containing BaGd[0074] 2O4:0.0001Tb,0.0003Sm phosphor (i.e., dosimeter) is irradiated with ultraviolet rays (wavelength: 315 nm, dose; 0.8 μW/cm2), and each of strengths of fluorescences [Io(Th), Io(Sm)] are measured at 555 nm (for green fluorescence, slit: 5 nm) and at 61.0 nm (for red fluorescence, slit: 5 nm). The sheet is then subjected to X-ray irradiation (tube voltage W-40 kVP). Subsequently, the sheet is again irradiated with the sane ultraviolet rays to measure each of strengths of fluorescences [I(Th), I(Sm)]. The measured strengths of fluorescences are incorporated into the aforementioned equation (i) to give the variation of fluorescence strength (F). By varying the radiation dose of X-rays in the range of 0.1 to 100 mR, the variation of fluorescence strength (F) illustrated in FIG. 9 is obtained.
  • FIG. 9 is a calibration curve representing the relationship between the radiation dose of X-rays and the variation of fluorescence strength (F). Apparently, the relationship shown in FIG. 9 is linear. [0075]
  • Then, a target radiation is applied to the sheet (i.e., dosimeter) and the fluorescence strengths are measured in the same manner, to obtain the variation of the fluorescence strength (F). The obtained F value is applied to the calibration curve (e.g., that of FIG. 9), to determined the radiation dose of the applied X-rays. [0076]
  • As is easily understood from the description set forth above, the above-described procedure can be utilized for producing a two-dimensional radiation image by detecting fluorescences emitting from each pixel which is imaginarily formed on a radiation image storage panel. As to the radiation image storage panel and the procedure for producing a two-dimensional radiation image, the descriptions given hereinbefore as well as a great number of patent publications and other published documents can be utilized. [0077]

Claims (14)

What is claimed is:
1. A method for measuring a radiation dose which comprises the steps of:
applying a target radiation to a dosimeter containing a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor which is composed of an oxygen atom and a composition of the formula (I):
MIIMIII 2 :xTb,ySm  (I)
in which MII is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba; MIII is at least one rare earth element selected from the group consisting of y, La, Gd and Lu; and x and y are numbers satisfying the conditions of 0<x≦0.1 and 0<y≦0.1, respectively; and
measuring a variation per unit time of strength of a green light emitted by the phosphor.
2. The method of claim 1, wherein the dosimeter is in the form of a sheet which comprises a support and a phosphor layer containing the phosphor.
3. The method of claim 1, wherein MII in the formula (I) is at least one of Sr and Ba, and MIII in the formula (I) is at least one of Y and Gd.
4. The method of claim 1, which further comprises the step of preparing a calibration curve by applying a standard target radiation in a known dose to the same dosimeter, and measuring a variation per unit time of strength of a green light emitted by the phosphor.
5. A method of producing a radiation image which. comprises the steps of:
applying a radiation having passed through a target or having been radiated by a target onto a radiation image storage panel containing a layer of terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor which is composed of an oxygen atom and a composition of the formula (I):
MIIMIII 2 :xTb,ySm  (I)
in which MII is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba; MIII is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu; and x and y are numbers satisfying the conditions of 0<x≦0.1 and 0<y≦0.1, respectively;
determining a variation per unit time of strength of a green light emitted by the phosphor in each pixel which is imaginarily set on the storage panel, to obtain two-dimensional image data for each pixel; and
producing a radiation image from the obtained image data.
6. The method of claim 5, wherein MII in the formula (I) is at least one of Sr and Ba, and MIII in the formula (I) is at least one of Y and Gd.
7. A method for measuring a dose of ultraviolet rays which comprises the steps of:
applying a target radiation to a means containing a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor which is composed of an oxen atom and a composition of the formula (I):
MIIMIII 2 :xTb,ySm  (I)
in which MII is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba; MIII is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu; and x and y are numbers satisfying the conditions of 0<x<0.1 and 0<y<0.1, respectively; and
measuring a variation per unit time of strength of a green light emitted by the phosphor.
8. The method of claim 7, wherein the means is in the form of a sheet which comprises a support and a phosphor layer containing the phosphor.
9. The method of claim 7, wherein MII in the formula (I) is at least one of Sr and Ba, and MIII in the formula (I) is at least one of Y and Gd.
10. The method of claim 7, which further comprises the step of preparing a calibration curve by applying standard target ultraviolet rays in a known dose to the same means, and measuring a variation per unit time of strength of a green light emitted by the phosphor.
11. A method for measuring a radiation dose which comprises the steps of:
applying ultraviolet rays to a dosimeter containing a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor which is composed of an oxen atom and a composition of the formula (I):
MIIMIII 2 :xTb,ySm  (I)
in which MII is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr andr Ba; MIII is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu; and x and y are numbers satisfying the conditions of 0<x≦0.1 and 0<y≦0.1, respectively;
measuring a strength of a green light and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied;
applying a target radiation to the dosimeter, so as to cause variation of atomic valency for the terbium and samarium;
applying ultraviolet rays to the dosimeter to which the target radiation has been applied;
measuring a strength of green light and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied after application of the target radiation; and
comparing the former strengths of the green light and red light with the latter strengths of the green light and red light.
12. The method of claim 11, wherein the dosimeter is in the form of a sheet which comprises a support and a phosphor layer containing the phosphor.
13. The method of claim 11, wherein MII in the formula (I) is at least one of Sr and Ba, and MIII in the formula (I) is at least one of Y and Gd.
14. A method of producing a radiation image which comprises the steps of:
applying ultraviolet rays to a radiation image storage panel containing a layer of a terbium-samarium co-activated alkaline earth metal rare earth oxide phosphor which is composed of an oxygen atom and a composition of the formula (I):
MIIMIII 2 :xTb,ySm
in which MII is at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba; MIII is at least one rare earth element selected from the group consisting of Y, La, Gd and Lu; and x and y are numbers satisfying the conditions of 0<x≦0.1 and 0<y≦0.1, respectively;
measuring in each pixel which is imaginarily set on the storage panel, a strength of a green light and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied, to obtain two-dimensional image data for each pixel;
applying a radiation having passed through a target or having been radiated by a target onto a radiation image storage panel, so as to cause variation of atomic valency for the terbium and samarium in each pixel;
applying ultraviolet rays to the storage panel to which the target radiation has been applied;
determining in each pixel a strength of green light and a strength of a red light emitted by the phosphor to which the ultraviolet rays have been applied after application of the target radiation, to obtain two-dimensional image data for each pixel; and
processing the latter strengths of the green light and red light with reference to the former strengths of the green light and red light in each pixel, for producing a radiation image from the obtained image data.
US09/773,770 2000-02-02 2001-02-02 Measurement of radiation dose and production of radiation image Abandoned US20020074501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000025569A JP2001215298A (en) 2000-02-02 2000-02-02 Radiation dose measuring method and radiological image forming method
JP2000-025569 2000-02-02

Publications (1)

Publication Number Publication Date
US20020074501A1 true US20020074501A1 (en) 2002-06-20

Family

ID=18551414

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/773,770 Abandoned US20020074501A1 (en) 2000-02-02 2001-02-02 Measurement of radiation dose and production of radiation image

Country Status (2)

Country Link
US (1) US20020074501A1 (en)
JP (1) JP2001215298A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120126988A1 (en) * 2010-11-23 2012-05-24 Arthur Lewis Kaplan Ionizing radiation detector
US20130252340A1 (en) * 2010-11-30 2013-09-26 Fraunhofer-Gesellschaft Zur Forderung Der Angewand Ten Forschung E.V. Method and device for testing treatments which introduce energy into objects
US8831177B2 (en) 2011-05-27 2014-09-09 General Electric Company Apparatus and method for managing radiation doses and recording medium for implementing the same
US20170070633A1 (en) * 2015-09-08 2017-03-09 Kabushiki Kaisha Toshiba Image reading apparatus and sheet processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608190A (en) * 1984-04-23 1986-08-26 E. I. Du Pont De Nemours And Company X-ray image storage panel comprising anion-deficient BaFCl:Eu/BaFBr:Eu phosphors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608190A (en) * 1984-04-23 1986-08-26 E. I. Du Pont De Nemours And Company X-ray image storage panel comprising anion-deficient BaFCl:Eu/BaFBr:Eu phosphors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120126988A1 (en) * 2010-11-23 2012-05-24 Arthur Lewis Kaplan Ionizing radiation detector
US20130252340A1 (en) * 2010-11-30 2013-09-26 Fraunhofer-Gesellschaft Zur Forderung Der Angewand Ten Forschung E.V. Method and device for testing treatments which introduce energy into objects
US8831177B2 (en) 2011-05-27 2014-09-09 General Electric Company Apparatus and method for managing radiation doses and recording medium for implementing the same
US20170070633A1 (en) * 2015-09-08 2017-03-09 Kabushiki Kaisha Toshiba Image reading apparatus and sheet processing apparatus
US9936093B2 (en) * 2015-09-08 2018-04-03 Kabushiki Kaisha Toshiba Image reading apparatus and sheet processing apparatus

Also Published As

Publication number Publication date
JP2001215298A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
US3795814A (en) X-ray image converters utilizing lanthanum and gadolinium oxyhalide luminous materials activated with thulium
EP0382295A2 (en) Reproduction of X-ray images with photostimulable phosphor
US4507560A (en) Terbium-activated gadolinium oxysulfide X-ray phosphor
JP3882292B2 (en) A novel photostimulable phosphor
EP0345904B1 (en) Photostimulable phosphor and radiographic application
US8057702B2 (en) Procedure to obtain Gd2O2S: Pr for CT with a very short afterglow
EP0504969B1 (en) Photostimulable phosphor and its use in radiography
US5554319A (en) Phosphor
EP0111892B1 (en) Radiation image recording and reproducing method
EP0586744B1 (en) A method of erasing energy stored in a photostimulable phosphor medium
EP0083085A2 (en) Radiation image recording and reproducing method
EP0111893B2 (en) Radiation image recording and reproducing method
US20020074501A1 (en) Measurement of radiation dose and production of radiation image
EP0522619B1 (en) Photostimulable phosphor and its use in radiography
JP2002212550A (en) Method for producing rare earth-activated alkaline earth metal fluoride halide-based phosphorescent particle, and rare earth-activated alkaline earth metal fluoride halide-based phosphorescent particle
US5514298A (en) Photostimulable phosphor for use in radiography
JP2002020742A (en) Alkali halide-based fluorescent substance and radiographic transformation panel
JP3813794B2 (en) Alkali halide phosphor and radiation image conversion panel
EP0522605A1 (en) Photostimulable storage phosphor
EP0736586B1 (en) A bariumfluorohalide phosphor comprising calcium ions at the surface
EP0574059B1 (en) Photostimulable storage phosphor and its use in radiography
EP0503163A1 (en) Reproduction of X-ray images with photostimulable phosphor
JPH058754B2 (en)
JP2002296398A (en) Method for manufacturing radiographic image conversion panel
JPH10265774A (en) Rare earth-activating alkaline earth metal fluorohalide system accelerated phosphorescent substance and radioactive ray image transforming panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI PHOTO FILM CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISODA, YUJI;IWABUCHI, YASUO;REEL/FRAME:011851/0616

Effective date: 20010312

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION