US20020064959A1 - ILD planarization method - Google Patents
ILD planarization method Download PDFInfo
- Publication number
- US20020064959A1 US20020064959A1 US09/725,027 US72502700A US2002064959A1 US 20020064959 A1 US20020064959 A1 US 20020064959A1 US 72502700 A US72502700 A US 72502700A US 2002064959 A1 US2002064959 A1 US 2002064959A1
- Authority
- US
- United States
- Prior art keywords
- capacitors
- layer
- memory array
- array area
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 239000010410 layer Substances 0.000 claims abstract description 81
- 230000008569 process Effects 0.000 claims abstract description 45
- 239000003990 capacitor Substances 0.000 claims abstract description 31
- 239000004065 semiconductor Substances 0.000 claims abstract description 30
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 22
- 238000003860 storage Methods 0.000 claims abstract description 14
- 239000011229 interlayer Substances 0.000 claims abstract description 6
- 238000007517 polishing process Methods 0.000 claims abstract description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 9
- 238000005530 etching Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000005380 borophosphosilicate glass Substances 0.000 description 15
- 239000005360 phosphosilicate glass Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
- H01L21/31055—Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
- H01L21/31056—Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching the removal being a selective chemical etching step, e.g. selective dry etching through a mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76819—Smoothing of the dielectric
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/50—Peripheral circuit region structures
Definitions
- the present invention relates to a method of manufacturing a dynamic random access memory(DRAM), and more particularly, to a method of planarization for an inter layer dielectric (ILD) in the process of manufacturing a dynamic random access memory.
- DRAM dynamic random access memory
- ILD inter layer dielectric
- DRAM Dynamic random access memory
- a high density DRAM such as a 64 megabit DRAM, is comprised of millions of memory cells.
- Each memory cell on the DRAM chip is comprised of a pass transistor, e.g. a metal-oxide-semiconductor field-effect transistor (MOSFET), and a storage capacitor for storing charge.
- An embedded DRAM is a type of integrated circuit (IC) that combines both DRAM circuits and logic circuits in a semiconductor substrate.
- IC integrated circuit
- microprocessors or digital signal processors all have integrated circuits that incorporate embedded memory.
- the prior method of fabricating an EDRAM encounters a serious topographical problem of an ILD layer before the implementation of a metallization process. More specifically, the problem of the prior method results from a large height difference on the ILD layer between a memory array area and a periphery circuit region in an EDRAM. The problem of height difference is a critical factor in determining the production yield.
- the semiconductor wafer 50 is comprised of a silicon substrate 52 on which a memory array area 10 and a periphery circuit region 12 are previously defined.
- the memory array area 10 is comprised of capacitors 18 a , 18 b and gates 14
- the periphery circuit region 12 is comprised of a plurality of gates 15 on the silicon substrate 52 .
- the capacitors 18 a , 18 b are formed on an atmospheric-pressure chemical vapor deposition (CVD) oxide (AP oxide) layer 22 of an approximately even surface.
- CVD atmospheric-pressure chemical vapor deposition
- AP oxide atmospheric-pressure chemical vapor deposition
- the gates 14 , 15 are covered by a phosphosilicate glass (PSG) layer 20 .
- a plug 16 formed in the AP oxide layer 22 and the PSG layer 20 functions to electrically connect the capacitors 18 a and the underlying source or drain (not explicitly shown) within the silicon substrate 52 .
- a difference in height on the BPSG layer 24 is created between the memory array area 10 and the periphery circuit region 12 due to the presence of the capacitors 18 a , 18 b .
- the large height difference (step height), which ranges from 6000 to 9000 angstroms, can lead to a more complicated fabrication process due to difficulties in the formation of a contact window/plug in a subsequent fabrication process.
- a conventional anisotropic dry etching process is performed to etch the BPSG layer 24 down to the surface of the AP oxide layer 22 to form a spacer 26 along the edge of the memory array area 10 .
- the spacer 26 functions to release the surface stress from the semiconductor wafer 50 that occurs in subsequent processes.
- a PSG layer 32 with a thickness of approximately 3000 to 7000 angstroms is deposited on the surface of the semiconductor wafer 50 .
- a thermal re-flow process is performed between the memory array area 10 and the periphery circuit region 12 to reduce the step height to approximately 4000 to 8000 angstroms.
- a patterned and developed photoresist layer 42 is formed on the semiconductor wafer 50 to expose only the memory array area 10 in the BPSG layer 32 .
- An etch back process is subsequently performed to etch away a predetermined thickness from the BPSG layer uncovered by the photoresist layer 42 .
- the result is a BPSG layer 32 with a thickness of approximately 1000 angstroms covering the memory array area 10 .
- a photoresist ashing process and a series of cleaning procedures are carefully performed to remove the photoresist layer 42 to obtain a clean semiconductor wafer surface.
- a conventional chemical mechanical polishing (CMP) process is performed to planarize the BPSG layer 32 . Extreme caution must be taken during the CMP process to prevent breakthrough of the BPSG layer 32 over the capacitors 18 a , 18 b .
- CMP chemical mechanical polishing
- a conventional chemical vapor deposition (CVD) technique is performed to deposit a PSG layer 44 , with an approximate thickness of 1000 angstroms, over the BPSG layer 32 .
- a contact plug 46 is formed in the periphery circuit region 12 .
- the contact plug 46 spans the PSG layer 44 , the AP oxide layer 22 and the PSG layer 20 through to the surface of the silicon substrate 52 .
- the contact plug 46 functions to electrically couple a subsequently formed upper layer metal to the underlying devices on the silicon substrate 52 .
- a metal layer 48 is formed atop the PSG layer 44 to thereby complete the fabrication of a conventional EDRAM.
- the prior method of fabricating an EDRAM has the following drawbacks: (1) the spacer 26 is required to release stress in the prior art process; (2) an additional BPSG layer 24 and an etching process are therefore needed to form the spacer 26 ; (3) an additional thick PSG layer 32 is required; (4) an additional thermal re-flow process is required to obtain a smoother PSG layer 32 ; (5) an additional lithographic process and an etching process are needed to remove a predetermined thickness from the PSG layer 32 over the memory array area 10 ; and (6) a costly CMP process is also needed. Consequently, the prior art method of fabricating an EDRAM is inefficient, time-consuming and costly.
- the method comprises providing a semiconductor wafer having both a memory array area and a periphery circuit region defined on its surface, a plurality of metal oxide semiconductor (MOS) transistors installed in the periphery circuit region, and a plurality of metal oxide semiconductor (MOS) transistors and capacitors formed by a top electrode. Then, a dielectric layer and a storage node are installed in the memory array area. Next, a dielectric layer is formed on the surface of the semiconductor wafer covered by the metal oxide semiconductor(MOS) transistors and capacitors followed by the formation of a photoresist layer on the surface of the dielectric layer.
- MOS metal oxide semiconductor
- MOS metal oxide semiconductor
- a photolithographic process is performed to removeportions of the photoresist layer above the memory array area.
- the residual photoresist layer functions as a hard mask to etch the dielectric layer in the memory array area by a predetermined depth exceeding 6000 angstroms.
- a CMP process is performed to planarize the dielectric layer of the EDRAM.
- FIG. 1 to FIG. 8 are the schematic diagrams of the prior art.
- FIG. 9 to FIG. 13 are the schematic diagrams of the present invention.
- FIG. 9 is a schematic diagram of manufacturing an EDRAM on a semiconductor wafer 100 .
- the semiconductorwafer 100 is comprised of a silicon substrate 102 with both a memory array area 103 and a periphery circuit region 104 defined on the surface of the silicon substrate 102 .
- the memory array area 103 comprises of a plurality of gates 105 while the periphery circuit region 104 comprises of a plurality of gates 106 .
- the surface of the silicon substrate 102 is further comprised of both a planarized borophosphosilicate glass (BPSG) layer 108 and a silicon oxide layer 110 .
- the BPSG layer 108 and the silicon oxide layer 110 cover the plurality of gates 105 , 106 .
- the memory array area 103 further comprises of a plurality of capacitors 111 and at least one node contact 109 that penetrates through the BPSG layer 108 and the silicon oxide layer 110 .
- the node contact 109 electrically connects the drain and the source(not shown)of the plurality of gates 105 with the plurality of capacitors 111 .
- the height of the node contact 109 is approximately 6000 angstroms while the height of each capacitor 111 is approximately 8000-10000 angstroms resulting in a serious step height difference between the memory array area 103 and the periphery circuit region 104 .
- a dielectric layer 112 is formed on the semiconductorwafer 100 to cover the capacitors 111 and the silicon oxide layer 110 wherein the material used for the dielectric layer 112 is most often silicon dioxide formed by the plasma enhanced chemical vapor deposition process.
- the step height difference between the memory array area 103 and the periphery circuit region 104 exceeds 7000 angstroms.
- a photoresist layer 114 is formed on the surface of the dielectric layer 112 .
- a photolithographic process is performed by using the layout patterns of either the capacitors 111 , the storage nodes 11 c , the top electrodes 111 a or the bit line (not shown) as a reverse mask to remove portions of the photoresist layer 114 in the memory array area 103 .
- the photolithographic process uses one of the above masks and utilizes the character of the positive and negative photoresist to form a photoresist layer (not shown) of the layout patterns.
- the layout patterns are the reverse of the original layout patterns of the capacitors 111 , the storage nodes 111 c, the top electrodes 111 a or the bit line (not shown).
- the photolithographic process uses one of the layout patterns of the capacitors 111 , the storage nodes 111 c , the top electrodes 111 a or the bit line (not shown) as a reverse mask to perform a pattern transfer and in addition, forms a hard mask of a photoresist layer with reverse layout patterns.
- the photoresist layer 114 is approximately residual only in the periphery circuit region 104 and forms a hard mask only in the periphery circuit region 104 after development. Then, as shown in FIG. 12, an etching process is performed using the residual photoresist layer 114 in the periphery circuit region 104 as a hard mask to etch the dielectric layer 112 in the memory array area 103 by a predetermined depth exceeding 6000 angstroms. The predetermined depth should approximately equate the original step height difference. Finally, as shown in FIG. 13, a chemical mechanical polishing process is performed to planarize the dielectric layer 112 in both the memory array area 103 and the periphery circuit region 104 .
- the present invention uses the layout patterns of either the capacitors 111 , the storage nodes 111 c , the top electrodes 111 a or the bit line (not shown) as a reverse mask to perform an etching process on the dielectric layer 112 within the memory array area 103 .
- the purpose behind the above process is firstly, to save both time and cost by not remanufacturing a new mask.
- the problem of the step height difference is resolved whereby the reverse mask directly protects the periphery circuit region 104 from a further etching process to supplement the optical proximity effect, or in conjunction with an aided over etching process.
- the predetermined depth of the etching process in FIG. 12 of the preferred embodiment should approximately equate the original step height difference between the memory array area 103 and the periphery circuit region 104 of FIG. 9 to obtain the best process window.
- the method according to the present invention uses the repeated and quantity of layout patterns in a reverse mask.
- the layout patterns of either the capacitors 111 , the storage nodes 111 c , the top electrodes 111 a , the node contact 109 or the bit line (not shown) can be used as a reverse mask to etch the dielectric layer 112 within the memory array area 103 . Therefore, the problem of the step height difference between the memory array area 103 and the periphery circuit region 104 is solved without manufacturing a new mask. Hence, the time and the cost of manufacturing a new mask are neglected to simplify the complicated processes of the prior art.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Semiconductor Memories (AREA)
Abstract
The present invention provides a method of planarization for an inter layer dielectric of an EDRAM. The method comprises defining a periphery circuit region and a memory array area on a semiconductor wafer of the EDRAM, and forming a plurality of MOS transistors and capacitors. As well, both a dielectric layer and a photoresist layer are formed on the semiconductor wafer using the layout patterns of a storage node of the capacitors as a reverse mask to perform an etching process. Consequently, portions of the photoresist layer in the memory array area are removed while simultaneously etching the dielectric layer in the memory array area by a predetermined depth. Finally, a chemical mechanical polishing process is performed on the dielectric layer to planarize the inter layer dielectric of the EDRAM.
Description
- 1. Field of the Invention
- The present invention relates to a method of manufacturing a dynamic random access memory(DRAM), and more particularly, to a method of planarization for an inter layer dielectric (ILD) in the process of manufacturing a dynamic random access memory.
- 2. Description of the Prior Art
- Dynamic random access memory (DRAM) devices are used extensively in the electronics industry for information storage. A high density DRAM, such as a 64 megabit DRAM, is comprised of millions of memory cells. Each memory cell on the DRAM chip is comprised of a pass transistor, e.g. a metal-oxide-semiconductor field-effect transistor (MOSFET), and a storage capacitor for storing charge. An embedded DRAM (EDRAM) is a type of integrated circuit (IC) that combines both DRAM circuits and logic circuits in a semiconductor substrate. Nowadays, the trend in manufacturing semiconductor ICs is the integration of memory cell arrays with high-speed logic circuit elements. For example, microprocessors or digital signal processors all have integrated circuits that incorporate embedded memory.
- However, the prior method of fabricating an EDRAM encounters a serious topographical problem of an ILD layer before the implementation of a metallization process. More specifically, the problem of the prior method results from a large height difference on the ILD layer between a memory array area and a periphery circuit region in an EDRAM. The problem of height difference is a critical factor in determining the production yield.
- The steps involved in manufacturing a conventional EDRAM on a
semiconductor wafer 50 are illustrated in FIG. 1 to FIG. 8. Referring to FIG. 1, thesemiconductor wafer 50 is comprised of asilicon substrate 52 on which amemory array area 10 and aperiphery circuit region 12 are previously defined. Thememory array area 10 is comprised ofcapacitors gates 14, while theperiphery circuit region 12 is comprised of a plurality ofgates 15 on thesilicon substrate 52. In thememory array area 10, thecapacitors layer 22 of an approximately even surface. Thegates layer 20. Aplug 16 formed in theAP oxide layer 22 and thePSG layer 20 functions to electrically connect thecapacitors 18 a and the underlying source or drain (not explicitly shown) within thesilicon substrate 52. - In FIG. 1, a borophosphosilicate glass (BPSG)
layer 24 acting as a buffer layer, covering both thememory array area 10 and theperiphery circuit region 12, is first formed on the surface of thesemiconductor wafer 50. A difference in height on theBPSG layer 24 is created between thememory array area 10 and theperiphery circuit region 12 due to the presence of thecapacitors - Referring to FIG. 2, a conventional anisotropic dry etching process is performed to etch the
BPSG layer 24 down to the surface of theAP oxide layer 22 to form aspacer 26 along the edge of thememory array area 10. Thespacer 26 functions to release the surface stress from thesemiconductor wafer 50 that occurs in subsequent processes. Then, aPSG layer 32 with a thickness of approximately 3000 to 7000 angstroms is deposited on the surface of thesemiconductor wafer 50. Thereafter, a thermal re-flow process is performed between thememory array area 10 and theperiphery circuit region 12 to reduce the step height to approximately 4000 to 8000 angstroms. - Referring now to FIG. 3, using a conventional lithographic method, a patterned and developed
photoresist layer 42 is formed on thesemiconductor wafer 50 to expose only thememory array area 10 in theBPSG layer 32. An etch back process is subsequently performed to etch away a predetermined thickness from the BPSG layer uncovered by thephotoresist layer 42. The result is aBPSG layer 32 with a thickness of approximately 1000 angstroms covering thememory array area 10. Next, as shown in FIG. 4, a photoresist ashing process and a series of cleaning procedures are carefully performed to remove thephotoresist layer 42 to obtain a clean semiconductor wafer surface. - In FIG. 5, a conventional chemical mechanical polishing (CMP) process is performed to planarize the
BPSG layer 32. Extreme caution must be taken during the CMP process to prevent breakthrough of theBPSG layer 32 over thecapacitors PSG layer 44, with an approximate thickness of 1000 angstroms, over theBPSG layer 32. - In FIG. 7, by means of both a conventional lithographic technique and a dry etching process, a
contact plug 46 is formed in theperiphery circuit region 12. Thecontact plug 46 spans thePSG layer 44, theAP oxide layer 22 and thePSG layer 20 through to the surface of thesilicon substrate 52. Thecontact plug 46 functions to electrically couple a subsequently formed upper layer metal to the underlying devices on thesilicon substrate 52. Finally, as shown in FIG. 8, ametal layer 48 is formed atop thePSG layer 44 to thereby complete the fabrication of a conventional EDRAM. - As indicated above, the prior method of fabricating an EDRAM has the following drawbacks: (1) the
spacer 26 is required to release stress in the prior art process; (2) anadditional BPSG layer 24 and an etching process are therefore needed to form thespacer 26; (3) an additionalthick PSG layer 32 is required; (4) an additional thermal re-flow process is required to obtain asmoother PSG layer 32; (5) an additional lithographic process and an etching process are needed to remove a predetermined thickness from thePSG layer 32 over thememory array area 10; and (6) a costly CMP process is also needed. Consequently, the prior art method of fabricating an EDRAM is inefficient, time-consuming and costly. - The method of manufacturing an EDRAM according to the prior art is inefficient and time-consuming and the present invention can improve upon these drawbacks (5).
- It is therefore an object of the present invention to provide an efficient and time-saving method for manufacturing an EDRAM. It is another object to provide a method for manufacturing an EDRAM to solve the above-mentioned problem of step height difference between the memory array area and the periphery circuit region.
- In accordance with the claimed invention, the method comprises providing a semiconductor wafer having both a memory array area and a periphery circuit region defined on its surface, a plurality of metal oxide semiconductor (MOS) transistors installed in the periphery circuit region, and a plurality of metal oxide semiconductor (MOS) transistors and capacitors formed by a top electrode. Then, a dielectric layer and a storage node are installed in the memory array area. Next, a dielectric layer is formed on the surface of the semiconductor wafer covered by the metal oxide semiconductor(MOS) transistors and capacitors followed by the formation of a photoresist layer on the surface of the dielectric layer. Thereafter, a photolithographic process is performed to removeportions of the photoresist layer above the memory array area. The residual photoresist layer functions as a hard mask to etch the dielectric layer in the memory array area by a predetermined depth exceeding 6000 angstroms. Finally, a CMP process is performed to planarize the dielectric layer of the EDRAM.
- It is an advantage of the present invention that a photolithographic process is performed through the use of layout patterns of either the top electrodes or the storage nodes of each of the capacitors. The patterns function as reverse masks to planarize the inter layer dielectric of the EDRAM. Thus, in contrast to the prior art, the present invention decreases both the complexity and cost of process.
- These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment, which is illustrated in the various figures and drawings.
- FIG. 1 to FIG. 8 are the schematic diagrams of the prior art.
- FIG. 9 to FIG. 13 are the schematic diagrams of the present invention.
- Please refer to FIG. 9, FIG. 9 is a schematic diagram of manufacturing an EDRAM on a
semiconductor wafer 100. As shown in FIG. 9, thesemiconductorwafer 100 is comprised of asilicon substrate 102 with both amemory array area 103 and aperiphery circuit region 104 defined on the surface of thesilicon substrate 102. Thememory array area 103 comprises of a plurality ofgates 105 while theperiphery circuit region 104 comprises of a plurality ofgates 106. - The surface of the
silicon substrate 102 is further comprised of both a planarized borophosphosilicate glass (BPSG)layer 108 and asilicon oxide layer 110. TheBPSG layer 108 and thesilicon oxide layer 110 cover the plurality ofgates memory array area 103 further comprises of a plurality ofcapacitors 111 and at least one node contact 109 that penetrates through theBPSG layer 108 and thesilicon oxide layer 110. Thenode contact 109 electrically connects the drain and the source(not shown)of the plurality ofgates 105 with the plurality ofcapacitors 111. The height of thenode contact 109 is approximately 6000 angstroms while the height of eachcapacitor 111 is approximately 8000-10000 angstroms resulting in a serious step height difference between thememory array area 103 and theperiphery circuit region 104. - Referring to FIG. 10, a
dielectric layer 112 is formed on thesemiconductorwafer 100 to cover thecapacitors 111 and thesilicon oxide layer 110 wherein the material used for thedielectric layer 112 is most often silicon dioxide formed by the plasma enhanced chemical vapor deposition process. The step height difference between thememory array area 103 and theperiphery circuit region 104 exceeds 7000 angstroms. - As shown in FIG. 11, a
photoresist layer 114 is formed on the surface of thedielectric layer 112. Then, a photolithographic process is performed by using the layout patterns of either thecapacitors 111, the storage nodes 11 c, thetop electrodes 111 a or the bit line (not shown) as a reverse mask to remove portions of thephotoresist layer 114 in thememory array area 103. The photolithographic process uses one of the above masks and utilizes the character of the positive and negative photoresist to form a photoresist layer (not shown) of the layout patterns. The layout patterns are the reverse of the original layout patterns of thecapacitors 111, thestorage nodes 111 c, thetop electrodes 111 a or the bit line (not shown). The photolithographic process uses one of the layout patterns of thecapacitors 111, thestorage nodes 111 c, thetop electrodes 111 a or the bit line (not shown) as a reverse mask to perform a pattern transfer and in addition, forms a hard mask of a photoresist layer with reverse layout patterns. - Because of the optical proximity effect, the
photoresist layer 114 is approximately residual only in theperiphery circuit region 104 and forms a hard mask only in theperiphery circuit region 104 after development. Then, as shown in FIG. 12, an etching process is performed using theresidual photoresist layer 114 in theperiphery circuit region 104 as a hard mask to etch thedielectric layer 112 in thememory array area 103 by a predetermined depth exceeding 6000 angstroms. The predetermined depth should approximately equate the original step height difference. Finally, as shown in FIG. 13, a chemical mechanical polishing process is performed to planarize thedielectric layer 112 in both thememory array area 103 and theperiphery circuit region 104. - In the preferred embodiment, the present invention uses the layout patterns of either the
capacitors 111, thestorage nodes 111 c, thetop electrodes 111 a or the bit line (not shown) as a reverse mask to perform an etching process on thedielectric layer 112 within thememory array area 103. The purpose behind the above process is firstly, to save both time and cost by not remanufacturing a new mask. Secondly, the problem of the step height difference is resolved whereby the reverse mask directly protects theperiphery circuit region 104 from a further etching process to supplement the optical proximity effect, or in conjunction with an aided over etching process. - The predetermined depth of the etching process in FIG. 12 of the preferred embodiment should approximately equate the original step height difference between the
memory array area 103 and theperiphery circuit region 104 of FIG. 9 to obtain the best process window. - In contrast to the prior art method, the method according to the present invention uses the repeated and quantity of layout patterns in a reverse mask. For example, the layout patterns of either the
capacitors 111, thestorage nodes 111 c, thetop electrodes 111 a, thenode contact 109 or the bit line (not shown) can be used as a reverse mask to etch thedielectric layer 112 within thememory array area 103. Therefore, the problem of the step height difference between thememory array area 103 and theperiphery circuit region 104 is solved without manufacturing a new mask. Hence, the time and the cost of manufacturing a new mask are neglected to simplify the complicated processes of the prior art. - Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Claims (12)
1. A method of planarization for an inter layer dielectric (ILD), the method comprising:
providing a semiconductor wafer having both a memory array area and a periphery circuit region defined on the surface of the semiconductor wafer, a plurality of metal oxide semiconductor (MOS) transistors being installed in the periphery circuit region, and a plurality of metal oxide semiconductor (MOS) transistors and capacitors being installed in the memory array area;
forming a dielectric layer on the surface of the semiconductor wafer that covers the metal oxide semiconductor (MOS) transistors and capacitors;
forming a photoresist layer on the surface of the dielectric layer;
performing a photolithographic process to remove the portions of the photoresist layer that are above the memory array area;
using the residual photoresist layer as a hard mask to etch the dielectric layer in the memory array area by a predetermined depth; and
performing a planarization process on the dielectric layer.
2. The method of claim 1 wherein each of the capacitors is formed by a top electrode, a dielectric layer, and a storage node.
3. The method of claim 2 wherein the mask patterns of the photolithographic process are formed by using the layout patterns of the storage nodes of each of the capacitors as a reverse mask.
4. The method of claim 2 wherein the mask patterns of the photolithographic process are formed by using the layout patterns of the top electrodes of each of the capacitors as a reverse mask.
5. The method of claim 1 wherein the predetermined depth exceeds 6000 angstroms.
6. The method of claim 1 wherein the planarization process is a chemical-mechanical polishing process.
7. A method to improve the planarization of an inter layer dielectric (ILD), the method comprising:
providing a semiconductor wafer having both a memory array area and a periphery circuit region defined on the surface of the semiconductor wafer, a plurality of metal oxide semiconductor (MOS) transistors being installed in the periphery circuit region, and a plurality of metal oxide semiconductor (MOS) transistors and capacitors being installed in the memory array area;
forming a dielectric layer on the surface of the semiconductor wafer that covers the metal oxide semiconductor (MOS) transistors and capacitors;
forming a photoresist layer on the surface of the dielectric layer;
performing a photolithographic process that uses the layout patterns of each of the capacitors as a reverse mask so as to remove the portions of the photoresist layer that are in the memory array area;
using the residual photoresist layer as a hard mask to etch the dielectric layer in the memory array area down to a predetermined depth; and
performing a planarization process on the dielectric layer.
8. The method of claim 7 wherein each of the capacitors is formed by a top electrode, a dielectric layer, and a storage node.
9. The method of claim 8 wherein the mask patterns of the photolithographic process are formed by using the layout patterns of the storage nodes of each of the capacitors as a reverse mask.
10. The method of claim 8 wherein the mask patterns of the photolithographic process are formed by using the layout patterns of the top electrodes of each of the capacitors as a reverse mask.
11. The method of claim 7 wherein the predetermined depth exceeds 6000 angstroms.
12. The method of claim 1 wherein the planarization process is a chemical-mechanical polishing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/725,027 US6432827B1 (en) | 2000-11-29 | 2000-11-29 | ILD planarization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/725,027 US6432827B1 (en) | 2000-11-29 | 2000-11-29 | ILD planarization method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020064959A1 true US20020064959A1 (en) | 2002-05-30 |
US6432827B1 US6432827B1 (en) | 2002-08-13 |
Family
ID=24912835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/725,027 Expired - Lifetime US6432827B1 (en) | 2000-11-29 | 2000-11-29 | ILD planarization method |
Country Status (1)
Country | Link |
---|---|
US (1) | US6432827B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10204935B2 (en) | 2016-10-18 | 2019-02-12 | Samsung Display Co., Ltd. | Display device and manufacturing method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100624566B1 (en) * | 2004-05-31 | 2006-09-19 | 주식회사 하이닉스반도체 | semiconductor device with flowable dielectric on capacitor and method for fabricating the same |
US7838427B2 (en) * | 2006-01-13 | 2010-11-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for planarization |
KR100753534B1 (en) * | 2006-06-26 | 2007-08-30 | 삼성전자주식회사 | Method of manufacturing a semiconductor device |
KR100806040B1 (en) * | 2007-04-16 | 2008-02-26 | 동부일렉트로닉스 주식회사 | Method of manufacturing flash memory device |
US8048813B2 (en) * | 2008-12-01 | 2011-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of reducing delamination in the fabrication of small-pitch devices |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5552346A (en) * | 1995-04-27 | 1996-09-03 | Taiwan Semiconductor Manufacturing Co. | Planarization and etch back process for semiconductor layers |
JPH11214499A (en) * | 1998-01-27 | 1999-08-06 | Mitsubishi Electric Corp | Fabrication of semiconductor device |
KR100301038B1 (en) * | 1998-03-02 | 2001-09-06 | 윤종용 | Semiconductor memory device containing COB and method of forming the same |
TW498440B (en) * | 1998-03-30 | 2002-08-11 | Hitachi Ltd | Manufacture method of semiconductor device |
TW417236B (en) * | 1998-09-01 | 2001-01-01 | Mosel Vitelic Inc | A global planarization process |
TW429579B (en) * | 1999-08-23 | 2001-04-11 | Taiwan Semiconductor Mfg | Manufacturing method of inter-layer dielectric |
-
2000
- 2000-11-29 US US09/725,027 patent/US6432827B1/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10204935B2 (en) | 2016-10-18 | 2019-02-12 | Samsung Display Co., Ltd. | Display device and manufacturing method thereof |
US10438976B2 (en) | 2016-10-18 | 2019-10-08 | Samsung Display Co., Ltd. | Display device |
Also Published As
Publication number | Publication date |
---|---|
US6432827B1 (en) | 2002-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7683413B2 (en) | Double sided container capacitor for a semiconductor device | |
US6611018B2 (en) | Semiconductor processing methods of forming integrated circuitry memory devices, methods of forming capacitor containers, methods of making electrical connection to circuit nodes and related integrated circuitry | |
US5956587A (en) | Method for crown type capacitor in dynamic random access memory | |
JP2008034865A (en) | Method of fabricating semiconductor device | |
JPH10335333A (en) | Semiconductor integrated circuit device, and manufacture and design thereof | |
US6184079B1 (en) | Method for fabricating a semiconductor device | |
US6642135B2 (en) | Method for forming semiconductor memory device having a fuse | |
US6797611B1 (en) | Method of fabricating contact holes on a semiconductor chip | |
US6432827B1 (en) | ILD planarization method | |
US6821872B1 (en) | Method of making a bit line contact device | |
US20020090792A1 (en) | Method for forming inner-cylindrical capacitor without top electrode mask | |
US6479355B2 (en) | Method for forming landing pad | |
US6333221B1 (en) | Method for improving planarization of an ILD layer | |
US5795805A (en) | Fabricating method of dynamic random access memory | |
JPH0774268A (en) | Semiconductor memory and fabrication thereof | |
KR100835825B1 (en) | Semiconductor device and method for fabricating the same | |
US7074725B2 (en) | Method for forming a storage node of a capacitor | |
US6967161B2 (en) | Method and resulting structure for fabricating DRAM cell structure using oxide line spacer | |
US6107132A (en) | Method of manufacturing a DRAM capacitor | |
JP3002665B2 (en) | Method for Crown Type Capacitor of Dynamic Random Access Memory | |
JPH04329668A (en) | Manufacture of semiconductor memory | |
KR100487915B1 (en) | Capacitor Formation Method of Semiconductor Device | |
US6673719B2 (en) | Method for etching using a multilevel hard mask | |
KR100388206B1 (en) | Method for manufacturing capacitor of semiconductor device | |
KR20030002872A (en) | Method of forming contacts of semiconductor memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED MICROELECTRONICS CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIEN, SUN-CHIEH;WU, DE-YUAN;LIN, YUNG-CHUNG;REEL/FRAME:011323/0675 Effective date: 20001116 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |