US20020059701A1 - Collecting and bundling device for use with fiber-drafting machine - Google Patents

Collecting and bundling device for use with fiber-drafting machine Download PDF

Info

Publication number
US20020059701A1
US20020059701A1 US10/005,701 US570102A US2002059701A1 US 20020059701 A1 US20020059701 A1 US 20020059701A1 US 570102 A US570102 A US 570102A US 2002059701 A1 US2002059701 A1 US 2002059701A1
Authority
US
United States
Prior art keywords
nozzle
collecting
fibers
fiber
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/005,701
Inventor
Kiyohiro Tsuzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiti International Corp
Original Assignee
Kiti International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiti International Corp filed Critical Kiti International Corp
Assigned to KITI INTERNATIONAL CORPORATION reassignment KITI INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSUZUKI, KIYOHIRO
Priority to US10/101,910 priority Critical patent/US20020104195A1/en
Publication of US20020059701A1 publication Critical patent/US20020059701A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H5/00Drafting machines or arrangements ; Threading of roving into drafting machine
    • D01H5/18Drafting machines or arrangements without fallers or like pinned bars
    • D01H5/70Constructional features of drafting elements
    • D01H5/72Fibre-condensing guides

Definitions

  • This invention relates to a fiber collecting and bundling device which attaches to a fiber drafting machine which will allow the drafted fibers to be collected inside the collecting nozzle using low pressure airflow induced from the outside.
  • the fiber drafting machine as shown in FIG. 1 of this invention, has a structure that consists of multiple pairs of draft rollers, R 1 , R 2 , and R 3 positioned at definite intervals.
  • the uppermost downstream pair of draft rollers are referred to as the front rollers R 1 .
  • the area between the front rollers R 1 and the draft rollers R 2 is designated as the main draft zone Z 1 .
  • the draft rollers R 2 . are located in the immediate upstream of the front rollers R 1 .
  • the upstream area between the draft rollers R 2 and the draft rollers R 3 is designated as the break draft zone (pre-draft zone) Z 2 .
  • FIGS. 5 a - 5 c show the nip point of the front rollers R 1 .
  • a common method to reduce the deficiencies inherent in the spinning process is,as in FIG. 5 b, to install a pair of collectors 51 slightly upstream from the aforementioned nip point P′, so that they would prevent the collected fibers from spreading.
  • This common method which allowed the high speed running fibers to touch these collectors 51 directly. This direct touch would result in friction which would damage the quality of the fibers.
  • the direct touch process itself does nothing to make the collection process more efficient.
  • a collecting and bundling device can be installed in the condense zone Z 3 .
  • the condense zone Z 3 is located between a pair of front rollers R 1 and a pair of delivery rollers R 4
  • the delivery rollers R 4 are located in the downstream of the front rollers R 1 .
  • the fibers can be collected by a collecting and bundling device after they are drafted inside the main draft zone Z 1 .
  • FIG. 8 shows a fiber collection structure where a front roller R 1 and a delivery roller R 4 both are in contact with a roller 52 which has many perforations.
  • This perforated roller 52 is located in zone Z 3 , making contact with R 1 and R 4 , to allow the fibers F be collected with the help of suctioning airflow, as the fibers are passing through zone Z 3 by passing along the outer circle of the perforated roller 52 .
  • FIG. 9 reveals a structure for the fibers F to be gathered with the aid of suctioning airflow while the fibers F are passing along the bottom of a solid screen section, 53 in zone Z 3 .
  • FIG. 10 shows a structure for the fibers F to be gathered with the aid of suctioning airflow using a perforated apron 54 . While the drafted fibers F are passing along the edge of the perforated apron 54 located in the condense zone Z 3 , the apron 54 is in contact with the delivery roller R 4 which is turning. Simultaneously, the suctioning airflow will enter thus allowing the fibers F to be collected.
  • This invention collects fibers through the use of airflow without any contact between the drafted fibers and a collecting device attached to a fiber drafting machine.
  • FIG. 1 is a side view of the bundled fiber drafting machine equipped with the collecting and bundling device attached.
  • FIG. 2 is a top view of the collecting nozzle unit U.
  • FIG. 3 is a vertical cross sectional view of the collecting nozzle N.
  • FIG. 4 is a magnified side view showing the location and relationship between a pair of delivery rollers R 4 and the collecting nozzle N.
  • FIG. 5 a illustrates the fibers being gathered when the collecting and bundling device is not used.
  • FIG. 5 b illustrates the fibers being gathered with the use of a pair of collectors 51 .
  • FIG. 5 c illustrates the fibers being gathered with the aid of inducing airflow.
  • FIG. 6 is a vertical cross sectional view of a second collecting nozzle N′ in this invention.
  • FIG. 7 a is the right side view of inner nozzle N 1 ′
  • FIG. 7 b is the right side view of outer nozzle N 2 ′
  • FIG. 8 is a side view of the prior conventional drafting machine with perforated rollers 52 located in condense zone Z 3 .
  • FIG. 9 is a side view of a prior conventional drafting machine with a screen 53 located in condense zone Z 3 .
  • FIG. 10 is a side view of a prior conventional drafting machine with perforated apron 54 located in condense zone Z 3 .
  • a 1 Blown-in airflow
  • N, N′ Collecting nozzle
  • N 1 , N 1 ′ Inner nozzle
  • N 2 , N 2 ′ Outer nozzle
  • R 1 Front roller (draft roller)
  • R 5 Carrier roller
  • the invention is a fiber drafting machine with special new characteristics.
  • This fiber drafting machine has a mechanism that consists of two zones, a main draft zone and a break draft zone.
  • the fiber drafting machine has a collecting and bundling device installed.
  • the collecting and bundling device has a double nozzle installed between a pair of front rollers in the main draft zone and a pair of delivery rollers in the downstream.
  • This nozzle is equipped with an inner nozzle, which works as a path for the fibers, and with an outer nozzle, which is installed outside of the inner nozzle.
  • the upstream of the above mentioned air path is closed.
  • the upstream of the inner nozzle provides an entrance for the fibers to enter the device.
  • the downstream opening of the air path has its cross-sectional area being rapidly reduced as it is merged with the fiber flow path.
  • This invention has another special characteristic in addition to the above characteristics.
  • a special characteristic of this invention is the rectifying grooves that are located on both the inner and outer nozzle. These rectifying grooves are located on the surface area of each nozzle and are placed in the direction of the airflow.
  • low pressure air is induced from outside into the space between the inner and the outer nozzle.
  • These two airflows flow along the rectifying grooves to both control and prevent the air from turning around.
  • As a result, of these airflows there is an increase in the fiber collecting ability because when the air becomes rectified, it will assist the fibers to be collected and will prevent the fibers from spreading.
  • This invention has another special characteristic in that the cross sectional area at the end of the fiber collecting nozzle will rapidly narrow and reduce. Because of this rapidly narrowing characteristic the airflow speed in the fiber path inside the inner nozzle is faster at the exit opening and the airflow pressure will be lowered at the exit. This effect will increase the negative pressure of the airflow at the joint area mentioned above and this increased negative pressure will be more likely to induce airflow.
  • This invention also has a special characteristic in that the collecting nozzle is installed in a way that its exit is located close to the nip point of a pair of delivery rollers. Normally, the fibers and the air collected inside the nozzle are discharged from the nozzle and will be likely to spread as they exit. However, when using this design and by locating and installing a pair of delivery rollers close to the nip point, this design will prevent the fibers spreading effect and lead the fibers directly into contact with the delivery rollers.
  • This invention also has a special characteristic in that the collecting nozzle and a pair of delivery rollers are assembled together to be a collecting nozzle unit.
  • the advantage of having a unit like this is that by having one unit it is easier to install without adjusting the distance between the unit and the device and without further having to adjust the angle between the path for the fibers coming through the draft section (thread path) and the path for the fibers travel downstream of the draft section.
  • a pair of delivery rollers R 4 is located in the downstream of a pair of front rollers (draft rollers) R 1 , the collecting nozzle N is installed between the rollers R 1 and R 4 , and a condense zone Z 3 is located between both sets of rollers R 1 and R 4 .
  • the external diameter of the delivery rollers R 4 must be significantly less than the external diameter of each draft roller R 1 to R 3 .
  • the path for the fibers F (thread path) in the condense zone Z 3 is shown crossing the path of the fibers F (thread path) in the draft area with the angle of ⁇ (in this example, approximately 20 degrees).
  • the draft rollers, R 1 to R 3 are made of steel and the delivery rollers R 4 are made of rubber.
  • number 21 depicts an apron covering a pair of draft rollers R 2 , and the fibers F pass between a pair of aprons 21 in the main draft zone Z 1 .
  • the collecting nozzle N consists of a cylindrical inner nozzle N 1 and an externally attached external nozzle designated N 2 .
  • the end portion of external nozzle N 2 has a conical cylinder shape.
  • the loop area created between the nozzles N 1 and N 2 is an airflow path 1 for low pressure air to be induced into the nozzles from outside the nozzles.
  • the airflow path 1 is closed in the upstream and the opening on the upstream side of nozzle N 1 is designated as nozzle entrance 2 .
  • a discharge cylinder 4 At the edge of inner nozzle N 1 's main body 3 is a discharge cylinder 4 .
  • the discharge cylinder 4 is installed and its inner diameter is smaller than the nozzle body 3 's diameter.
  • the edge of the discharge cylinder 4 is cylindrical and it is protruding toward the conical shape of the nozzle end of the outer nozzle N 2 . Therefore, the cross sectional area of the fiber flow path 5 inside of inner nozzle N 1 is larger at the nozzle entrance 2 in the up stream and it becomes smaller just before the joining area where the fibers meet with the airflow path 1 in the downstream.
  • the cross sectional area of the downstream side of airflow path 1 being loop-like, rapidly becomes smaller and meets with the fiber flow path 5 , and the down stream side opening is exit 6 of the outer nozzle N 2 .
  • the uppermost upstream area of the airflow path 1 inside external nozzle N 2 is an induction hole 8 installed in the direction of the radius to allow low pressure airflow in.
  • the nozzle N and a pair of delivery rollers R 4 are assembled together as a unit.
  • This unit then forms a collecting nozzle unit U by installing a carrier roller R 5 to convey the revolutions of the front rollers R 1 to the delivery rollers R 4 .
  • the turning axis of the delivery rollers R 4 is supported by the side frames 12 on both sides.
  • the collecting nozzle N is located between frames 12 and is supported by supporting rods 13 on both sides.
  • a pair of side frames 12 is supported by another frame which is part of the draft device (not depicted in the diagram).
  • Located outside of the side frames 12 are supporting arms 14 .
  • the supporting arms 14 are located on the outside of the side frames 12 on both sides.
  • the base part of the supporting arms 14 are supported by the turning axis 11 of the bottom delivery roller R 4 .
  • a carrier roller R 5 Located between a pair of supporting arms 14 , is a carrier roller R 5 .
  • the turning axis of carrier roller R 5 is supported by the other side of the supporting arm 14 .
  • This carrier roller R 5 is a magnetic roller and the surface is covered with a rubber cot.
  • the angle ⁇ of the path for fibers F in the draft area (thread path) to cross with the path for the fibers F at the immediate downstream of the draft area needs to be adjusted depending on the angle of the fibers spun out of the draft area. Using nozzle unit U, this adjustment can be accomplished easily. Consequently, the installation of the collecting nozzle N on any draft device will become simpler whether using the new drafting machine or an existing drafting machine.
  • the external diameter of the delivery rollers R 4 is far smaller than that of the external diameters of the other draft rollers R 1 to R 3 . This is necessary in this design so that the nozzle exit 6 at the end of collecting nozzle N (end of downstream) can be placed next to the nip point P of delivery rollers R 4 .
  • a loop space is created between the inner nozzle N 1 and the outer nozzle N 2 Fibers F flow toward the collecting nozzle N after being drafted inside the draft zones Z 2 and Z 1 in the upstream location, then the airflow A 1 flowing in the air path 1 flows through joint area 7 .
  • the sectional area of joint area 7 is the area where it is rapidly reduced and merged with the fiber path towards the nozzle exit 6 . Due to this design, the speed of the low pressure blown-in air A 1 flowing in the air path 1 becomes rapidly faster at the joint area 7 where it meets with the fiber path 5 , which creates negative pressure in joint area 7 .
  • Fiber path 5 of the inner nozzle N 1 inside the collecting nozzle N in this example has its cross section being reduced in the downstream, which will then increase the negative pressure even more in the joining area 7 . This will make the non-contact fiber collecting job inside the collecting nozzle N even more effective.
  • the fibers F will be collected inside the collecting nozzle N without contacting or touching the surface area of the collecting nozzle N. At that point the airflow within the collected fibers F will try to spread at the nozzle exit 6 again, however, this nozzle exit 6 is closely located to the nip point P of a pair of delivery rollers R 4 which will prevent the spreading of the fibers F, and the fibers F will be immediately nipped by the delivery rollers R 4 .
  • FIG. 6 shows a different example of the vertical cross section of the collecting nozzle N′.
  • FIG. 7 ( a ) and ( b ) reveals the inner components of the collecting nozzle N′, showing the right side view of inner nozzle N 1 and of the outer nozzle N 2 separately.
  • the collecting nozzle N′ is equipped with a large number of rectifying grooves, 3 a , 4 a , and 4 b , and they are located towards the direction of the airflow on the surface of the inner circumference of the inner nozzle N 1 ′, which is a component of the collecting nozzle N′.
  • the discharge cylinder 4 On the surface of the inner circumferences of the of nozzle's main body 3 , there are a series of rectifying grooves 3 a which are uniformly distributed in the direction of the inner circumference of the nozzle.
  • the discharge cylinder 4 with its internal diameter being smaller than the diameter of the nozzle's main body 3 , also has a large number of rectifying grooves 4 a located on the surface of its inner circumference. Both 3 a and 4 a are connected to each other via a rectifying groove 4 b located on the surface of the inner circumference of the tapered entrance on the discharge cylinder 4 .
  • a large number of rectifying grooves 9 a are also installed on the inner circumference surface of the tapered exit 9 on the outer nozzle N 2 ′. These rectifying grooves 9 a are located in the direction of the low pressure airflow induced from outside.
  • the cross sectional area of the fiber path 5 of the inner nozzle N 1 which is a part of the collecting nozzle N, is smaller at the discharge than the one at the entrance. Due to this design, the fiber collecting task can be achieved. However, the cross sectional area of the fiber path 5 can be the same in all areas.
  • This invention makes it possible to spin out a stronger, less fuzzy and evenly spun thread by solving any aforementioned spinning deficiencies.
  • This invention has a double piped structure built into the collecting nozzle between a pair of front rollers in the main draft zone and a pair of delivery rollers in the downstream of the front rollers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Abstract

This invention relates to an apparatus for a fiber drafting machine which collects and bundles drafted fibers together using airflow. A double structured pipe N is installed on the fiber drafting machine to allow the fibers to be gathered together using airflow. The drafting machine is equipped with 2 zones, Z1, and Z2. Z1has a pair of front rollers R1and a pair of delivery rollers R4 located on the downstream of R1, and a double pipe structured collecting nozzle N is located between the rollers R1 and R4. This collecting nozzle N consists of an inner nozzle N1, which contains the inner space, or fiber path 5 for the fibers to go through, and an outer nozzle N2, which is located outside of the inner nozzle N1. There is a loop-like space in the area between N1 and N2. This loop space will be used as an airflow path 1, and its design will allow for low pressure airflow to enter from the outside. Nozzle entrance 2 is located on the upstream side of inner nozzle N1. When you close the upstream of air flow path 1, the downstream side opening of air flow path 1 will have its cross sectional area rapidly reduced. When this occurs the airflow path 1 will merge with the fiber path 5.

Description

    FIELD OF THE INVENTION
  • This invention relates to a fiber collecting and bundling device which attaches to a fiber drafting machine which will allow the drafted fibers to be collected inside the collecting nozzle using low pressure airflow induced from the outside. [0001]
  • BACKGROUND OF THE INVENTION
  • The fiber drafting machine, as shown in FIG. 1 of this invention, has a structure that consists of multiple pairs of draft rollers, R[0002] 1, R2, and R3 positioned at definite intervals. The uppermost downstream pair of draft rollers are referred to as the front rollers R1. The area between the front rollers R1 and the draft rollers R2 is designated as the main draft zone Z1. The draft rollers R2. are located in the immediate upstream of the front rollers R1. The upstream area between the draft rollers R2 and the draft rollers R3 is designated as the break draft zone (pre-draft zone) Z2.
  • The bundle of fibers located in the main draft zone Z[0003] 1, because of their volume, are more likely to spread. These spread fibers, when they arrive at the exit area of the main draft zone Z1, will be nipped by a pair of front rollers R1. When the fibers are nipped at the exit area they will be spread and forwarded to the twisting process. These fibers that are forwarded to the twisting process are spread sideways (in the direction of the width). FIG. 5a reveals this twisting process occurring. When the spread fibers are twisted, end parts on both sides (in the direction of the width) of the spread fibers will not be twisted in together as a body of yarn, instead, only one end of these sides will be twisted inward. The fibers that are twisted by only one end can not adequately contribute to the strength of the yarn, in addition,later in the process the fiber in this condition will stay fluffed leading to further problems. P′ in FIGS. 5a-5 c show the nip point of the front rollers R1.
  • A common method to reduce the deficiencies inherent in the spinning process is,as in FIG. 5[0004] b, to install a pair of collectors 51 slightly upstream from the aforementioned nip point P′, so that they would prevent the collected fibers from spreading. However, there is a problem with using this common method which allowed the high speed running fibers to touch these collectors 51 directly. This direct touch would result in friction which would damage the quality of the fibers. The direct touch process itself does nothing to make the collection process more efficient.
  • Because of the above referenced reasons, various kinds of collecting and bundling devices have been suggested. For example, a collecting and bundling device can be installed in the condense zone Z[0005] 3. The condense zone Z3 is located between a pair of front rollers R1 and a pair of delivery rollers R4 The delivery rollers R4 are located in the downstream of the front rollers R1. Using this type of device, the fibers can be collected by a collecting and bundling device after they are drafted inside the main draft zone Z1.
  • FIG. 8 shows a fiber collection structure where a front roller R[0006] 1 and a delivery roller R4 both are in contact with a roller 52 which has many perforations. This perforated roller 52 is located in zone Z3, making contact with R1 and R4, to allow the fibers F be collected with the help of suctioning airflow, as the fibers are passing through zone Z3 by passing along the outer circle of the perforated roller 52. Also, FIG. 9 reveals a structure for the fibers F to be gathered with the aid of suctioning airflow while the fibers F are passing along the bottom of a solid screen section, 53 in zone Z3. FIG. 10 shows a structure for the fibers F to be gathered with the aid of suctioning airflow using a perforated apron 54. While the drafted fibers F are passing along the edge of the perforated apron 54 located in the condense zone Z3, the apron 54 is in contact with the delivery roller R4 which is turning. Simultaneously, the suctioning airflow will enter thus allowing the fibers F to be collected.
  • All of the above mentioned collecting and bundling devices used the same type methods. These methods allowed for the drafted fibers to be gathered together using suctioning airflow. The suctioning airflow worked in conjunction with the device in the area where the fibers came into contact with the device. While these drafted fibers were being gathered, they naturally would come into contact with parts of the device. Because contacts between the device and the fibers were inevitable using the prior methods, there were inherent deficiencies caused by heat and friction that lead to the severance of the fibers. These methods offer an improvement when compared to the [0007] collection method 51, but the methods are still insufficient.
  • SUMMARY OF THE INVENTION
  • This invention collects fibers through the use of airflow without any contact between the drafted fibers and a collecting device attached to a fiber drafting machine.[0008]
  • BRIEF DESCRIPTION OF THE FIGURES OF DRAWINGS
  • FIG. 1 is a side view of the bundled fiber drafting machine equipped with the collecting and bundling device attached. [0009]
  • FIG. 2 is a top view of the collecting nozzle unit U. [0010]
  • FIG. 3 is a vertical cross sectional view of the collecting nozzle N. [0011]
  • FIG. 4 is a magnified side view showing the location and relationship between a pair of delivery rollers R[0012] 4 and the collecting nozzle N.
  • FIG. 5[0013] a illustrates the fibers being gathered when the collecting and bundling device is not used.
  • FIG. 5[0014] b illustrates the fibers being gathered with the use of a pair of collectors 51.
  • FIG. 5[0015] c illustrates the fibers being gathered with the aid of inducing airflow.
  • FIG. 6 is a vertical cross sectional view of a second collecting nozzle N′ in this invention. [0016]
  • FIG. 7[0017] a is the right side view of inner nozzle N1
  • FIG. 7[0018] b is the right side view of outer nozzle N2
  • Both nozzles together form the above mentioned collecting nozzle N′. [0019]
  • FIG. 8 is a side view of the prior conventional drafting machine with [0020] perforated rollers 52 located in condense zone Z3.
  • FIG. 9 is a side view of a prior conventional drafting machine with a [0021] screen 53 located in condense zone Z3.
  • FIG. 10 is a side view of a prior conventional drafting machine with [0022] perforated apron 54 located in condense zone Z3.
  • EXPLANATION OF SYMBOLS USED IN THE FIGURES OF DRAWING
  • A[0023] 1: Blown-in airflow
  • A[0024] 2: Induced airflow
  • F: Fibers [0025]
  • N, N′: Collecting nozzle [0026]
  • N[0027] 1, N1′: Inner nozzle
  • N[0028] 2, N2′: Outer nozzle
  • R[0029] 1: Front roller (draft roller)
  • R[0030] 4: Delivery roller
  • R[0031] 5: Carrier roller
  • U: Collecting nozzle unit [0032]
  • Z[0033] 1: Main draft zone
  • Z[0034] 2: Break draft zone
  • Z[0035] 3: Condense zone
  • [0036] 1: Airflow path
  • [0037] 2: Nozzle entrance
  • [0038] 3: Nozzle body
  • [0039] 3 a: A rectifying groove
  • [0040] 4: Discharge cylinder
  • [0041] 4 a, 4 b: A rectifying groove for discharge cylinder
  • [0042] 5: Fiber path
  • [0043] 6: Nozzle exit
  • [0044] 7: Joint area
  • [0045] 9: Exit of outer nozzle, tapered
  • [0046] 9 a: A rectifying groove for the outer nozzle
  • [0047] 12: Side frame (collecting nozzle unit)
  • [0048] 13: Supporting rod (collecting nozzle unit)
  • [0049] 14: Supporting arm (collecting nozzle unit)
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention solves the above referenced problems. The invention is a fiber drafting machine with special new characteristics. This fiber drafting machine has a mechanism that consists of two zones, a main draft zone and a break draft zone. The fiber drafting machine has a collecting and bundling device installed. The collecting and bundling device has a double nozzle installed between a pair of front rollers in the main draft zone and a pair of delivery rollers in the downstream. This nozzle is equipped with an inner nozzle, which works as a path for the fibers, and with an outer nozzle, which is installed outside of the inner nozzle. there is a loop area created in the space between the two nozzles which allows for low pressure air to enter from the outside. The upstream of the above mentioned air path is closed. The upstream of the inner nozzle provides an entrance for the fibers to enter the device. The downstream opening of the air path has its cross-sectional area being rapidly reduced as it is merged with the fiber flow path. [0050]
  • According to this invention, when low pressure air is blown into the air path in the loop space area created between the inner and the outer nozzle, the air will flow through the rapidly narrowed cross sectional area, continue to flow to the joint area of the air and the fibers, and then continue its flow to the exit of the nozzle. Therefore, the blown-in low pressure air in the path at the joint area will suddenly increase in speed and create a negative pressure. At the fiber path, outside air is induced and taken in from the entrance of the nozzle to create an induced airflow. This induced airflow has the ability to wrap the fibers from the outside in a three dimensional way, which will further enable the collection of the fibers without any contact with the surface area inside the nozzle. [0051]
  • This invention has another special characteristic in addition to the above characteristics. A special characteristic of this invention is the rectifying grooves that are located on both the inner and outer nozzle. These rectifying grooves are located on the surface area of each nozzle and are placed in the direction of the airflow. In this invention low pressure air is induced from outside into the space between the inner and the outer nozzle. Further, there is another airflow occurring which moves the fibers inside the inner nozzle. These two airflows flow along the rectifying grooves to both control and prevent the air from turning around. As a result, of these airflows there is an increase in the fiber collecting ability because when the air becomes rectified, it will assist the fibers to be collected and will prevent the fibers from spreading. [0052]
  • This invention has another special characteristic in that the cross sectional area at the end of the fiber collecting nozzle will rapidly narrow and reduce. Because of this rapidly narrowing characteristic the airflow speed in the fiber path inside the inner nozzle is faster at the exit opening and the airflow pressure will be lowered at the exit. This effect will increase the negative pressure of the airflow at the joint area mentioned above and this increased negative pressure will be more likely to induce airflow. [0053]
  • This invention also has a special characteristic in that the collecting nozzle is installed in a way that its exit is located close to the nip point of a pair of delivery rollers. Normally, the fibers and the air collected inside the nozzle are discharged from the nozzle and will be likely to spread as they exit. However, when using this design and by locating and installing a pair of delivery rollers close to the nip point, this design will prevent the fibers spreading effect and lead the fibers directly into contact with the delivery rollers. [0054]
  • This invention also has a special characteristic in that the collecting nozzle and a pair of delivery rollers are assembled together to be a collecting nozzle unit. The advantage of having a unit like this is that by having one unit it is easier to install without adjusting the distance between the unit and the device and without further having to adjust the angle between the path for the fibers coming through the draft section (thread path) and the path for the fibers travel downstream of the draft section. [0055]
  • Additionally, by installing and adding a carrier roller, which conveys the revolutions from front rollers, to this collecting nozzle unit, not only will the peripheral velocity of delivery rollers and front rollers be uniform, but in addition the delivery rollers' driving mechanism can be operated without the fibers being drafted needlessly inside the collecting nozzle. [0056]
  • As shown in FIG. 1 and FIG. 2, a pair of delivery rollers R[0057] 4 is located in the downstream of a pair of front rollers (draft rollers) R1, the collecting nozzle N is installed between the rollers R1 and R4, and a condense zone Z3 is located between both sets of rollers R1 and R4. To enable the direct proximity of the location of nozzle exit 6 to the collecting nozzle N and to further maintain the desired closeness of the collecting nozzle N to the nip point P of a pair of delivery rollers R4, the external diameter of the delivery rollers R4 must be significantly less than the external diameter of each draft roller R1 to R3. The path for the fibers F (thread path) in the condense zone Z3 is shown crossing the path of the fibers F (thread path) in the draft area with the angle of θ (in this example, approximately 20 degrees). The draft rollers, R1 to R3, are made of steel and the delivery rollers R4 are made of rubber. In FIG. 1, number 21 depicts an apron covering a pair of draft rollers R2, and the fibers F pass between a pair of aprons 21 in the main draft zone Z1.
  • As shown in FIG. 3, the collecting nozzle N consists of a cylindrical inner nozzle N[0058] 1 and an externally attached external nozzle designated N2. The end portion of external nozzle N2 has a conical cylinder shape. The loop area created between the nozzles N1 and N2 is an airflow path 1 for low pressure air to be induced into the nozzles from outside the nozzles. The airflow path 1 is closed in the upstream and the opening on the upstream side of nozzle N1 is designated as nozzle entrance 2. At the edge of inner nozzle N1's main body 3 is a discharge cylinder 4. The discharge cylinder 4 is installed and its inner diameter is smaller than the nozzle body 3's diameter. The edge of the discharge cylinder 4 is cylindrical and it is protruding toward the conical shape of the nozzle end of the outer nozzle N2. Therefore, the cross sectional area of the fiber flow path 5 inside of inner nozzle N1 is larger at the nozzle entrance 2 in the up stream and it becomes smaller just before the joining area where the fibers meet with the airflow path 1 in the downstream.
  • The cross sectional area of the downstream side of [0059] airflow path 1, being loop-like, rapidly becomes smaller and meets with the fiber flow path 5, and the down stream side opening is exit 6 of the outer nozzle N2. This means that the joining area 7 of the airflow path 1 and the fiber flow path 5 is slightly upstream of nozzle exit 6. The uppermost upstream area of the airflow path 1 inside external nozzle N2 is an induction hole 8 installed in the direction of the radius to allow low pressure airflow in.
  • As shown in FIG. 1 and [0060] 2, the nozzle N and a pair of delivery rollers R4 are assembled together as a unit. This unit then forms a collecting nozzle unit U by installing a carrier roller R5 to convey the revolutions of the front rollers R1 to the delivery rollers R4. The turning axis of the delivery rollers R4 is supported by the side frames 12 on both sides. The collecting nozzle N is located between frames 12 and is supported by supporting rods 13 on both sides. A pair of side frames 12 is supported by another frame which is part of the draft device (not depicted in the diagram). Located outside of the side frames 12 are supporting arms 14. The supporting arms 14 are located on the outside of the side frames 12 on both sides. The base part of the supporting arms 14 are supported by the turning axis 11 of the bottom delivery roller R4. Located between a pair of supporting arms 14, is a carrier roller R5. The turning axis of carrier roller R5 is supported by the other side of the supporting arm 14. This carrier roller R5 is a magnetic roller and the surface is covered with a rubber cot.
  • Using this method to install a collecting nozzle N, etc. onto the drafting device is simpler than prior art installations. This is due to the fact that collecting nozzle N, a pair of delivery rollers R[0061] 4, and carrier rollers R5 are assembled together as a collecting nozzle unit U. Simply place the nozzle unit U in the designated location on the downstream side of front rollers R1 and fix it onto the nearby frame at a certain crossing angle θ of the collecting nozzle N instead of placing each nozzle N, roller R4, and roller R5 separately in the required correct positions to work. The angle θ of the path for fibers F in the draft area (thread path) to cross with the path for the fibers F at the immediate downstream of the draft area needs to be adjusted depending on the angle of the fibers spun out of the draft area. Using nozzle unit U, this adjustment can be accomplished easily. Consequently, the installation of the collecting nozzle N on any draft device will become simpler whether using the new drafting machine or an existing drafting machine.
  • When carrier roller R[0062] 5 is drawn to the front bottom roller R1 by the use of magnetic power, the turning force of the front bottom roller R1 will then be conveyed to the bottom delivery roller R4 via carrier roller R5, which turns a pair of delivery rollers R4 in the reverse direction. Because the pair of delivery rollers R4 are made of rubber and the surface of carrier rollers R5 are covered with rubber cot, the revolution of the front bottom rollers R1 are conveyed to a pair of delivery rollers R4 without slippage. Additionally, the peripheral velocity of the delivery rollers R4 will be the same as the peripheral velocity of the front rollers R1. This will enable the fibers to pass through the collecting nozzle N located between R1 and R4 smoothly without being drafted.
  • Also, as shown in FIG. 1 and FIG. 4, the external diameter of the delivery rollers R[0063] 4 is far smaller than that of the external diameters of the other draft rollers R1 to R3. This is necessary in this design so that the nozzle exit 6 at the end of collecting nozzle N (end of downstream) can be placed next to the nip point P of delivery rollers R4.
  • A condition exists that allows low pressure airflow to continue blowing from the [0064] induction hole 8 of the outer nozzle N2 towards the air path 1. A loop space is created between the inner nozzle N1 and the outer nozzle N2 Fibers F flow toward the collecting nozzle N after being drafted inside the draft zones Z2 and Z1 in the upstream location, then the airflow A1 flowing in the air path 1 flows through joint area 7. The sectional area of joint area 7 is the area where it is rapidly reduced and merged with the fiber path towards the nozzle exit 6. Due to this design, the speed of the low pressure blown-in air A1 flowing in the air path 1 becomes rapidly faster at the joint area 7 where it meets with the fiber path 5, which creates negative pressure in joint area 7. This leads outside air to be taken in from nozzle 2 to fiber path 5. and create induced airflow A2. Because of the fact that the induced airflow A2 will flow and wrap the fibers F from the outside in a three dimensional way, the fibers F flowing inside the fiber path 5 will be collected inside the fiber path 5 without touching the inner surface area of the fiber path 5 (see FIG. 5c) and exits from nozzle exit 6.
  • [0065] Fiber path 5 of the inner nozzle N1 inside the collecting nozzle N in this example has its cross section being reduced in the downstream, which will then increase the negative pressure even more in the joining area 7. This will make the non-contact fiber collecting job inside the collecting nozzle N even more effective. The fibers F will be collected inside the collecting nozzle N without contacting or touching the surface area of the collecting nozzle N. At that point the airflow within the collected fibers F will try to spread at the nozzle exit 6 again, however, this nozzle exit 6 is closely located to the nip point P of a pair of delivery rollers R4 which will prevent the spreading of the fibers F, and the fibers F will be immediately nipped by the delivery rollers R4.
  • FIG. 6 shows a different example of the vertical cross section of the collecting nozzle N′. FIG. 7 ([0066] a) and (b) reveals the inner components of the collecting nozzle N′, showing the right side view of inner nozzle N1 and of the outer nozzle N2 separately. The collecting nozzle N′ is equipped with a large number of rectifying grooves, 3 a, 4 a, and 4 b, and they are located towards the direction of the airflow on the surface of the inner circumference of the inner nozzle N1′, which is a component of the collecting nozzle N′. On the surface of the inner circumferences of the of nozzle's main body 3, there are a series of rectifying grooves 3 a which are uniformly distributed in the direction of the inner circumference of the nozzle. The discharge cylinder 4, with its internal diameter being smaller than the diameter of the nozzle's main body 3, also has a large number of rectifying grooves 4 a located on the surface of its inner circumference. Both 3 a and 4 a are connected to each other via a rectifying groove 4 b located on the surface of the inner circumference of the tapered entrance on the discharge cylinder 4. A large number of rectifying grooves 9 a are also installed on the inner circumference surface of the tapered exit 9 on the outer nozzle N2′. These rectifying grooves 9 a are located in the direction of the low pressure airflow induced from outside.
  • Because of the fact that the airflow inside the [0067] fiber path 5 of inner nozzle N1′ is flowing along in the direction of the rectifying grooves of 3 a, 4 b, and 4 a of the internal circumference surface, and because of the additional fact that this low pressure air inside the air path 1 between inner nozzle N1′ and outer nozzle N2′ is flowing along the rectifying groove 9 a on the internal circumference surface of the tapered exit part 9 of the outer nozzle N2′, the occurrence of a turning flow can be controlled and/or prevented. As a result, the above mentioned airflows will become rectified, and the fibers will not be spread by a turning airflow. This rectification of the airflow will make the collecting capability more effective.
  • In the above referenced example, the cross sectional area of the [0068] fiber path 5 of the inner nozzle N1, which is a part of the collecting nozzle N, is smaller at the discharge than the one at the entrance. Due to this design, the fiber collecting task can be achieved. However, the cross sectional area of the fiber path 5 can be the same in all areas. This invention makes it possible to spin out a stronger, less fuzzy and evenly spun thread by solving any aforementioned spinning deficiencies. This invention has a double piped structure built into the collecting nozzle between a pair of front rollers in the main draft zone and a pair of delivery rollers in the downstream of the front rollers. When the fibers are spun out, a negative air pressure is created in the joining area of the airflow path, through which the outside air is induced into the collecting nozzle, and fiber flow path. The air from outside will be induced from the nozzle entrance to produce induction airflow. This induced airflow will then wrap the drafted fibers from the fiber's outer circumference in a three dimensional way inside the collecting nozzle. By using this method, the fibers are collected without any contact with the inner circumference surface area of the nozzle and thus they are stronger less fuzzy, and spun evenly.
  • The invention as disclosed herein is subject to various modifications and variations will be seen by those of ordinary skill in the art. The invention is therefore not limited solely to the apparatus specifically described, but is intended to have the scope as set forth in the following claims. [0069]

Claims (6)

What is claimed is:
1. A collecting and bundling device which can be installed onto a textile drafting machine, comprising:
a main draft zone,
a break draft zone,
a double pipe collecting nozzle between a pair of front rollers in the main draft zone,
a pair of delivery rollers at the downstream,
said collecting nozzle having both an inner nozzle and an outer nozzle, the inner nozzle having an inner space to allow the fibers to pass therethrough,
a loop-like space between the inner and the outer nozzle,
said loop-like space forming a path for low pressure airflow which enters from the outside,
whereby the upstream airflow path is closed, therefore, and the inner nozzle's opening on the upstream side provides an entrance for the fibers, while the opening of the airflow path has its cross sectional area rapidly reduced in size to allow the fibers to merge.
2. The fiber collecting and bundling device according to claim 1 wherein both the inner and outer nozzles have grooves located along the airflow path on the surface of the inner circumference.
3. The fiber collecting and bundling device of claim 1 wherein the nozzle has a fiber path opening for the fibers to exit, with its cross sectional area being rapidly reduced.
4. The fiber collecting and bundling device of claim 1 wherein the collecting nozzle is located close to the nip point of a pair of delivery rollers.
5. The fiber collecting and bundling device of claim 1 wherein the collecting nozzle and a pair of delivery rollers together form a collecting nozzle unit.
6. The fiber collecting and bundling device of claim 5 having a collecting nozzle unit with a carrier roller which conveys the revolutions from front rollers to the delivery rollers.
US10/005,701 2000-04-12 2002-01-08 Collecting and bundling device for use with fiber-drafting machine Abandoned US20020059701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/101,910 US20020104195A1 (en) 2000-04-12 2002-03-20 Collecting and bundling device for use with fiber-drafting machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-367884 2000-04-12
JP2000367884A JP2002173839A (en) 2000-12-04 2000-12-04 Collecting device in fiber bundle-drafting apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/101,910 Continuation-In-Part US20020104195A1 (en) 2000-04-12 2002-03-20 Collecting and bundling device for use with fiber-drafting machine

Publications (1)

Publication Number Publication Date
US20020059701A1 true US20020059701A1 (en) 2002-05-23

Family

ID=18838230

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/005,701 Abandoned US20020059701A1 (en) 2000-04-12 2002-01-08 Collecting and bundling device for use with fiber-drafting machine

Country Status (2)

Country Link
US (1) US20020059701A1 (en)
JP (1) JP2002173839A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286813A (en) * 2011-08-04 2011-12-21 江阴市华方新技术科研有限公司 Exchangeable wear-resistant compact spinning special wind suction pipe
KR101472950B1 (en) * 2007-05-21 2014-12-16 슈핀델파브릭 쉬쎈 게엠베하 mounting divece for air jets in the area of drafting units
US20170152124A1 (en) * 2014-05-08 2017-06-01 Maschinenfabrik Rieter Ag Textile Machine for the Production of Roving and Method for Operating the Same
CN113106652A (en) * 2021-03-12 2021-07-13 李路霜 Production equipment and production process of antibacterial medical non-woven fabric

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004441A1 (en) * 2007-01-25 2008-07-31 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Machine for producing a knitwear made of fibrous material, in particular a knitting machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472950B1 (en) * 2007-05-21 2014-12-16 슈핀델파브릭 쉬쎈 게엠베하 mounting divece for air jets in the area of drafting units
CN102286813A (en) * 2011-08-04 2011-12-21 江阴市华方新技术科研有限公司 Exchangeable wear-resistant compact spinning special wind suction pipe
US20170152124A1 (en) * 2014-05-08 2017-06-01 Maschinenfabrik Rieter Ag Textile Machine for the Production of Roving and Method for Operating the Same
US10533267B2 (en) * 2014-05-08 2020-01-14 Maschinenfabrik Rieter Ag Textile machine for the production of roving and method for operating the same
CN113106652A (en) * 2021-03-12 2021-07-13 李路霜 Production equipment and production process of antibacterial medical non-woven fabric

Also Published As

Publication number Publication date
JP2002173839A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
CN1048298C (en) Spinning method and machine in which capped suction roll is used in stretching mechanism
US5651244A (en) Ring spinning method and a yarn made thereby
US6185790B1 (en) Arrangement for condensing a drafted fiber strand
JP3111399B2 (en) Stretching equipment for ring spinning equipment
US6308878B1 (en) Transporting belt for transporting a fiber strand to be condensed and method of making same
US20020059701A1 (en) Collecting and bundling device for use with fiber-drafting machine
CN102605491A (en) Machining device for functional yarns
US4674274A (en) Apparatus for manufacturing spun yarn
EP0057876A1 (en) Pneumatic twisting spinning apparatus
US20020104195A1 (en) Collecting and bundling device for use with fiber-drafting machine
US4593521A (en) Jet spinning device
US4642981A (en) Rotor with yarn guide for open-end spinning
JP3111306B2 (en) Stretching equipment for ring spinning equipment
US11198955B2 (en) Drafting system unit and drafting system for a spinning machine
KR100507421B1 (en) Fiber bundle collecting device of a spinning machine and a ring spinning frame equipped with thereof
JPH11315428A (en) Spinning machine equipped with compacting device
KR100555188B1 (en) Fiber bundle collecting device of a spinning machine
CN1553972A (en) Spinning machine with a suction device
CN100436670C (en) Spinning machine with twisting device
US4348858A (en) Method of and apparatus for making a doubled yarn
US4175371A (en) Broken end-collecting installation and method of operating the same
US6216433B1 (en) Flyer drafting arrangement having a condensing zone
CN100436669C (en) Spinning frame with twisting device
JP2002309452A (en) Spinning machine having plural spinning stations
US20060277722A1 (en) Exchangeable slip-on reinforcement for a press roller base body on spinning machine drawing frames

Legal Events

Date Code Title Description
AS Assignment

Owner name: KITI INTERNATIONAL CORPORATION, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSUZUKI, KIYOHIRO;REEL/FRAME:012462/0660

Effective date: 20020108

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE