US20020047696A1 - Generation of a voltage proportional to temperature with accurate gain control - Google Patents

Generation of a voltage proportional to temperature with accurate gain control Download PDF

Info

Publication number
US20020047696A1
US20020047696A1 US09/854,139 US85413901A US2002047696A1 US 20020047696 A1 US20020047696 A1 US 20020047696A1 US 85413901 A US85413901 A US 85413901A US 2002047696 A1 US2002047696 A1 US 2002047696A1
Authority
US
United States
Prior art keywords
voltage
circuit
temperature
differential amplifier
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/854,139
Other versions
US6433529B1 (en
Inventor
Vivek Chowdhury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMICELECTRONICS Ltd
Original Assignee
STMICELECTRONICS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMICELECTRONICS Ltd filed Critical STMICELECTRONICS Ltd
Assigned to STMICELECTRONICS LIMITED reassignment STMICELECTRONICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOWDHURY, VIVEK
Publication of US20020047696A1 publication Critical patent/US20020047696A1/en
Application granted granted Critical
Publication of US6433529B1 publication Critical patent/US6433529B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the present invention relates to a circuit for generating an output voltage which is proportional to temperature with a required gradient.
  • Such circuits exist which rely on the principle that the difference in the base emitter voltage of two bipolar transistors with differing areas, if appropriately connected, can result in a current which has a positive temperature coefficient, that is a current which varies linearly with temperature such that as the temperature increases the current increases.
  • This current referred to herein as Iptat
  • Vptat can be used to generate a voltage proportional to absolute temperature, Vptat, when supplied across a resistor.
  • the present invention provides a circuit for generating an output voltage proportional to temperature with a required gradient, the circuit comprising: a first stage arranged to generate a first voltage which is proportional to temperature with a predetermined gradient, the first stage comprising: first and second bipolar transistors with different emitter areas having their emitters connected together and their bases connected across a bridge resistive element, wherein the collectors of the transistors are connected to an internal supply line via respective matched resistive elements such that the voltage across the bridge resistive element is proportional to temperature; a differential amplifier having its inputs connected respectively to said collectors, and its output connected to stabilisation circuitry connected between first and second power supply rails and an internal supply line which cooperates with the differential amplifier to maintain a stable voltage on the internal supply line despite variations between the first and second power supply rails; and a second stage which comprises a gain circuit connected to receive the first voltage for altering the predetermined gradient to match the required gradient, the gain circuit having as its voltage supply said stable voltage on the internal supply line.
  • FIG. 1 represents circuitry of the first stage
  • FIG. 2 represents construction of a resistive chain
  • FIG. 3 represents circuitry of the second stage
  • FIG. 4 is a graph illustrating the variation of temperature with voltage for circuits with and without use of the present invention.
  • FIG. 5 represents circuitry of another form of second stage.
  • the present invention is concerned with a circuit for the generation of a voltage proportional to absolute temperature (Vptat).
  • the circuit has two stages which are referred to herein as the first stage and the second stage.
  • a “raw” voltage Vptat is generated, and in the second stage a calibrated voltage for measurement purposes is generated from the “raw” voltage.
  • FIG. 1 illustrates one embodiment of the first stage.
  • the core of the voltage generation circuit comprises two bipolar transistors Q 0 ,Q 1 which have different emitter areas.
  • K Boltzmanns constant
  • T temperature
  • q the electron charge
  • Ic 0 the collector current through the transistor Q 0
  • Ic 1 the collector current through the transistor Q 1
  • Is 0 the saturation current of the transistor Q 0
  • Is 1 the saturation current of the transistor Q 1 .
  • the saturation current is dependent on the emitter area, such that the ratio Is 0 divided by Is 1 is equal to the ratio of the emitter area of the transistor Q 0 to the emitter area of the transistor Q 1 . In the described embodiment, that ratio is 8. Also, the circuit illustrated in FIG.
  • This current Iptat is passed through a resistive chain Rx to generate the temperature dependent voltage Vptat at a node N 1 .
  • a resistor R 3 is connected between R 2 and ground.
  • the collector currents Ic 1 , Ic 0 are forced to be equal by matching resistors R 0 , R 1 in the collector paths as closely as possible. However, it is also important to maintain the collector voltages of the transistors Q 0 ,Q 1 as close to one another as possible to match the collector currents. This is achieved by connecting the two inputs of a differential amplifier AMP 1 to the respective collector paths. The amplifier AMP 1 is designed to hold its inputs very close to one another. In the described embodiments, the input voltage Vio of the amplifier AMP 1 is less then 1 mV so that the matching of the collector voltages of the transistors Q 0 ,Q 1 is very good. This improves the linearity of operation of the circuit.
  • Vddint denotes an internal line voltage which is set and stabilised as described in the following.
  • a transistor Q 4 has its emitter connected to Vddlnt and its collector connected to the amplifier AMP 1 to act as a current source for the amplifier AMP 1 . It is connected in a mirror configuration with a bipolar transistor Q 6 which has its base connected to its collector. The transistor Q 6 is connected in series to an opposite polarity transistor Q 8 , also having its base connected to its collector.
  • the bipolar transistors Q 8 and Q 6 assist in setting the value of the internal line voltage V ddint at a stable voltage to a level given by, to a first approximation,
  • V ddint is a reasonably stable voltage because the decrease across Q 6 and Q 8 with rising temperature is compensated by the increase in Vptat.
  • the amplifier AMP 1 has a secondary purpose, provided at no extra overhead, to the main purpose of equalising the collector voltages Q 0 and Q 1 , discussed above.
  • the secondary use is for stabilising the line voltage V ddint .
  • V ddint is disturbed by fluctuating voltage or current due to excessive current taken from the second stage (discussed later) or noise or power supply coupling onto it.
  • the voltage on line V ddint will go up or down slightly. If V ddint goes higher, then the potential at resistor R 2 and R 3 will rise. Icl will increase slightly more than IcO and the difference across AMP 1 increases.
  • AMP 1 is a transconductance amplifier and as the Vic increases more current is drawn through Q 2 , i.e.
  • the base of a transistor Q 9 connected between the transistor Q 2 and V supply is connected to receive a start-up signal from a start-up circuit (not shown).
  • the transistor Q 9 acts as a current source for the transistor Q 2 .
  • An additional bipolar transistor Q 5 is connected between the common emitter connection of the voltage generating transistors Q 0 ,Q 1 and has its base connected to receive a start-up signal from the start-up circuit. It functions as the “tail” of the Vptat transistors Q 0 ,Q 1 .
  • the temperature dependent voltage Vptat generated by the first stage illustrated in FIG. 1 has a good linear variation at the calculated slope ⁇ 4.53 mV/° C.
  • the internal line voltage V ddint limits the swing in the upper direction, and also Vptat cannot go down to zero.
  • the resistive chain Rx constitutes a sequence of resistors connected in series as illustrated for example in FIG. 2.
  • the slope of the temperature dependent voltage is dependent on the resistive value in the resistive chain Rx and thus can be altered by tapping off the voltage at different points P 1 ,P 2 ,P 3 in FIG. 2.
  • FIG. 3 illustrates the second stage of the circuit which functions as a gain stage.
  • the circuit comprises a differential amplifier AMP 2 having a first input 10 connected to receive the temperature dependent voltage Vptat at node N 1 from the first stage and a second input 12 serving as a feedback input.
  • the output of the differential amplifier AMP 2 is connected to a Darlington pair of transistors Q 10 , Q 11 .
  • Darlington pair supplies an output voltage Vout at node 14 .
  • the amplifier AMP 2 and the first Darlington transistor Q 10 are connected to the stable voltage line V ddint supplied by the first stage.
  • the second Darlington transistor is connected to V supply .
  • the output voltage Vout is a voltage which is proportional to temperature with a required gradient and which can move negative with negative temperatures.
  • the adjustment of the slope of the temperature versus voltage curve is achieved in the second stage by a feedback loop for the differential amplifier AMP 2 .
  • the feedback loop comprises a gain resistor R 4 connected between the output terminal 14 at which the output voltage Vout is taken and the base of a feedback transistor Q 12 .
  • the collector of the feedback transistor Q 12 is connected to ground and its emitter is connected into a resistive chain Ry, the value of which can be altered and which is constructed similarly to the resistive chain Rx in FIG. 2.
  • a resistor R 5 is connected between the resistor R 4 and ground.
  • the gain of the feedback loop including differential amplifier AMP 2 can be adjusted by altering the ratio: R4 + R5 R5 ( 6 )
  • the voltage Vptat at the node N 1 cannot move into negative values even when the temperature moves negative.
  • the second stage of the circuit accomplishes this by providing an offset circuit 22 connected to the input terminal 12 of the differential amplifier AMP 2 .
  • the offset circuit 22 comprises the resistor chain Ry and the transistor Q 12 . Together these components provide a relatively stable bandgap voltage of about 1.25 V.
  • the resistive chain Ry receives the current Iptat mirrored from the first stage via two bipolar transistors Q 13 , Q 14 of opposite types which are connected in opposition and which cooperate with the transistors Q 6 and Q 8 of the first stage to act as a current mirror to mirror the temperature dependent current lptat.
  • Vbe(Q 12 ) decreases.
  • This offset circuit 22 introduces a fixed voltage offset at the input terminal 12 , thus shifting the line of voltage with respect to temperature. This shift can be seen in FIG. 4, where the curve of the output voltage Vout at node 14 can be seen to pass through zero and move negative at negative temperatures.
  • the “bridge” network in the first stage performs a number of different functions, as follows. Firstly, it provides a temperature related voltage Vptat at the node N 1 . Secondly, it assists in providing a relatively fixed internal supply voltage V ddint even in the face of external supply variations, thus giving good line regulation for the gain circuit of the second stage. Thirdly, it provides in conjunction with the current mirror transistors Q 4 ,Q 6 current biasing for the amplifier AMP 1 of the first stage. Fourthly, it provides, through the mirroring of transistors Q 6 ,Q 13 current biasing for the resistive chain Ry in the offset circuit 22 of the second stage.
  • Table 1 illustrates the operating parameters of one particular embodiment of the circuit. To achieve the operating parameters given in Table 1, adjustment can be made using the resistive chain Rx implemented in the manner illustrated in FIG. 2 to adjust the slope of Vptat in the first stage.
  • the slope may be adjusted in the second stage by altering the gain resistors R 4 ,R 5 .
  • TABLE 1 Parameter Conditions Min Typ Max Units Accuracy T 25 C. +/ ⁇ 2 deg C. ⁇ 30 ⁇ T ⁇ 130 C. Sensor Gain ⁇ 30 ⁇ T ⁇ 130 C. 10 mv/deg C.
  • Load Regulation 0 ⁇ Iout ⁇ 1 mA 15 mV/mA Line Regulation 4.0 ⁇ VCC ⁇ 11 V +/ ⁇ 0.5 mV/V Quiescent current 4.0 ⁇ VCC ⁇ 11 V 80 uA T 25 C.
  • FIG. 5 represents an alternative second stage which includes a differential amplifier AMP 2 in a feedback loop as in the circuit of FIG. 3.
  • the second stage illustrated in FIG. 5 differs from that in FIG. 3 in that there is no offset circuit. Instead, the transistor Q 12 is connected via a current mirror CM 1 to the supply line V Supply .
  • This second stage allows the gradient of the temperature dependent voltage at node N 1 to be altered but does not allow it to move negative with negative temperatures.
  • CM 2 denotes a second current mirror in the circuit of FIG. 5.
  • the second stage of FIG. 5 nevertheless still makes use of the stable internal voltage supply line V ddint to supply the differential amplifier AMP 2 .
  • Table II illustrates the operating parameters of an embodiment of the invention using the stage of FIG. 5.
  • FIG. 5 represents an alternative second stage which includes a differential amplifier AMP 2 in a feedback loop as in the circuit of FIG. 3.
  • the second stage illustrated in FIG. 5 differs from that in FIG. 3 in that there is no offset circuit. Instead, the transistor Q 12 is connected via a current mirror CM 1 to the supply line V supply .
  • This second stage allows the gradient of the temperature dependent voltage at node N 1 to be altered but does not allow it to move negative with negative temperatures.
  • CM 2 denotes a second current mirror in the circuit of FIG. 5.
  • the second stage of FIG. 5 nevertheless still makes use of the stable internal voltage supply line V ddint to supply the differential amplifier AMP 2 .
  • Table II illustrates the operating parameters of an embodiment of the invention using the stage of FIG. 5.

Abstract

A circuit for generating an output voltage which is proportional to temperature with a required gradient is disclosed. The circuit relies on the principle that the difference in the base emitter voltage of two bipolar transistors with differing areas, if appropriately connected, can result in a current which has a positive temperature coefficient, that is a current which varies linearly with temperature such that as the temperature increases the current increases. It is important to maintain a stable internal line voltage in the face of significant variations in a supply voltage to the circuit. This is achieved herein by providing control elements appropriately connected to a differential amplifier. The stable internal supply voltage can be used to power a subsequent stage of the circuit for fine control of the gradient of the voltage proportional to temperature.

Description

  • The present invention relates to a circuit for generating an output voltage which is proportional to temperature with a required gradient. [0001]
  • Such circuits exist which rely on the principle that the difference in the base emitter voltage of two bipolar transistors with differing areas, if appropriately connected, can result in a current which has a positive temperature coefficient, that is a current which varies linearly with temperature such that as the temperature increases the current increases. This current, referred to herein as Iptat, can be used to generate a voltage proportional to absolute temperature, Vptat, when supplied across a resistor. [0002]
  • One such practical difficulty is the need to accurately control the required gradient of variation of the voltage with respect to temperature. In a circuit of the type mentioned above, this can be done by controlling the value of resistance through which the current proportional to absolute temperature Iptat is supplied. However, this may not give adequate control of the gradient and it is desirable therefore to incorporate a second stage which allows the finer adjustment of the gradient to be made. It is an aim of the present invention to incorporate such a second stage in an environment with good line regulation for the first and second stages. [0003]
  • The present invention provides a circuit for generating an output voltage proportional to temperature with a required gradient, the circuit comprising: a first stage arranged to generate a first voltage which is proportional to temperature with a predetermined gradient, the first stage comprising: first and second bipolar transistors with different emitter areas having their emitters connected together and their bases connected across a bridge resistive element, wherein the collectors of the transistors are connected to an internal supply line via respective matched resistive elements such that the voltage across the bridge resistive element is proportional to temperature; a differential amplifier having its inputs connected respectively to said collectors, and its output connected to stabilisation circuitry connected between first and second power supply rails and an internal supply line which cooperates with the differential amplifier to maintain a stable voltage on the internal supply line despite variations between the first and second power supply rails; and a second stage which comprises a gain circuit connected to receive the first voltage for altering the predetermined gradient to match the required gradient, the gain circuit having as its voltage supply said stable voltage on the internal supply line.[0004]
  • For a better understanding of the present invention and to show how the same may be carried into effect reference will now be made by way of example to the accompanying drawings in which: [0005]
  • FIG. 1 represents circuitry of the first stage; [0006]
  • FIG. 2 represents construction of a resistive chain; [0007]
  • FIG. 3 represents circuitry of the second stage; [0008]
  • FIG. 4 is a graph illustrating the variation of temperature with voltage for circuits with and without use of the present invention; and [0009]
  • FIG. 5 represents circuitry of another form of second stage.[0010]
  • The present invention is concerned with a circuit for the generation of a voltage proportional to absolute temperature (Vptat). The circuit has two stages which are referred to herein as the first stage and the second stage. In the first stage, a “raw” voltage Vptat is generated, and in the second stage a calibrated voltage for measurement purposes is generated from the “raw” voltage. [0011]
  • FIG. 1 illustrates one embodiment of the first stage. The core of the voltage generation circuit comprises two bipolar transistors Q[0012] 0,Q1 which have different emitter areas. The difference ΔVbe between the base emitter voltages Vb(Q1)-Vb(Q0) is given to the first order by the equation (1): Δ Vbe = KT q · ln Ic 1 Is 0 Ic 0 Is 1 ( 1 )
    Figure US20020047696A1-20020425-M00001
  • where K is Boltzmanns constant, T is temperature, q is the electron charge, Ic[0013] 0 is the collector current through the transistor Q0, Ic1 is the collector current through the transistor Q1, Is0 is the saturation current of the transistor Q0 and Is1 is the saturation current of the transistor Q1. As is well known, the saturation current is dependent on the emitter area, such that the ratio Is0 divided by Is1 is equal to the ratio of the emitter area of the transistor Q0 to the emitter area of the transistor Q1. In the described embodiment, that ratio is 8. Also, the circuit illustrated in FIG. 1, is arranged so that the collector currents Ic1 and Ic0 are maintained equal, such that their ratio is 1, as discussed in more detail in the following. Therefore, to a first approximation, Δ Vbe = KT q · ln 8 (1a)
    Figure US20020047696A1-20020425-M00002
  • The difference ΔVbe is dropped across a bridge resistor R[0014] 2 to generate a current proportional to absolute temperature Iptat, where:
  • Iptat=ΔVbe/R2  (2)
  • This current Iptat is passed through a resistive chain Rx to generate the temperature dependent voltage Vptat at a node N[0015] 1. A resistor R3 is connected between R2 and ground.
  • With R[0016] 2 equal to 18 kOhms, substituting the values in equations (1) and (2) above, Iptat is in the range 2.5 μA to 3 μA over a temperature range of −20 to 100° C. The temperature dependent voltage Vptat is given by: Vptat = Iptat × ( R2 + R3 + Rx ) = KT q ln 8 ( R2 + R3 + Rx ) R2 ( 3 )
    Figure US20020047696A1-20020425-M00003
  • To get a relationship of the temperature dependent voltage Vptat variation with temperature, we differentiate the above equation to obtain: [0017] Vptat T = K ln 8 ( R2 + R3 + Rx ) q × R2 ( 4 )
    Figure US20020047696A1-20020425-M00004
  • With the values indicated above R2=18K, R3=36K, Rx=85K, the variation of voltage with temperature is 4.53 mV/° C. [0018]
  • Before discussing how Vptat is modified in the second stage, other attributes of the circuit of the first stage will be discussed. [0019]
  • The collector currents Ic[0020] 1, Ic0 are forced to be equal by matching resistors R0, R1 in the collector paths as closely as possible. However, it is also important to maintain the collector voltages of the transistors Q0,Q1 as close to one another as possible to match the collector currents. This is achieved by connecting the two inputs of a differential amplifier AMP1 to the respective collector paths. The amplifier AMP1 is designed to hold its inputs very close to one another. In the described embodiments, the input voltage Vio of the amplifier AMP1 is less then 1 mV so that the matching of the collector voltages of the transistors Q0,Q1 is very good. This improves the linearity of operation of the circuit.
  • Vddint denotes an internal line voltage which is set and stabilised as described in the following. A transistor Q[0021] 4 has its emitter connected to Vddlnt and its collector connected to the amplifier AMP1 to act as a current source for the amplifier AMP1. It is connected in a mirror configuration with a bipolar transistor Q6 which has its base connected to its collector. The transistor Q6 is connected in series to an opposite polarity transistor Q8, also having its base connected to its collector.
  • The bipolar transistors Q[0022] 8 and Q6 assist in setting the value of the internal line voltage Vddint at a stable voltage to a level given by, to a first approximation,
  • Vddint−Iptat(R3+R2+Rx+Rz)+Vbe(Q6)+Vbe(Q8)  (5)
  • According to the principal on which bandgap voltage regulators are based, as Vptat increases with temperature, the Vbe of transistors Q[0023] 6 and Q8 decrease due to the temperature dependence of Vbe in a bipolar transistor. Thus, Vddint is a reasonably stable voltage because the decrease across Q6 and Q8 with rising temperature is compensated by the increase in Vptat.
  • The amplifier AMP[0024] 1 has a secondary purpose, provided at no extra overhead, to the main purpose of equalising the collector voltages Q0 and Q1, discussed above. The secondary use is for stabilising the line voltage Vddint. Imagine if Vddint is disturbed by fluctuating voltage or current due to excessive current taken from the second stage (discussed later) or noise or power supply coupling onto it. The voltage on line Vddint will go up or down slightly. If Vddint goes higher, then the potential at resistor R2 and R3 will rise. Icl will increase slightly more than IcO and the difference across AMP1 increases. AMP1 is a transconductance amplifier and as the Vic increases more current is drawn through Q2, i.e. Ic2 increases. Q3 is starved of base current and switches off allowing Vddint to recover by current discharge through the resistor bridge. The opposite occurs when Vddint goes low in which case AMP1 supplies less current to the base of Q2 therefore the current Ic2 decreases and mor ecurrent from Q9 can go to the base of Q3 allowing more drive current lc3 to supply Vddint. In effect there is some stabilisation.
  • The base of a transistor Q[0025] 9 connected between the transistor Q2 and Vsupply is connected to receive a start-up signal from a start-up circuit (not shown). The transistor Q9 acts as a current source for the transistor Q2. An additional bipolar transistor Q5 is connected between the common emitter connection of the voltage generating transistors Q0,Q1 and has its base connected to receive a start-up signal from the start-up circuit. It functions as the “tail” of the Vptat transistors Q0,Q1.
  • The temperature dependent voltage Vptat generated by the first stage illustrated in FIG. 1 has a good linear variation at the calculated slope≈4.53 mV/° C. However, the internal line voltage V[0026] ddint limits the swing in the upper direction, and also Vptat cannot go down to zero.
  • It will be appreciated that the resistive chain Rx constitutes a sequence of resistors connected in series as illustrated for example in FIG. 2. The slope of the temperature dependent voltage is dependent on the resistive value in the resistive chain Rx and thus can be altered by tapping off the voltage at different points P[0027] 1,P2,P3 in FIG. 2.
  • FIG. 3 illustrates the second stage of the circuit which functions as a gain stage. The circuit comprises a differential amplifier AMP[0028] 2 having a first input 10 connected to receive the temperature dependent voltage Vptat at node N1 from the first stage and a second input 12 serving as a feedback input. The output of the differential amplifier AMP2 is connected to a Darlington pair of transistors Q10, Q11. The emitter of the second transistor Q11 in the
  • Darlington pair supplies an output voltage Vout at [0029] node 14. The amplifier AMP2 and the first Darlington transistor Q10 are connected to the stable voltage line Vddint supplied by the first stage. The second Darlington transistor is connected to Vsupply.
  • The output voltage Vout is a voltage which is proportional to temperature with a required gradient and which can move negative with negative temperatures. [0030]
  • The adjustment of the slope of the temperature versus voltage curve is achieved in the second stage by a feedback loop for the differential amplifier AMP[0031] 2. The feedback loop comprises a gain resistor R4 connected between the output terminal 14 at which the output voltage Vout is taken and the base of a feedback transistor Q12. The collector of the feedback transistor Q12 is connected to ground and its emitter is connected into a resistive chain Ry, the value of which can be altered and which is constructed similarly to the resistive chain Rx in FIG. 2. A resistor R5 is connected between the resistor R4 and ground. The gain of the feedback loop including differential amplifier AMP2 can be adjusted by altering the ratio: R4 + R5 R5 ( 6 )
    Figure US20020047696A1-20020425-M00005
  • This allows the slope of the incoming temperature dependent voltage Vptat to be adjusted between the gradient produced by the first stage at N[0032] 1 and the required gradient at the output terminal 14. In the described example, the slope of the temperature dependent voltage Vptat at N1 with respect to temperature is 4.53 mV/° C. This is altered by the second stage to 10 mV/° C. This is illustrated in FIG. 4 where the crosses denote the relationship of voltage and temperature at N1 and the diamonds denote the relationship of voltage to temperature for the output voltage at the output node 14.
  • As has already been mentioned, the voltage Vptat at the node N[0033] 1 cannot move into negative values even when the temperature moves negative. The second stage of the circuit accomplishes this by providing an offset circuit 22 connected to the input terminal 12 of the differential amplifier AMP2. The offset circuit 22 comprises the resistor chain Ry and the transistor Q12. Together these components provide a relatively stable bandgap voltage of about 1.25 V. The resistive chain Ry receives the current Iptat mirrored from the first stage via two bipolar transistors Q13, Q14 of opposite types which are connected in opposition and which cooperate with the transistors Q6 and Q8 of the first stage to act as a current mirror to mirror the temperature dependent current lptat. As lptat increases with temperature, Vbe(Q12) decreases. This offset circuit 22 introduces a fixed voltage offset at the input terminal 12, thus shifting the line of voltage with respect to temperature. This shift can be seen in FIG. 4, where the curve of the output voltage Vout at node 14 can be seen to pass through zero and move negative at negative temperatures.
  • From the above description it can be seen that the “bridge” network in the first stage performs a number of different functions, as follows. Firstly, it provides a temperature related voltage Vptat at the node N[0034] 1. Secondly, it assists in providing a relatively fixed internal supply voltage Vddint even in the face of external supply variations, thus giving good line regulation for the gain circuit of the second stage. Thirdly, it provides in conjunction with the current mirror transistors Q4,Q6 current biasing for the amplifier AMP1 of the first stage. Fourthly, it provides, through the mirroring of transistors Q6,Q13 current biasing for the resistive chain Ry in the offset circuit 22 of the second stage.
  • Table 1 illustrates the operating parameters of one particular embodiment of the circuit. To achieve the operating parameters given in Table 1, adjustment can be made using the resistive chain Rx implemented in the manner illustrated in FIG. 2 to adjust the slope of Vptat in the first stage. [0035]
  • Alternatively, the slope may be adjusted in the second stage by altering the gain resistors R[0036] 4,R5.
    TABLE 1
    Parameter Conditions Min Typ Max Units
    Accuracy T = 25 C. +/−2 deg C.
    −30 < T < 130 C.
    Sensor Gain −30 < T < 130 C. 10 mv/deg C.
    Load Regulation
    0 < Iout < 1 mA 15 mV/mA
    Line Regulation 4.0 < VCC < 11 V +/−0.5 mV/V
    Quiescent current 4.0 < VCC < 11 V 80 uA
    T = 25 C.
    Operating supply range 4 11 V
    Output voltage offset  0 V
  • FIG. 5 represents an alternative second stage which includes a differential amplifier AMP[0037] 2 in a feedback loop as in the circuit of FIG. 3. However, the second stage illustrated in FIG. 5 differs from that in FIG. 3 in that there is no offset circuit. Instead, the transistor Q12 is connected via a current mirror CM1 to the supply line VSupply. This second stage allows the gradient of the temperature dependent voltage at node N1 to be altered but does not allow it to move negative with negative temperatures. CM2 denotes a second current mirror in the circuit of FIG. 5. The second stage of FIG. 5 nevertheless still makes use of the stable internal voltage supply line Vddint to supply the differential amplifier AMP2. Table II illustrates the operating parameters of an embodiment of the invention using the stage of FIG. 5.
    TABLE II
    Parameter Conditions Min Typ Max Units
    Accuracy −30 < T < 130 C. +/−2 deg C.
    Sensor Gain −30 < T > 100 C. 10 mv/deg C.
    Load Regula- 0 < Iout < 1 mA +/−15 mV/mA
    tion
    Line Regula- 4.0 < VCC < 10 V +/−0.5 mV/V
    tion
    Quiescent 4.0 < VCC < 10 V 80 uA
    current
    Operating sup- 4.5 11 V
    ply range
    Output voltage 0.81 V
    offset
  • For the circuit of FIG. 5, −10° C.=0.71 V, −20° C.=0.61 V, −30° C.=0.51 V, 100° C.=1.81 V. [0038]
  • FIG. 5 represents an alternative second stage which includes a differential amplifier AMP[0039] 2 in a feedback loop as in the circuit of FIG. 3. However, the second stage illustrated in FIG. 5 differs from that in FIG. 3 in that there is no offset circuit. Instead, the transistor Q12 is connected via a current mirror CM1 to the supply line Vsupply. This second stage allows the gradient of the temperature dependent voltage at node N1 to be altered but does not allow it to move negative with negative temperatures. CM2 denotes a second current mirror in the circuit of FIG. 5. The second stage of FIG. 5 nevertheless still makes use of the stable internal voltage supply line Vddint to supply the differential amplifier AMP2. Table II illustrates the operating parameters of an embodiment of the invention using the stage of FIG. 5.
    TABLE II
    Parameter Conditions Min Typ Max Units
    Accuracy −30 < T < 130 C. +/−2 Deg C.
    Sensor Gain −30 < T > 100 C. 10 mv/deg C.
    Load Regula- 0 < Iout < 1 mA +/−15 mV/mA
    tion
    Line Regula- 4.0 < VCC < 10 V +/−0.5 mV/V
    tion
    Quiescent 4.0 < VCC < 10 V 80 uA
    current
    Operating sup- 4.5 11 V
    ply range
    Output voltage 0.81 V
    offset
  • For the circuit of FIG. 5, −10° C.=0.71 V, −20° C.=0.61 V, −30° C.=0.51 V, 100° C.=1.81 V. [0040]

Claims (11)

1. A circuit for generating an output voltage proportional to temperature with a required gradient, the circuit comprising:
first and second bipolar transistors with different emitter areas having their emitters connected together and their bases connected across a bridge resistive element, wherein the collectors of the transistors are connected to an internal supply line via respective matched resistive elements such that the voltage across the bridge resistive element is proportional to temperature;
a differential amplifier having its inputs connected respectively to said collectors and its output connected to a control terminal of a first control element having a controllable path connected between a first power supply rail and a control node;
a second control element having a controllable path connected between the control node and a second power supply rail; and
a third control element having a control terminal connected to the control node and a controllable path connected between the second power supply rail and AN internal supply line, whereby the differential amplifier and the first, second and third control elements cooperate to maintain a stable voltage on the internal supply line despite variations between the first and second power supply rails.
2. A circuit according to claim 1, wherein the current flowing through the bridge resistive element is a temperature dependent current which is also supplied through a first resistive chain to generate at an output node of the circuit a voltage proportional to temperature with a predetermined gradient determined by the first resistive chain.
3. A circuit according to claim 2, which comprises first and second bipolar transistors of opposite polarity connected in series between the internal supply line and the output node which serve to set the voltage on the internal supply line.
4. A circuit according to claim 3, wherein the first and second transistors cooperate with a current supply element to generate a supply current for the differential amplifier.
5. A circuit according to any preceding claim, wherein the first, second and third control elements are bipolar transistors with the base constituting the control terminal and the collector emitter path constituting the controllable path.
6. A circuit according to any preceding claim which comprises a second stage which has a second differential amplifier connected to receive the output voltage proportional to temperature and a second input connected to receive a feedback voltage which is derived from an output signal of the differential amplifier whereby the gain of the output voltage can be adjusted.
7. A circuit according to claim 6, wherein the second differential amplifier is powered by the stable voltage on the internal supply line.
8. A circuit according to claim 2 or 3, wherein the required gradient is programmable through variation of the resistance of the first resistive chain.
9. A circuit according to claim 6 or 7, wherein the feedback voltage in the second stage is derived from the output signal of a differential amplifier via an offset circuit which introduces an offset voltage such that the output signal of a differential amplifier provides at an output node said output voltage which has a negative variation with negative temperature.
10. A circuit according to claim 9, wherein the offset circuit comprises a bipolar transistor connected in series with a resistive element.
11. A circuit according to claims 2 and 10, wherein the temperature dependent current from the circuit is mirrored into the second stage to flow through the resistive element of the offset circuit.
US09/854,139 2000-05-12 2001-05-11 Generation of a voltage proportional to temperature with accurate gain control Expired - Lifetime US6433529B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0011545.1 2000-05-12
GBGB0011545.1A GB0011545D0 (en) 2000-05-12 2000-05-12 Generation of a voltage proportional to temperature with accurate gain control
GB0011545 2000-05-12

Publications (2)

Publication Number Publication Date
US20020047696A1 true US20020047696A1 (en) 2002-04-25
US6433529B1 US6433529B1 (en) 2002-08-13

Family

ID=9891524

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/854,139 Expired - Lifetime US6433529B1 (en) 2000-05-12 2001-05-11 Generation of a voltage proportional to temperature with accurate gain control

Country Status (3)

Country Link
US (1) US6433529B1 (en)
EP (1) EP1156403A1 (en)
GB (1) GB0011545D0 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140015504A1 (en) * 2011-04-12 2014-01-16 Renesas Electronics Corporation Voltage generating circuit
US10496122B1 (en) * 2018-08-22 2019-12-03 Nxp Usa, Inc. Reference voltage generator with regulator system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657480B2 (en) * 2000-07-21 2003-12-02 Ixys Corporation CMOS compatible band gap reference
US6954059B1 (en) * 2003-04-16 2005-10-11 National Semiconductor Corporation Method and apparatus for output voltage temperature dependence adjustment of a low voltage band gap circuit
KR20140079046A (en) * 2012-12-18 2014-06-26 에스케이하이닉스 주식회사 Differential amplifer
US9753138B1 (en) * 2016-04-13 2017-09-05 Microsoft Technology Licensing, Llc Transducer measurement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525663A (en) * 1982-08-03 1985-06-25 Burr-Brown Corporation Precision band-gap voltage reference circuit
US4902959A (en) * 1989-06-08 1990-02-20 Analog Devices, Incorporated Band-gap voltage reference with independently trimmable TC and output
DE4224584C2 (en) * 1992-07-22 1997-02-27 Smi Syst Microelect Innovat Highly accurate reference voltage source
US5352973A (en) * 1993-01-13 1994-10-04 Analog Devices, Inc. Temperature compensation bandgap voltage reference and method
US5519354A (en) * 1995-06-05 1996-05-21 Analog Devices, Inc. Integrated circuit temperature sensor with a programmable offset
US5686821A (en) * 1996-05-09 1997-11-11 Analog Devices, Inc. Stable low dropout voltage regulator controller
US6037833A (en) * 1997-11-10 2000-03-14 Philips Electronics North America Corporation Generator for generating voltage proportional to absolute temperature
US6028478A (en) * 1998-07-13 2000-02-22 Philips Electronics North America Corporation Converter circuit and variable gain amplifier with temperature compensation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140015504A1 (en) * 2011-04-12 2014-01-16 Renesas Electronics Corporation Voltage generating circuit
US9564805B2 (en) * 2011-04-12 2017-02-07 Renesas Electronics Corporation Voltage generating circuit
US9989985B2 (en) 2011-04-12 2018-06-05 Renesas Electronics Corporation Voltage generating circuit
US20180253118A1 (en) * 2011-04-12 2018-09-06 Renesas Electronics Corporation Voltage generating circuit
US10289145B2 (en) * 2011-04-12 2019-05-14 Renesas Electronics Corporation Voltage generating circuit
US10496122B1 (en) * 2018-08-22 2019-12-03 Nxp Usa, Inc. Reference voltage generator with regulator system

Also Published As

Publication number Publication date
EP1156403A1 (en) 2001-11-21
GB0011545D0 (en) 2000-06-28
US6433529B1 (en) 2002-08-13

Similar Documents

Publication Publication Date Title
US7173407B2 (en) Proportional to absolute temperature voltage circuit
US9372496B2 (en) Electronic device and method for generating a curvature compensated bandgap reference voltage
US4792748A (en) Two-terminal temperature-compensated current source circuit
US6075407A (en) Low power digital CMOS compatible bandgap reference
US6426669B1 (en) Low voltage bandgap reference circuit
US6507180B2 (en) Bandgap reference circuit with reduced output error
US7301389B2 (en) Curvature-corrected band-gap voltage reference circuit
US7053694B2 (en) Band-gap circuit with high power supply rejection ratio
US20020163379A1 (en) CMOS reference voltage circuit
JPH08234853A (en) Ptat electric current source
US6509783B2 (en) Generation of a voltage proportional to temperature with a negative variation
US6680643B2 (en) Bandgap type reference voltage source with low supply voltage
US9864389B1 (en) Temperature compensated reference voltage circuit
US6342781B1 (en) Circuits and methods for providing a bandgap voltage reference using composite resistors
EP0640904A2 (en) Curvature correction circuit for a voltage reference
US8085029B2 (en) Bandgap voltage and current reference
US6288525B1 (en) Merged NPN and PNP transistor stack for low noise and low supply voltage bandgap
US6509782B2 (en) Generation of a voltage proportional to temperature with stable line voltage
US11500408B2 (en) Reference voltage circuit
JP2004514230A (en) Method of adjusting BGR circuit and BGR circuit
US6433529B1 (en) Generation of a voltage proportional to temperature with accurate gain control
US20030132787A1 (en) Circuit of substantially constant transconductance
US6683444B2 (en) Performance reference voltage generator
US6639451B2 (en) Current reference circuit for low supply voltages
US20240103558A1 (en) Gain and temperature tolerant bandgap voltage reference

Legal Events

Date Code Title Description
AS Assignment

Owner name: STMICELECTRONICS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOWDHURY, VIVEK;REEL/FRAME:012009/0861

Effective date: 20010607

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12