US20020042558A1 - Pulse oximeter and method of operation - Google Patents

Pulse oximeter and method of operation Download PDF

Info

Publication number
US20020042558A1
US20020042558A1 US09939391 US93939101A US2002042558A1 US 20020042558 A1 US20020042558 A1 US 20020042558A1 US 09939391 US09939391 US 09939391 US 93939101 A US93939101 A US 93939101A US 2002042558 A1 US2002042558 A1 US 2002042558A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
set forth
sensor
signals
ratio
valid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09939391
Inventor
Yitzhak Mendelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cybro Medical Ltd
Original Assignee
Cybro Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Abstract

A sensor for use in an optical measurement device and a method for non-invasive measurement of a blood parameter. The sensor includes sensor housing, a source of radiation coupled to the housing, and a detector assembly coupled to the housing. The source of radiation is adapted to emit radiation at predetermined frequencies. The detector assembly is adapted to detect reflected radiation at least one predetermined frequency and to generate respective signals. The signals are used to determine the parameter of the blood.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention is generally in the field of pulse oximetry, and relates to a sensor for use in a pulse oximeter, and a method for the pulse oximeter operation. [0002]
  • 2. Background of the Invention [0003]
  • Oximetry is based on spectrophotometric measurements of changes in the color of blood, enabling the non-invasive determination of oxygen saturation in the patient's blood. Generally, oximetry is based on the fact that the optical property of blood in the visible (between 500 and 700 nm) and near-infrared (between 700 and 1000 nm) spectra depends strongly on the amount of oxygen in blood. [0004]
  • Referring to FIG. 1, there is illustrated a hemoglobin spectra measured by oximetry based techniques. Graphs G[0005] 1 and G2 correspond, respectively, to reduced hemoglobin, or deoxyhemoglobin (Hb), and oxygenated hemoglobin, or oxyhemoglobin (HbO2), spectra. As shown, deoxyhemoglobin (Hb) has a higher optical extinction (i.e., absorbs more light) in the red region of spectrum around 660 nm, as compared to that of oxyhemoglobin (HbO2). On the other hand, in the near-infrared region of the spectrum around 940 nm, the optical absorption by deoxyhemoglobin (Hb) is lower than the optical absorption of oxyhemoglobin (HbO2).
  • Prior art non-invasive optical sensors for measuring arterial oxyhemoglobin saturation (SaO[0006] 2) by a pulse oximeter (termed SpO2) are typically comprised of a pair of small and inexpensive light emitting diodes (LEDs), and a single highly sensitive silicon photodetector. A red (R) LED centered on a peak emission wavelength around 660 nm and an infrared (IR) LED centered on a peak emission wavelength around 940 nm are used as light sources.
  • Pulse oximetry relies on the detection of a photoplethysmographic signal caused by variations in the quantity of arterial blood associated with periodic contraction and relaxation of a patient's heart. The magnitude of this signal depends on the amount of blood ejected from the heart into the peripheral vascular bed with each systolic cycle, the optical absorption of the blood, absorption by skin and tissue components, and the specific wavelengths that are used to illuminate the tissue. SaO[0007] 2 is determined by computing the relative magnitudes of the R and IR photoplethysmograms. Electronic circuits inside the pulse oximeter separate the R and IR photoplethysmograms into their respective pulsatile (AC) and non-pulsatile (DC) signal components. An algorithm inside the pulse oximeter performs a mathematical normalization by which the time-varying AC signal at each wavelength is divided by the corresponding time-invariant DC component which results mainly from the light absorbed and scattered by the bloodless tissue, residual arterial blood when the heart is in diastole, venous blood and skin pigmentation.
  • Since it is assumed that the AC portion results only from the arterial blood component, this scaling process provides a normalized R/IR ratio (i.e., the ratio of AC/DC values corresponding to R- and IR-spectrum wavelengths, respectively), which is highly dependent on SaO[0008] 2, but is largely independent of the volume of arterial blood entering the tissue during systole, skin pigmentation, skin thickness and vascular structure. Hence, the instrument does not need to be re-calibrated for measurements on different patients. Typical calibration of a pulse oximeter is illustrated in FIG. 2 by presenting the empirical relationship between SaO2 and the normalized R/IR ratio, which is programmed by the pulse oximeters' manufacturers.
  • Pulse oximeters are of two kinds operating, respectively, in transmission and reflection modes. In transmission-mode pulse oximetry, an optical sensor for measuring SaO[0009] 2 is usually attached across a fingertip, foot or earlobe, such that the tissue is sandwiched between the light source and the photodetector.
  • In reflection-mode or backscatter type pulse oximetry, as shown in FIG. 3, the LEDs and photodetector are both mounted side-by-side next to each other on the same planar substrate. This arrangement allows for measuring SaO[0010] 2 from multiple convenient locations on the body (e.g. the head, torso, or upper limbs), where conventional transmission-mode measurements are not feasible. For this reason, non-invasive reflectance pulse oximetry has recently become an important new clinical technique with potential benefits in fetal and neonatal monitoring. Using reflectance oximetry to monitor SaO2 in the fetus during labor, where the only accessible location is the fetal scalp or cheeks, or on the chest in infants with low peripheral perfusion, provides several more convenient locations for sensor attachment.
  • Reflection pulse oximetry, while being based on similar spectrophotometric principles as the transmission one, is more challenging to perform and has unique problems that can not always be solved by solutions suitable for solving the problems associated with the transmission-mode pulse oximetry. Generally, comparing transmission and reflection pulse oximetry, the problems associated with reflection pulse oximetry consist of the following: [0011]
  • In reflection pulse oximetry, the pulsatile AC signals are generally very small and, depending on sensor configuration and placement, have larger DC components as compared to those of transmission pulse oximetry. As illustrated in FIG. 4, in addition to the optical absorption and reflection due to blood, the DC signal of the R and IR photoplethysmograms in reflection pulse oximetry can be adversely affected by strong reflections from a bone. This problem becomes more apparent when applying measurements at such body locations as the forehead and the scalp, or when the sensor is mounted on the chest over the ribcage. Similarly, variations in contact pressure between the sensor and the skin can cause larger errors in reflection pulse oximetry (as compared to transmission pulse oximetry) since some of the blood near the superficial layers of the skin may be normally displaced away from the sensor housing towards deeper subcutaneous structures. Consequently, the highly reflective bloodless tissue compartment near the surface of the skin can cause large errors even at body locations where the bone is located too far away to influence the incident light generated by the sensor. [0012]
  • Another problem with currently available reflectance sensors is the potential for specular reflection caused by the superficial layers of the skin, when an air gap exists between the sensor and the skin, or by direct shunting of light between the LEDs and the photodetector through a thin layer of fluid which may be due to excessive sweating or from amniotic fluid present during delivery. [0013]
  • It is important to keep in mind the two fundamental assumptions underlying the conventional dual-wavelength pulse oximetry, which are as follows: [0014]
  • (1) the path of light rays with different illuminating wavelengths in tissue are substantially equal and, therefore, cancel each other, and (2) each light source illuminates the same pulsatile change in arterial blood volume. [0015]
  • Furthermore, the correlation between optical measurements and tissue absorptions in pulse oximetry are based on the fundamental assumption that light propagation is determined primarily by absorbance due to Lambert-Beer's law neglecting multiple scattering effects in biological tissues. In practice, however, the optical paths of different wavelengths in biological tissues is known to vary more in reflectance oximetry compared to transmission oximetry, since it strongly depends on the light scattering properties of the illuminated tissue and sensor mounting. [0016]
  • Several human validation studies, backed by animal investigations, have suggested that uncontrollable physiological and physical parameters can cause large variations in the calibration curve of reflectance pulse oximeters primarily at low oxygen saturation values below 70%. It was observed that the accuracy of pulse oximeters in clinical use might be adversely affected by a number of physiological parameters when measurements are made from sensors attached to the forehead, chest, or the buttock area. While the exact sources of these variations are not fully understood, it is generally believed that there are a few physiological and anatomical factors that may be the major source of these errors. It is also well known for example that changes in the ratio of blood to bloodless tissue volumes may occur through venous congestion, vasoconstriction/vasodilatation, or through mechanical pressure exerted by the sensor on the skin. [0017]
  • Additionally, the empirically derived calibration curve of a pulse oximeter can be altered by the effects of contact pressure exerted by the probe on the skin. This is associated with the following. The light paths in reflectance oximetry are not well defined (as compared to transmission oximetry), and thus may differ between the red and infrared wavelengths. Furthermore, the forehead and scalp areas consist of a relatively thin subcutaneous layer with the cranium bone underneath, while the tissue of other anatomical structures, such as the buttock and limbs, consists of a much thicker layer of skin and subcutaneous tissues without a nearby bony support that acts as a strong light reflector. [0018]
  • Several in vivo and in vitro studies have confirmed that uncontrollable physiological and physical parameters (e.g., different amounts of contact pressure applied by the sensor on the skin, variation in the ratio of bloodless tissue-to-blood content, or site-to-site variations) can often cause large errors in the oxygen saturation readings of a pulse oximeter, which are normally derived based on a single internally-programmed calibration curve. The relevant in vivo studies are disclosed in the following publications: [0019]
  • 1. Dassel, et al., “Effect of location of the sensor on reflectance pulse oximetry”, British Journal of Obstetrics and Gynecology, vol. 104, pp. 910-916, (1997); [0020]
  • 2. Dassel, et al., “Reflectance pulse oximetry at the forehead of newborns: The influence of varying pressure on the probe”, Journal of Clinical Monitoring, vol. 12, pp. 421-428, (1996).][0021]
  • The relevant in vitro studies are disclosed, for example in the following publication: [0022]
  • 3. Edrich et al., “Fetal pulse oximetry: influence of tissue blood content and hemoglobin concentration in a new in-vitro model”, European Journal of Obstetrics and Gynecology and Reproductive Biology, vol. 72, suppl. 1, pp. S29-S34, (1997). [0023]
  • Improved sensors for application in dual-wavelength reflectance pulse oximetry have been developed. As disclosed in the following publication: Mendelson, et al., “Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography”, IEEE Transactions on Biomedical Engineering, vol. 35, no. 10, pp. 798-805 (1988), the total amount of backscattered light that can be detected by a reflectance sensor is directly proportional to the number of photodetectors placed around the LEDs. Additional improvements in signal-to-noise ratio were achieved by increasing the active area of the photodetector and optimizing the separation distance between the light sources and photodetectors. [0024]
  • Another approach is based on the use of a sensor having six photodiodes arranged symmetrically around the LEDs that is disclosed in the following publications: [0025]
  • 4. Mendelson, et al., “Design and evaluation of a new reflectance pulse oximeter sensor”, Medical Instrumentation, vol. 22, no. 4, pp. 167-173 (1988); and [0026]
  • 5. Mendelson, et al., “Skin reflectance pulse oximetry: in vivo measurements from the forearm and calf”, Journal of Clinical Monitoring, vol. 7, pp. 7-12, (1991). [0027]
  • According to this approach, in order to maximize the fraction of backscattered light collected by the sensor, the currents from all six photodiodes are summed electronically by internal circuitry in the pulse oximeter. This configuration essentially creates a large area photodetector made of six discrete photodiodes connected in parallel to produce a single current that is proportional to the amount of light backscattered from the skin. Several studies showed that this sensor configuration could be used successfully to accurately measure SaO[0028] 2 from the forehead, forearm and the calf on humans. However, this sensor requires a means for heating the skin in order to increase local blood flow, which has practical limitations since it could cause skin burns.
  • Yet another prototype reflectance sensor is based on eight dual-wavelength LEDs and a single photodiode, and is disclosed in the following publication: Takatani et al., “Experimental and clinical evaluation of a noninvasive reflectance pulse oximeter sensor”, Journal of Clinical Monitoring, vol. 8, pp. 257-266 (1992). Here, four R and four IR LEDs are spaced at 90-degree intervals around the substrate and at an equal radial distance from the photodiode. [0029]
  • A similar sensor configuration based on six photodetectors mounted in the center of the sensor around the LEDs is disclosed in the following publication: Konig, et al., “Reflectance pulse oximetry—principles and obstetric application in the Zurich system”, Journal of Clinical Monitoring, vol. 14, pp. 403-412 (1998). [0030]
  • According to the techniques disclosed in all of the above publications, only LEDs of two wavelengths, R and IR, are used as light sources, and the computation of SaO[0031] 2 is based on reflection photoplethysmograms measured by a single photodetector, regardless of whether one or multiple photodiodes chips are used to construct the sensor. This is because of the fact that the individual signals from the photodetector elements are all summed together electronically inside the pulse oximeter. Furthermore, while a radially-symmetric photodetector array can help to maximize the detection of backscattered light from the skin and minimize differences from local tissue inhomogeneity, human and animal studies confirmed that this configuration can not completely eliminate errors caused by pressure differences and site-to-site variations.
  • The use of a nominal dual-wavelength pair of 735/890 nm was suggested as providing the best choice for optimizing accuracy, as well as sensitivity in dual-wavelength reflectance pulse oximetry, in U.S. Pat. Nos. 5,782,237 and 5,421,329. This approach minimizes the effects of tissue heterogeneity and enables to obtain a balance in path length changes arising from perturbations in tissue absorbance. This is disclosed in the following publications. [0032]
  • 6. Mannheimer at al., “Physio-optical considerations in the design of fetal pulse oximetry sensors”, European Journal of Obstetrics and Gynecology and Reproductive Biology, vol. 72, suppl. 1, pp. S9-S19, (1997); and [0033]
  • 7. Mannheimer at al., “Wavelength selection for low-saturation pulse oximetry”, IEEE Transactions on Biomedical Engineering, vol. 44, no. 3, pp. 48-158 (1997)]. [0034]
  • However, replacing the conventional R wavelength at 660 nm, which coincides with the region of the spectrum where the difference between the extinction coefficient of Hb and HbO[0035] 2 is maximal, with a wavelength emitting at 735 nm, not only lowers considerably the overall sensitivity of a pulse oximeter, but does not completely eliminate errors due to sensor placement and varying contact pressures.
  • Pulse oximeter probes of a type comprising three or more LEDs for filtering noise and monitoring other functions, such as carboxyhemoglobin or various indicator dyes injected into the blood stream, have been developed and are disclosed, for example, in WO 00/32099 and U.S. Pat. No. 5,842,981. The techniques disclosed in these publications are aimed at providing an improved method for direct digital signal formation from input signals produced by the sensor and for filtering noise. [0036]
  • None of the above prior art techniques provides a solution to overcome the most essential limitation in reflectance pulse oximetry, which requires the automatic correction of the internal calibration curve from which accurate and reproducible oxygen saturation values are derived, despite variations in contact pressure or site-to-site tissue heterogeneity. [0037]
  • In practice, most sensors used in reflection pulse oximetry rely on closely spaced LED wavelengths in order to minimize the differences in the optical path lengths of the different wavelengths. Nevertheless, within the wavelength range required for oximetry, even closely spaced LEDs with closely spaced wavelengths mounted on the same substrate can lead to large random error in the final determination of SaO[0038] 2.
  • SUMMARY OF THE INVENTION AND ADVANTAGES
  • The object of the invention is to provide a novel sensor design and method that functions to correct the calibration relationship of a reflectance pulse oximeter, and reduce measurement inaccuracies in general. Another object of the invention is to provide a novel sensor and method that functions to correct the calibration relationship of a reflectance pulse oximeter, and reduce measurement inaccuracies in the lower range of oxygen saturation values (typically below 70%), which is the predominant range in neonatal and fetal applications. [0039]
  • Yet another object of the present invention is to provide automatic correction of the internal calibration curve from which oxygen saturation is derived inside the oximeter in situations where variations in contact pressure or site-to-site tissue heterogeneity may cause large measurement inaccuracies. [0040]
  • Another object of the invention is to eliminate or reduce the effect of variations in the calibration of a reflectance pulse oximeter between subjects, since perturbations caused by contact pressure remain one of the major sources of errors in reflectance pulse oximetry. In fetal pulse oximetry, there are additional factors, which must be properly compensated for in order to produce an accurate and reliable measurement of oxygen saturation. For example, the fetal head is usually the presenting part, and is a rather easily accessible location for application of reflectance pulse oximetry. However, uterine contractions can cause large and unpredictable variations in the pressure exerted on the head and by the sensor on the skin, which can lead to large errors in the measurement of oxygen saturation by a dual-wavelength reflectance pulse oximeter. Another object of the invention is to provide accurate measurement of oxygen saturation in the fetus during delivery. [0041]
  • The basis for the errors in the oxygen saturation readings of a dual-wavelength pulse oximeter is the fact that, in practical situations, the reflectance sensor applications affect the distribution of blood in the superficial layers of the skin. This is different from an ideal situation, when a reflectance sensor measures light backscattered from a homogenous mixture of blood and bloodless tissue components. Therefore, the R and IR DC signals practically measured by photodetectors contain a relatively larger proportion of light absorbed by and reflected from the bloodless tissue compartments. In these uncontrollable practical situations, the changes caused are normally not compensated for automatically by calculating the normalized R/IR ratio since the AC portions of each photoplethysmogram, and the corresponding DC components, are affected differently by pressure or site-to-site variations. Furthermore, these changes depend not only on wavelength, but depend also on the sensor geometry, and thus cannot be eliminated completely by computing the normalized R/IR ratio, as is typically the case in dualwavelength pulse oximeters. [0042]
  • The inventor has found that the net result of this nonlinear effect is to cause large variations in the slope of the calibration curves. Consequently, if these variations are not compensated automatically, they will cause large errors in the final computation of SpO[0043] 2, particularly at low oxygen saturation levels normally found in fetal applications.
  • Another object of the present invention is to compensate for these variations and to provide accurate measurement of oxygen saturation. The invention consists of, in addition to two measurement sessions typically carried out in pulse oximetry based on measurements with two wavelengths centered around the peak emission values of 660 nm (red spectrum) and 940 nm±20 nm (IR spectrum), one additional measurement session is carried out with an additional wavelength. At least one additional wavelength is preferably chosen to be substantially in the IR region of the electromagnetic spectrum, i.e., in the NIR-IR spectrum (having the peak emission value above 700 nm). In a preferred embodiment the use of at least three wavelengths enables the calculation of an at least one additional ratio formed by the combination of the two IR wavelengths, which is mostly dependent on changes in contact pressure or site-to-site variations. In a preferred embodiment, slight dependence of the ratio on variations in arterial oxygen saturation that may occur, is easily minimized or eliminated completely, by the proper selection and matching of the peak emission wavelengths and spectral characteristics of the at least two IR-light sources. [0044]
  • Preferably, the selection of the IR wavelengths is based on certain criteria. The IR wavelengths are selected to coincide with the region of the optical absorption curve where HbO[0045] 2 absorbs slightly more light than Hb. The IR wavelengths are in the spectral regions where the extinction coefficients of both Hb and HbO2 are nearly equal and remain relatively constant as a function of wavelength, respectively.
  • In a preferred embodiment, tracking changes in the ratio formed by the two IR wavelengths, in real-time, permits automatic correction of errors in the normalized ratio obtained from the R-wavelength and each of the IR-wavelengths. The term “ratio” signifies the ratio of two values of AC/DC corresponding to two different wavelengths. This is similar to adding another equation to solve a problem with at least three unknowns (i.e., the relative concentrations of HbO[0046] 2 and Hb, which are used to calculate SaO2, and the unknown variable fraction of blood-to-tissue volumes that effects the accurate determination of SaO2), which otherwise must rely on only two equations in the case of only two wavelengths used in conventional dual-wavelength pulse oximetry. In a preferred embodiment, a third wavelength provides the added ability to compute SaO2 based on the ratio formed from the R-wavelength and either of the IR-wavelengths. In a preferred embodiment, changes in these ratios are tracked and compared in real-time to determine which ratio produces a more stable or less noisy signal. That ratio is used predominantly for calculating SaO2.
  • The present invention utilizes collection of light reflected from the measurement location at different detection locations arranged along a closed path around light emitting elements, which can be LEDs or laser sources. Preferably, these detection locations are arranged in two concentric rings, the so-called “near” and “far” rings, around the light emitting elements. This arrangement enables optimal positioning of the detectors for high quality measurements, and enables discrimination between photodetectors receiving “good” information (i.e., AC and DC values which would result in accurate calculations of SpO[0047] 2) and “bad” information (i.e., AC and DC values which would result in inaccurate calculations of Sp0 2).
  • There is thus provided according to one aspect of the present invention, a sensor for use in an optical measurement device for non-invasive measurements of blood parameters, the sensor comprising: [0048]
  • (1) a light source for illuminating a measurement location with incident light of at least three wavelengths, the first wavelength lying in a red (R) spectrum, and the at least second and third wavelengths lying substantially in the infrared (IR) spectrum and [0049]
  • (2) a detector assembly for detecting light returned from the illuminated location, the detector assembly being arranged so as to define a plurality of detection locations along at least one closed path around the light source. [0050]
  • The term “closed path” used herein signifies a closed curve, like a ring, ellipse, or polygon, and the like. [0051]
  • The detector assembly is comprised of at least one array of discrete detectors (e.g., photodiodes) accommodated along at least one closed path, or at least one continuous photodetector defining the closed path. [0052]
  • The term “substantially IR spectrum” used herein signifies a spectrum range including near infrared and infrared regions. [0053]
  • According to another aspect of the present invention, there is provided a pulse oximeter utilizing a sensor constructed as defined above, and a control unit for operating the sensor and analyzing data generated thereby. [0054]
  • According to yet another aspect of the present invention, there is provided a method for non-invasive determination of a blood parameter, the method comprising the steps of: [0055]
  • illuminating a measurement location with at least three different wavelengths λ1, λ2 and λ3, the first wavelength λ1 lying in a red (R) spectrum, and the at least second and at least third wavelengths λ2 and λ3 lying substantially in the infrared (IR) spectrum; [0056]
  • detecting light returned from the measurement location at different detection locations and generating data indicative of the detected light, wherein said different detection locations are arranged so as to define at least one closed path around the measurement location; and [0057]
  • analyzing the generated data and determining the blood parameter.[0058]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein: [0059]
  • FIG. 1 illustrates hemoglobin spectra as measured by oximetry based techniques; [0060]
  • FIG. 2 illustrates a calibration curve used in pulse oximetry as typically programmed by the pulse oximeters manufacturers; [0061]
  • FIG. 3 illustrates the relative disposition of light source and detector in reflectionmode or backscatter type pulse oximetry; [0062]
  • FIG. 4 illustrates light propagation in reflection pulse oximetry; [0063]
  • FIGS. 5A and 5B illustrate a pulse oximeter reflectance sensor operating under ideal and practical conditions, respectively; [0064]
  • FIG. 6 illustrates variations of the slopes of calibration curves in reflectance pulse oximetry measurements; [0065]
  • FIG. 7 illustrates an optical sensor according to the invention; [0066]
  • FIG. 8 is a block diagram of the main components of a pulse oximeter utilizing the sensor of FIG. 7; [0067]
  • FIG. 9 is a flow chart of a selection process used in the signal processing technique according to the invention; and [0068]
  • FIGS. 10A to [0069] 10C are flow charts of three main steps, respectively, of the signal processing method according to the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, FIGS. 1 and 2 illustrate typical hemoglobin spectra and calibrations curve utilized in the pulse oximetry measurements. [0070]
  • The present invention provides a sensor for use in a reflection-mode or backscatter type pulse oximeter. The relative disposition of light source and detector in the reflection-mode pulse oximeter are illustrated in FIG. 3. [0071]
  • FIG. 4 shows light propagation in the reflection-mode pulse oximeter where, in addition to the optical absorption and reflection due to blood, the DC signal of the R and IR photoplethysmograms can be adversely affected by strong reflections from the bone. [0072]
  • FIGS. 5A and 5B illustrate a pulse oximeter reflectance sensor operating under, respectively, ideal and practical conditions. Referring now to FIG. 5A, it is shown that, under ideal conditions, reflectance sensor measures light backscattered from a homogenous mixture of blood and bloodless tissue components. Accordingly, the normalized R/IR ratio in dual-wavelength reflection type pulse oximeters, which relies on proportional changes in the AC and DC components in the photoplethysmograms, only reflect changes in arterial oxygen saturation. [0073]
  • Referring now to FIG. 5B, in practical situations, the sensor applications affect the distribution of blood in the superficial layers of the skin. Accordingly, the R and IR DC signals measured by photodetectors contain a relatively larger proportion of light absorbed by and reflected from the bloodless tissue compartments. As such, the changes in DC signals depend not only on wavelength but also sensor geometry and thus cannot be eliminated completely by computing the normalized R/IR ratio, as is typically the case in dual-wavelength pulse oximeters. The result is large variations in the slope of the calibration curves, as illustrated in FIG. 6. Referring now to FIG. 6, graphs C[0074] 1, C2 and C3 show three calibration curves, presenting the variation of the slope for oxygen saturation values between 50% and 100%.
  • Referring to FIG. 7, there is illustrated an optical sensor [0075] 10 designed according to the invention aimed at minimizing some of the measurement inaccuracies in a reflectance pulse oximeter. The sensor 10 comprises such main constructional parts as a light source 12 composed of three closely spaced light emitting elements (e.g., LEDs or laser sources) 12 a, 12 b and 12 c generating light of three different wavelengths, respectively, an array of discrete detectors (e.g., photodiodes), a “far” detector 16 and a “near” detector 18, arranged in two concentric ring-like arrangements (constituting closed paths) surrounding the light emitting elements, and a light shield 14. In the present example, six photodiodes form each ring. All these elements are accommodated in a sensor housing 17. The light shield 14 is positioned between the photodiodes and the light emitting elements, and prevents direct optical coupling between them, thereby maximizing the fraction of backscattered light passing through the arterially perfused vascular tissue in the detected light.
  • It should be noted that more than three wavelengths can be utilized in the sensor. The actual numbers of wavelengths used as a light source and the number of photodetectors in each ring are not limited and depend only on the electronic circuitry inside the oximeter. The array of discrete photodiodes can be replaced by one or more continuous photodetector rings. [0076]
  • In addition to the R and IR light emitting elements [0077] 12 a and 12 b as used in the conventional pulse oximeter sensors, the sensor 10 incorporates the third, reference, light emitting element 12 c, which emits light in the NIR-IR spectrum. Wavelength λ1 and λ2 of the R and IR light emitting elements 12 a and 12 b are centered, respectively, around the peak emission values of 660 nm and 940 nm, and wavelength λ3 of the third light emitting element 12 c has the peak emission value above 700 nm (typically ranging between 800 nm and 900 nm). In the description below, the light emitting elements 12 b and 12 c are referred to as two IR light emitting elements, and wavelengths λ2 and λ3 are referred to as two IR wavelengths.
  • During the operation of the sensor [0078] 10, different light emitting elements are selectively operated for illuminating a measurement location (not shown) with different wavelengths. Each of the photodetectors detects reflected light of different wavelengths and generates data indicative of the intensity I of the detected light of different wavelengths.
  • It should be noted that the sensor can be of a compact design utilizing an integrated circuit manufactured by CMOS technology. This technique is disclosed in a copending application assigned to the assignee of the present application. According to this technique, the sensor comprises a package including the light source, a block of two tubular optical waveguides of different diameters concentrically dislocated one inside the other and surrounding the light source, and an integrated circuit plate comprising two ring-like areas of photodiodes positioned concentrically one inside the other. The integrated circuit is also provided with a plurality of printed contact areas and electric conductors intended for mounting the light source thereon, controlling the light source, and transmitting electric signals produced by the photodiodes areas for further processing. [0079]
  • FIG. 8 illustrates a block diagram of a pulse oximeter [0080] 20 utilizing the above-described sensor 10. The pulse oximeter typically includes a control unit 21, which is composed of an electronic block 22 including A/D and D/A converters connectable to the sensor 10, a microprocessor 24 for analyzing measured data, and a display 26 for presenting measurement results. The measured data (i.e., electrical output of the sensor 10 indicative of the detected light) is directly processed in the block 22, and the converted signal is further processed by the microprocessor 24. The microprocessor 24 is operated by a suitable software model for analyzing the measured data and utilizing reference data (i.e., calibration curve stored in a memory) to compute the oxygen saturation value, which is then presented on the display 26. The analysis of the measured data utilizes the determination of AC- and DC-components in the detected light for each wavelength, λ1, λ2, and λ3, respectively, i.e., I1 (AC), I1 (DC), I2 (AC), I2 (DC), I3 (AC), and I3 (DC), and the calculation of AC/DC ratio for each wavelength, namely, W1=I1 (AC)/I1 (DC), W2=I2 (AC)/I2 (DC), and W3=I3 (AC)/I3 (DC), as will be described more specifically further below with reference to FIGS. 9 and 10A-10C.
  • The pulse oximeter [0081] 20 with the sensor arrangement shown in FIG. 7 provides the following three possible ratio values: W1/W2, W1/W3 and W2/W3. It should be noted that W1/W2 and W1/W3 are the ratios that typically have the highest sensitivity to oxygen saturation. This is due to the fact that λ1 is chosen in the red region of the electromagnetic spectrum, where the changes in the absorption between Hb and HbO2 are the largest, as described above with reference to FIG. 1. Therefore, in principle, the absorption ratios formed by either wavelength pair λ1 and λ2 or wavelength pair λ1 and λ3 can be used to compute the value of SaO2.
  • The inventor conducted extensive human and animal studies, and confirmed that either of the two ratios W[0082] 1/W2 and W1/W3 can be affected not only by changes in arterial oxygen saturation, but also by sensor placement and by the amount of pressure applied by the sensor on the skin. Any calculation of SaO2 based on either of the two ratios W1/W2 and W1/W3 alone (as normally done in commercially available dual-wavelength pulse oximeters) could result in significant errors. Furthermore, since at least two wavelengths are necessary for the calculation of arterial oxygen saturation, it is not feasible to self-correct the calibration curve for variations due to contact pressure or site-to-site variations utilizing the same two wavelengths used already to compute SaO2.
  • The inventor has found that the third ratio W[0083] 2/W3 formed by the combination of the two IR wavelengths is mostly dependent on changes in contact pressure or site-to-site variations. Furthermore, this ratio can depend, but to a much lesser degree, on variations in arterial oxygen saturation. The dependency on arterial oxygen saturation, however, is easily minimized or eliminated completely, for example by selection and matching of the peak emission wavelengths and spectral characteristics of the two IR light emitting elements 12 b and 12 c.
  • Generally, the two IR wavelengths λ2 and λ3 are selected to coincide with the region of the optical absorption curve where HbO[0084] 2 absorbs slightly more light than Hb, but in the spectral region, respectively, where the extinction coefficients of both Hb and HbO2 are nearly equal and remain relatively constant as a function of wavelength. For example, at 940 nm and 880 nm, the optical extinction coefficients of Hb and HbO2 are approximately equal to 0.29 and 0.21, respectively. Therefore, ideally, the ratio of W2/W3 should be close to 1, except for situations when the AC/DC signals measured from λ2 and λ3 are affected unequally causing the ratio W2/W3 to deviate from 1.
  • Fortunately, variations in the ratio W2/W3 mimic changes in the ratios W[0085] 1/W2 and W1/W3 since these ratios are all affected by similar variations in sensor positioning or other uncontrollable factors that normally can cause large errors in the calibration curve from which oxygen saturation is typically derived. Thus, by tracking in real-time changes in the ratio formed by wavelengths λ2 and λ3, it is possible to automatically correct for errors in the normalized ratios obtained from wavelengths λ1 and λ2, or from λ1 and λ3.
  • The use of an additional third wavelength in the sensor serves another important function (not available in conventional dual-wavelength pulse oximeters), which is associated with the following. Reflectance pulse oximeters have to be capable of detecting and relying on the processing of relatively low quality photoplethysmographic signals. Accordingly, electronic or optical noise can cause large inaccuracies in the final computation of SaO[0086] 2. Although the amount of electronic or optical noise pickup from the sensor can be minimized to some extent, it is impossible to render the signals measured by the pulse oximeter completely noise free. Therefore, pulse oximeters rely on the assumption that any noise picked up during the measurement would be cancelled by calculating the ratio between the R- and IR-light intensities measured by the photodetector. Practically, however, the amount of noise that is superimposed on the R-and IR-photoplethysmograms cannot be cancelled completely and, thus, can lead to significant errors in the final computation of SaO2 which, in dual-wavelength pulse oximeters, is based only on the ratio between two wavelengths.
  • By utilizing a third wavelength, the invention has the added ability to compute SaO[0087] 2 based on the ratio formed from either W1/W2 or W1/W3. An algorithm utilized in the pulse oximeter according to the invention has the ability to track and compare in real-time changes between W1/W2 and W1/W3to determine which ratio produces a more stable or less noisy signal and selectively choose the best ratio for calculating SaO2.
  • The method according to the invention utilizes the so-called “selection process” as part of the signal processing technique based on the measured data obtained with the multiple photodetectors. The main steps of the selection process are shown in FIG. 9 in a self-explanatory manner. Here, the symbol i corresponds to a single photodetector element in the array of multiple discrete photodetector elements, the term “[0088] 1st” signifies the last photodetector element in the array, and the term “DATA” signify three ratios (AC/DC) computed separately for each of the three wavelengths, namely, W1, W2 and W3.
  • The selection process is associated with the following: Practically, each time one of the light emitting elements is in its operative position (i.e., switched on), all of the photodetectors in the sensor receiving backscattered light from the skin. However, the intensity of the backscattered light measured by each photodetector may be different from that measured by the other photodetectors, depending on the anatomical structures underneath the sensor and its orientation relative to these structures. [0089]
  • Thus, the selection process is used to discriminate between photodetectors receiving “good” signals (i.e., “good” signal meaning that the calculation of SpO[0090] 2 from the pulsating portion of the electro-optic signal (AC) and the constant portion (DC) would result in accurate value) and “bad” signals (i.e., having AC and DC values which would result in inaccurate calculations of SpO2). Accordingly, each data point (i.e., ratio W1i, W2i or W3i detected at the corresponding ith detector) is either accepted, if it meets a certain criteria based for example on a certain ratio of AC to DC values (e.g., such that the intensity of AC signal is about 0.05-2.0% of the intensity of DC signal), or rejected. All of the accepted data points (data from accepted detection locations) are then used to calculate the ratios W1/W2, W1/W3 and W2/W3, and to calculate the SpO2 value, in conjunction with the signal processing technique, as will be described further below with reference to FIGS. 10A-10C.
  • Besides the use of the third IR-wavelength to compensate for changes in the internal calibration curve of the pulse oximeter, the pulse oximeter utilizing the sensor according to the invention provides a unique new method to compensate for errors due to sensor positioning and pressure variability. This method is based on multiple photodetector elements, instead of the conventional approach that relies on a single photodetector. [0091]
  • While optical sensors with multiple photodetectors for application in reflectance pulse oximetry have been described before, their main limitation relates to the way the information derived from these photodetectors is processed. Although the primary purpose of utilizing multiple photodetectors is to collect a larger portion of the backscattered light from the skin, practically, summing the individual intensities of each photodetector and using the resulting value to compute SaO[0092] 2 can introduce large errors into the calculations. These errors can be caused, for example, by situations where the sensor is placed over inhomogeneous tissue structures such as when the sensor is mounted on the chest. The case may be such that, when using a continuous photodetector ring to collect the backscattered light, a portion of the photodetector ring lies over a rib, which acts as a strongly reflecting structure that contributes to a strong DC component, and the remaining part of the photodetector is positioned over the intercostals space, where the DC signal is much smaller. In this case, the final calculation of SaO2 would be inaccurate, if the current produced by this photodetector is used indiscriminately to compute the DC value before the final computation of SaO2 is performed. Therefore, in addition to automatically correcting errors in the calibration curve as outlined above using three different LEDs (one R and two different IR wavelengths), the sensor 10 has the optional ability to track automatically and compare changes in the R/IR ratios obtained from each of the discrete photodiodes individually. For example, if some of either the near or the far photodetectors in the two concentrically arranged arrays detect larger than normal DC signals during the operation of one of the photodiodes compared to the other photodiodes in the sensor, it could be indicative of one of the following situations: the sensor is positioned unevenly, the sensor is partially covering a bony structure, or uneven pressure is exerted by the sensor on the skin causing partial skin “blanching” and therefore the blood-to-bloodless tissue ratio might be too high to allow accurate determination of SaO2. If such a situation is detected, the oximeter has the ability to selectively disregard the readings obtained from the corresponding photodetectors. Otherwise, if the DC and AC signals measured from each photodetector in the array are similar in magnitude, which is an indication that the sensor is positioned over a homogeneous area on the skin, the final computation of SaO2 can be based on equal contributions from every photodetector in the array.
  • Turning now to FIGS. 10A, 10B and [0093] 10C, there are illustrated three main steps of the signal processing technique utilized in the present invention. Here, TH1, and TH2 are two different threshold values (determined experimentally) related respectively to W2/W3 and (W1/W2−W1/W3).
  • During step [0094] 1 (FIG. 10A), measured data generated by the “near” and “far” photodetectors indicative of the detected (backscattered) light of wavelength λ2 and λ3 is analyzed to calculate the two ratios W2/W3 (far and near). If one of the calculated ratios (far or near) is not in the range of 1±TH1 (TH1 is for example 0.1), then this data point is rejected from the SpO2 calculation, but if both of them are not in the mentioned range, a corresponding alarm is generated indicative of that the sensor position should be adjusted. Only if there are calculated ratios which are in the range of 1±TH1, they are accepted and the process (data analysis) proceeds by performing step 2.
  • Step [0095] 2 (FIG. 10B) consists of determining whether the quality of each photoplethysmogram is acceptable or not. The quality determination is based on the relative magnitude of each AC component compared to its corresponding DC component. If the quality is not acceptable (e.g., the signal shape detected by any detector varies within a time frame of the measurement session, which may for example be 3.5 sec), the data point is rejected and a corresponding alarm signal is generated. If the AC/DC ratio of W1, W2 and W3 are within an acceptable range, the respective data point is accepted, and the process proceeds through performing step 3.
  • In step [0096] 3 (FIG. 10C), the measured data is analyzed to calculate ratios W1/W2 and W1/W3 from data generated by far and near photodetectors, and to calculate the differences (W1/W2−W1W3).
  • In a perfect situation, W[0097] 1/W2 (far) is very close to W1/W3 (far), and W1/W2 (near) is very close to W1/W3 (near). In a practical situation, this condition is not precisely satisfied, but all the ratios are close to each other if the measurement situation is “good”.
  • Then, the calculated differences are analyzed to determine the values (corresponding to far and near photodetectors) that are accepted and to use them in the SpO[0098] 2 calculation. For each detector that satisfied the condition ABS(W1/W2−W1/W3)<TH2), where ABS signifies the absolute value, its respective data point is accepted and used to calculate the oxygen saturation value that will be displayed. If the condition is not satisfied, the data point is rejected. If all data points are rejected, another measurement session is carried out.
  • It should be noted that, although the steps [0099] 1-3 above are exemplified with respect to signal detection by both near and far photodetectors, each of these steps can be implemented by utilizing only one array of detection locations along the closed path. The provision of two such arrays, however, provides higher accuracy of measurements.

Claims (89)

    What is claimed is:
  1. 1. A sensor for use in an optical measurement device for non-invasive measurement of a blood parameter, the sensor comprising:
    (a) a light source for illuminating a measurement location with incident light of at least three wavelengths, the first wavelength λ1 lying in a red (R) spectrum, and the at least second and third wavelengths λ2 and λ3 lying substantially in the infrared (IR) spectrum; and
    (b) a detector assembly for detecting light returned from the illuminated location, the detector assembly being arranged so as to define a plurality of detection locations along at least one closed path around the light source.
  2. 2. A sensor as set forth in claim 1, for use in a pulse oximeter, the at least second and third wavelengths λ2 and λ3 being selected to coincide with a spectral region of the optical absorption curve, where HbO2 absorbs slightly more light than Hb, and where the extinction coefficients of Hb and HbO2 are nearly equal and remain relatively constant as a function of wavelength.
  3. 3. A sensor, as set forth in claim 2, wherein the second wavelength λ2 is in the IR spectral region around 940 nm+/−20 nm, and the third wavelength λ3 is above 700 nm.
  4. 4. A sensor, as set forth in claim 1, wherein the detector assembly comprises at least one array of detector elements arranged in a spaced-apart relationship along the at least one closed path.
  5. 5. A sensor, as set forth in claim 1, wherein the detector assembly comprises at least one ring-shaped detector element.
  6. 6. A sensor according to claim 1, wherein the plurality of the detection locations are arranged along two concentric closed paths around the light source.
  7. 7. A sensor, as set forth in claim 6, wherein the detector assembly comprises two arrays of detector elements, the detector elements of each array being arranged in a spaced apart relationship along the corresponding one of the closed paths.
  8. 8. A sensor, as set forth in claim 6, wherein the detector assembly comprises two concentric ring-shaped detector elements.
  9. 9. A sensor, as set forth in claim 1, manufactured by CMOS technology, the sensor comprising a package including said light source, and an integrated circuit plate, which comprises said at least one closed path of the detector assembly positioned around the light source, and a plurality of printed contact areas and electric conductors for mounting the light source thereon, controlling the light source, and transmitting electric signals produced by the detector assembly for further processing.
  10. 10. A sensor for use in an optical measurement device for non-invasive measurement of a blood parameter, the sensor comprising:
    a light source for illuminating a measurement location with incident light of at least three wavelengths, the first wavelength λ1 lying in a red (R) spectrum, and the at least second and third wavelengths λ2 and λ3 lying substantially in the infrared (IR) spectrum; and
    a detector assembly for detecting light returned from the illuminated location, the detector assembly being arranged so as to define a plurality of detection locations along two concentric closed path around the light source.
  11. 11. A pulse oximeter comprising a sensor and a control unit for operating the sensor and analyzing data generated thereby, the sensor comprising:
    (a) a light source for illuminating a measurement location with incident light of at least three wavelengths, the first wavelength λ1 lying in a red (R) spectrum, and the at least second and third wavelengths λ2 and λ3 lying substantially in the infrared (IR) spectrum; and
    (b) a detector assembly for detecting light returned from the illuminated location, the detector assembly being arranged so as to define a plurality of detection locations along at least one closed path around the light source.
  12. 12. A method for non-invasive determination of a blood parameter, the method comprising the steps of:
    (i) illuminating a measurement location with at least three different wavelengths, a first wavelength λ1 lying in a red (R) spectrum, and at least second and third wavelengths λ2 and λ3 lying substantially in the infrared (IR) spectrum;
    (ii) detecting light returned from the measurement location at different detection locations and generating data indicative of the detected light, wherein said different detection locations are arranged so as to define at least one closed path around the measurement location; and
    (iii) analyzing the generated data and determining the blood parameter.
  13. 13. The method according to claim 12, wherein the analysis of the generated data comprises the steps of:
    calculating data indicative of an AC/DC ratio in the light detected at each of the detection locations for the at least three wavelengths:
    analyzing the calculated data and determining accepted detection locations to select corresponding AC/DC ratios for each of the at least three wavelengths, λ1, λ2 and λ3 ;and
    utilizing the selected ratios for determining the blood parameter.
  14. 14. The method according to claim 13, wherein the determination of the blood parameter comprises the steps of:
    calculating values of the ratio W2/W3 for the accepted detection locations in at least one closed path;
    analyzing each of the calculated values to determine whether it satisfies a first predetermined condition, so as to generate a signal indicative of that a sensor position is to be adjusted, if the condition is not satisfied;
    if the condition is satisfied, determining whether the quality of a photoplethysmogram is acceptable;
    if the quality is acceptable, analyzing the selected ratios for calculating ratios W1/W2 and W1/W3 from the data detected in at least one closed path, and calculating the differences ABS (W1/W2 −W1/W 3); and,
    analyzing the calculated differences for determining whether each of the differences satisfies a second predetermined condition for determining the blood parameter if the condition is satisfied.
  15. 15. The method according to claim 14, wherein said first predetermined condition consists of that the calculated value of W2/W3 is inside a predetermined range around the value one, said predetermined range being defined by the first threshold value, and the second predetermined condition consists of that the calculated difference ABS (W1/W2 −W1/W3) is less than certain, second threshold value.
  16. 16. A pulse oximeter for detecting a value of a parameter of blood, comprising:
    a sensor housing;
    a source of radiation coupled to the housing and being adapted to emit radiation at predetermined frequencies;
    a detector assembly coupled to the housing and being adapted to detect reflected radiation at first, second, and third frequencies and to generate respective first, second, and third signals, wherein the first, second, and third signals are indicative of a value of the reflected radiation at the respective first, second, and third frequencies; and,
    a control unit coupled to the detector assembly and adapted to receive the first, second, and third signals, to calculate first, second and third ratios of the first, second, and third signals and to responsively determine the parameter of the blood as a function of the first, second and third ratios.
  17. 17. A pulse oximeter, as set forth in claim 16, wherein the control unit is adapted to determine the parameter of the blood as a function of the first and second ratios and a calibration curve.
  18. 18. A pulse oximeter, as set forth in claim 17, wherein the calibration curve is adjusted as a function of the third ratio.
  19. 19. A pulse oximeter, as set forth in claim 16, wherein the first ratio is defined by the first signal divided by the second signal.
  20. 20. A pulse oximeter, as set forth in claim 16, wherein the second ratio is defined by the first signal divided by the third signal.
  21. 21. A pulse oximeter, as set forth in claim 16, wherein the third ratio is defined by the second signal divided by the third signal.
  22. 22. A pulse oximeter, as set forth in claim 16, wherein the first frequency is in a red frequency range, the second frequency is in a near-infrared frequency range, and the third frequency is in an infrared frequency range.
  23. 23. A pulse oximeter, as set forth in claim 22, wherein the first ratio is defined by the first signal divided by the second signal, the second ratio is defined by the first signal divided by the third signal, and the third ratio is defined by the second signal divided by the third signal.
  24. 24. A pulse oximeter, as set forth in claim 16, wherein the control unit is adapted to determine the parameter of the blood as a function of a more stable one of the first and second ratios.
  25. 25. A pulse oximeter for detecting a value of a arameter of blood, comprising:
    a sensor housing;
    a source of radiation coupled to the housing and being adapted to emit radiation at predetermined frequencies;
    a detector assembly coupled to the housing and being adapted to detect reflected radiation at first, second, and third frequencies and to generate respective first, second, and third signals, wherein the first, second, and third signals are indicative of a value of the reflected radiation at the respective first, second, and third frequencies; and,
    a control unit coupled to the detector assembly and being adapted to calculate first and second ratios of the first, second, and third signals, wherein the first ratio is defined by the first signal divided by the second signal and the second ratio is defined by the first signal divided by the third signal, and wherein the control unit is adapted to determine the parameter of the blood as a function of a more stable one of the first and second ratios.
  26. 26. A pulse oximeter, as set forth in claim 25, wherein the control unit is adapted to determine the parameter of the blood as a function of the more stable one of the first and second ratios and a calibration curve.
  27. 27. A pulse oximeter, as set forth in claim 26, wherein the calibration curve is adjusted as a function of a third ratio.
  28. 28. A pulse oximeter, as set forth in claim 27, wherein the third ratio is defined by the second signal divided by the third signal.
  29. 29. A pulse oximeter, as set forth in claim 25, wherein the first frequency is in a red frequency range, the second frequency is in a near-infrared frequency range, and the third frequency is in an infrared frequency range.
  30. 30. A pulse oximeter, as set forth in claim 25, wherein the control unit is adapted to track the first and second ratios and determine which one of the first and second ratios is more stable in real-time.
  31. 31. A pulse oximeter for detecting a value of a parameter of blood, comprising:
    a sensor housing;
    a source of radiation coupled to the housing and being adapted to emit radiation at predetermined frequencies; and,
    a plurality of detectors coupled to the housing and being adapted to detect reflected radiation at first, second, and third frequencies and to responsively generate a plurality of first sensor signals indicative of the reflected radiation at the first frequency, a plurality of second sensor signals indicative of the reflected radiation at the second frequency, and a plurality of third sensor signals indicative of the reflected radiation at the third frequency;
    a control unit being coupled to the plurality of detectors and adapted to receive the plurality of first, second and third sensor signals, to analyze the first, second and third sensor signals and determine which of the first, second and third sensor signals are valid and to generate first, second, and third frequency signals as a function of valid first sensor signals, valid second sensor signals, and valid third sensor signals, respectively and to determine the parameter of the blood as a function of the valid first, second, and third sensor signals.
  32. 32. A pulse oximeter, as set forth in claim 31, wherein the control unit is adapted to calculate first, second and third ratios of the valid first, second, and third signals and to responsively determine the parameter of the blood as a function of the first, second and third ratios.
  33. 33. A pulse oximeter, as set forth in claim 32, wherein the control unit is adapted to determine the parameter of the blood as a function of the first and second ratios and a calibration curve.
  34. 34. A pulse oximeter, as set forth in claim 33, wherein the calibration curve is adjusted as a function of the third ratio.
  35. 35. A pulse oximeter, as set forth in claim 32, wherein the first ratio is defined by the valid first signals divided by the valid second signals.
  36. 36. A pulse oximeter, as set forth in claim 32, wherein the second ratio is defined by the valid first signals divided by the valid third signals.
  37. 37. A pulse oximeter, as set forth in claim 32, wherein the third ratio is defined by the valid second signals divided by the valid third signals.
  38. 38. A pulse oximeter, as set forth in claim 31, wherein the first frequency is in a red frequency range, the second frequency is in a near-infrared frequency range, and the third frequency is in an infrared frequency range.
  39. 39. A pulse oximeter, as set forth in claim 32, wherein the first ratio is defined by the valid first signals divided by the valid second signals, the second ratio is defined by the valid first signals divided by the valid third signals, and the third ratio is defined by the valid second signals divided by the valid third signals.
  40. 40. A pulse oximeter, as set forth in claim 32, wherein the control unit is adapted to determine the parameter of the blood as a function of a more stable one of the first and second ratios.
  41. 41. A pulse oximeter, as set forth in claim 31, wherein the plurality of first, second, and third sensor signals having an AC portion and a DC portion.
  42. 42. A pulse oximeter, as set forth in claim 41, wherein a sensor signal is valid if it a ratio of the AC portion to the DC portion is within a predetermined range.
  43. 43. A pulse oximeter, as set forth in claim 42, wherein the predetermined range is 0.05 to 2.0 percent.
  44. 44. A sensor for use in an optical measurement device for non-invasive measurement of a blood parameter, comprising:
    a sensor housing;
    a source of radiation coupled to the housing and being adapted to emit radiation at predetermined frequencies;
    a detector assembly coupled to the housing and being adapted to detect reflected radiation at least one predetermined frequency and to generate respective signals, wherein the detector assembly is ring shaped.
  45. 45. A sensor, as set forth in claim 44, wherein the detector assembly includes a plurality of detectors arranged along a closed loop path.
  46. 46. A sensor, as set forth in claim 45, wherein the closed loop path has a circular shape.
  47. 47. A sensor, as set forth in claim 45, wherein the closed loop path has an elliptical shape.
  48. 48. A sensor, as set forth in claim 45, wherein the closed loop path has a polygonal shape.
  49. 49. A sensor, as set forth in claim 44, wherein the detector assembly includes a continuous photodetector ring.
  50. 50. A sensor, as set forth in claim 49, wherein the continuous photodetector ring has a circular shape.
  51. 51. A sensor, as set forth in claim 49, wherein the continuous photo detector ring has an elliptical shape.
  52. 52. A sensor, as set forth in claim 49, wherein the continuous photo detector ring has a polygonal shape.
  53. 53. A sensor, as set forth in claim 44, wherein the detector assembly includes a first plurality of detectors arranged along an inner closed loop path and a second plurality of detectors arranged along an outer closed loop path.
  54. 54. A sensor, as set forth in claim 53, wherein the inner and outer closed loop paths have a circular shape.
  55. 55. A sensor, as set forth in claim 49, wherein the inner and outer closed loop paths have an elliptical shape.
  56. 56. A sensor, as set forth in claim 49, wherein the inner and outer closed loop paths have a polygonal shape.
  57. 57. A sensor for use in an optical measurement device for non-invasive measurement of a blood parameter, comprising:
    a sensor housing;
    a source of radiation coupled to the housing and being adapted to emit radiation at predetermined frequencies;
    a detector assembly coupled to the housing and being adapted to detect reflected radiation at least one predetermined frequency and to generate respective signals, wherein the detector assembly includes a plurality of pairs of detectors, each pair of detectors including a near detector and a far detector.
  58. 58. A sensor, as set forth in claim 57, wherein the near detectors are arranged along an inner closed loop path and the far detectors are arranged along an outer closed loop paths.
  59. 59. A sensor, as set forth in claim 58, wherein the inner and outer closed loop paths have a circular shape.
  60. 60. A sensor, as set forth in claim 58, wherein the inner and outer closed loop paths have an elliptical shape.
  61. 61. A sensor, as set forth in claim 58, wherein the inner and outer closed loop paths have a polygonal shape.
  62. 62. A method for detecting a value of a parameter of blood using a sensor adapted to emit radiation at predetermined frequencies, to detect reflected radiation at first, second, and third frequencies and to generate respective first, second, and third signals, wherein the first, second, and third signals are indicative of a value of the reflected radiation at the respective first, second, and third frequencies, the method including the steps of:
    receiving the first, second, and third signals;
    calculating first, second and third ratios of the first, second, and third signals; and,
    responsively determining the parameter of the blood as a function of the first, second and third ratios.
  63. 63. A method, as set forth in claim 62, wherein the parameter of the blood is determined as a function of the first and second ratios and a calibration curve.
  64. 64. A method, as set forth in claim 63, including the step of adjusting the calibration curve as a function of the third ratio.
  65. 65. A method, as set forth in claim 62, wherein the first ratio is defined by the first signal divided by the second signal.
  66. 66. A method, as set forth in claim 62, wherein the second ratio is defined by the first signal divided by the third signal.
  67. 67. A method, as set forth in claim 62, wherein the third ratio is defined by the second signal divided by the third signal.
  68. 68. A method, as set forth in claim 62, wherein the first frequency is in a red frequency range, the second frequency is in a near-infrared frequency range, and the third frequency is in an infrared frequency range.
  69. 69. A method, as set forth in claim 62, wherein the first ratio is defined by the first signal divided by the second signal, the second ratio is defined by the first signal divided by the third signal, and the third ratio is defined by the second signal divided by the third signal.
  70. 70. A method, as set forth in claim 62, including the step of determining a more stable of the first and second ratios, wherein the parameter of the blood is determined using the more stable one of the first and second ratios.
  71. 71. A method for detecting a value of a parameter of blood using a sensor adapted to emit radiation at predetermined frequencies, to detect reflected radiation at first, second, and third frequencies and to generate respective first, second, and third signals, wherein the first, second, and third signals are indicative of a value of the reflected radiation at the respective first, second, and third frequencies, the method including the steps of:
    receiving the first, second and third signals;
    calculate first and second ratios of the first, second and third signals, wherein the first ratio is defined by the first signal divided by the second signal and the second ratio is defined by the first signal divided by the third signal; and,
    determining the parameter of the blood as a function of a more stable one of the first and second ratios.
  72. 72. A method, as set forth in claim 71, wherein the parameter of the blood as a function of the more stable one of the first and second ratios and a calibration curve.
  73. 73. A method, as set forth in claim 72, including the step of adjusted the calibration curve as a function of a third ratio.
  74. 74. A method, as set forth in claim 73, wherein the third ratio is defined by the second signal divided by the third signal.
  75. 75. A method, as set forth in claim 71, wherein the first frequency is in a red frequency range, the second frequency is in an infrared frequency range, and the third frequency is in a near-infrared frequency range.
  76. 76. A method, as set forth in claim 71, including the step of tracking the first and second ratios and determining which one of the first and second ratios is more stable in real-time.
  77. 77. A method for detecting a value of a parameter of blood using a sensor adapted to emit radiation at predetermined frequencies, to detect reflected radiation at first, second, and third frequencies and to responsively generate a plurality of first sensor signals indicative of the reflected radiation at the first frequency, a plurality of second sensor signals indicative of the reflected radiation at the second frequency, and a plurality of third sensor signals indicative of the reflected radiation at the third frequency, the method comprising:
    receiving the plurality of first, second and third sensor signals;
    analyzing the first, second and third sensor signals and determining which of the first, second and third sensor signals are valid;
    generating first, second, and third frequency signals as a function of valid first sensor signals, valid second sensor signals, and valid third sensor signals, respectively; and,
    determining the parameter of the blood as a function of the valid first, second, and third sensor signals.
  78. 78. A method, as set forth in claim 77, including the step of calculating first, second and third ratios of the first, second, and third valid signals and responsively determining the parameter of the blood as a function of the first, second and third ratios.
  79. 79. A method, as set forth in claim 78, wherein the parameter of the blood is determined as a function of the first and second ratios and a calibration curve.
  80. 80. A method, as set forth in claim 79, including the step of adjusting the calibration curve as a function of the third ratio.
  81. 81. A method, as set forth in claim 78, wherein the first ratio is defined by the valid first signals divided by the valid second signals.
  82. 82. A method, as set forth in claim 78, wherein the second ratio is defined by the valid first signals divided by the valid third signals.
  83. 83. A method, as set forth in claim 78, wherein the third ratio is defined by the valid second signals divided by the valid third signals.
  84. 84. A method, as set forth in claim 78, wherein the first frequency is in a red frequency range, the second frequency is in an infrared frequency range, and the third frequency is in a near-infrared frequency range.
  85. 85. A method, as set forth in claim 78, wherein the first ratio is defined by the valid first signals divided by the valid second signals, the second ratio is defined by the valid first signals divided by the valid third signals, and the third ratio is defined by the valid second signals divided by the valid third signals.
  86. 86. A method, as set forth in claim 78, including the step of determining the parameter of the blood as a function of a more stable one of the first and second ratios.
  87. 87. A method, as set forth in claim 77, wherein the plurality of first, second, and third sensor signals have an AC portion and a DC portion.
  88. 88. A method, as set forth in claim 87, wherein a sensor signal is valid if a ratio of the AC portion to the DC portion is within a predetermined range.
  89. 89. A method, as set forth in claim 88, wherein the predetermined range is 0.05 to 2.0 percent.
US09939391 2000-10-05 2001-08-24 Pulse oximeter and method of operation Abandoned US20020042558A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IL138884 2000-10-05
IL13888400A IL138884A (en) 2000-10-05 2000-10-05 Pulse oximeter and a method of its operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10360666 US6801799B2 (en) 2000-10-05 2003-02-06 Pulse oximeter and method of operation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10360666 Division US6801799B2 (en) 2000-10-05 2003-02-06 Pulse oximeter and method of operation

Publications (1)

Publication Number Publication Date
US20020042558A1 true true US20020042558A1 (en) 2002-04-11

Family

ID=11074711

Family Applications (2)

Application Number Title Priority Date Filing Date
US09939391 Abandoned US20020042558A1 (en) 2000-10-05 2001-08-24 Pulse oximeter and method of operation
US10360666 Active US6801799B2 (en) 2000-10-05 2003-02-06 Pulse oximeter and method of operation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10360666 Active US6801799B2 (en) 2000-10-05 2003-02-06 Pulse oximeter and method of operation

Country Status (5)

Country Link
US (2) US20020042558A1 (en)
EP (1) EP1322216B1 (en)
JP (1) JP4903980B2 (en)
CA (1) CA2422683C (en)
WO (1) WO2002028274A1 (en)

Cited By (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711425B1 (en) * 2002-05-28 2004-03-23 Ob Scientific, Inc. Pulse oximeter with calibration stabilization
US20040225207A1 (en) * 2003-05-09 2004-11-11 Sang-Kon Bae Ear type apparatus for measuring a bio signal and measuring method therefor
US20050197579A1 (en) * 2004-03-08 2005-09-08 Nellcor Puritan Bennett Incorporated Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US20060020212A1 (en) * 2004-07-26 2006-01-26 Tianning Xu Portable vein locating device
US20060135860A1 (en) * 2003-01-10 2006-06-22 Baker Clark R Jr Signal quality metrics design for qualifying data for a physiological monitor
US20060155178A1 (en) * 2004-03-26 2006-07-13 Vadim Backman Multi-dimensional elastic light scattering
US20070032714A1 (en) * 2001-07-19 2007-02-08 Nellcor Puritan Bennett Inc. Nuisance alarm reductions in a physiological monitor
US20070073124A1 (en) * 2005-09-29 2007-03-29 Li Li System and method for removing artifacts from waveforms
US20070106137A1 (en) * 2004-03-09 2007-05-10 Baker Clark R Jr Pulse oximetry signal correction using near infrared absorption by water
EP1792564A1 (en) * 2005-12-02 2007-06-06 General Electric Company A probe and a method for use with a probe
US20070129615A1 (en) * 2005-10-27 2007-06-07 Northwestern University Apparatus for recognizing abnormal tissue using the detection of early increase in microvascular blood content
US20070179368A1 (en) * 2005-10-27 2007-08-02 Northwestern University Method of recognizing abnormal tissue using the detection of early increase in microvascular blood content
US20070208259A1 (en) * 2006-03-06 2007-09-06 Mannheimer Paul D Patient monitoring alarm escalation system and method
US20070276632A1 (en) * 2006-05-26 2007-11-29 Triage Wireless, Inc. System for measuring vital signs using bilateral pulse transit time
US20080051670A1 (en) * 2005-07-18 2008-02-28 Triage Wireless, Inc. Patch sensor system for measuring vital signs
US20080076986A1 (en) * 2006-09-20 2008-03-27 Nellcor Puritan Bennett Inc. System and method for probability based determination of estimated oxygen saturation
US20080076977A1 (en) * 2006-09-26 2008-03-27 Nellcor Puritan Bennett Inc. Patient monitoring device snapshot feature system and method
US20080082339A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated System and method for secure voice identification in a medical device
US20080081970A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pulse oximetry sensor switchover
US20080081956A1 (en) * 2006-09-29 2008-04-03 Jayesh Shah System and method for integrating voice with a medical device
US20080082009A1 (en) * 2006-09-28 2008-04-03 Nellcor Puritan Bennett Inc. System and method for pulse rate calculation using a scheme for alternate weighting
US20080082338A1 (en) * 2006-09-29 2008-04-03 O'neil Michael P Systems and methods for secure voice identification and medical device interface
US20080081974A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pathological condition detector using kernel methods and oximeters
US20080097175A1 (en) * 2006-09-29 2008-04-24 Boyce Robin S System and method for display control of patient monitor
US20080114211A1 (en) * 2006-09-29 2008-05-15 Edward Karst System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US20080114226A1 (en) * 2006-09-29 2008-05-15 Doug Music Systems and methods for user interface and identification in a medical device
US20080189783A1 (en) * 2006-09-29 2008-08-07 Doug Music User interface and identification in a medical device system and method
US20080200775A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
US20080200819A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Orthostasis detection system and method
US20080214906A1 (en) * 2006-03-21 2008-09-04 Nellcor Puritan Bennett Llc Patient Monitoring Help Video System and Method
US20080221426A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Methods and apparatus for detecting misapplied optical sensors
US20080255436A1 (en) * 2005-03-03 2008-10-16 Nellcor Puritain Bennett Incorporated Method for Enhancing Pulse Oximery Calculations in the Presence of Correlated Artifacts
US20080300474A1 (en) * 2005-12-06 2008-12-04 Cas Medical Systems, Inc. Indicators For A Spectrophotometric System
US20090005662A1 (en) * 2004-02-25 2009-01-01 Nellcor Puritan Bennett Inc Oximeter Ambient Light Cancellation
US20090082651A1 (en) * 2004-03-08 2009-03-26 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US20090105564A1 (en) * 2006-06-08 2009-04-23 Omron Healthcare Co., Ltd. Living body component measuring apparatus capable of precisely and non-invasively measuring living body component
US20090154573A1 (en) * 2007-12-13 2009-06-18 Nellcor Puritan Bennett Llc Signal Demodulation
US20090171167A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc System And Method For Monitor Alarm Management
US20090171226A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for evaluating variation in the timing of physiological events
US20090171171A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximetry sensor overmolding location features
US20090171173A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for reducing motion artifacts in a sensor
US20090171174A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for maintaining battery life
US20090171172A1 (en) * 2008-12-19 2009-07-02 Nellcor Puritan Bennett Llc Method and system for pulse gating
US20090203977A1 (en) * 2005-10-27 2009-08-13 Vadim Backman Method of screening for cancer using parameters obtained by the detection of early increase in microvascular blood content
US20090209839A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Methods And Systems For Alerting Practitioners To Physiological Conditions
US20090221889A1 (en) * 2004-03-08 2009-09-03 Nellcor Puritan Bennett Llc Pulse Oximeter With Alternate Heart-Rate Determination
US20090247850A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Manually Powered Oximeter
US20090247851A1 (en) * 2008-03-26 2009-10-01 Nellcor Puritan Bennett Llc Graphical User Interface For Monitor Alarm Management
US20090247852A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc System and method for facilitating sensor and monitor communication
US20090248320A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Benett Llc System And Method For Unmixing Spectroscopic Observations With Nonnegative Matrix Factorization
US20090253971A1 (en) * 2005-10-28 2009-10-08 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US20090327515A1 (en) * 2008-06-30 2009-12-31 Thomas Price Medical Monitor With Network Connectivity
US20090326335A1 (en) * 2008-06-30 2009-12-31 Baker Clark R Pulse Oximeter With Wait-Time Indication
US7647084B2 (en) 2005-08-08 2010-01-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
KR100938751B1 (en) 2003-05-21 2010-01-26 아스라브 쏘시에떼 아노님 Portable instrument for measuring a physiological quantity including a device for illuminating the surface of an organic tissue
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657296B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Unitary medical sensor assembly and technique for using the same
US7658652B2 (en) 2006-09-29 2010-02-09 Nellcor Puritan Bennett Llc Device and method for reducing crosstalk
US7676253B2 (en) 2005-09-29 2010-03-09 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US20100081899A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System and Method for Photon Density Wave Pulse Oximetry and Pulse Hemometry
US20100081897A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Transmission Mode Photon Density Wave System And Method
US20100081890A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System And Method For Enabling A Research Mode On Physiological Monitors
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
US20100113908A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US20100113909A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US20100145170A1 (en) * 2006-09-21 2010-06-10 Starr Life Sciences Corp. Small Animal Pulse Oximeter User Interface
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US20100240972A1 (en) * 2009-03-20 2010-09-23 Nellcor Puritan Bennett Llc Slider Spot Check Pulse Oximeter
US7809420B2 (en) 2003-06-25 2010-10-05 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US7848891B2 (en) 2006-09-29 2010-12-07 Nellcor Puritan Bennett Llc Modulation ratio determination with accommodation of uncertainty
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US20110029865A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Control Interface For A Medical Monitor
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US20110046464A1 (en) * 2009-08-19 2011-02-24 Nellcor Puritan Bennett Llc Photoplethysmography with controlled application of sensor pressure
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US20110071374A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Minimax Filtering For Pulse Oximetry
US20110071373A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Time-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US20110071598A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Photoacoustic Spectroscopy Method And System To Discern Sepsis From Shock
US20110071368A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Medical Device Interface Customization Systems And Methods
US20110071371A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Wavelength-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US20110071376A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Determination Of A Physiological Parameter
US20110074342A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
US20110077470A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Patient Monitor Symmetry Control
US20110077485A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Method Of Analyzing Photon Density Waves In A Medical Monitor
US20110077547A1 (en) * 2009-09-29 2011-03-31 Nellcor Puritan Bennett Llc Spectroscopic Method And System For Assessing Tissue Temperature
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8133176B2 (en) 1999-04-14 2012-03-13 Tyco Healthcare Group Lp Method and circuit for indicating quality and accuracy of physiological measurements
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8148164B2 (en) * 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8195262B2 (en) 2004-02-25 2012-06-05 Nellcor Puritan Bennett Llc Switch-mode oximeter LED drive with a single inductor
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US8260391B2 (en) 2005-09-12 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8290558B1 (en) * 2009-11-23 2012-10-16 Vioptix, Inc. Tissue oximeter intraoperative sensor
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8352010B2 (en) 2005-09-30 2013-01-08 Covidien Lp Folding medical sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8364221B2 (en) 2005-09-30 2013-01-29 Covidien Lp Patient monitoring alarm escalation system and method
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8433383B2 (en) 2001-10-12 2013-04-30 Covidien Lp Stacked adhesive optical sensor
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8498683B2 (en) 2010-04-30 2013-07-30 Covidien LLP Method for respiration rate and blood pressure alarm management
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8666467B2 (en) 2001-05-17 2014-03-04 Lawrence A. Lynn System and method for SPO2 instability detection and quantification
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US8728001B2 (en) 2006-02-10 2014-05-20 Lawrence A. Lynn Nasal capnographic pressure monitoring system
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8862194B2 (en) 2008-06-30 2014-10-14 Covidien Lp Method for improved oxygen saturation estimation in the presence of noise
US8862196B2 (en) 2001-05-17 2014-10-14 Lawrence A. Lynn System and method for automatic detection of a plurality of SP02 time series pattern types
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8923945B2 (en) 2009-09-24 2014-12-30 Covidien Lp Determination of a physiological parameter
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US20150011850A1 (en) * 2012-07-16 2015-01-08 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US9031793B2 (en) 2001-05-17 2015-05-12 Lawrence A. Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9037204B2 (en) 2011-09-07 2015-05-19 Covidien Lp Filtered detector array for optical patient sensors
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
CN104755018A (en) * 2012-11-02 2015-07-01 皇家飞利浦有限公司 Device and method for extracting physiological information
US20150272488A1 (en) * 2014-03-28 2015-10-01 Nihon Kohden Corporation Pulse photometer
US9314164B2 (en) 2005-10-27 2016-04-19 Northwestern University Method of using the detection of early increase in microvascular blood content to distinguish between adenomatous and hyperplastic polyps
US9351671B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
US9351672B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
WO2016087609A1 (en) * 2014-12-04 2016-06-09 Osram Opto Semiconductors Gmbh Pulse oximetry device and method for operating a pulse oximetry device
US20160174855A1 (en) * 2009-05-27 2016-06-23 Analog Devices, Inc. Multiuse optical sensor
US9380982B2 (en) 2010-07-28 2016-07-05 Covidien Lp Adaptive alarm system and method
US9442065B2 (en) 2014-09-29 2016-09-13 Zyomed Corp. Systems and methods for synthesis of zyotons for use in collision computing for noninvasive blood glucose and other measurements
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US9585606B2 (en) 2009-09-29 2017-03-07 Covidien Lp Oximetry assembly
US9766126B2 (en) 2013-07-12 2017-09-19 Zyomed Corp. Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213692B4 (en) * 2002-03-27 2013-05-23 Weinmann Diagnostics Gmbh & Co. Kg A method for controlling a device and apparatus for the measurement of substances in the blood
US7155273B2 (en) * 2002-07-29 2006-12-26 Taylor Geoffrey L Blanching response pressure sore detector apparatus and method
WO2005006984A1 (en) * 2003-07-22 2005-01-27 Kabushiki Kaisha Toshiba Biological information measurement device
GB2413078C (en) 2004-01-08 2012-08-15 Dialog Devices Ltd A system or method for assessing a subject's pedalblood circulation.
US7039538B2 (en) 2004-03-08 2006-05-02 Nellcor Puritant Bennett Incorporated Pulse oximeter with separate ensemble averaging for oxygen saturation and heart rate
EP1804873A4 (en) * 2004-10-06 2017-07-19 ResMed Limited Method and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing
US20060122520A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital sign-monitoring system with multiple optical modules
US7647083B2 (en) 2005-03-01 2010-01-12 Masimo Laboratories, Inc. Multiple wavelength sensor equalization
US20070078311A1 (en) * 2005-03-01 2007-04-05 Ammar Al-Ali Disposable multiple wavelength optical sensor
US20060224053A1 (en) * 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
US7460897B1 (en) 2005-05-16 2008-12-02 Hutchinson Technology Incorporated Patient interface for spectroscopy applications
US7596397B2 (en) * 2005-05-16 2009-09-29 Hutchinson Technology Incorporated Patient interface for spectroscopy applications
US20070197887A1 (en) * 2006-02-17 2007-08-23 Medwave, Inc. Noninvasive vital signs sensor
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US8123695B2 (en) 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation
US8639309B2 (en) * 2007-07-31 2014-01-28 J&M Shuler, Inc. Method and system for monitoring oxygenation levels of compartments and tissue
US8100834B2 (en) * 2007-02-27 2012-01-24 J&M Shuler, Inc. Method and system for monitoring oxygenation levels of a compartment for detecting conditions of a compartment syndrome
US8109882B2 (en) 2007-03-09 2012-02-07 Nellcor Puritan Bennett Llc System and method for venous pulsation detection using near infrared wavelengths
US8221326B2 (en) 2007-03-09 2012-07-17 Nellcor Puritan Bennett Llc Detection of oximetry sensor sites based on waveform characteristics
US8229530B2 (en) 2007-03-09 2012-07-24 Nellcor Puritan Bennett Llc System and method for detection of venous pulsation
US8781544B2 (en) 2007-03-27 2014-07-15 Cercacor Laboratories, Inc. Multiple wavelength optical sensor
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
JP4569615B2 (en) * 2007-09-25 2010-10-27 ブラザー工業株式会社 Printing device
US20090182248A1 (en) * 2008-01-15 2009-07-16 General Electric Company Systems and methods for monitoring an activity of a patient
US8781546B2 (en) * 2008-04-11 2014-07-15 Covidien Lp System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
KR101040653B1 (en) * 2009-01-21 2011-06-10 서울대학교산학협력단 Non-contact measuring devices of pulse wave and measuring devices of oxygen saturation and blood pressure in using same
DE102009008604A1 (en) * 2009-02-12 2010-08-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for detecting at least one of a person vital parameter; Vital signs detection system
US20100210930A1 (en) * 2009-02-13 2010-08-19 Saylor Stephen D Physiological Blood Gas Detection Apparatus and Method
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP3127476A1 (en) 2009-02-25 2017-02-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP2440116B1 (en) * 2009-06-10 2018-02-28 Medtronic, Inc. Device and method for monitoring of absolute oxygen saturation and tissue hemoglobin concentration
WO2010144648A1 (en) * 2009-06-10 2010-12-16 Medtronic, Inc. Shock reduction using absolute calibrated tissue oxygen saturation and total hemoglobin volume fraction
US20100318146A1 (en) * 2009-06-10 2010-12-16 Can Cinbis Tissue Oxygenation Monitoring in Heart Failure
US8352008B2 (en) * 2009-06-10 2013-01-08 Medtronic, Inc. Active noise cancellation in an optical sensor signal
US8346332B2 (en) * 2009-06-10 2013-01-01 Medtronic, Inc. Absolute calibrated tissue oxygen saturation and total hemoglobin volume fraction
FR2949658B1 (en) * 2009-09-07 2012-07-27 Salim Mimouni optical plethysmographic signal capturing device using a matrix imager
US20110066017A1 (en) * 2009-09-11 2011-03-17 Medtronic, Inc. Method and apparatus for post-shock evaluation using tissue oxygenation measurements
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
WO2011051888A3 (en) * 2009-11-02 2011-10-13 Koninklijke Philips Electronics N.V. Medical optical sensor
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors
JP5573209B2 (en) 2010-02-04 2014-08-20 ソニー株式会社 Image processing apparatus, image processing method, a program, and electronic device
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
US7884933B1 (en) 2010-05-05 2011-02-08 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
WO2011160130A3 (en) 2010-06-18 2012-04-05 Sionyx, Inc High speed photosensitive devices and associated methods
US20120253151A1 (en) * 2011-03-30 2012-10-04 Nellcor Puritan Bennett Llc Multiple Wavelength Pulse Oximetry With Sensor Redundancy
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
US9907494B2 (en) 2012-04-18 2018-03-06 Hutchinson Technology Incorporated NIRS device with optical wavelength and path length correction
EP2849647A1 (en) * 2012-05-16 2015-03-25 Vivantum GmbH Device for the polarimetric in vivo determination of blood sugar concentration
EP2922462A1 (en) * 2012-11-23 2015-09-30 Koninklijke Philips N.V. Device and method for extracting physiological information
KR20150130303A (en) 2013-02-15 2015-11-23 사이오닉스, 아이엔씨. High dynamic range cmos image sensor having anti-blooming properties and associated methods
US20140275886A1 (en) * 2013-03-14 2014-09-18 Streamline Automation, Llc Sensor fusion and probabilistic parameter estimation method and apparatus
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
WO2014209421A1 (en) 2013-06-29 2014-12-31 Sionyx, Inc. Shallow trench textured regions and associated methods
US9339236B2 (en) * 2013-07-05 2016-05-17 James Tyler Frix Continuous transdermal monitoring system and method
US20150230743A1 (en) * 2014-02-17 2015-08-20 Covidien Lp Sensor configurations for anatomical variations
JP6219212B2 (en) * 2014-03-27 2017-10-25 浜松ホトニクス株式会社 Biological measurement probe and living body measuring device
US9566025B2 (en) * 2014-05-05 2017-02-14 National Applied Research Laboratories Image based oxygen saturation measuring device and method thereof
JP2017521199A (en) * 2014-05-15 2017-08-03 ヌーライン センサーズ,エルエルシーNuline Sensors,Llc System and method for measuring the oxygen concentration in the blood by placing a single sensor on the skin
US9924896B2 (en) * 2014-06-23 2018-03-27 Koninklijke Philips N.V. Device, system and method for determining the concentration of a substance in the blood of a subject
US20160192883A1 (en) * 2015-01-06 2016-07-07 LifeWatch Technologies, Ltd. Oxygen saturation measurements
US20170055919A1 (en) * 2015-08-31 2017-03-02 Nihon Kohden Corporation Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178142A (en) * 1989-05-23 1993-01-12 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5433197A (en) * 1992-09-04 1995-07-18 Stark; Edward W. Non-invasive glucose measurement method and apparatus

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638640A (en) 1967-11-01 1972-02-01 Robert F Shaw Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
CA971768A (en) 1972-02-01 1975-07-29 Robert F. Shaw Oximeter and method
US3799672A (en) 1972-09-15 1974-03-26 Us Health Education & Welfare Oximeter for monitoring oxygen saturation in blood
JPS5725217B2 (en) 1974-10-14 1982-05-28
CA1037285A (en) 1975-04-30 1978-08-29 Glenfield Warner Ear oximetry process and apparatus
US4167331A (en) 1976-12-20 1979-09-11 Hewlett-Packard Company Multi-wavelength incremental absorbence oximeter
JPS6216646B2 (en) 1978-06-22 1987-04-14 Minolta Camera Kk
JPH0256B2 (en) 1980-01-25 1990-01-05 Minolta Camera Kk
US4357105A (en) 1980-08-06 1982-11-02 Buffalo Medical Specialties Mfg., Inc. Blood diagnostic spectrophotometer
US4407290B1 (en) 1981-04-01 1986-10-14
US4714341A (en) 1984-02-23 1987-12-22 Minolta Camera Kabushiki Kaisha Multi-wavelength oximeter having a means for disregarding a poor signal
US4740080A (en) 1985-03-21 1988-04-26 Abbott Laboratories Analog to digital converter for fluid analyzing apparatus
US4802486A (en) 1985-04-01 1989-02-07 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4928692A (en) 1985-04-01 1990-05-29 Goodman David E Method and apparatus for detecting optical pulses
US4934372A (en) 1985-04-01 1990-06-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4892101A (en) 1986-08-18 1990-01-09 Physio-Control Corporation Method and apparatus for offsetting baseline portion of oximeter signal
US4819649A (en) 1986-11-03 1989-04-11 Georgia Tech Research Corporation Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated
JPS63252239A (en) 1987-04-09 1988-10-19 Sumitomo Electric Ind Ltd Reflection type oxymeter
US4773422A (en) 1987-04-30 1988-09-27 Nonin Medical, Inc. Single channel pulse oximeter
US4796636A (en) 1987-09-10 1989-01-10 Nippon Colin Co., Ltd. Noninvasive reflectance oximeter
US4819752A (en) 1987-10-02 1989-04-11 Datascope Corp. Blood constituent measuring device and method
US4859057A (en) 1987-10-13 1989-08-22 Lawrence Medical Systems, Inc. Oximeter apparatus
US4854699A (en) 1987-11-02 1989-08-08 Nippon Colin Co., Ltd. Backscatter oximeter
US4960126A (en) 1988-01-15 1990-10-02 Criticare Systems, Inc. ECG synchronized pulse oximeter
US5299120A (en) 1989-09-15 1994-03-29 Hewlett-Packard Company Method for digitally processing signals containing information regarding arterial blood flow
US5190038A (en) 1989-11-01 1993-03-02 Novametrix Medical Systems, Inc. Pulse oximeter with improved accuracy and response time
US5224478A (en) 1989-11-25 1993-07-06 Colin Electronics Co., Ltd. Reflecting-type oxymeter probe
EP0930045A3 (en) 1991-03-07 1999-10-27 Masimo Corporation Signal processing apparatus and method for an oximeter
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
DE69227545T2 (en) * 1991-07-12 1999-04-29 Mark R Robinson Oximeter for reliable clinical determination of blood oxygen saturation in a fetus
US5413100A (en) * 1991-07-17 1995-05-09 Effets Biologiques Exercice Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
US5351685A (en) 1991-08-05 1994-10-04 Nellcor Incorporated Condensed oximeter system with noise reduction software
US5385143A (en) * 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
US5355880A (en) 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
GB9216431D0 (en) 1992-08-01 1992-09-16 Univ Swansea Optical monitoring or measuring artefact suppression
US5348004A (en) 1993-03-31 1994-09-20 Nellcor Incorporated Electronic processor for pulse oximeter
EP0658331B1 (en) 1993-12-11 1996-10-02 Hewlett-Packard GmbH A method for detecting an irregular state in a non-invasive pulse oximeter system
US5490506A (en) 1994-03-28 1996-02-13 Colin Corporation Peripheral blood flow evaluating apparatus
US5421329A (en) 1994-04-01 1995-06-06 Nellcor, Inc. Pulse oximeter sensor optimized for low saturation
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
CA2221968C (en) * 1995-06-09 2007-08-21 Cybro Medical Ltd. Sensor, method and device for optical blood oximetry
US5645060A (en) 1995-06-14 1997-07-08 Nellcor Puritan Bennett Incorporated Method and apparatus for removing artifact and noise from pulse oximetry
US5853364A (en) 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
US5995856A (en) 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US5842981A (en) 1996-07-17 1998-12-01 Criticare Systems, Inc. Direct to digital oximeter
US6163715A (en) 1996-07-17 2000-12-19 Criticare Systems, Inc. Direct to digital oximeter and method for calculating oxygenation levels
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
CA2397840A1 (en) 2000-01-28 2001-08-02 The General Hospital Corporation Fetal pulse oximetry
JP2003532107A (en) 2000-05-02 2003-10-28 シーエーエス・メディカル・システムズ・インコーポレイテッド Methods for monitoring blood oxygenation non-invasively by spectrophotometry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178142A (en) * 1989-05-23 1993-01-12 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5433197A (en) * 1992-09-04 1995-07-18 Stark; Edward W. Non-invasive glucose measurement method and apparatus

Cited By (295)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US8133176B2 (en) 1999-04-14 2012-03-13 Tyco Healthcare Group Lp Method and circuit for indicating quality and accuracy of physiological measurements
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US10058269B2 (en) 2000-07-28 2018-08-28 Lawrence A. Lynn Monitoring system for identifying an end-exhalation carbon dioxide value of enhanced clinical utility
US8862196B2 (en) 2001-05-17 2014-10-14 Lawrence A. Lynn System and method for automatic detection of a plurality of SP02 time series pattern types
US10032526B2 (en) 2001-05-17 2018-07-24 Lawrence A. Lynn Patient safety processor
US9031793B2 (en) 2001-05-17 2015-05-12 Lawrence A. Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US8666467B2 (en) 2001-05-17 2014-03-04 Lawrence A. Lynn System and method for SPO2 instability detection and quantification
US8401607B2 (en) 2001-07-19 2013-03-19 Covidien Lp Nuisance alarm reductions in a physiological monitor
US8838196B2 (en) 2001-07-19 2014-09-16 Covidien Lp Nuisance alarm reductions in a physiological monitor
US8401606B2 (en) 2001-07-19 2013-03-19 Covidien Lp Nuisance alarm reductions in a physiological monitor
US20070032714A1 (en) * 2001-07-19 2007-02-08 Nellcor Puritan Bennett Inc. Nuisance alarm reductions in a physiological monitor
US8433383B2 (en) 2001-10-12 2013-04-30 Covidien Lp Stacked adhesive optical sensor
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US6711425B1 (en) * 2002-05-28 2004-03-23 Ob Scientific, Inc. Pulse oximeter with calibration stabilization
US7899509B2 (en) 2002-10-01 2011-03-01 Nellcor Puritan Bennett Llc Forehead sensor placement
US7822453B2 (en) 2002-10-01 2010-10-26 Nellcor Puritan Bennett Llc Forehead sensor placement
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
US8452367B2 (en) 2002-10-01 2013-05-28 Covidien Lp Forehead sensor placement
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US20060135860A1 (en) * 2003-01-10 2006-06-22 Baker Clark R Jr Signal quality metrics design for qualifying data for a physiological monitor
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
US20040225207A1 (en) * 2003-05-09 2004-11-11 Sang-Kon Bae Ear type apparatus for measuring a bio signal and measuring method therefor
US7209775B2 (en) * 2003-05-09 2007-04-24 Samsung Electronics Co., Ltd. Ear type apparatus for measuring a bio signal and measuring method therefor
KR100938751B1 (en) 2003-05-21 2010-01-26 아스라브 쏘시에떼 아노님 Portable instrument for measuring a physiological quantity including a device for illuminating the surface of an organic tissue
US8148164B2 (en) * 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8420404B2 (en) * 2003-06-20 2013-04-16 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US7877126B2 (en) 2003-06-25 2011-01-25 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7813779B2 (en) 2003-06-25 2010-10-12 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7877127B2 (en) 2003-06-25 2011-01-25 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7809420B2 (en) 2003-06-25 2010-10-05 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7979102B2 (en) 2003-06-25 2011-07-12 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US8874181B2 (en) 2004-02-25 2014-10-28 Covidien Lp Oximeter ambient light cancellation
US8195262B2 (en) 2004-02-25 2012-06-05 Nellcor Puritan Bennett Llc Switch-mode oximeter LED drive with a single inductor
US8315684B2 (en) 2004-02-25 2012-11-20 Covidien Lp Oximeter ambient light cancellation
US20090005662A1 (en) * 2004-02-25 2009-01-01 Nellcor Puritan Bennett Inc Oximeter Ambient Light Cancellation
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8007441B2 (en) 2004-03-08 2011-08-30 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US20090082651A1 (en) * 2004-03-08 2009-03-26 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US20110092785A1 (en) * 2004-03-08 2011-04-21 Nellcor Puritan Bennett Llc Selection of Ensemble Averaging Weights for a Pulse Oximeter Based on Signal Quality Metrics
US20090221889A1 (en) * 2004-03-08 2009-09-03 Nellcor Puritan Bennett Llc Pulse Oximeter With Alternate Heart-Rate Determination
US8611977B2 (en) 2004-03-08 2013-12-17 Covidien Lp Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US20050197579A1 (en) * 2004-03-08 2005-09-08 Nellcor Puritan Bennett Incorporated Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US8560036B2 (en) 2004-03-08 2013-10-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US20070106137A1 (en) * 2004-03-09 2007-05-10 Baker Clark R Jr Pulse oximetry signal correction using near infrared absorption by water
US8195263B2 (en) 2004-03-09 2012-06-05 Nellcor Puritan Bennett Llc Pulse oximetry motion artifact rejection using near infrared absorption by water
US20080009690A1 (en) * 2004-03-09 2008-01-10 Nellcor Puritan Bennett Llc Pulse oximetry motion artifact rejection using near infrared absorption by water
US8175670B2 (en) 2004-03-09 2012-05-08 Nellcor Puritan Bennett Llc Pulse oximetry signal correction using near infrared absorption by water
US20060155178A1 (en) * 2004-03-26 2006-07-13 Vadim Backman Multi-dimensional elastic light scattering
US20060020212A1 (en) * 2004-07-26 2006-01-26 Tianning Xu Portable vein locating device
US9351674B2 (en) 2005-03-03 2016-05-31 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US20080255436A1 (en) * 2005-03-03 2008-10-16 Nellcor Puritain Bennett Incorporated Method for Enhancing Pulse Oximery Calculations in the Presence of Correlated Artifacts
US8818475B2 (en) 2005-03-03 2014-08-26 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US20080051670A1 (en) * 2005-07-18 2008-02-28 Triage Wireless, Inc. Patch sensor system for measuring vital signs
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7684843B2 (en) 2005-08-08 2010-03-23 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657296B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Unitary medical sensor assembly and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7647084B2 (en) 2005-08-08 2010-01-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7738937B2 (en) 2005-08-08 2010-06-15 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7693559B2 (en) 2005-08-08 2010-04-06 Nellcor Puritan Bennett Llc Medical sensor having a deformable region and technique for using the same
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8260391B2 (en) 2005-09-12 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8600469B2 (en) 2005-09-29 2013-12-03 Covidien Lp Medical sensor and technique for using the same
US7676253B2 (en) 2005-09-29 2010-03-09 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US20070073124A1 (en) * 2005-09-29 2007-03-29 Li Li System and method for removing artifacts from waveforms
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7729736B2 (en) 2005-09-29 2010-06-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8060171B2 (en) 2005-09-29 2011-11-15 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8744543B2 (en) 2005-09-29 2014-06-03 Covidien Lp System and method for removing artifacts from waveforms
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8364221B2 (en) 2005-09-30 2013-01-29 Covidien Lp Patient monitoring alarm escalation system and method
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8352010B2 (en) 2005-09-30 2013-01-08 Covidien Lp Folding medical sensor and technique for using the same
US20070179368A1 (en) * 2005-10-27 2007-08-02 Northwestern University Method of recognizing abnormal tissue using the detection of early increase in microvascular blood content
US20090203977A1 (en) * 2005-10-27 2009-08-13 Vadim Backman Method of screening for cancer using parameters obtained by the detection of early increase in microvascular blood content
US20070129615A1 (en) * 2005-10-27 2007-06-07 Northwestern University Apparatus for recognizing abnormal tissue using the detection of early increase in microvascular blood content
US9314164B2 (en) 2005-10-27 2016-04-19 Northwestern University Method of using the detection of early increase in microvascular blood content to distinguish between adenomatous and hyperplastic polyps
US20090253971A1 (en) * 2005-10-28 2009-10-08 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US20070129616A1 (en) * 2005-12-02 2007-06-07 Borje Rantala Probe and a method for use with a probe
EP1792564A1 (en) * 2005-12-02 2007-06-06 General Electric Company A probe and a method for use with a probe
US8126525B2 (en) 2005-12-02 2012-02-28 Ge Healthcare Finland Oy Probe and a method for use with a probe
US8761851B2 (en) * 2005-12-06 2014-06-24 Cas Medical Systems, Inc. Indicators for a spectrophotometric system
US20080300474A1 (en) * 2005-12-06 2008-12-04 Cas Medical Systems, Inc. Indicators For A Spectrophotometric System
US8728001B2 (en) 2006-02-10 2014-05-20 Lawrence A. Lynn Nasal capnographic pressure monitoring system
US20070208259A1 (en) * 2006-03-06 2007-09-06 Mannheimer Paul D Patient monitoring alarm escalation system and method
US8702606B2 (en) 2006-03-21 2014-04-22 Covidien Lp Patient monitoring help video system and method
US20080214906A1 (en) * 2006-03-21 2008-09-04 Nellcor Puritan Bennett Llc Patient Monitoring Help Video System and Method
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8437826B2 (en) 2006-05-02 2013-05-07 Covidien Lp Clip-style medical sensor and technique for using the same
US9149192B2 (en) * 2006-05-26 2015-10-06 Sotera Wireless, Inc. System for measuring vital signs using bilateral pulse transit time
US20070276632A1 (en) * 2006-05-26 2007-11-29 Triage Wireless, Inc. System for measuring vital signs using bilateral pulse transit time
US20090105564A1 (en) * 2006-06-08 2009-04-23 Omron Healthcare Co., Ltd. Living body component measuring apparatus capable of precisely and non-invasively measuring living body component
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8577436B2 (en) 2006-08-22 2013-11-05 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US20080076986A1 (en) * 2006-09-20 2008-03-27 Nellcor Puritan Bennett Inc. System and method for probability based determination of estimated oxygen saturation
US8064975B2 (en) 2006-09-20 2011-11-22 Nellcor Puritan Bennett Llc System and method for probability based determination of estimated oxygen saturation
US8538500B2 (en) 2006-09-20 2013-09-17 Covidien Lp System and method for probability based determination of estimated oxygen saturation
US20100145170A1 (en) * 2006-09-21 2010-06-10 Starr Life Sciences Corp. Small Animal Pulse Oximeter User Interface
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US20080076977A1 (en) * 2006-09-26 2008-03-27 Nellcor Puritan Bennett Inc. Patient monitoring device snapshot feature system and method
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US10022058B2 (en) 2006-09-28 2018-07-17 Covidien Lp System and method for pulse rate calculation using a scheme for alternate weighting
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7922665B2 (en) 2006-09-28 2011-04-12 Nellcor Puritan Bennett Llc System and method for pulse rate calculation using a scheme for alternate weighting
US20080082009A1 (en) * 2006-09-28 2008-04-03 Nellcor Puritan Bennett Inc. System and method for pulse rate calculation using a scheme for alternate weighting
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US8660626B2 (en) 2006-09-28 2014-02-25 Covidien Lp System and method for mitigating interference in pulse oximetry
US8801622B2 (en) 2006-09-28 2014-08-12 Covidien Lp System and method for pulse rate calculation using a scheme for alternate weighting
US8728059B2 (en) 2006-09-29 2014-05-20 Covidien Lp System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US7658652B2 (en) 2006-09-29 2010-02-09 Nellcor Puritan Bennett Llc Device and method for reducing crosstalk
US20080081970A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pulse oximetry sensor switchover
US20100141391A1 (en) * 2006-09-29 2010-06-10 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US8160668B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc Pathological condition detector using kernel methods and oximeters
US8160683B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc System and method for integrating voice with a medical device
US8160726B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US20080081956A1 (en) * 2006-09-29 2008-04-03 Jayesh Shah System and method for integrating voice with a medical device
US20080114226A1 (en) * 2006-09-29 2008-05-15 Doug Music Systems and methods for user interface and identification in a medical device
US20110098544A1 (en) * 2006-09-29 2011-04-28 Nellcor Puritan Bennett Llc System and method for integrating voice with a medical device
US7925511B2 (en) 2006-09-29 2011-04-12 Nellcor Puritan Bennett Llc System and method for secure voice identification in a medical device
US20080082338A1 (en) * 2006-09-29 2008-04-03 O'neil Michael P Systems and methods for secure voice identification and medical device interface
US20080114211A1 (en) * 2006-09-29 2008-05-15 Edward Karst System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7848891B2 (en) 2006-09-29 2010-12-07 Nellcor Puritan Bennett Llc Modulation ratio determination with accommodation of uncertainty
US20080189783A1 (en) * 2006-09-29 2008-08-07 Doug Music User interface and identification in a medical device system and method
US7698002B2 (en) 2006-09-29 2010-04-13 Nellcor Puritan Bennett Llc Systems and methods for user interface and identification in a medical device
US20080081974A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pathological condition detector using kernel methods and oximeters
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US7706896B2 (en) 2006-09-29 2010-04-27 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US7794266B2 (en) 2006-09-29 2010-09-14 Nellcor Puritan Bennett Llc Device and method for reducing crosstalk
US8068890B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US20080082339A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated System and method for secure voice identification in a medical device
US20080097175A1 (en) * 2006-09-29 2008-04-24 Boyce Robin S System and method for display control of patient monitor
US20080200819A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Orthostasis detection system and method
US20080200775A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US20080221426A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Methods and apparatus for detecting misapplied optical sensors
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US20090154573A1 (en) * 2007-12-13 2009-06-18 Nellcor Puritan Bennett Llc Signal Demodulation
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US20090171167A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc System And Method For Monitor Alarm Management
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US20090171226A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for evaluating variation in the timing of physiological events
US20090171173A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for reducing motion artifacts in a sensor
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US20090171171A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximetry sensor overmolding location features
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US20090171174A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for maintaining battery life
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8781753B2 (en) 2008-02-19 2014-07-15 Covidien Lp System and method for evaluating physiological parameter data
US20090209839A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Methods And Systems For Alerting Practitioners To Physiological Conditions
US20090247851A1 (en) * 2008-03-26 2009-10-01 Nellcor Puritan Bennett Llc Graphical User Interface For Monitor Alarm Management
US20090248320A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Benett Llc System And Method For Unmixing Spectroscopic Observations With Nonnegative Matrix Factorization
US8140272B2 (en) 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US20090247850A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Manually Powered Oximeter
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US20090247852A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc System and method for facilitating sensor and monitor communication
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US20090326335A1 (en) * 2008-06-30 2009-12-31 Baker Clark R Pulse Oximeter With Wait-Time Indication
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US20090327515A1 (en) * 2008-06-30 2009-12-31 Thomas Price Medical Monitor With Network Connectivity
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
USD736250S1 (en) 2008-06-30 2015-08-11 Covidien Lp Portion of a display panel with an indicator icon
US8862194B2 (en) 2008-06-30 2014-10-14 Covidien Lp Method for improved oxygen saturation estimation in the presence of noise
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US20100081899A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System and Method for Photon Density Wave Pulse Oximetry and Pulse Hemometry
US20100081897A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Transmission Mode Photon Density Wave System And Method
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US20100081890A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System And Method For Enabling A Research Mode On Physiological Monitors
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US8622916B2 (en) 2008-10-31 2014-01-07 Covidien Lp System and method for facilitating observation of monitored physiologic data
US9993208B2 (en) 2008-10-31 2018-06-12 Covidien Lp System and method for facilitating observation of monitored physiologic data
US20100113908A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US20100113909A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US20090171172A1 (en) * 2008-12-19 2009-07-02 Nellcor Puritan Bennett Llc Method and system for pulse gating
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US20100240972A1 (en) * 2009-03-20 2010-09-23 Nellcor Puritan Bennett Llc Slider Spot Check Pulse Oximeter
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US20160174855A1 (en) * 2009-05-27 2016-06-23 Analog Devices, Inc. Multiuse optical sensor
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US9380969B2 (en) 2009-07-30 2016-07-05 Covidien Lp Systems and methods for varying a sampling rate of a signal
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US20110029865A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Control Interface For A Medical Monitor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US20110046464A1 (en) * 2009-08-19 2011-02-24 Nellcor Puritan Bennett Llc Photoplethysmography with controlled application of sensor pressure
US8494606B2 (en) 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8704666B2 (en) 2009-09-21 2014-04-22 Covidien Lp Medical device interface customization systems and methods
US20110071371A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Wavelength-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US20110071373A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Time-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US20110071368A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Medical Device Interface Customization Systems And Methods
US8855749B2 (en) 2009-09-24 2014-10-07 Covidien Lp Determination of a physiological parameter
US20110071598A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Photoacoustic Spectroscopy Method And System To Discern Sepsis From Shock
US8923945B2 (en) 2009-09-24 2014-12-30 Covidien Lp Determination of a physiological parameter
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8571621B2 (en) 2009-09-24 2013-10-29 Covidien Lp Minimax filtering for pulse oximetry
US20110071376A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Determination Of A Physiological Parameter
US20110071374A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Minimax Filtering For Pulse Oximetry
US9597023B2 (en) 2009-09-29 2017-03-21 Covidien Lp Oximetry assembly
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US20110077547A1 (en) * 2009-09-29 2011-03-31 Nellcor Puritan Bennett Llc Spectroscopic Method And System For Assessing Tissue Temperature
US8376955B2 (en) 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US9585606B2 (en) 2009-09-29 2017-03-07 Covidien Lp Oximetry assembly
US20110077485A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Method Of Analyzing Photon Density Waves In A Medical Monitor
US20110074342A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US20110077470A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Patient Monitor Symmetry Control
US8290558B1 (en) * 2009-11-23 2012-10-16 Vioptix, Inc. Tissue oximeter intraoperative sensor
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
US8498683B2 (en) 2010-04-30 2013-07-30 Covidien LLP Method for respiration rate and blood pressure alarm management
US9380982B2 (en) 2010-07-28 2016-07-05 Covidien Lp Adaptive alarm system and method
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US9037204B2 (en) 2011-09-07 2015-05-19 Covidien Lp Filtered detector array for optical patient sensors
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US9585604B2 (en) * 2012-07-16 2017-03-07 Zyomed Corp. Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US20150011850A1 (en) * 2012-07-16 2015-01-08 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US9351671B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
US9375170B2 (en) 2012-07-16 2016-06-28 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
US9351672B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
CN104755018A (en) * 2012-11-02 2015-07-01 皇家飞利浦有限公司 Device and method for extracting physiological information
US9766126B2 (en) 2013-07-12 2017-09-19 Zyomed Corp. Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
US9854999B2 (en) * 2014-03-28 2018-01-02 Nihon Kohden Corporation Pulse photometer
US20150272488A1 (en) * 2014-03-28 2015-10-01 Nihon Kohden Corporation Pulse photometer
US9442065B2 (en) 2014-09-29 2016-09-13 Zyomed Corp. Systems and methods for synthesis of zyotons for use in collision computing for noninvasive blood glucose and other measurements
US9459201B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
US9459202B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for collision computing for detection and noninvasive measurement of blood glucose and other substances and events
US9459203B2 (en) 2014-09-29 2016-10-04 Zyomed, Corp. Systems and methods for generating and using projector curve sets for universal calibration for noninvasive blood glucose and other measurements
US9453794B2 (en) 2014-09-29 2016-09-27 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US9448165B2 (en) 2014-09-29 2016-09-20 Zyomed Corp. Systems and methods for control of illumination or radiation collection for blood glucose and other analyte detection and measurement using collision computing
US9448164B2 (en) 2014-09-29 2016-09-20 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
US9610018B2 (en) 2014-09-29 2017-04-04 Zyomed Corp. Systems and methods for measurement of heart rate and other heart-related characteristics from photoplethysmographic (PPG) signals using collision computing
WO2016087609A1 (en) * 2014-12-04 2016-06-09 Osram Opto Semiconductors Gmbh Pulse oximetry device and method for operating a pulse oximetry device
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing

Also Published As

Publication number Publication date Type
JP2004514116A (en) 2004-05-13 application
CA2422683A1 (en) 2002-04-11 application
US6801799B2 (en) 2004-10-05 grant
WO2002028274A1 (en) 2002-04-11 application
EP1322216A1 (en) 2003-07-02 application
JP4903980B2 (en) 2012-03-28 grant
EP1322216B1 (en) 2015-01-28 grant
CA2422683C (en) 2011-09-13 grant
US20030144584A1 (en) 2003-07-31 application

Similar Documents

Publication Publication Date Title
US5782237A (en) Pulse oximeter and sensor optimized for low saturation
US8720249B2 (en) Non-invasive sensor calibration device
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US6754515B1 (en) Stabilization of noisy optical sources in photoplethysmography
US6662033B2 (en) Pulse oximeter and sensor optimized for low saturation
US6961598B2 (en) Pulse and active pulse spectraphotometry
Hayes et al. A new method for pulse oximetry possessing inherent insensitivity to artifact
US5524617A (en) Isolated layer pulse oximetry
US6594513B1 (en) Method and apparatus for determining oxygen saturation of blood in body organs
US6480729B2 (en) Method for determining blood constituents
US7072701B2 (en) Method for spectrophotometric blood oxygenation monitoring
US5800349A (en) Offset pulse oximeter sensor
US6963767B2 (en) Pulse oximeter
US5564417A (en) Pathlength corrected oximeter and the like
US6771994B2 (en) Pulse oximeter probe-off detection system
US6026314A (en) Method and device for noninvasive measurements of concentrations of blood components
US20080015424A1 (en) Tissue Oximetry Apparatus and Method
US6997879B1 (en) Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
US6553242B1 (en) Physiological stress detector device and method
US6802812B1 (en) Noninvasive optical sensor for measuring near infrared light absorbing analytes
US20050250998A1 (en) Compensation of human variability in pulse oximetry
Mannheimer The light–tissue interaction of pulse oximetry
Jennis et al. Pulse oximetry: an alternative method for the assessment of oxygenation in newborn infants
US5983122A (en) Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
US6216021B1 (en) Method for measuring absolute saturation of time-varying and other hemoglobin compartments

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYBRO MEDICAL, LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MENDELSON, YITZHAK;REEL/FRAME:012120/0515

Effective date: 20010822