JP2608828B2 - Non-invasive oximeter - Google Patents

Non-invasive oximeter

Info

Publication number
JP2608828B2
JP2608828B2 JP4021204A JP2120492A JP2608828B2 JP 2608828 B2 JP2608828 B2 JP 2608828B2 JP 4021204 A JP4021204 A JP 4021204A JP 2120492 A JP2120492 A JP 2120492A JP 2608828 B2 JP2608828 B2 JP 2608828B2
Authority
JP
Japan
Prior art keywords
light
light intensity
irradiation
intensity ratio
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4021204A
Other languages
Japanese (ja)
Other versions
JPH05212016A (en
Inventor
卓雄 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to JP4021204A priority Critical patent/JP2608828B2/en
Priority to US08/014,269 priority patent/US5385143A/en
Publication of JPH05212016A publication Critical patent/JPH05212016A/en
Application granted granted Critical
Publication of JP2608828B2 publication Critical patent/JP2608828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非観血式オキシメータに
関する。
FIELD OF THE INVENTION This invention relates to non-invasive oximeters.

【0002】[0002]

【従来の技術】従来のこの種のオキシメータとしてはパ
ルスオキシメータがある。従来のパルスオキシメータ
は、血液を含む生体組織の脈動を利用して酸素飽和度を
測定していた。
2. Description of the Related Art As a conventional oximeter of this type, there is a pulse oximeter. Conventional pulse oximeters have measured oxygen saturation using the pulsation of biological tissues including blood.

【0003】[0003]

【発明が解決しようとする課題】しかし脈動を利用した
測定は脈動の低い場合には困難であり正確な結果は得ら
れないし、信号の微小変化を用いるので被検者の体動の
影響を受けやすい。
However, the measurement using the pulsation is difficult when the pulsation is low and an accurate result cannot be obtained, and since a slight change in the signal is used, it is affected by the body movement of the subject. Cheap.

【0004】本発明はこのような従来の欠点に鑑みなさ
れたものであり、その目的は被検者の脈動の高低によら
ず、また、体動に影響され難い測定を行なうことができ
る非観血式オキシメータを提供することである。
[0004] The present invention has been made in view of such conventional drawbacks, and its object is to provide a non-observable measurement which can perform measurement independent of the level of pulsation of a subject and which is hardly affected by body movement. It is to provide a blood oximeter.

【0005】[0005]

【課題を解決するための手段】請求項1の構成は、3波
長の光を血液を含む組織に照射する照射手段と、前記組
織を透過した光を受光し電気信号に変換する光電変換手
段と、前記3波長の光の照射光強度、またはそれら相互
の照射光強度比を記憶する記憶手段と、この記憶手段が
記憶している内容と前記光電変換手段から得られる透過
光強度に基づいて、ある2波長の組合わせの、照射光強
度比の対数と、透過光強度比の対数との差を求め、他の
2波長の組合わせの、照射光強度比の対数と、透過光強
度比の対数との差を求め、この両者の比と血中ヘモグロ
ビンによる減光度との関係式により、酸素飽和度を計算
する酸素飽和度計算手段と、を具備するものである。
According to a first aspect of the present invention, there is provided irradiation means for irradiating a tissue containing blood with light of three wavelengths, and photoelectric conversion means for receiving the light transmitted through the tissue and converting it into an electric signal. A storage unit for storing the irradiation light intensity of the three wavelengths of light, or a ratio of irradiation light intensity of each other, based on the contents stored by the storage unit and the transmitted light intensity obtained from the photoelectric conversion unit, The difference between the logarithm of the irradiation light intensity ratio and the logarithm of the transmitted light intensity ratio of a certain combination of two wavelengths is obtained, and the logarithm of the irradiation light intensity ratio and the transmission light intensity ratio of the other two wavelength combinations are obtained. An oxygen saturation calculation means for calculating the oxygen saturation by a relational expression between the difference between the two and the logarithm and the extinction degree by blood hemoglobin is provided.

【0006】請求項2の構成は、請求項1の構成におい
て照射光強度比は照射手段から発生した光を光減衰特性
が既知である光減衰板を透過させて得られるものであ
り、その照射光強度比の計算にはその光減衰板の特性を
考慮したものであることを特徴とする。
According to a second aspect of the present invention, in the configuration of the first aspect, the irradiation light intensity ratio is obtained by transmitting light generated from the irradiation means through a light attenuation plate having a known light attenuation characteristic. The characteristic of the light attenuating plate is taken into consideration in the calculation of the light intensity ratio.

【0007】[0007]

【作用】請求項1の構成において、酸素飽和度計算手段
は記憶手段が記憶している内容と光電変換手段から得ら
れる透過光強度に基づいて、ある2波長の組合わせの、
照射光強度比の対数と、透過光強度比の対数との差を求
め、他の2波長の組合わせの、照射光強度比の対数と、
透過光強度比の対数との差を求め、この両者の比と血中
ヘモグロビンによる減光度との関係式により、酸素飽和
度を計算する。
According to the construction of the first aspect, the oxygen saturation calculating means combines a certain two wavelengths based on the contents stored in the storage means and the transmitted light intensity obtained from the photoelectric conversion means.
The difference between the logarithm of the irradiation light intensity ratio and the logarithm of the transmitted light intensity ratio is obtained, and the logarithm of the irradiation light intensity ratio of the other two wavelength combinations,
The difference between the transmitted light intensity ratio and the logarithm is obtained, and the oxygen saturation is calculated from the relational expression between the ratio of the two and the extinction degree of blood hemoglobin.

【0008】請求項2の構成において、3波長の光の照
射光強度は光減衰特性が既知である光減衰板を透過させ
た光を測定することにより得られるものである。このた
め直接測定するよりも弱い光の強度を測定することにな
る。従って測定に用いる光電変換手段は組織を透過した
光を電気信号に変換する光電変換手段と同じもので良
い、すなわち1つの光電変換手段で照射光強度と組織の
透過光強度のいずれの測定をも行うことができる。
In the structure of claim 2, the irradiation light intensity of the light of three wavelengths is obtained by measuring the light transmitted through the light attenuating plate whose light attenuation characteristic is known. For this reason, the intensity of light that is weaker than that measured directly is measured. Therefore, the photoelectric conversion means used for the measurement may be the same as the photoelectric conversion means for converting the light transmitted through the tissue into an electric signal, that is, one photoelectric conversion means can measure both the irradiation light intensity and the transmitted light intensity of the tissue. It can be carried out.

【0009】[0009]

【実施例】図1は本発明の一実施例の構成ブロック図で
ある。まず本実施例の原理を説明する。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. First, the principle of the present embodiment will be described.

【0010】測定に用いる光の3波長は λ1 = 805nm λ2 = 890nm λ3 = 650nm で、それぞれ次の特性を持っている。 λ1 :ヘモグロビンの吸光係数が酸素飽和度に無関係。 λ2 :ヘモグロビンの吸光係数は酸素飽和度にあまり関係しない。 λ3 :ヘモグロビンの吸光係数は酸素飽和度によって著しく変わる。 以後用いる記号に付加するサフィックス1,2,3はこ
れらの波長の光を示すものとする。
The three wavelengths of light used in the measurement are λ 1 = 805 nm λ 2 = 890 nm λ 3 = 650 nm, and each has the following characteristics. λ 1 : Hemoglobin extinction coefficient is independent of oxygen saturation. λ 2 : The extinction coefficient of hemoglobin has little relation to oxygen saturation. λ 3 : The extinction coefficient of hemoglobin significantly changes depending on the oxygen saturation. Suffixes 1, 2, and 3 added to symbols used hereinafter indicate light of these wavelengths.

【0011】血液を含む生体組織を透過した3波長の光
の減光度A1 ,A2 ,A3 は、入射光が適当な散乱光で
あれば、次のようになることが理論(シャスターの理
論)及び実験でわかっている。 A1 Ξlog(Ie1 /It1 ) ={Eh1 Hb(Eh1 Hb+G)}1/2 Db+ZtDt (1) A2 Ξlog(Ie2 /It2 ) ={Eh2 Hb(Eh2 Hb+G)}1/2 Db+ZtDt (2) A3 Ξ log(Ie3 /It3 ) ={Eh3 Hb(E h3 Hb+G)}1/2 Db+ZtDt (3) ここで、 Ie:照射光強度(単位面積当りのエネルギー) It:透過光強度(単位面積当りのエネルギー) Eh:ヘモグロビンの吸光係数 Hb:血中ヘモグロビンの濃度 G :血液の散乱定数 Db:血液層の実効的な厚み Zt:血液を除いた組織(純組織と称する)の減光率 Ξ減光度/厚みで上記いずれの波長においても一定である。 Dt:純組織の厚み である。尚、Ξは恒等式の等号を示す(以下同じ)。
The theory is that the extinction degrees A 1 , A 2 , and A 3 of light of three wavelengths transmitted through living tissues including blood are as follows if incident light is an appropriate scattered light. Theory) and experiments. A 1 Ξlog (Ie 1 / It 1 ) = {Eh 1 Hb (Eh 1 Hb + G)} 1/2 Db + ZtDt (1) A 2 Ξlog (Ie 2 / It 2 ) = {Eh 2 Hb (Eh 2 Hb + G)} 1 / 2 Db + ZtDt (2) a 3 Ξ log (Ie 3 / It 3) = {Eh 3 Hb (E h 3 Hb + G)} 1/2 Db + ZtDt (3) where, Ie: irradiation light intensity (energy per unit area ) It: transmitted light intensity (energy per unit area) Eh: extinction coefficient of hemoglobin Hb: concentration of hemoglobin in blood G: scattering constant of blood Db: effective thickness of blood layer Zt: tissue excluding blood (pure) The light extinction ratio (referred to as “tissue”) Ξ The light extinction / thickness is constant at any of the above wavelengths. Dt: thickness of pure structure. Note that Ξ indicates the equal sign of the identity (the same applies below).

【0012】上記「照射光として適当な散乱光」とは次
のようなものである。
The above-mentioned "scattered light suitable as irradiation light" is as follows.

【0013】平行入射光は散乱体に入射すると進入して
行くにつれて散乱されある程度以上の深い所でその散乱
体固有の散乱度に達する。従って直進光照射においては
散乱体の浅い部位と深い部位とでは減光率が異なってし
まうものである。
When parallel incident light enters a scatterer, it is scattered as it enters the scatterer, and reaches a degree of scattering peculiar to the scatterer at a deep place above a certain level. Therefore, in the case of direct light irradiation, the extinction ratio differs between the shallow part and the deep part of the scatterer.

【0014】例えば生体組織と同じ散乱性を有する散乱
板で照射光を散乱させれば生体組織全体にわたって減光
率が同じになる。
For example, if the irradiation light is scattered by a scattering plate having the same scattering property as that of the living tissue, the extinction ratio becomes the same over the whole living tissue.

【0015】従ってこのような散乱板を発光ダイオード
の表面に配置すれば上記「照射光として適当な散乱光」
が得られる。
Therefore, when such a scattering plate is arranged on the surface of the light emitting diode, the above-mentioned "scattering light suitable as irradiation light" is obtained.
Is obtained.

【0016】ここで、各波長間の減光度の比Ψを次のよ
うに定義する。 ΨΞ(A3 −A2 )/(A1 −A2 ) (4) 式(4)を式(1),(2),(3)より展開すると次
のようになる。 ΨΞ(A3 −A2 )/(A1 −A2 ) =log[(Ie3 /It3 )/(Ie2 /It2 )]/log(Ie1 /It1 )/(Ie2 /It2 )] ={log(Ie3 /Ie2 )−log(It3 /It2 )}/{log (Ie1 /Ie2 )−log(It1 /It2 )} (4a) 式(4a)中、Ie3 /Ie2 ,Ie1 /Ie2 は照射
光強度比である。
Here, the ratio 減 of the dimming degree between the respective wavelengths is defined as follows. ΨΞ (A 3 −A 2 ) / (A 1 −A 2 ) (4) Expanding equation (4) from equations (1), (2) and (3) gives the following. ΨΞ (A 3 −A 2 ) / (A 1 −A 2 ) = log [(Ie 3 / It 3 ) / (Ie 2 / It 2 )] / log (Ie 1 / It 1 ) / (Ie 2 / It) 2)] = {log (Ie 3 / Ie 2) -log (It 3 / It 2)} / {log (Ie 1 / Ie 2) -log (It 1 / It 2)} (4a) formula (4a) Among them, Ie 3 / Ie 2 and Ie 1 / Ie 2 are irradiation light intensity ratios.

【0017】照射光強度そのものは光源と受光部との間
の距離などの測定条件に大きく影響されるが、3波長間
の光強度比である照射光強度比は上記測定条件の影響を
受けない。
The irradiation light intensity itself is greatly affected by measurement conditions such as the distance between the light source and the light receiving unit, but the irradiation light intensity ratio, which is the light intensity ratio between the three wavelengths, is not affected by the above measurement conditions. .

【0018】照射光強度比を求めるには次の方法があ
る。
There are the following methods for obtaining the irradiation light intensity ratio.

【0019】照射光を直接測定するには照度が強いため
透過光を受光する受光部で測定することはできない場合
がある。そこで例えば、使用する波長範囲の光に対し減
光度が均一な光減衰板に照射光を透過させ、その透過光
の3波長間の照射光強度比を算出する。
In order to directly measure the irradiation light, the illuminance is so high that it may not be possible to measure the transmitted light with a light-receiving unit that receives the transmitted light. Therefore, for example, the irradiation light is transmitted through a light attenuating plate having a uniform dimming degree with respect to the light in the wavelength range to be used, and the irradiation light intensity ratio among the three wavelengths of the transmitted light is calculated.

【0020】このように、照射光強度比Ie3 /I
2 ,Ie1 /Ie2 が求まれば透過光強度It1 ,I
2 ,It3 を測定して(4a)式によりΨを容易に計
算することができる。
Thus, the irradiation light intensity ratio Ie 3 / I
If e 2 and Ie 1 / Ie 2 are obtained, transmitted light intensities It 1 and Ie
By measuring t 2 and It 3 , Ψ can be easily calculated by the equation (4a).

【0021】一方、Ψは式(1),(2),(3)に基
づいて次のように書くこともできる。 Ψ=[{Eh3 Hb(Eh3 Hb+G)}1/2 −{Eh2 Hb(Eh2 Hb+G)}1/2 ] /[{Eh1 Hb(Eh1 Hb+G)}1/2 −{Eh2 Hb(Eh2 Hb+G)}1/2 ] (5)
On the other hand, Ψ can also be written as follows based on equations (1), (2) and (3). Ψ = [{Eh 3 Hb (Eh 3 Hb + G)} 1/2 − {Eh 2 Hb (Eh 2 Hb + G)} 1/2 ] / [{Eh 1 Hb (Eh 1 Hb + G)} 1/2 − {Eh 2 Hb (Eh 2 Hb + G)} 1/2 ] (5)

【0022】ヘモグロビン濃度が異常に大でない場合、
すなわち Hb<20[g/dL]の場合は G=FHb
(F:定数。散乱率と呼ぶことにする)とすることが
できる。
If the hemoglobin concentration is not abnormally high,
That is, when Hb <20 [g / dL], G = FHb
(F: a constant, which will be referred to as a scattering rate).

【0023】これにより式(5)は次のようになる。 Ψ=[{Eh3 (Eh3 +F)}1/2 −{Eh2 (Eh2 +F)}1/2 ] /[{Eh1 (Eh1 +F)}1/2 −{Eh2 (Eh2 +F)}1/2 ] (6)Thus, equation (5) becomes as follows. Ψ = [{Eh 3 (Eh 3 + F)} 1/2 − {Eh 2 (Eh 2 + F)} 1/2 ] / [{Eh 1 (Eh 1 + F)} 1/2 − {Eh 2 (Eh 2 + F)} 1/2 ] (6)

【0024】光波長に対するヘモグロビンの吸光特性か
ら次の式が成立する。 Eh1 =Eo1 (7) Eh2 =約Eo2 (8) Eh3 =SEo3 +(1−S)Er3 =S(Eo3 −Er3 )+Er3 =Er3 −SΔE3 (9) S :酸素飽和度 Eo:酸化ヘモグロビンの吸光係数 Er:還元ヘモグロビンの吸光係数 ΔE3 ΞEr3 −Eo3
The following equation is established from the absorption characteristics of hemoglobin with respect to the light wavelength. Eh 1 = Eo 1 (7) Eh 2 = about Eo 2 (8) Eh 3 = SEo 3 + (1-S) Er 3 = S (Eo 3 −Er 3 ) + Er 3 = Er 3 −SΔE 3 (9) S: oxygen saturation Eo: extinction coefficient of oxyhemoglobin Er: extinction coefficient of reduced hemoglobin ΔE 3 Ξ Er 3 -Eo 3

【0025】式(6)は式(7),(8),(9)から
次式のようになる。 Ψ=[{(Er3 −SΔE3 )((Er3 −SΔE3 )+F)}1/2 −{Eo2 (Eo2 +F)}1/2 ] /{(Eo1 (Eo1 +F)1/2 )−(Eo2 (Eo2 +F))}1/2 (10)
The expression (6) is changed from the expressions (7), (8) and (9) into the following expression. Ψ = [{(Er 3 −SΔE 3 ) ((Er 3 −SΔE 3 ) + F)} 1/2 − {Eo 2 (Eo 2 + F)} 1/2 ] / {(Eo 1 (Eo 1 + F) 1 / 2 )-(Eo 2 (Eo 2 + F))} 1/2 (10)

【0026】ここで{Eo1 (Eo1 +F)}1/2 ΞE
1 ,{Eo2 (Eo2 +F)}1/2ΞEb2 とおくと式
(10)は、 Ψ=[{(Er3 −SΔE3 )(Er3 −SΔE3 +F)}1/2 −Eb2 ] /(Eb1 −Eb2 ) (11) 式(11)を酸素飽和度Sについて解き、求める。 S={−B±(B2 −4AC)1/2 }/2A (12)
Here, {Eo 1 (Eo 1 + F)} 1/2 {E
b 1 , {Eo 2 (Eo 2 + F)} 1/2と Eb 2 , equation (10) gives: Ψ = [{(Er 3 −SΔE 3 ) (Er 3 −SΔE 3 + F)} 1/2 − Eb 2 ] / (Eb 1 −Eb 2 ) (11) Equation (11) is solved for the oxygen saturation S to obtain the value. S = {− B ± (B 2 -4AC) 1/2 } / 2A (12)

【0027】ここでA,B,Cはそれぞれ次のようであ
る。 AΞΔE3 2 (ΔE3 =Er3 −Eo3 ) BΞ−ΔE3 (2Er3 +F) CΞEr3 (Er3 +F)−[Ψ(Z1 −Z2 )+Z2 2 この様にして酸素飽和度を算出することができる。
Here, A, B, and C are as follows, respectively. AΞΔE 3 2 (ΔE 3 = Er 3 -Eo 3 ) BΞ-ΔE 3 (2Er 3 + F) CEr 3 (Er 3 + F)-[Ψ (Z 1 -Z 2 ) + Z 2 ] 2 Thus, the oxygen saturation Can be calculated.

【0028】次に図1の装置に基づいて説明する。Next, a description will be given based on the apparatus shown in FIG.

【0029】3波長光源1は波長 805nm, 890nm,
650nmそれぞれの光を発生する3つの発光ダイオード
と、その発光ダイオードの光を透過する散乱板2を有し
ている。散乱板2は測定の対象となる生体組織に近い散
乱性を有するものである。
The three-wavelength light source 1 has wavelengths of 805 nm, 890 nm,
It has three light emitting diodes that emit light of 650 nm each, and a scattering plate 2 that transmits the light of the light emitting diodes. The scattering plate 2 has a scattering property close to a living tissue to be measured.

【0030】受光部3は3波長光源1に対し所定の間隔
をあけて設けられ、3波長光源1からの光を電気信号に
変換する回路である。増幅器4は受光部3から出力され
る電気信号を増幅する回路である。A/D変換器6は増
幅器4から出力される信号をディジタル信号に変換する
回路である。3波長測定制御回路7は3波長光源1の3
つの発光ダイオードを所定のタイミングで順に発光させ
る信号を出力する回路である。この信号は同時に増幅器
4、A/D変換器6、照射強度演算・記憶回路9および
酸素飽和度演算回路10に至るようにされている。
The light receiving section 3 is a circuit provided at a predetermined distance from the three-wavelength light source 1 and converts light from the three-wavelength light source 1 into an electric signal. The amplifier 4 is a circuit that amplifies an electric signal output from the light receiving unit 3. The A / D converter 6 is a circuit that converts a signal output from the amplifier 4 into a digital signal. The three-wavelength measurement control circuit 7 has three wavelengths of the three-wavelength light source 1.
It is a circuit that outputs a signal for causing one light emitting diode to sequentially emit light at a predetermined timing. This signal is simultaneously sent to the amplifier 4, the A / D converter 6, the irradiation intensity calculation / storage circuit 9, and the oxygen saturation calculation circuit 10.

【0031】切換スイッチ8はA/D変換器6の出力を
照射光強度演算・記憶回路9と酸素飽和度演算回路10の
いずれかへ切換えて与えるスイッチである。校正/測定
切換制御回路11は切換スイッチ8の切換えを制御する回
路である。
The changeover switch 8 is a switch for switching the output of the A / D converter 6 to one of the irradiation light intensity calculation / storage circuit 9 and the oxygen saturation calculation circuit 10 for application. The calibration / measurement switching control circuit 11 is a circuit that controls switching of the changeover switch 8.

【0032】表示装置12、記録器13はそれぞれ酸素飽和
度演算回路10の演算結果を表示し、記録するものであ
る。
The display device 12 and the recorder 13 respectively display and record the calculation result of the oxygen saturation calculation circuit 10.

【0033】ここで照射光強度演算・記憶回路9はA/
D変換器6の出力を用いて所定の演算を行ない、その結
果を記憶する回路である。酸素飽和度演算回路10はA/
D変換器6の出力および照射光強度演算・記憶回路9が
記憶している内容に基づいて所定の演算を行ない表示装
置12および記録器13へその結果を出力する回路である。
Here, the irradiation light intensity calculation / storage circuit 9 stores A /
This circuit performs a predetermined operation using the output of the D converter 6 and stores the result. The oxygen saturation calculation circuit 10 has an A /
This is a circuit for performing a predetermined calculation based on the output of the D converter 6 and the content stored in the irradiation light intensity calculation / storage circuit 9 and outputting the result to the display device 12 and the recorder 13.

【0034】次に本実施例装置の動作を説明する。Next, the operation of the present embodiment will be described.

【0035】まずオペレータは、光減衰板15を3波長光
源1と受光部3との間に配置する。ここでオペレータは
校正/測定切換制御回路11を操作して、切換スイッチ8
をA/D変換器6と照射光強度演算・記憶回路9とが接
続されるように切換える。次にオペレータは3波長測定
制御回路7に制御を開始させる。3波長光源1、照射光
強度演算・記憶手段9、酸素飽和度演算回路10およびA
/D変換器6は3波長測定制御回路7からの制御信号に
より制御される。すなわち3波長光源1は波長λ1 (805
nm)、λ2 (890nm)、λ3 (650nm)の光を所定の
間隔で発生させる。これらの光は光減衰板15を透過して
受光部3に至り、ここで電気信号に変換される。そして
増幅器4、A/D変換器6、照射光強度演算・記憶回路
9は3波長光源の点灯のタイミングと同期して動作す
る。このとき照射光強度演算・記憶手段9に与えられる
信号が式(4a)中のIe1 ,Ie2 ,Ie3 に対応し
ている。照射光強度演算・記憶手段9はIe1 ,I
2 ,Ie3 を記憶する。
First, the operator places the light attenuation plate 15 between the three-wavelength light source 1 and the light receiving section 3. Here, the operator operates the calibration / measurement switching control circuit 11 to switch the changeover switch 8.
Is switched so that the A / D converter 6 and the irradiation light intensity calculation / storage circuit 9 are connected. Next, the operator causes the three-wavelength measurement control circuit 7 to start control. Three-wavelength light source 1, irradiation light intensity calculation / storage means 9, oxygen saturation calculation circuit 10 and A
The / D converter 6 is controlled by a control signal from the three-wavelength measurement control circuit 7. That is, the three-wavelength light source 1 has the wavelength λ 1 (805
nm), λ 2 (890 nm) and λ 3 (650 nm) at predetermined intervals. These lights pass through the light attenuating plate 15 and reach the light receiving unit 3, where they are converted into electric signals. The amplifier 4, the A / D converter 6, and the irradiation light intensity calculation / storage circuit 9 operate in synchronization with the lighting timing of the three-wavelength light source. At this time, the signals given to the irradiation light intensity calculation / storage means 9 correspond to Ie 1 , Ie 2 , and Ie 3 in the equation (4a). The irradiation light intensity calculation / storage means 9 stores Ie 1 , Ie
Memorize e 2 and Ie 3 .

【0036】次にオペレータは光減衰板15を取り出し、
代りに測定の対象である生体組織17(指、耳朶など)を
3波長光源1と受光部3との間に配置する。ここでオペ
レータは校正/測定切換制御回路11を操作して切換スイ
ッチ8をA/D変換器6と酸素飽和度演算回路10とが接
続されるように切換える。次にオペレータは3波長測定
制御回路7に制御を開始させる。前述の光減衰板15を用
いた照射光強度測定と同様にしてA/D変換器6からは
式(4a)中のIt1 ,It2 ,It3 に対応した信号
が酸素飽和度演算回路10に出力される。酸素飽和度演算
回路10はまた照射光強度演算・記憶回路9の出力に基づ
いて照射光強度比Ie3 /Ie2 ,Ie1/Ie2 を算出
する。そしてこの透過光強度比および照射光強度比を式
(4a)に代入してΨを求める。次に酸素飽和度演算回
路10は求めたΨを式(12)に代入して酸素飽和度Sを計
算する(Ψは式(12)ではCに含まれている)。こうし
て得られた酸素飽和度Sは表示装置12に表示され、記録
器13により記録される。
Next, the operator takes out the light attenuation plate 15, and
Instead, a living tissue 17 (a finger, an earlobe, or the like) to be measured is disposed between the three-wavelength light source 1 and the light receiving unit 3. Here, the operator operates the calibration / measurement switching control circuit 11 to switch the changeover switch 8 so that the A / D converter 6 and the oxygen saturation calculation circuit 10 are connected. Next, the operator causes the three-wavelength measurement control circuit 7 to start control. The signals corresponding to It 1 , It 2 and It 3 in the equation (4a) are output from the A / D converter 6 in the same manner as the irradiation light intensity measurement using the light attenuating plate 15 described above. Is output to The oxygen saturation calculation circuit 10 also calculates the irradiation light intensity ratios Ie 3 / Ie 2 and Ie 1 / Ie 2 based on the output of the irradiation light intensity calculation and storage circuit 9. Then, the transmitted light intensity ratio and the irradiation light intensity ratio are substituted into Expression (4a) to obtain (. Next, the oxygen saturation calculation circuit 10 calculates the oxygen saturation S by substituting the obtained Ψ into the equation (12) (Ψ is included in C in the equation (12)). The oxygen saturation S thus obtained is displayed on the display device 12 and recorded by the recorder 13.

【0037】本実施例によれば、照射光強度を測定する
場合光減衰板15を用いるので生体組織17を透過して光の
強度を測定する装置と同じ装置で測定できる。尚、光減
衰板15は光源の各波長に対して散乱度が等しいものが望
ましいが、散乱度に差異がある場合は、その差異が既知
であって、照射光強度比の計算手段にそれを補正する手
段が含まれていれば良い。尚、この例では3波長の光を
順に照射するようにしたが、この3波長の光を一斉に光
減衰板または生体組織に照射し、同時にそれぞれの透過
光を受光して光電変換し、これから直ちにIe3 /Ie
2 ,Ie2 /Ie1 ,It3 /It2 ,It1 /It2
を求め、これらを記憶して式(4a)の計算に用いるよ
うにしても良い。
According to this embodiment, since the light attenuating plate 15 is used for measuring the intensity of the irradiation light, the measurement can be performed by the same device as the device for measuring the intensity of light transmitted through the living tissue 17. It is desirable that the light attenuating plate 15 has the same degree of scattering for each wavelength of the light source, but if there is a difference in the degree of scattering, the difference is known, and the difference is calculated by the means for calculating the irradiation light intensity ratio. It suffices if a means for correction is included. In this example, the light of three wavelengths is irradiated in order. However, the light of three wavelengths is simultaneously irradiated on the light attenuating plate or the living tissue, and the respective transmitted light is simultaneously received and photoelectrically converted. Immediately Ie 3 / Ie
2 , Ie 2 / Ie 1 , It 3 / It 2 , It 1 / It 2
May be obtained, and these may be stored and used in the calculation of the equation (4a).

【0038】また本実施例によれば、3波長光源1から
発生した光は散乱板を透過しているので生体組織の浅い
部位と深い部位とで減光率が異なることはない。
Further, according to the present embodiment, since the light emitted from the three-wavelength light source 1 is transmitted through the scattering plate, the extinction ratio does not differ between the shallow part and the deep part of the living tissue.

【0039】また本実施例によれば、照射光強度の比を
用いているので測定条件に影響されることが少ない。ま
た、本実施例によれば、適時に照射強度を測定、記憶で
きるので発光部の経年変化や汚れなどによる影響を防ぐ
ことができる。
Further, according to the present embodiment, since the ratio of the irradiation light intensities is used, it is less affected by the measurement conditions. Further, according to the present embodiment, the irradiation intensity can be measured and stored in a timely manner, so that it is possible to prevent the light emitting section from being affected by aging or contamination.

【0040】尚、本実施例において式(8)に示すよう
にEh2 については近似を用いているが、これは酸素飽
和度S=1(100%)の場合には誤差を生じない。酸素飽
和度が減少するにつれて誤差は増加するが、酸素飽和度
が低いところでは許容誤差が多いので影響は少ない。
In this embodiment, an approximation is used for Eh 2 as shown in equation (8), but this does not cause an error when the oxygen saturation S = 1 (100%). Although the error increases as the oxygen saturation decreases, the effect is small where the oxygen saturation is low because the allowable error is large.

【0041】式(8)は近似を行なった場合の式である
が、これを近似を行なわないで次のようにおく。 Eh2 =SEo2 +(1−S)Er2 =S(Eo2 −Er2 )+Er2 =Er2 −SΔE2 (8a)
Equation (8) is an equation in the case where approximation is performed, and this is set as follows without approximation. Eh 2 = SEo 2 + (1-S) Er 2 = S (Eo 2 −Er 2 ) + Er 2 = Er 2 −SΔE 2 (8a)

【0042】この式(8a)と式(7),(9)を式
(6)に代入すれば次式が得られる。 Ψ=[(Er3 −SΔE3 )(Er3 −SΔE3 +F)]1/2 −[{(Er2 −SΔE2 )・(Er2 −SΔE2 +F)]1/2 /{Eo1 (Eo1 +F)}1/2 −[(Er2 −SΔE2 )(Er2 −SΔE2 +F)]1/2 (13)
By substituting equation (8a) and equations (7) and (9) into equation (6), the following equation is obtained. Ψ = [(Er 3 −SΔE 3 ) (Er 3 −SΔE 3 + F)] 1/2 − [{(Er 2 −SΔE 2 ) · (Er 2 −SΔE 2 + F)] 1/2 / {Eo 1 ( Eo 1 + F)} 1/2 -[(Er 2 −SΔE 2 ) (Er 2 −SΔE 2 + F)] 1/2 (13)

【0043】そこで酸素飽和度演算回路10の代りに、式
(13)の右辺のSに1から例えば0.01きざみで漸次減少
する数値を代入し、それぞれにおける右辺の計算値を左
辺のΨと比較し、Ψを越えた場合にそのときのSの値を
表示装置12、記録器13に出力する回路を設けても良い。
Therefore, instead of the oxygen saturation calculation circuit 10, a numerical value that gradually decreases in increments of, for example, 0.01 from 1 is substituted for S on the right side of the equation (13), and the calculated value on the right side of each is compared with Ψ on the left side. , Ψ, a circuit for outputting the value of S at that time to the display device 12 and the recorder 13 may be provided.

【0044】以上の実施例において、演算や制御を行な
う回路はそれぞれ独立した回路であるが、これらの演
算、制御をコンピュータにより行なっても良い。図1の
照射光強度演算・記憶回路9、酸素飽和度演算回路10、
校正/測定切換制御回路11、3波長測定制御回路7およ
び切換スイッチ8から成る部分16をマイクロコンピュー
タで置き換えた装置について説明する。
In the above embodiments, the circuits for performing calculations and controls are independent circuits, but these calculations and controls may be performed by a computer. 1, the irradiation light intensity calculation / storage circuit 9, the oxygen saturation calculation circuit 10,
An apparatus in which the portion 16 including the calibration / measurement switching control circuit 11, the three-wavelength measurement control circuit 7 and the changeover switch 8 is replaced with a microcomputer will be described.

【0045】この場合、マイクロコンピュータは図2,
図3に示すフローチャートのプログラムを有している。
このフローチャートに基づいてその動作を以下説明す
る。
In this case, the microcomputer is shown in FIG.
It has the program of the flowchart shown in FIG.
The operation will be described below based on this flowchart.

【0046】まず、マイクロコンピュータは校正モード
になるまで待つ(図2,ステップ101)。オペレータは光
減衰板15を3波長光源1と受光部3との間に挿入し、入
力手段によって校正モードに切換える。マイクロコンピ
ュータは3波長光源1、増幅器4およびA/D変換器6
を制御してIe1 ´,Ie2 ´,Ie3 ´(光減衰板の
透過光It1 ,It2 ,It3 )を得、これをメモリに
格納する(ステップ102)。次にマイクロコンピュータは
Ie1 ´,Ie2 ´,Ie3 ´からIe3 ´/Ie2 ´
(=Ie3 /Ie2 ),Ie1 ´/Ie2 ´(=Ie1
/Ie2 )を計算し、これをメモリに格納する(ステッ
プ103)。次にオペレータは光減衰板15を3波長光源1と
受光部3との間から取り出し、代りに測定の対象となる
生体組織17を挿入し、入力手段により測定モードに切換
える。このときマイクロコンピュータは測定モードに切
換えられるのを待っており(図3,ステップ104)、測定
モードとなると3波長光源1、増幅器4およびA/D変
換器6を制御してIt1,It2 ,It3 を得、これを
メモリに格納する(ステップ105)。次にマイクロコンピ
ュータは既にメモリに格納してあるIe3 /Ie2 ,I
1 /Ie2 ,It1 ,It2 ,It3 を式(4a)に
代入してΨを求め(ステップ106)、このΨを式(12)に
代入してSを求め(ステップ107)、このSを表示装置12
に表示させると共に記録装置13に記録させる(ステップ
108)。
First, the microcomputer waits until it enters the calibration mode (FIG. 2, step 101). The operator inserts the light attenuating plate 15 between the three-wavelength light source 1 and the light receiving section 3, and switches to the calibration mode by the input means. The microcomputer has a three-wavelength light source 1, an amplifier 4 and an A / D converter 6
To obtain Ie 1 ′, Ie 2 ′, Ie 3 ′ (transmitted light It 1 , It 2 , It 3 ) of the light attenuating plate, and store them in the memory (step 102). Next, the microcomputer converts Ie 1 ′, Ie 2 ′, Ie 3 ′ to Ie 3 ′ / Ie 2 ′.
(= Ie 3 / Ie 2 ), Ie 1 ′ / Ie 2 ′ (= Ie 1
/ Ie 2 ) is calculated and stored in the memory (step 103). Next, the operator takes out the light attenuating plate 15 from between the three-wavelength light source 1 and the light receiving unit 3, inserts the living tissue 17 to be measured instead, and switches to the measurement mode by the input means. At this time, the microcomputer is waiting for switching to the measurement mode (FIG. 3, step 104), and when it is in the measurement mode, it controls the three-wavelength light source 1, the amplifier 4 and the A / D converter 6 to make It 1 , It 2 , It 3 and store them in the memory (step 105). Next, the microcomputer stores the Ie 3 / Ie 2 , Ie already stored in the memory.
Substituting e 1 / Ie 2 , It 1 , It 2 , It 3 into equation (4a) to obtain Ψ (step 106), substituting this Ψ into equation (12) to obtain S (step 107), This S is displayed on the display device 12
To be recorded on the recording device 13 (step
108).

【0047】[0047]

【発明の効果】本発明によれば、生体組織中の動脈血の
脈動による透過光の脈動を測定する必要がなくなる。こ
のため脈動の低い被検者であっても正確な測定結果が得
られる。また大きな信号を利用することができるので体
動に影響され難い測定を行なうことができる。また、本
発明によれば、動脈血だけでなく、静脈血も含めた総合
の酸素飽和度の測定ができる。この値は、動脈血の酸素
飽和度の値と対比することにより、組織に対する酸素供
給の不足を表わす指標ともなる。これは、特の脳内酸素
需給を示す指標として価値が高い。
According to the present invention, it is not necessary to measure the pulsation of transmitted light due to the pulsation of arterial blood in living tissue. Therefore, even a subject with low pulsation can obtain accurate measurement results. Also, since a large signal can be used, it is possible to perform a measurement that is not easily affected by body movement. Further, according to the present invention, it is possible to measure the overall oxygen saturation including not only arterial blood but also venous blood. By comparing this value with the value of the oxygen saturation of arterial blood, it also serves as an index indicating the lack of oxygen supply to the tissue. This is highly valuable as an index showing the special supply and demand of oxygen in the brain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の全体構成を示すブロック
図。
FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.

【図2】本発明の他の実施例の動作を説明するためのフ
ローチャート。
FIG. 2 is a flowchart for explaining the operation of another embodiment of the present invention.

【図3】本発明の他の実施例の動作を説明するためのフ
ローチャート。
FIG. 3 is a flowchart for explaining the operation of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 3波長光源 3 受光部 6 A/D変換回路 9 照射光強度
演算・記憶回路 10 酸素飽和度演算回路 11 校正/測定
切換制御回路 7 3波長測定制御回路 12 表示装置 13 記録器 15 光減衰板
DESCRIPTION OF SYMBOLS 1 3 wavelength light source 3 Light receiving part 6 A / D conversion circuit 9 Irradiation light intensity calculation / storage circuit 10 Oxygen saturation calculation circuit 11 Calibration / measurement switching control circuit 7 3 wavelength measurement control circuit 12 Display device 13 Recorder 15 Optical attenuation plate

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 3波長の光を血液を含む組織に照射する
照射手段と、 前記組織を透過した光を受光し電気信号に変換する光電
変換手段と、 前記3波長の光の照射光強度、またはそれら相互の照射
光強度比を記憶する記憶手段と、 この記憶手段が記憶している内容と前記光電変換手段か
ら得られる透過光強度に基づいて、ある2波長の組合わ
せの、照射光強度比の対数と、透過光強度比の対数との
差を求め、他の2波長の組合わせの、照射光強度比の対
数と、透過光強度比の対数との差を求め、この両者の比
と血中ヘモグロビンによる減光度との関係式により、酸
素飽和度を計算する酸素飽和度計算手段と、 を具備する非観血式オキシメータ。
1. An irradiation unit for irradiating a tissue containing blood with light of three wavelengths, a photoelectric conversion unit for receiving light transmitted through the tissue and converting it into an electric signal, and an irradiation light intensity of the light of three wavelengths. Or a storage unit for storing the irradiation light intensity ratio between them, and an irradiation light intensity of a combination of two wavelengths based on the contents stored in the storage unit and the transmitted light intensity obtained from the photoelectric conversion unit. The difference between the logarithm of the ratio and the logarithm of the transmitted light intensity ratio is calculated, and the difference between the logarithm of the irradiation light intensity ratio and the logarithm of the transmitted light intensity ratio of the other two wavelength combinations is calculated, and the ratio of the two is calculated. And an oxygen saturation calculating means for calculating oxygen saturation based on a relational expression between the degree of extinction due to blood hemoglobin and the degree of extinction due to blood hemoglobin.
【請求項2】 照射手段から発生した光を光減衰特性が
既知である光減衰板を透過させて得られる光強度と、そ
の光減衰板の特性とに基づき照射光強度比を計算しその
結果を記憶手段に記憶させる照射光強度比計算手段を具
備することを特徴とする請求項1記載の非観血式オキシ
メータ。
2. An irradiation light intensity ratio is calculated based on the light intensity obtained by transmitting light generated from the irradiation means through a light attenuation plate having a known light attenuation characteristic and the characteristics of the light attenuation plate. 2. The non-invasive oximeter according to claim 1, further comprising irradiation light intensity ratio calculating means for storing the light intensity ratio in the storage means.
JP4021204A 1992-02-06 1992-02-06 Non-invasive oximeter Expired - Lifetime JP2608828B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4021204A JP2608828B2 (en) 1992-02-06 1992-02-06 Non-invasive oximeter
US08/014,269 US5385143A (en) 1992-02-06 1993-02-05 Apparatus for measuring predetermined data of living tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4021204A JP2608828B2 (en) 1992-02-06 1992-02-06 Non-invasive oximeter

Publications (2)

Publication Number Publication Date
JPH05212016A JPH05212016A (en) 1993-08-24
JP2608828B2 true JP2608828B2 (en) 1997-05-14

Family

ID=12048457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021204A Expired - Lifetime JP2608828B2 (en) 1992-02-06 1992-02-06 Non-invasive oximeter

Country Status (1)

Country Link
JP (1) JP2608828B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL138884A (en) * 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
JP4284674B2 (en) 2003-01-31 2009-06-24 日本光電工業株式会社 Absorbent concentration measuring device in blood
US7277741B2 (en) 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
US8055321B2 (en) 2005-03-14 2011-11-08 Peter Bernreuter Tissue oximetry apparatus and method
US7865223B1 (en) * 2005-03-14 2011-01-04 Peter Bernreuter In vivo blood spectrometry
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7922665B2 (en) 2006-09-28 2011-04-12 Nellcor Puritan Bennett Llc System and method for pulse rate calculation using a scheme for alternate weighting
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8862194B2 (en) 2008-06-30 2014-10-14 Covidien Lp Method for improved oxygen saturation estimation in the presence of noise
WO2010056973A1 (en) 2008-11-14 2010-05-20 Nonin Medical, Inc. Optical sensor path selection
JP5570013B2 (en) * 2010-07-14 2014-08-13 ローム株式会社 Pulse wave sensor
JP5616303B2 (en) * 2010-08-24 2014-10-29 富士フイルム株式会社 Electronic endoscope system and method for operating electronic endoscope system
US9113793B2 (en) 2010-12-10 2015-08-25 Rohm Co., Ltd. Pulse wave sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111097A (en) * 1984-06-27 1986-01-18 三洋電機株式会社 Washing machine

Also Published As

Publication number Publication date
JPH05212016A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JP2608828B2 (en) Non-invasive oximeter
US6230035B1 (en) Apparatus for determining concentrations of light-absorbing materials in living tissue
US5385143A (en) Apparatus for measuring predetermined data of living tissue
US5088493A (en) Multiple wavelength light photometer for non-invasive monitoring
US5564417A (en) Pathlength corrected oximeter and the like
US5297548A (en) Arterial blood monitoring probe
US5127406A (en) Apparatus for measuring concentration of substances in blood
US5983122A (en) Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
US6411832B1 (en) Method of improving reproducibility of non-invasive measurements
KR100612827B1 (en) Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
JP4284674B2 (en) Absorbent concentration measuring device in blood
US8606342B2 (en) Pulse and active pulse spectraphotometry
US5645060A (en) Method and apparatus for removing artifact and noise from pulse oximetry
US4867557A (en) Reflection type oximeter for applying light pulses to a body tissue to measure oxygen saturation
US20090076354A1 (en) Compensation of human variability in pulse oximetry
US20120165629A1 (en) Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy
WO2005099568A1 (en) Photoplethysmography with a spatially homogenous multi-color source
EP0691820A1 (en) Quantitative and qualitative in vivo tissue examination using time resolved spectroscopy
JPH05269116A (en) Improved artery blood monitor device
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
JP2608830B2 (en) Hemoglobin measurement device in tissue
JP2613832B2 (en) Dye dilution curve measuring device
KR20070055614A (en) Instrument for noninvasively measuring blood sugar level
JPH0628655B2 (en) Oxygen saturation measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

EXPY Cancellation because of completion of term