US20020035305A1 - Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst - Google Patents
Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst Download PDFInfo
- Publication number
- US20020035305A1 US20020035305A1 US09/965,062 US96506201A US2002035305A1 US 20020035305 A1 US20020035305 A1 US 20020035305A1 US 96506201 A US96506201 A US 96506201A US 2002035305 A1 US2002035305 A1 US 2002035305A1
- Authority
- US
- United States
- Prior art keywords
- catalyst
- carbon number
- methane
- rhenium
- hydrocarbons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RFEKNRJRBDVYLH-UHFFFAOYSA-N CC(C)(C)CC1C=[Cl]C1 Chemical compound CC(C)(C)CC1C=[Cl]C1 RFEKNRJRBDVYLH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/405—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/48—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/40—Special temperature treatment, i.e. other than just for template removal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/36—Rhenium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/929—Special chemical considerations
- Y10S585/943—Synthesis from methane or inorganic carbon source, e.g. coal
Definitions
- This invention relates to a catalyst for producing higher carbon number hydrocarbons from low carbon number hydrocarbons, such as methane.
- the catalyst comprises a porous support having dispersed thereon rhenium and a metal selected from the group consisting of iron, cobalt, vanadium, manganese, molybdenum, tungsten and mixtures thereof.
- An example of the porous support is zeolite ZSM-5.
- This invention also relates to a process for preparing the catalyst and a process for producing higher carbon number hydrocarbons using the catalyst.
- the process for preparing higher carbon number hydrocarbons comprises contacting low carbon number aliphatic hydrocarbons with a catalyst in the presence of CO or CO 2 at conversion conditions to produce the higher carbon number hydrocarbons.
- an aromatizing catalyst consisting essentially of a zeolite, gallium, at least one metal from the Group VIII metals and rhenium and at least one additional metal selected from the group consisting of: tin, germanium, lead, indium, thallium, copper, gold, nickel, iron, chromium, molybdenum and tungsten; an alkaline metal or alkaline earth metal and an aluminum matrix.
- the present invention relates to a catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, a process for preparing the catalyst, and a process for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons.
- a catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons comprising a porous support having dispersed thereon rhenium and a promoter metal selected from the group consisting of iron, cobalt, vanadium, gallium, zinc, chromium, manganese, molybdenum, tungsten and mixtures thereof.
- Another embodiment of the invention is a process for preparing the catalyst described above, the process comprising impregnating the support with a rhenium compound and a promoter metal compound, calcining the impregnated support at calcination conditions to give a calcined product and treating the calcined product with hydrogen and methane at treatment conditions to give the catalyst.
- Yet another embodiment of the invention is a process for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons comprising contacting the low carbon number aliphatic hydrocarbons at conditions to give the higher carbon number hydrocarbons.
- One aspect of the current invention is a novel catalyst for carrying out dehydrocondensation of methane.
- One essential element of this catalyst is a porous inorganic oxide support.
- This support can be chosen from a wide variety of supports which have a high surface area, porous structure and are preferably acidic. Examples of these supports include zeolites, non-zeolitic molecular sieves, silica, alumina and mixtures thereof.
- the zeolites which can be used as the support include any of those which have a SiO 2 /Al 2 O 3 ratio between 1 and 8,000 and preferably in the range of about 10 to about 100.
- the zeolites have channels or pores of about 0.5 to about 10 nm.
- the rhenium and promoter metal may be deposited on the support by vapor deposition, ion-exchange or impregnation from a common aqueous or organic solvent solution, sequentially in any order.
- a preferred method comprises first depositing rhenium on the support and then depositing at least one promoter metal.
- the preferred method of depositing rhenium and the promoter metal is by impregnation. It should be pointed out that when zeolites or molecular sieves are the supports both deposition and ion-exchange of the metals can occur. Therefore, in the present context, impregnation will encompass ion-exchange as well as conventional impregnation.
- the resulting impregnated support is dried and calcined at a temperature of about 50° C. to about 800° C. to give a calcined rhenium support and then impregnation is carried out with a solution containing at least one metal compound. After this second impregnation, or after the rhenium and metal compounds have been co-impregnated, the support is calcined at a temperature of about 50° C. to about 800° C. for a time of about 0.5 hr. to about 100 hr.
- the calcined catalyst is activated by treating the catalyst with a hydrogen/ and/or methane treatment gas at a temperature of about 100° C. to about 800° C. for a time of about 0.5 hr. to about 100 hr.
- the amount of rhenium and promoter metal which is dispersed in the final catalyst can vary considerably, but usually for the rhenium varies from about 0.001 wt. % to about 50 wt. % of the support and for the promoter metal varies from about 0.001 wt. % to about 50 wt. % of the support.
- the catalyst of the invention can now be used in a process for converting low carbon number aliphatic hydrocarbons to higher number hydrocarbons. More specifically, the process if a dehydrocondensation process in which aliphatic compounds such as methane are converted to aromatic compounds such as benzene and naphthalene plus ethylene or ethane. Since dehydrogenation is part of the reaction, hydrogen is produced during the process.
- low carbon number aliphatic hydrocarbons is meant any aliphatic hydrocarbon having from 1 to 4 carbon atoms. The process works especially well with methane.
- the feedstream which can be used in the process of the invention can be any feedstream which contains at least 5% methane and preferably at least 20% methane.
- the stream can also contain C 2 -C 4 saturated and unsaturated hydrocarbons such as ethane, ethylene, acetylene, propane, propylene, n-butane, isobutane, butene, isobutene, etc.
- the gas stream is contacted with the catalyst at conversion conditions either in a batch mode or a continuous flow mode, with continuous flow being preferred.
- the catalyst can be present as a fixed bed, moving bed, or fluidized bed.
- the process is carried out by contacting the feedstream in the absence of oxygen at a temperature of about 300° C. to about 1000° C. and preferably at a temperature of about 450° C. to about 900° C., a pressure of about 10 kPa to about 1000 kPa and preferably from about 100 to about 1000 kPa and a weight hourly space velocity in the range of about 100 to about 200,000 hr ⁇ 1 .
- reaction zone contain CO, CO 2 or mixtures thereof, component in order to increase the selectivity to benzene and other aromatic compounds.
- the CO, CO 2 or mixtures thereof to methane ratio varies from about 0.001 to about 0.5 and preferably from about 0.01 to about 0.3.
- the effluent from the reaction zone can be separated by conventional means and the unreacted feed gas recycled to the reaction zone.
- a catalyst having 3% rhenium on HZSM-5 was prepared as in Example 1 except that the amount of NH 4 ReO 4 was adjusted to give 3% Re. This catalyst was identified as Catalyst B.
- a 10% rhenium and 1.0% platinum on HZSM-5 was prepared by taking 5 grams of catalyst A and impregnating it with 5 ml of an aqueous solution of H 2 PtCl 6 . The impregnated catalyst was dried at 120° C. and then calcined at 500° C. for 6 hours. This catalyst was identified as Catalyst F.
- a 10% Re/HZSM-5 catalyst was prepared using different sources of rhenium.
- the support which was used was the ammonium form of HZSM-5, as described in Example 1.
- a 5 gram sample of HZSM-5 was used along with the impregnation, drying and calcination conditions set forth in Example 1.
- the table below gives the catalyst identification, the rhenium source and the amount of rhenium used to prepare the catalysts.
- Re Source Amount (g) G Re 2 O 7 0.65 H Re 2 (CO) 10 * 0.878
- a 15% molybdenum HZSM-5 was prepared by the incipient wetness as follows: to a 5.0 g of the ammonium form of ZSM-5, having a SiO 2 /Al 2 O 3 ratio of 40 and a surface area of about 925 m 2 /g there were added 5 ml of an aqueous solution of (NH 4 ) 6 Mo 7 O 24 (1.38 g). The impregnated support was next dried at 120° C. and then calcined at 500° C. for 6 hours. This catalyst was identified as Catalyst R and is a reference catalyst.
- Catalysts A to Q were tested for the conversion of methane to aromatics by the following procedure.
- a quartz reactor of 8 mm I.D. by 250 mm in length there were placed 0.30 g of the respective catalyst after being pelletized having a size of about 20 to 42 mesh.
- the reactor was heated to 700° C. and flushed with helium at which time a feed gas of either pure methane or methane plus CO and/or CO 2 (1.8-15 vol. %) was introduced at a flow rate of 7.5 ml/min.
- An internal standard of 2% argon was added to the methane feed stream.
- the product effluent and the inlet reactants were analyzed by gas chromatography.
- F, X and N carbon represent the total gas flow rate, mole fraction and carbon number in a molecule, respectively.
- selectivity for the formation of a hydrogen-containing product on hydrogen basis can be calculated and, thus, the ratio of hydrogen to carbon in the coke formed can be estimated.
- F inlet ⁇ X methane inlet - F outlet ⁇ X methane outlet x Ar inlet ⁇ x product outlet ⁇ N product carbon
- X Ar outlet ⁇ X methane inlet - X Ar inlet ⁇ X methane outlet ( 3 )
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
A catalyst for producing higher carbon number hydrocarbons, e.g., benzene from low carbon number hydrocarbons such as methane has been developed. The catalyst comprises a porous support such as ZSM-5 which has dispersed thereon rhenium and a promoter metal such as iron, cobalt, vanadium, manganese, molybdenum, tungsten and mixtures thereof. A process for preparing the catalyst and a process for converting low carbon number aliphatic hydrocarbons to higher number hydrocarbons in the presence of CO or CO2 at conversion conditions are also described.
Description
- This application is a Division of U.S. application No. 09/640,934 filed on Aug. 17, 2000, which in turn is a Division of U.S. Application No. 09/232,351 filed on Jan. 15, 1999 now U.S. Pat. No. 6,239,057 B1 all incorporated by reference in its entirety.
- This invention relates to a catalyst for producing higher carbon number hydrocarbons from low carbon number hydrocarbons, such as methane. The catalyst comprises a porous support having dispersed thereon rhenium and a metal selected from the group consisting of iron, cobalt, vanadium, manganese, molybdenum, tungsten and mixtures thereof. An example of the porous support is zeolite ZSM-5. This invention also relates to a process for preparing the catalyst and a process for producing higher carbon number hydrocarbons using the catalyst. The process for preparing higher carbon number hydrocarbons comprises contacting low carbon number aliphatic hydrocarbons with a catalyst in the presence of CO or CO2 at conversion conditions to produce the higher carbon number hydrocarbons.
- It is well known to produce aromatic compounds such as benzene, toluene and xylenes from petroleum naphtha streams. Attempts have also been made to produce useful aromatic compounds from low molecular weight aliphatic compounds by, for example, the pyrolysis of natural gas, acetylene and other gases. However, this technique produces benzene and other useful aromatic compounds in very low yields while producing large amounts of tar, insoluble carbon residue and high molecular weight aromatic compounds, all of which are of little commercial use. Specifically, in the pyrolysis of methane and acetylene, the reaction is carried out at a temperature of about 1,000° C. or higher with a conversion rate of only a few percent and a selectivity to naphthalenes of less than 1%. Consequently, this method has little practical application.
- There are reports in the art of processes for converting natural gas into aromatic compounds. For example, U.S. Pat. No. 5,288,935 discloses a process for producing liquid hydrocarbons from natural gas, in which natural gas is first separated into a methane rich fraction and a C2+ fraction, the methane is then selectively oxidized with oxygen, the effluent from the selective oxidation is then mixed with a part of the C2+ fraction and pyrolyzing the resulting mixture to obtain an aromatic product. The final step is carried out at a temperature of about 300° C. to about 750° C. in the presence of an aromatizing catalyst consisting essentially of a zeolite, gallium, at least one metal from the Group VIII metals and rhenium and at least one additional metal selected from the group consisting of: tin, germanium, lead, indium, thallium, copper, gold, nickel, iron, chromium, molybdenum and tungsten; an alkaline metal or alkaline earth metal and an aluminum matrix.
- It is also known that the dehydrocondensation of methane with CO or CO2 to form benzene and naphthalene can be carried out using a molybdenum/HZSM-5 or iron/cobalt modified Mo/HZSM-5. S. Liu, Q. Dong, R. Ohonishi and M. Ichikawa, Chem. Commun. (1998), p. 1217-1218, and S. Liu, L. Wang, Q. Dong, R. Ohonishi, and M. Ichikawa, Stud. Surf. Sci. Catal., Vol. 119, p. 241-246. In contrast to this art, applicants have developed a novel catalyst which comprises rhenium on a porous support such as a zeolite and which optionally can contain other metals such as iron, cobalt, platinum and molybdenum. It has been found that the catalysts of the present invention have higher activities for converting methane to benzene and also have a higher selectivity for the higher carbon number hydrocarbon products such as benzene, toluene and xylene and ethane and ethylene.
- As stated, the present invention relates to a catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, a process for preparing the catalyst, and a process for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons. Accordingly, one embodiment of the invention is a catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons comprising a porous support having dispersed thereon rhenium and a promoter metal selected from the group consisting of iron, cobalt, vanadium, gallium, zinc, chromium, manganese, molybdenum, tungsten and mixtures thereof. Another embodiment of the invention is a process for preparing the catalyst described above, the process comprising impregnating the support with a rhenium compound and a promoter metal compound, calcining the impregnated support at calcination conditions to give a calcined product and treating the calcined product with hydrogen and methane at treatment conditions to give the catalyst.
- Yet another embodiment of the invention is a process for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons comprising contacting the low carbon number aliphatic hydrocarbons at conditions to give the higher carbon number hydrocarbons. These and other objects and embodiments will become more apparent after a detailed description of the invention.
- One aspect of the current invention is a novel catalyst for carrying out dehydrocondensation of methane. One essential element of this catalyst is a porous inorganic oxide support. This support can be chosen from a wide variety of supports which have a high surface area, porous structure and are preferably acidic. Examples of these supports include zeolites, non-zeolitic molecular sieves, silica, alumina and mixtures thereof. The zeolites which can be used as the support include any of those which have a SiO2/Al2O3 ratio between 1 and 8,000 and preferably in the range of about 10 to about 100. The zeolites have channels or pores of about 0.5 to about 10 nm. The porous zeolite may contain Al, Ti, Zr, Ga, Zn, V, Cr and mixtures thereof, i.e., a metallosilicate. The surface area of these materials is preferably in the range of about 100 to about 1,000 m2/g. Specific examples of the molecular sieves which can be used as the support for the present catalyst include zeolite Y, zeolite X, mordenite, ZSM-5, ALPO-5, VPI-5, FSM-16, MCM-22 and MCM-41. The inorganic support may be used in any desirable form such as powder, pellets, extrudates, spheres, and irregularly shaped particles.
- Having formed the support into a desired shape, the next step in preparing the catalyst is to disperse rhenium and a promoter metal onto the support. The promoter metal which can be present is selected from the group consisting of iron, cobalt, vanadium, manganese, gallium, zinc, chromium, tungsten, molybdenum and mixtures thereof.
- The rhenium and promoter metal can be dispersed on the porous support by means well known in the art such as impregnation, spray-drying, ion-exchange, vapor deposition, etc. Impregnation of the support with the rhenium and promoter metal can be carried out using decomposable compounds of rhenium and the promoter metals. By decomposable compound is meant that upon heating the compound decomposes to give the corresponding metal or metal oxides. Example of the rhenium compounds which can be used are NH4ReO4, CH3ReO3, Re207, ReO3, ReS2, Re2S7, Re2(CO)10, NH4Re(CO)5, MnRe(CO)10, Co[Re(CO)5]2, M2[Re3H3(CO)10], Re3H(CO)14, M2[Re4H4(CO)12], M2[Re4(CO)16](M=NEt4, NBu4, Li, Na, K and NH4), ReCl3, ReC15, [Re2X3(CO)7] (X=I, Cl, Br) [Re(CO)6][Re2F11]; M′[Re6S9X′6](M′=NBu4, NEt4; X′=Cl, Br); M″2[ReS8(Py)2X″4(M″=NBu4, X″=Cl, Br, py=pyridine).
- Examples of the compounds of iron, cobalt, vanadium, manganese and molybdenum which can be used include the halides, nitrates, sulfates, phosphates, carbonates, acetates and oxalates. Other examples of molybdenum compounds which can be used include ammonium paramolybdate, 12-phosphomolybdic acid, 12-silicomolybdic acid and 12-phosphomolybdic vanadic acid, MoS3, Mo(CO)6, [Mo3(CH3C)(O)(CH3COO)9]X(X=Cl, Br and I) and (Mo2(CH3COO)6 and mixtures thereof. The rhenium and promoter metal may be deposited on the support by vapor deposition, ion-exchange or impregnation from a common aqueous or organic solvent solution, sequentially in any order. A preferred method comprises first depositing rhenium on the support and then depositing at least one promoter metal. The preferred method of depositing rhenium and the promoter metal is by impregnation. It should be pointed out that when zeolites or molecular sieves are the supports both deposition and ion-exchange of the metals can occur. Therefore, in the present context, impregnation will encompass ion-exchange as well as conventional impregnation. When the rhenium and promoter metal are impregnated sequentially, after the rhenium has been impregnated, the resulting impregnated support is dried and calcined at a temperature of about 50° C. to about 800° C. to give a calcined rhenium support and then impregnation is carried out with a solution containing at least one metal compound. After this second impregnation, or after the rhenium and metal compounds have been co-impregnated, the support is calcined at a temperature of about 50° C. to about 800° C. for a time of about 0.5 hr. to about 100 hr. Next, the calcined catalyst is activated by treating the catalyst with a hydrogen/ and/or methane treatment gas at a temperature of about 100° C. to about 800° C. for a time of about 0.5 hr. to about 100 hr. The amount of rhenium and promoter metal which is dispersed in the final catalyst can vary considerably, but usually for the rhenium varies from about 0.001 wt. % to about 50 wt. % of the support and for the promoter metal varies from about 0.001 wt. % to about 50 wt. % of the support.
- Having obtained the catalyst of the invention, it can now be used in a process for converting low carbon number aliphatic hydrocarbons to higher number hydrocarbons. More specifically, the process if a dehydrocondensation process in which aliphatic compounds such as methane are converted to aromatic compounds such as benzene and naphthalene plus ethylene or ethane. Since dehydrogenation is part of the reaction, hydrogen is produced during the process. By low carbon number aliphatic hydrocarbons is meant any aliphatic hydrocarbon having from 1 to 4 carbon atoms. The process works especially well with methane. Therefore, the feedstream which can be used in the process of the invention, can be any feedstream which contains at least 5% methane and preferably at least 20% methane. Provided the gas stream contains at least the above amounts of methane, the stream can also contain C2-C4 saturated and unsaturated hydrocarbons such as ethane, ethylene, acetylene, propane, propylene, n-butane, isobutane, butene, isobutene, etc.
- The gas stream is contacted with the catalyst at conversion conditions either in a batch mode or a continuous flow mode, with continuous flow being preferred. In the continuous flow mode, the catalyst can be present as a fixed bed, moving bed, or fluidized bed. The process is carried out by contacting the feedstream in the absence of oxygen at a temperature of about 300° C. to about 1000° C. and preferably at a temperature of about 450° C. to about 900° C., a pressure of about 10 kPa to about 1000 kPa and preferably from about 100 to about 1000 kPa and a weight hourly space velocity in the range of about 100 to about 200,000 hr−1. It is also preferred that the reaction zone contain CO, CO2 or mixtures thereof, component in order to increase the selectivity to benzene and other aromatic compounds. The CO, CO2 or mixtures thereof to methane ratio varies from about 0.001 to about 0.5 and preferably from about 0.01 to about 0.3. The effluent from the reaction zone can be separated by conventional means and the unreacted feed gas recycled to the reaction zone.
- In order to more fully illustrate the invention, the following examples are set forth. It is to be understood that the examples are only by way of illustration and are not intended as an undue limitation on the broad scope of the invention as set forth in the appended claims.
- A rhenium on ZSM-5 was prepared by the incipient wetness method as follows. In a container 5.0 g of the ammonium form of ZSM-5, having a SiO2/Al2O3 ratio of about 40 and a surface area of about 925 m2/g (obtained from Toso Co.) were contacted with 5 ml of an aqueous solution of NH4ReO4. (0.75 g). The impregnated support was then dried at 120° C. and then calcined at 500° C. for 6 hours. The catalyst was identified as catalyst A.
- A catalyst having 3% rhenium on HZSM-5 was prepared as in Example 1 except that the amount of NH4ReO4 was adjusted to give 3% Re. This catalyst was identified as Catalyst B.
- A catalyst having 20% rhenium on HZSM-5 was prepared as in Example 1 except that the amount of NH4ReO4 was adjusted to give 20% Re. This catalyst was identified as Catalyst C.
- A catalyst containing 10% rhenium and 0.5% cobalt was prepared by taking 5.0 grams of catalyst A and impregnating it with 5 ml of an aqueous solution of Co(NO3)2(0.078 g). The impregnated support was then dried at 120° C. then calcined at 500° C. for 6 hours. This catalyst was identified as Catalyst D.
- A catalyst containing 10% rhenium and 1% iron on HZSM-5 was prepared by taking 5 grams of catalyst A and impregnating it with 5 ml of an aqueous solution of Fe(NO3)3 (0.22 g). The impregnated support was then dried at 120° C. followed by calcination at 500° C. for 6 hours. This catalyst was identified as Catalyst E.
- A 10% rhenium and 1.0% platinum on HZSM-5 was prepared by taking 5 grams of catalyst A and impregnating it with 5 ml of an aqueous solution of H2PtCl6. The impregnated catalyst was dried at 120° C. and then calcined at 500° C. for 6 hours. This catalyst was identified as Catalyst F.
- A 10% Re/HZSM-5 catalyst was prepared using different sources of rhenium. The support which was used was the ammonium form of HZSM-5, as described in Example 1. A 5 gram sample of HZSM-5 was used along with the impregnation, drying and calcination conditions set forth in Example 1. The table below gives the catalyst identification, the rhenium source and the amount of rhenium used to prepare the catalysts.
Catalyst I.D. Re Source Amount (g) G Re2O7 0.65 H Re2(CO)10* 0.878 - A 10% rhenium on FSM-16 support was prepared by the incipient wetness procedure using 5.0 grams of FSM-16 (pore size equal 2.7 nm, SA=1020 m2/g, SiO2/Al2O3=300) with 5 ml of an aqueous solution of NH4ReO4(0.75 g). The impregnated support was now dried at 120° C. and then calcined at 500° C. for 6 hours. The catalyst was identified as Catalyst I.
- A 10% rhenium on silica was prepared be impregnating silica gel (obtained from Fuji-Devison Company), SA=280 m2/g with 50 ml of an aqueous solution of Re2O7 (0.65 g). The impregnated support was next dried at 120° C. and then calcined at 500° C. for 6 hours. This catalyst was identified as catalyst J.
- A 10% rhenium on alumina catalyst was prepared by impregnating 5.0 grams of gamma alumina pellets obtained from Strem Chemical Company (SA=380 m2/g) with 50 ml of an aqueous solution of Re2O7 (0.65 g). The impregnated support was next dried at 120° C. and then calcined at 500° C. for 5 hours. This catalyst was identified as Catalyst K.
- A 10% rhenium on carbon was prepared by impregnating 5.0 grams of carbon from Takeda Company (SA=980 m2/g) with a hexane solution of Re2(CO)10 (0.88 g). The impregnated support was next treated with hydrogen at 350° C. for 6 hours and exposed to air at 25° C. for 2 hours. The catalyst was identified as catalyst L.
- A series of catalysts containing 10% rhenium on HZSM-5 in which the HZSM-5 had a different SiO2/Al2O3 ratio were prepared using NH4ReO4 (0.75 g) as the rhenium source following the procedure set forth in example 1. The following table identifies the catalyst and the SiO2/Al2O3 ratio of HZSM-5 sample.
Catalyst I.D. SiO2/Al2O3 M 20 N 40 P 80 Q 150 - A 15% molybdenum HZSM-5 was prepared by the incipient wetness as follows: to a 5.0 g of the ammonium form of ZSM-5, having a SiO2/Al2O3 ratio of 40 and a surface area of about 925 m2/g there were added 5 ml of an aqueous solution of (NH4)6Mo7O24(1.38 g). The impregnated support was next dried at 120° C. and then calcined at 500° C. for 6 hours. This catalyst was identified as Catalyst R and is a reference catalyst.
- Catalysts A to Q were tested for the conversion of methane to aromatics by the following procedure. In a quartz reactor of 8 mm I.D. by 250 mm in length, there were placed 0.30 g of the respective catalyst after being pelletized having a size of about 20 to 42 mesh. The reactor was heated to 700° C. and flushed with helium at which time a feed gas of either pure methane or methane plus CO and/or CO2 (1.8-15 vol. %) was introduced at a flow rate of 7.5 ml/min. An internal standard of 2% argon was added to the methane feed stream. The product effluent and the inlet reactants were analyzed by gas chromatography. By using the following equations, the methane conversion and selectivity can be calculated
- In equations (1)-(3), F, X and N carbon represent the total gas flow rate, mole fraction and carbon number in a molecule, respectively. Similarly, selectivity for the formation of a hydrogen-containing product on hydrogen basis can be calculated and, thus, the ratio of hydrogen to carbon in the coke formed can be estimated.
- F inlet ×X Ar inlet =F outlet ×X Ar outlet (1)
-
-
- These results are presented in the following tables.
TABLE 1 Performance of Various Catalysts for Methane Dehydrocondensation.1 Selectivity (%) Catalyst I.D. CH4 Conv. (%) C2 Bz* Np* 3% Re/HZSM-5 (B) 4.9 19 65 5 10% Re/HZSM-5 (A) 6.6 15 65 10 20% Re/HZSM-5 (C) 7.0 18 62 13 10% Re/0.5% Co/HZSM-52 (D) 4.8 28 64 2 10% Re/1.0% Fe/HZSM-52 (E) 6.2 25 67 3 10% Re/1.0% Pt/HZSM-53 (F) 4.2 28 63 5 15% Mo/HZSM-5 (R) 7.8 2 62 24 -
TABLE 2 Effect of Rhenium Compound and Support on Catalyst Performance2 Selectivity (%) Catalyst I.D. CH4 Conv. (%) C2 Bz* Np* 3% Re2O7/HZSM-5 (G) 4.9 19 65 5 10% Re2(CO)10/HZSM-5 (H) 7.5 19 72 10 10% NH4ReO4/FSM-16 (I) 1.2 48 36 — 10% Re2O7/SiO2 (J) 3.8 22 60 5 10% Re2O7/Al2O3 (K) 0.8 18 64 8 10% Re2(CO)/carbon (L) 1.2 20 67 7 -
TABLE 3 Effect of Space Velocity and Si/Al Ratio On Catalyst Performance1 CH4 Space Conv. Selectivity (%) Catalyst I.D. Velocity (%) C2 Bz* Np* 10% Re/HZSM-5 1440 9.2 27 60 2 (Si/Al = 40) (N) 10% Re/HZSM-5 2500 6.5 32 58 3 (Si/Al = 40) (N) 10% Re/HZSM-5 5000 4.8 50 49 — (Si/Al = 40) (N) 10% Re/HZSM-5 10000 1.8 60 35 — (Si/Al = 40) (N) 10% Re/HZSM-5 5000 0.4 58 32 — (Si/Al = 20) (M) 10% Re/HZSM-5 5000 4.2 43 50 2 (Si/Al = 80) (P) 10% Re/HZSM-5 5000 0.24 57 38 — (Si/Al = 150) (Q) -
TABLE 4 Effect of CO and CO2 on the Performance of a 10% Re/HZSM-5 (Si/Al = 40) Catalyst1 (A) Time Gas Feed Composition (%) on Stream CH4 Selectivity (%) CO CO2 CH4 Ar (min.) Conv. (%) C2 Bz* Np* 11.9 — 78.8 9.3 100 9.6 12 75 8 11.9 — 78.8 9.3 400 8.3 15 76 6 8.6 — 81.7 9.7 100 8.4 14 72 8 8.6 — 81.7 9.7 600 8.2 15 75 6 22.2 — 69.6 8.2 100 9.2 14 76 6 22.2 69.6 8.2 500 8.6 13 77 5 22.2 69.6 8.2 2000 8.2 15 73 3 2 87.6 10.4 120 12.5 18 72 6 2 87.6 10.4 420 11.8 21 70 3 3 87.6 9.7 100 10.2 23 67 5 3 87.6 9.7 420 9.8 25 65 3 - It is observed from the results in the above tables that the conversion of methane to higher molecular-weight hydrocarbons, e.g., ethylene, benzene, proceeds with higher yields on rhenium and rhenium modified catalysts versus a molybdenum only (prior art) catalyst. Further, the addition of CO or CO2 increases the yield of benzene and the stability of the catalyst.
Claims (8)
1. A process for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons comprising contacting a feedstream containing at least methane with a catalyst in the presence of CO, CO2 or mixtures thereof at conversion conditions to produce the higher carbon number hydrocarbons.
2. The process of claim 1 where the conversion conditions include a temperature of about 300° C. to about 1000° C., a space velocity of about 1000 to about 20,000 hr−1 and a CO, CO2 or mixtures thereof to methane mole ratio of about 0.01 to about 0.3.
3. The process of claim 1 where the catalyst comprises a porous support having dispersed thereon rhenium and a promoter metal selected from the group consisting of iron, cobalt, vanadium, manganese, gallium, zinc, chromium, molybdenum and mixtures thereof.
4. The process of claim 3 where the support is selected from the group consisting of silica, alumina, zeolite ZSM-5, FSM-16 and mixtures thereof.
5. The process of claim 3 where the rhenium is present in an amount from about 0.001 to about 50 wt. % of the support.
6. The process of claim 3 where the promoter metal is present in an amount from about 0.001 to about 50 wt. %.
7. The process of claim 1 where the feedstream contains at least 5% methane.
8. The process of claim 1 where the feedstream contains at least 20% methane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/965,062 US6426442B1 (en) | 1999-01-15 | 2001-09-27 | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/232,351 US6239057B1 (en) | 1999-01-15 | 1999-01-15 | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
US64093400A | 2000-08-17 | 2000-08-17 | |
US09/965,062 US6426442B1 (en) | 1999-01-15 | 2001-09-27 | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US64093400A Division | 1999-01-15 | 2000-08-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020035305A1 true US20020035305A1 (en) | 2002-03-21 |
US6426442B1 US6426442B1 (en) | 2002-07-30 |
Family
ID=22872765
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/232,351 Expired - Lifetime US6239057B1 (en) | 1999-01-15 | 1999-01-15 | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
US09/965,062 Expired - Fee Related US6426442B1 (en) | 1999-01-15 | 2001-09-27 | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/232,351 Expired - Lifetime US6239057B1 (en) | 1999-01-15 | 1999-01-15 | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
Country Status (2)
Country | Link |
---|---|
US (2) | US6239057B1 (en) |
JP (1) | JP4828680B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068814A2 (en) * | 2004-12-22 | 2006-06-29 | Exxonmobil Chemical Patents, Inc. | Production of aromatic hydrocarbons from methane |
WO2006068800A2 (en) * | 2004-12-22 | 2006-06-29 | Exxonmobil Chemical Patents Inc. | Production of alkylated aromatic hydrocarbons from methane |
WO2006083409A2 (en) * | 2004-12-22 | 2006-08-10 | Exxonmobil Chemical Patents, Inc. | Production of liquid hydorocarbons from methane |
US7250543B2 (en) | 2003-04-29 | 2007-07-31 | Hrd Corp. | Preparation of catalyst and use for high yield conversion of methane to ethylene |
US20070260098A1 (en) * | 2004-12-22 | 2007-11-08 | Iaccino Larry L | Production Of Aromatic Hydrocarbons From Methane |
US20070282145A1 (en) * | 2006-05-31 | 2007-12-06 | Iaccino Larry L | Use of isotopic analysis for determination of aromatic hydrocarbons produced from methane |
US20100316559A1 (en) * | 2007-09-14 | 2010-12-16 | Sumio Kamiya | Single-crystal fine powder of sulfide or sulfide complex and method for preparing the same |
CN112694907A (en) * | 2019-10-22 | 2021-04-23 | 中国科学院大连化学物理研究所 | Method for preparing hydrocarbon compound from methane |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6239057B1 (en) | 1999-01-15 | 2001-05-29 | Uop Llc | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
IT1317757B1 (en) * | 2000-02-03 | 2003-07-15 | Enitecnologie Spa | METHOD FOR THE PREPARATION OF HYDROGENATED HYDROCARBONS. |
US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
US20050171393A1 (en) | 2003-07-15 | 2005-08-04 | Lorkovic Ivan M. | Hydrocarbon synthesis |
US20080275284A1 (en) | 2004-04-16 | 2008-11-06 | Marathon Oil Company | Process for converting gaseous alkanes to liquid hydrocarbons |
US20060100469A1 (en) | 2004-04-16 | 2006-05-11 | Waycuilis John J | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US7244867B2 (en) * | 2004-04-16 | 2007-07-17 | Marathon Oil Company | Process for converting gaseous alkanes to liquid hydrocarbons |
US7709149B2 (en) * | 2004-09-24 | 2010-05-04 | Lg Chem, Ltd. | Composite precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same |
US7683227B2 (en) * | 2004-12-22 | 2010-03-23 | Exxonmobil Chemical Patents Inc. | Production of aromatic hydrocarbons from methane |
CN101395088B (en) | 2006-02-03 | 2012-04-04 | Grt公司 | Separation method of light gases from halogens |
EA020442B1 (en) | 2006-02-03 | 2014-11-28 | ДжиАрТи, ИНК. | Process for converting hydrocarbon feedstock (embodiments) and system therefor |
CN101460431B (en) * | 2006-04-21 | 2013-09-11 | 埃克森美孚化学专利公司 | Process for methane conversion |
US7977519B2 (en) | 2006-04-21 | 2011-07-12 | Exxonmobil Chemical Patents Inc. | Production of aromatic hydrocarbons from methane |
US7795490B2 (en) * | 2006-04-21 | 2010-09-14 | Exxonmobil Chemical Patents Inc. | Production of aromatics from methane |
WO2007127026A2 (en) * | 2006-04-21 | 2007-11-08 | Exxonmobil Chemical Patents Inc. | Production of aromatics from methane |
CN101460429A (en) * | 2006-04-21 | 2009-06-17 | 埃克森美孚化学专利公司 | Process for methane conversion |
WO2008002343A2 (en) * | 2006-06-23 | 2008-01-03 | Exxonmobil Chemical Patents Inc. | Production of aromatic hydrocarbons and syngas from methane |
AU2007290757B2 (en) * | 2006-08-25 | 2011-05-26 | Exxonmobil Chemical Patents Inc. | Production of aromatics from methane |
US7589246B2 (en) * | 2007-04-04 | 2009-09-15 | Exxonmobil Chemical Patents Inc. | Production of aromatics from methane |
CN101284232B (en) * | 2007-04-13 | 2013-01-16 | 微宏动力系统(湖州)有限公司 | Bromomethane prepared by bromine oxidation of methane and catalyst for conversing the bromomethane into hydrocarbon |
JP2010528054A (en) | 2007-05-24 | 2010-08-19 | ジーアールティー インコーポレイテッド | Zone reactor incorporating reversible hydrogen halide capture and release |
WO2009014867A1 (en) * | 2007-07-24 | 2009-01-29 | Exxonmobil Chemical Patents Inc. | Production of aromatics from aliphatics |
US20100185034A1 (en) * | 2007-08-03 | 2010-07-22 | Mitsui Chemicals , Inc | Process for producing aromatic hydrocarbon |
CN101939278A (en) * | 2007-12-05 | 2011-01-05 | 陶氏环球技术公司 | Continuous process for oxygen-free conversion of methane |
SG187507A1 (en) * | 2008-01-28 | 2013-02-28 | Exxonmobil Chem Patents Inc | Production of aromatics from methane |
CN101945703B (en) * | 2008-02-21 | 2013-05-08 | 埃克森美孚化学专利公司 | Production of aromatics from methane |
US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
US8415517B2 (en) | 2008-07-18 | 2013-04-09 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
GB2474806B (en) * | 2008-07-29 | 2013-05-01 | Meidensha Electric Mfg Co Ltd | Process for producing aromatic compound |
JP5151951B2 (en) * | 2008-12-12 | 2013-02-27 | 株式会社明電舎 | Lower hydrocarbon aromatization catalyst and method for producing the catalyst |
SG175115A1 (en) | 2009-04-17 | 2011-11-28 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
US8552236B2 (en) * | 2009-09-30 | 2013-10-08 | Exxonmobil Chemical Patents Inc. | Production of aromatics from methane |
JP5499669B2 (en) * | 2009-12-04 | 2014-05-21 | 株式会社明電舎 | Process for producing lower hydrocarbon and aromatic compound and production catalyst |
US8367884B2 (en) | 2010-03-02 | 2013-02-05 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
BR112012017412B8 (en) * | 2010-03-08 | 2018-11-13 | Dow Global Technologies Llc | process for preparing propylene |
US8546287B2 (en) * | 2010-05-31 | 2013-10-01 | Fina Technology, Inc. | Rhenium promoted catalyst |
WO2012103095A2 (en) | 2011-01-26 | 2012-08-02 | Shell Oil Company | A zinc-containing methane aromatization catalyst, method of making and method of using the catalyst |
US8815050B2 (en) | 2011-03-22 | 2014-08-26 | Marathon Gtf Technology, Ltd. | Processes and systems for drying liquid bromine |
US8436220B2 (en) | 2011-06-10 | 2013-05-07 | Marathon Gtf Technology, Ltd. | Processes and systems for demethanization of brominated hydrocarbons |
EP2720990B1 (en) | 2011-06-15 | 2018-03-07 | UT-Battelle, LLC | Zeolitic catalytic conversion of alcohols to hydrocarbons |
US8829256B2 (en) | 2011-06-30 | 2014-09-09 | Gtc Technology Us, Llc | Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons |
JP6306814B2 (en) | 2011-09-21 | 2018-04-04 | エージェンシー フォー サイエンス, テクノロジー アンド リサーチ | Aromatization of methane by combination of catalysts |
US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
WO2013096072A2 (en) | 2011-12-22 | 2013-06-27 | Uop Llc | Layered conversion synthesis of zeolites |
JP5852749B2 (en) | 2011-12-22 | 2016-02-03 | ユーオーピー エルエルシー | Conversion reaction of aromatic compounds using UZM-39 aluminosilicate zeolite |
CN104379505A (en) | 2011-12-22 | 2015-02-25 | 环球油品公司 | UZM-39 aluminosilicate zeolite |
US9475699B2 (en) | 2012-04-16 | 2016-10-25 | Seerstone Llc. | Methods for treating an offgas containing carbon oxides |
CN104302575B (en) | 2012-04-16 | 2017-03-22 | 赛尔斯通股份有限公司 | Method for producing solid carbon by reducing carbon dioxide |
JP6328611B2 (en) | 2012-04-16 | 2018-05-23 | シーアストーン リミテッド ライアビリティ カンパニー | Method and structure for reducing carbon oxides with non-ferrous catalysts |
NO2749379T3 (en) | 2012-04-16 | 2018-07-28 | ||
CN104302576B (en) | 2012-04-16 | 2017-03-08 | 赛尔斯通股份有限公司 | For catching and sealing up for safekeeping carbon and the method and system for reducing the quality of oxycarbide in waste gas stream |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
JP6284934B2 (en) | 2012-07-12 | 2018-02-28 | シーアストーン リミテッド ライアビリティ カンパニー | Solid carbon product containing carbon nanotubes and method of forming the same |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
MX2015000580A (en) | 2012-07-13 | 2015-08-20 | Seerstone Llc | Methods and systems for forming ammonia and solid carbon products. |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
US20140171708A1 (en) * | 2012-11-29 | 2014-06-19 | Ceramatec, Inc. | System and process for converting natural gas into benzene |
CN104936893A (en) | 2012-11-29 | 2015-09-23 | 赛尔斯通股份有限公司 | Reactors and methods for producing solid carbon materials |
US8609911B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Catalytic pyrolysis using UZM-44 aluminosilicate zeolite |
WO2014093416A1 (en) | 2012-12-12 | 2014-06-19 | Uop Llc | Dehydrocyclodimerization using uzm-39 aluminosilicate zeolite |
US8889939B2 (en) | 2012-12-12 | 2014-11-18 | Uop Llc | Dehydrocyclodimerization using UZM-44 aluminosilicate zeolite |
US8609910B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Catalytic pyrolysis using UZM-39 aluminosilicate zeolite |
US8609921B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Aromatic transalkylation using UZM-44 aluminosilicate zeolite |
US8609919B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Aromatic transformation using UZM-44 aluminosilicate zeolite |
WO2014093440A1 (en) | 2012-12-12 | 2014-06-19 | Uop Llc | Conversion of methane to aromatic compounds using uzm-44 aluminosilicate zeolite |
US8618343B1 (en) | 2012-12-12 | 2013-12-31 | Uop Llc | Aromatic transalkylation using UZM-39 aluminosilicate zeolite |
WO2014093467A1 (en) | 2012-12-12 | 2014-06-19 | Uop Llc | Conversion of methane to aromatic compounds using a catalytic composite |
US8609920B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | UZM-44 aluminosilicate zeolite |
US9434658B2 (en) | 2013-03-06 | 2016-09-06 | Ut-Battelle, Llc | Catalytic conversion of alcohols to hydrocarbons with low benzene content |
WO2014151898A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
EP3113880A4 (en) | 2013-03-15 | 2018-05-16 | Seerstone LLC | Carbon oxide reduction with intermetallic and carbide catalysts |
US10115844B2 (en) | 2013-03-15 | 2018-10-30 | Seerstone Llc | Electrodes comprising nanostructured carbon |
WO2014150944A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
EP3129135A4 (en) | 2013-03-15 | 2017-10-25 | Seerstone LLC | Reactors, systems, and methods for forming solid products |
EP2786978B1 (en) | 2013-04-03 | 2016-12-07 | Scg Chemicals Co. Ltd. | Process for converting paraffin to olefin and catalyst for use therein |
EP3016923B1 (en) | 2013-07-02 | 2019-12-18 | UT-Battelle, LLC | Catalytic conversion of alcohols selected from n-heptanol and n-octanol to a hydrocarbon blendstock |
JP6298438B2 (en) * | 2014-11-28 | 2018-03-20 | 旭化成株式会社 | Process for producing hydrocarbons |
JP2015063560A (en) * | 2014-12-25 | 2015-04-09 | 株式会社明電舎 | Method for producing aromatic hydrocarbon |
US10696606B2 (en) | 2016-06-09 | 2020-06-30 | Ut-Battelle, Llc | Zeolitic catalytic conversion of alcohols to hydrocarbon fractions with reduced gaseous hydrocarbon content |
WO2018022999A1 (en) | 2016-07-28 | 2018-02-01 | Seerstone Llc. | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
CN109772436B (en) * | 2017-11-15 | 2022-08-05 | 中国科学院大连化学物理研究所 | Catalyst for aromatic hydrocarbon synthesis and preparation method thereof |
WO2019202535A1 (en) * | 2018-04-17 | 2019-10-24 | Sabic Global Technologies B.V. | Methods of c1 to c4 hyrocarbon dehydroaromatization |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3855115A (en) * | 1972-10-25 | 1974-12-17 | Mobil Oil Corp | Aromatization process using zinc and rhenium modified zsm-5 catalyst |
US4265787A (en) * | 1973-09-20 | 1981-05-05 | Mobil Oil Corporation | Cracking catalyst |
US4349461A (en) * | 1980-02-25 | 1982-09-14 | Mobil Oil Corporation | Group VIIA metal-modified zeolite catalysts |
US4475483A (en) * | 1983-04-15 | 1984-10-09 | Robinson Barnett J | Catalyst delivery system |
US4568663A (en) * | 1984-06-29 | 1986-02-04 | Exxon Research And Engineering Co. | Cobalt catalysts for the conversion of methanol to hydrocarbons and for Fischer-Tropsch synthesis |
US4538017A (en) * | 1984-08-01 | 1985-08-27 | Cosden Technology, Inc. | Conversion of paraffins to aromatics |
FR2582665B1 (en) * | 1985-06-04 | 1988-08-05 | Inst Francais Du Petrole | CATALYTIC CRACKING PROCESS |
US4655906A (en) * | 1986-05-02 | 1987-04-07 | Phillips Petroleum Company | Hydrotreating process employing a novel catalytic composition |
US4727207A (en) * | 1986-07-02 | 1988-02-23 | Standard Oil Company | Process for converting methane and/or natural gas to more readily transportable materials |
US4766105A (en) * | 1986-10-31 | 1988-08-23 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4766265A (en) * | 1987-06-08 | 1988-08-23 | The Standard Oil Company | Catalysts for the conversion of ethane to liquid aromatic hydrocarbons |
US5053577A (en) * | 1988-01-15 | 1991-10-01 | The Standard Oil Company | Oxidation catalyst and processes using same |
US5114899A (en) * | 1990-08-27 | 1992-05-19 | Shell Oil Company | Olefin disproportionation catalyst and process |
US5105046A (en) * | 1990-12-12 | 1992-04-14 | Amoco Corporation | Oxidative conversion of lower alkanes to higher hydrocarbons via fluorine-containing materials |
FR2676748B1 (en) | 1991-05-21 | 1993-08-13 | Inst Francais Du Petrole | PROCESS FOR PRODUCING LIQUID HYDROCARBONS FROM NATURAL GAS, IN THE PRESENCE OF A ZEOLITE AND GALLIUM-BASED CATALYST. |
CA2062349A1 (en) * | 1992-03-05 | 1993-09-06 | Cesar Ovalles | Catalyst for the direct conversion of methane to higher hydrocarbons and method for the preparation of same |
DE69302753T2 (en) * | 1992-06-10 | 1996-11-07 | Petroleum Energy Center Found | Process and catalyst for the desulfurization of gas oil |
US5336825A (en) * | 1992-07-10 | 1994-08-09 | Council Of Scientific & Industrial Research | Integrated two step process for conversion of methane to liquid hydrocarbons of gasoline range |
US5380697A (en) * | 1993-09-08 | 1995-01-10 | Shell Oil Company | Ethylene oxide catalyst and process |
US5990365A (en) * | 1994-12-09 | 1999-11-23 | Mobil Oil Corporation | Catalyst comprising ZSM-5, rhenium and a selectivating agent |
JPH11323352A (en) * | 1998-05-20 | 1999-11-26 | Chiyoda Corp | Manufacture of hydrocarbon oil |
US6239057B1 (en) | 1999-01-15 | 2001-05-29 | Uop Llc | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst |
-
1999
- 1999-01-15 US US09/232,351 patent/US6239057B1/en not_active Expired - Lifetime
-
2000
- 2000-01-14 JP JP2000006422A patent/JP4828680B2/en not_active Expired - Fee Related
-
2001
- 2001-09-27 US US09/965,062 patent/US6426442B1/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7250543B2 (en) | 2003-04-29 | 2007-07-31 | Hrd Corp. | Preparation of catalyst and use for high yield conversion of methane to ethylene |
US7291321B2 (en) | 2003-04-29 | 2007-11-06 | Hrd Corp. | Preparation of catalyst and use for high yield conversion of methane to ethylene |
US20070260098A1 (en) * | 2004-12-22 | 2007-11-08 | Iaccino Larry L | Production Of Aromatic Hydrocarbons From Methane |
US7772447B2 (en) | 2004-12-22 | 2010-08-10 | Exxonmobil Chemical Patents Inc. | Production of liquid hydrocarbons from methane |
WO2006068800A3 (en) * | 2004-12-22 | 2006-11-30 | Exxonmobil Chem Patents Inc | Production of alkylated aromatic hydrocarbons from methane |
WO2006083409A3 (en) * | 2004-12-22 | 2007-01-11 | Exxonmobil Chem Patents Inc | Production of liquid hydorocarbons from methane |
WO2006083409A2 (en) * | 2004-12-22 | 2006-08-10 | Exxonmobil Chemical Patents, Inc. | Production of liquid hydorocarbons from methane |
WO2006068800A2 (en) * | 2004-12-22 | 2006-06-29 | Exxonmobil Chemical Patents Inc. | Production of alkylated aromatic hydrocarbons from methane |
WO2006068814A2 (en) * | 2004-12-22 | 2006-06-29 | Exxonmobil Chemical Patents, Inc. | Production of aromatic hydrocarbons from methane |
US8138384B2 (en) | 2004-12-22 | 2012-03-20 | Exxonmobil Chemical Patents Inc. | Production of alkylated aromatic hydrocarbons from methane |
US20080047872A1 (en) * | 2004-12-22 | 2008-02-28 | Iaccino Larry L | Production of Liquid Hydrocarbons from Methane |
US7759535B2 (en) | 2004-12-22 | 2010-07-20 | Exxonmobil Chemical Patents Inc. | Production of aromatic hydrocarbons from methane |
WO2006068814A3 (en) * | 2005-12-02 | 2006-08-31 | Exxonmobil Chem Patents Inc | Production of aromatic hydrocarbons from methane |
US7754930B2 (en) | 2006-05-31 | 2010-07-13 | Exxonmobil Chemical Patents, Inc. | Use of isotopic analysis for determination of aromatic hydrocarbons produced from methane |
US20100240935A1 (en) * | 2006-05-31 | 2010-09-23 | Iaccino Larry L | Use of Isotopic Analysis for Determination of Aromatic Hydrocarbons Produced From Methane |
US20070282145A1 (en) * | 2006-05-31 | 2007-12-06 | Iaccino Larry L | Use of isotopic analysis for determination of aromatic hydrocarbons produced from methane |
US20100316559A1 (en) * | 2007-09-14 | 2010-12-16 | Sumio Kamiya | Single-crystal fine powder of sulfide or sulfide complex and method for preparing the same |
US8999877B2 (en) * | 2007-09-14 | 2015-04-07 | Toyota Jidosha Kabushiki Kaisha | Single-crystal fine powder of sulfide or sulfide complex and method for preparing the same |
CN112694907A (en) * | 2019-10-22 | 2021-04-23 | 中国科学院大连化学物理研究所 | Method for preparing hydrocarbon compound from methane |
Also Published As
Publication number | Publication date |
---|---|
JP2000300987A (en) | 2000-10-31 |
US6426442B1 (en) | 2002-07-30 |
US6239057B1 (en) | 2001-05-29 |
JP4828680B2 (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6426442B1 (en) | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst | |
EP1770080B1 (en) | Process for producing ethylene and propylene | |
EP1642641B1 (en) | A catalyst and process for producing monocyclic aromatic hydrocarbons | |
US4499314A (en) | Methanol conversion to hydrocarbons with zeolites and cocatalysts | |
US4613716A (en) | Production of aromatics from ethane and/or ethylene | |
US8946107B2 (en) | Process for the conversion of ethane to aromatic hydrocarbons | |
JP3755955B2 (en) | Lower hydrocarbon aromatization catalyst and method for producing aromatic compound using the catalyst | |
JP3745885B2 (en) | Method for producing aromatic compound using methane as raw material | |
CA2416983A1 (en) | Catalyst and process for aromatic hydrocarbons production from methane | |
EP1071641A1 (en) | Xylene isomerization | |
Guan et al. | Development of catalysts for the production of aromatics from syngas | |
EP0014545B1 (en) | Method of preparing a zeolitic catalyst composition of improved shape selectivity and thermal stability, and use thereof in catalytic hydrocarbon conversion process | |
US4766264A (en) | Aromatization of paraffins | |
EP0068542B1 (en) | A process for alkylating benzene or c1 to c5-alkyl-substituted benzenes | |
RU2425091C1 (en) | Method for obtaining high-octane gasoline and/or aromatic hydrocarbons with low benzene content | |
US20010008949A1 (en) | Hydrocarbon conversion catalyst composition and processes therefor and therewith | |
EP0054375B1 (en) | Methanol conversion to hydrocarbons with zeolites | |
CA1237447A (en) | Conversion of paraffins to aromatics | |
US5977420A (en) | Dual-loop xylene isomerization process | |
US6084142A (en) | Method of making an improved zeolite catalyst, a product from such method, and the use thereof in the conversion of hydrocarbons | |
US5034362A (en) | Zeolitic catalyst composition of improved shape selectivity | |
US20030166983A1 (en) | Catalyst composition and processes therefor and therewith | |
US4899007A (en) | Aromatic conversion reactions with zeolitic catalyst composition of improved shape selectivity | |
JP3741455B2 (en) | Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140730 |