US20020028590A1 - Junction box - Google Patents

Junction box Download PDF

Info

Publication number
US20020028590A1
US20020028590A1 US09/924,529 US92452901A US2002028590A1 US 20020028590 A1 US20020028590 A1 US 20020028590A1 US 92452901 A US92452901 A US 92452901A US 2002028590 A1 US2002028590 A1 US 2002028590A1
Authority
US
United States
Prior art keywords
welding
bus bars
circuit
insulation substrate
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/924,529
Other versions
US6402530B1 (en
Inventor
Yukitaka Saito
Tatsuya Sumida
Noriko Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Assigned to SUMITOMO WIRING SYSTEMS, LTD. reassignment SUMITOMO WIRING SYSTEMS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOBAYASHI, NORIKO, SAITO, YUKITAKA, SUMIDA, TATSUYA
Publication of US20020028590A1 publication Critical patent/US20020028590A1/en
Application granted granted Critical
Publication of US6402530B1 publication Critical patent/US6402530B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0238Electrical distribution centers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/22Bases, e.g. strip, block, panel
    • H01R9/24Terminal blocks
    • H01R9/2458Electrical interconnections between terminal blocks
    • H01R9/2466Electrical interconnections between terminal blocks using a planar conductive structure, e.g. printed circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/026Multiple connections subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4092Integral conductive tabs, i.e. conductive parts partly detached from the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S439/00Electrical connectors
    • Y10S439/949Junction box with busbar for plug-socket type interconnection with receptacle

Definitions

  • the present invention relates to an electrical junction box suitable to be connected for example to a wire harness in a vehicle such as an automobile and a method of assembling the junction box.
  • bus bars 5 A- 5 D are laminated one upon another between an upper case part 2 and a lower case part 3 , with insulation plates 4 A- 4 E interposed between the bus bars 5 A- 5 D.
  • the upper case part 2 has a connector receiving portion 2 a , a relay receiving portion 2 b , and a fuse receiving portion 2 c , on which in use connectors 6 , relays 7 and fuses 8 are mounted respectively. Terminals of the connectors 6 , the relays 7 and the fuses 8 are connected to tabs 5 a projecting from the bus bars directly or are connected to the bus bars through relaying terminals.
  • the lower case part 3 has also a connector receiving portion 3 a to connect connectors to tabs projecting from the bus bars.
  • junction box 1 With the increase of the number of circuits, the area and the number of layers of the bus bars increase and thus the size of the junction box becomes large. If the connector, relay and fuse receiving portions are arranged on both the upper and lower case parts to connect connectors, relays and fuses to internal circuits of the junction box, it is possible to make the area of the junction box smaller than in the case where the receiving portions are mounted on only the upper case part or the lower case part.
  • the connector, relay and fuse receiving portions are mounted on both the upper and lower case parts such that they are opposed vertically, the bent tabs of bus bars must overlap each other and thus cannot be easily arranged. In this case, it is necessary to form tabs on bus bars of other layers, which causes an increase of number of layers of bus bars, and thus leads to the increase of the height of the junction box. That is, the junction box is necessarily large.
  • the above-described junction box is so constructed that the bus bars are connected to the connectors, the fuses and the relays.
  • U.S. Pat. No. 5,179,503 shows a modular automobile power distribution box having replaceable modules carrying relays or fuses.
  • the relays or fuses in each module are directly connected to terminals of leads of wire harnesses.
  • a pair of bus bars connect power terminals to the fuses of three maxi-fuse modules. There is no discussion of interconnection of the modules.
  • U.S. Pat. No. 5,581,130 discloses removable multi-function modules in individual casings which are mounted on a circuit board. Each module is electrically connected to the power supply distribution layer of the board by a pin. Alternatively, three modules are shown connected together by two electrical and mechanical coupling bars.
  • an electrical junction box that provides electrical connection to a plurality of electrical connectors, a plurality of fuses and a plurality of relays.
  • the electrical junction box includes
  • a connector circuit in the casing having at least one connector circuit insulation substrate and plurality of first bus bars fixed on the insulation substrate, the first bus bars being arranged to provide electrical connection to electrical connectors in use,
  • a fuse circuit in the casing having at least one fuse circuit insulation substrate, which is discrete from the connector circuit, and a plurality of second bus bars fixed on the fuse circuit insulation substrate, the second bus bars being arranged to provide electrical connection to fuses in use, and
  • a relay circuit in the casing having at least one relay circuit insulation substrate which is discrete from the connector circuit, and a plurality of third bus bars fixed on the relay circuit insulation substrate, the third bus bars being arranged to provide electrical connection to relays in use.
  • the first bus bars have respective welding portions standing up from the connector circuit insulation substrate and arranged alongside one another.
  • the bus bars of one of the fuse and relay circuits have respective welding portions standing up from the respective insulation substrate and arranged alongside one another opposed to the welding portions of said first bus bars.
  • a plurality of welded connections are formed by welding together of the opposed welding portions.
  • one of the respective circuits provides an insulating partitioning member which is interposed between said pair of welded connections so as to prevent contact between the pair of adjacent welded connections.
  • the welded portions are formed by bending an end of each of the bus bars perpendicularly to a surface of the insulation plate, the portions being arranged in parallel or coplanar.
  • the invention there is also provided a method of assembling the electrical junction box described above.
  • the method includes the steps of:
  • step (ii) after step (i), welding together the first and second welding portions at the respective welding locations.
  • the partitioning plate is erected on the insulation plate of the connector module or the fuse module and/or the relay module in such a way that the partitioning plate is inserted into a gap between the aligned welding portions of the connector module or the fuse module and/or the relay module.
  • the electrical junction box of the present invention has a modular construction. As described above, in the junction box of the present invention, the fuse circuit substrate and the relay circuit substrate are separately provided from the connector circuit substrate and are then joined by welding of the bus bars. This is in contrast with the conventional method, in which electrically conductive sheets are punched to form unitarily the connector connection circuit, the fuse connection circuit, and the relay connection circuit and form tabs to be connected to connectors, tabs to be connected to fuses, and tabs to be connected to relays and stacked in a single stack, the circuits thus being handled and arranged in a complicated manner. Consequently, the area of the bus bars increases and a large number of bus bars are necessary.
  • the circuits are separately provided and welded, it is possible to avoid the complication of tabs overlapping each other and avoid a large number of bus bars. Thus, it is possible to form a thin or compact junction box. Further, because the circuits of the bus bars can be handled and arranged easily, the area of each bus bar can be reduced. Consequently, even though the bus bars are separately provided for the connector connections on the one hand and the fuse connections and the relay connections on the other hand, it is possible to reduce the total area of the bus bars and avoid increase of the area of the junction box.
  • the connector module having the connector circuit, the fuse module having the fuse circuit, and the relay module having the relay circuit are all separately provided i.e. the respective insulation substrates are discrete from each other.
  • the design of only any one of the modules need be changed. That is, the construction can cope with the alteration of the specification easily.
  • the first bus bars are provided separately from the second or/and third bus bars but connected thereto by means of welding. Thus this construction does not reduce reliability of the electrical connections.
  • the welding portions may be connected to each other by ultrasonic welding, resistance welding, laser welding or gas welding.
  • a positioning portion of the partitioning plate is inserted into a gap between the arranged welding portions of the connector module or the fuse module and/or the relay module. Therefore, the welding portions are not dislocated and can be aligned and welded to each other, with the welding portions reliably held at a confronting position. Further, the partitioning plate partitions the welding portions from adjacent welding portions after they are welded to each other. Thus, there is no possibility that flexure of the welding portions causes adjacent welding portions to contact each other.
  • the partitioning plate has an engaging portion which is positioned behind a rear surface of the welding portion of the connector module or the fuse module and/or the relay module and is capable of engaging the rear surface of the welding portion.
  • the engaging operation of the engaging portion prevents the mating portions from moving apart from each other. Accordingly, it is possible to maintain the position of the welding portions both longitudinally and widthwise.
  • a supporting strip is provided on the insulation plate of the connector module or the fuse module and/or the relay module in opposition to both peripheral edges of the rear surface of the connector module or the fuse module and/or the relay module and the engaging portion of the partitioning plate is capable of engaging the rear surface of the welding portion of the connector module or the fuse module and/or the relay module through the supporting strip. This allows the superimposing position of the welding portions to be highly accurate.
  • the fuse circuit and the relay circuit may be separately formed, it is possible to integrate them with each other to form a fuse/relay composite circuit which receives fuses and relays on the same substrate which has bus bars for fuses and relays on it. In this case, if it is necessary to connect the circuit of any of the bus bars for fuses to any of the bus bars for relays, the respective bus bars are welded to each other or the bus bars may be integrally formed.
  • FIG. 1 is a schematic exploded perspective view showing a junction box of a first embodiment of the present invention
  • FIG. 2 is a sectional view showing a state in which the junction box of FIG. 1 has been assembled
  • FIG. 3 is a sectional view showing the junction box of FIG. 2, taken along a line perpendicular to FIG. 2;
  • FIG. 4 is a schematic perspective view of a connector module of the box of FIG. 1 viewed from the underside thereof;
  • FIG. 5 is a schematic view showing fuse connection bus bars
  • FIG. 6 is a schematic view showing a relay connection bus bar
  • FIG. 7A is a plan view showing a partitioning plate aligning a connector module and a fuse module to be connected to each other.
  • FIG. 7B is a sectional view of the construction shown in FIG. 7A;
  • FIG. 8A is a plan view showing the superimposed welding portions of a connector module and a fuse module.
  • FIGS. 8B and 8C are sectional views each showing stages in a connection process
  • FIG. 9 is a sectional view showing a state in which the welding portions have been welded to each other;
  • FIG. 10A is a plan view of a modified embodiment in which a connector module and a part module have been abutted to each other;
  • FIGS. 10B and 10C are sectional side views each showing stages in a connection process of the embodiment of FIG. 10A;
  • FIG. 11A is a plan view showing a junction box of another embodiment of present invention.
  • FIG. 11B is a bottom view showing the junction box of another embodiment of the present invention.
  • FIG. 12 is an exploded perspective view showing a conventional junction box.
  • FIG. 1 is a schematic exploded perspective view showing component parts constituting a junction box 10 which, in use, is mounted in a vehicle body and is connected to a wire harness of the vehicle body.
  • the box 10 has a casing formed of molded synthetic resin including upper and lower casing parts herein called lower case part 11 and upper case part 12 .
  • upper and lower casing parts herein called lower case part 11 and upper case part 12 .
  • the casing there are a connector module 13 constituting a connector circuit, a fuse module 14 constituting a fuse circuit and a relay module 15 constituting a relay circuit.
  • the casing formed by the lower case part 11 and the upper case part 12 accommodates an electronic control unit 40 , seen in FIGS. 2 and 3.
  • the lower case part 11 has a plurality of connector receiving portions 11 a in the form of sockets projecting outwardly and a plurality of relay receiving portions 11 b also in the form of sockets arranged in a row along one longitudinal side.
  • the upper case part 12 has a fuse receiving portion 12 a having sockets to receive a plurality of fuses, formed at one widthwise side.
  • the remaining part of the upper case part 12 is formed as a closed portion 12 c which covers and contacts the upper surface of the electronic control unit 40 housed within the case.
  • the upper case part 12 also has a connector receiving portion or socket 12 e on the periphery face of its other widthwise side.
  • the lower case part 11 and the upper case part 12 are locked to each other by fitting their peripheral walls on each other. Suitable conventional locking fittings (not shown) may be provided.
  • the upper case part 12 also has fixing brackets 12 d projecting from its opposite ends, for fixing it to for example a vehicle body.
  • FIG. 4 is a schematic perspective view showing the bottom side of the connector module 13 of FIG. 1.
  • the connector module 13 has a plurality of layers of connector connection bus bars 16 laminated one upon another with interposed insulation plates in a stack 17 . In this embodiment, there are four layers of the connector connection bus bars.
  • the connector module 13 is schematically shown, with one insulation plate of the stack 17 as the uppermost layer. By molding in resin, it is possible to form the insulation plate stack 17 and a multi-layer integral assembly of the bus bars 16 .
  • Each layer of the bus bars 16 of the connector module 13 has circuit portions 16 a having a required configuration obtained by punching a conductive plate. At least one tab 16 b stands perpendicularly from each circuit portion 16 a towards the lower case part 11 to project through a terminal hole 11 c of one of the connector receiving portions 11 a of the lower case part 11 .
  • a connector (not shown) secured on one end of a wire harness is in use fitted in the connector receiving portion 11 a to connect a terminal in the connector to the tab 16 b.
  • the connector connection bus bars 16 have welding tabs 16 c and 16 d , projecting from holes of the insulation plate stack 17 at the upper side of the connector circuit 13 and welding tabs 16 e projecting from the periphery of the insulation plate stack 17 .
  • the welding tabs 16 c and 16 e are welded to fuse connection bus bars 20 formed on the fuse module 14 .
  • the welding tabs 16 d are welded to relay connection bus bars 30 formed on the relay module 15 which project upwardly through a slot in the connector module 13 .
  • the welding tabs 16 c and the welding tabs 20 a of the bus bars 20 are placed adjacent each other vertically.
  • the welding tabs 16 d and the welding tabs 30 a of the bus bars 30 are placed adjacent each other extending vertically.
  • the welding tabs 16 e are welded to welding tabs 20 b of the fuse connection bus bars 20 by laminating them on each other vertically and horizontally. There are thus a plurality of sets of each of the welding tabs 16 c , 16 d and 16 e in each case parallel with one another.
  • the fuse module 14 has the fuse connection bus bars 20 arranged between two superimposed insulation plates 22 A and 22 B (see FIG. 1), formed by molding resin.
  • the fuse connection bus bars 20 in use connect to terminals 25 a or 25 b of replaceable fuses 25 . As shown in FIG.
  • each fuse connection bus bar 20 has horizontal portions 20 e - 1 and 20 e - 2 fixed to the substrate 22 B, terminal portions 20 c - 1 and 20 c - 2 formed by bending the fuse connection bus bar 20 upward at one end of the horizontal portion 20 e - 1 and 20 e - 2 , and pressure connection grooves 20 d - 1 and 20 d - 2 formed at the upper end of the terminal portions 20 c - 1 and 20 c - 2 respectively to allow the terminals 25 a and 25 b of the fuse 25 to be fitted in the grooves 20 d - 1 and 20 d - 2 respectively.
  • the end of one bus bar 20 e.g., the left one in FIG.
  • the welding portion 20 a is projected horizontally from one edge of the substrate 21 in its longitudinal direction and bent vertically upward so that in the assembled position the welding portion 20 a and the welding portion 16 c of a connector bus bar 16 lie adjacent each other, as shown in FIG. 7. It is possible to fix the bus bar 20 to the insulation plate 22 B by, for example, caulking. In this case, a caulking projection may be formed on the insulation plate 22 B and inserted through a hole formed on the bus bar 20 . Then, the caulking projection may be deformed to fix the bus bar 20 at a predetermined position.
  • the relay module 15 has a construction similar to that of the fuse module 14 . More specifically, the relay module 15 has a large number of relay connection bus bars 30 fixed between upper and lower insulation plates 31 A and 31 B (see FIG. 1). The bus bars 30 are separated from each other and individually connected to terminals of relays in use. As shown schematically in FIG. 6 (where the insulation plate 31 B is not shown), each bus bar 30 of the relay module 15 has a horizontal portion 30 b , a terminal portion 30 c formed by bending the bus bar 30 upwards at one end of the horizontal portion 30 b , and a pressure connection groove 30 d formed at the outer end of the terminal portion 30 c to allow a terminal 35 a of a relay 35 to be fitted therein.
  • the welding tab 30 a is formed by bending the other end of the horizontal portion 30 b in the shape of an “L” to permit the welding tab 30 a and the welding tab 16 d of one of the connector bus bars 16 to be aligned adjacent each other vertically in the assembled state.
  • FIGS. 7 to 9 show in detail the construction of the connector module 13 and the fuse module 14 in the region where the upstanding tabs or welding portions 20 a of the fuse module 14 are brought together with and joined to tabs 16 c of the connector module 13 by welding, with the fuse module 14 overlying the connector module 13 .
  • the details shown in these figures are omitted in FIGS. 1 to 6 for simplicity.
  • the tabs 16 c and 20 a lie in a common vertical plane and are spaced laterally from each other.
  • each partitioning plate 50 is integral with the covering insulation plate 22 A and stand up on both sides of each of the welding portions 20 a .
  • Each partitioning plate 50 is a little lower in height than the adjacent welding portion or portions 20 a .
  • One end of each partitioning plate 50 extends behind a rear surface of each of the respective adjacent welding portions 20 a and forms a holding portion 50 a for preventing the welding portions 20 a from deflecting backwards.
  • the holding portion 50 a engages the rear surface of the welding portions 20 a by extending only minimally behind the surfaces so that the holding portion 50 a does not interfere with the contact zone of a welding tool when the welding portion 20 a is welded to the welding portion 16 c.
  • a positioning portion 50 b Extending from the holding portion 50 a of the partitioning plate 50 is a positioning portion 50 b which is inserted into a gap between the respective pair of adjacent welding portions 16 c on the connector module 13 .
  • the positioning portion 50 b aligns the mating welding portions 16 c and 20 a confronting each other.
  • the partitioning plate 50 includes an engaging portion 50 c formed at the opposite end of the positioning portion 50 b from the holding portion 50 a . When the mating welding portions 16 c and 20 a are arranged adjacent each other, the engaging portion 50 c extends behind and supports the rear surface of the welding portion 16 c .
  • the engaging portion 50 c engages the rear surface of the welding portion 16 c by extending only minimally behind the surface so that the engaging portion 50 c does not interfere with the contact zone of the welding tool used when the welding portions 16 c and 20 a are welded to each other.
  • the partitioning plate 50 is mounted on the fuse module 14 and the welding portion 16 c of the connector module 13 and the welding portion 20 a of the fuse module 14 are welded to each other.
  • the partitioning plate 50 may alternatively be mounted on the connector module 13 .
  • Similar partitioning plates 50 are provided on the relay module 15 where the welding portions 16 d of the connector module 13 and the welding portions 30 a of the relay module 15 are to be welded to each other.
  • the fuse module 14 is disposed over one portion of the connector module 13 .
  • the positioning portions 50 b of the partitioning plate 50 on the fuse module 14 are inserted from above into the respective gaps between the adjacent welding portions 16 c of the connector module 13 .
  • the fuse module 14 is positioned (see FIG. 8C) in such a way that the engaging portions 50 c engage an upper portion of the rear surface of each of the adjacent welding portions 16 c .
  • the partitioning plates 50 prevent the welding portions 16 c and 20 a from moving sideways away from each other.
  • welding portions 16 c and 20 a are prevented from moving apart backwards and separating from each other. That is, the welding portions 16 c and 20 a can be reliably aligned and maintained in position, in readiness for welding.
  • the projection P formed on the welding portion 16 c maintains a required spacing between the mating surfaces of welding portions 16 c and 20 a , in readiness for welding.
  • the welding portions 16 c and 20 a are welded to each other by compressing them with a resistance welding device (not shown), the projection P serving as the welding point is crushed. Consequently, as shown in FIG. 9, the welding portions 16 c and 20 a move to a connection position at which the mating surfaces thereof contact each other.
  • the partitioning plate 50 prevents the welding portions 16 c and 20 a from moving sideways relative to each other. Thus, the welding portions 16 c and 20 a are prevented from being dislocated.
  • the welding tabs are welded to each other by a suitable welding method such as ultrasonic welding, resistance welding, laser welding or gas welding. It is preferable to form a projection P on one or both confronting surfaces of each of the welding portions 16 c , 20 a , 16 e , 20 b , 30 a , and 16 d to increase the welding effect at the projection P.
  • connection between the connector module 13 and the relay module 15 when the relay module 15 is superimposed on the lower surface of the connector module 13 to connect the connector module 13 and the relay module 15 to each other, can be formed in a similar manner.
  • the fuse module 14 is mounted over the connector module 13 at one widthwise side thereof, and the relay module 15 is disposed under the connector module 13 at one longitudinal side thereof to integrate the three modules. Then, this subassembly of the three modules 13 , 14 and 15 is accommodated in the lower case part 11 .
  • the terminal portions of the connector module 13 are disposed in the connector receiving sockets 11 a
  • the terminal portions 30 c of the relay module 15 are disposed in the relay receiving sockets 11 b.
  • the electronic control unit 40 is mounted on the connector module 13 at a portion thereof on which the fuse module 14 is not mounted (see FIGS. 2 - 3 ).
  • the electronic control unit 40 has, at one side thereof, a connector portion 44 having bent and projecting conductive pins 43 connected with electrical conductors 42 fixed to a substrate 41 thereof.
  • the electrical conductors 42 are connected to tabs 16 f projecting from the bus bars 16 of the connector module 13 .
  • the conductors 42 are connected to a large number of electronic component parts 45 mounted on the substrate 41 .
  • the electronic component parts 45 is fixed to the substrate 41 , with the electronic component parts 45 projecting downward.
  • the welding tabs of the bus bars 16 , 20 and 30 are disposed in a dead space below the electronic control unit 40 .
  • the upper case part 12 is mounted on the lower case part 11 .
  • the terminal portions 20 c of the bus bars 20 fixed to the fuse module 14 become located in the fuse receiving portions 12 a.
  • the connector portion 44 of the electronic control unit 40 is fitted in a notch 12 e of the upper case 12 .
  • the assembling of the junction box 10 is completed by locking the upper case 12 and the lower case 11 to each other.
  • FIGS. 10A and 10B show a second embodiment.
  • the connector module 113 is connected to a part module 114 such as the fuse module or the relay module not by superimposing them on each other but by butting them to each other at their edges as shown in FIG. 10C.
  • Bus bars 116 and 120 are fixed to the surface of the insulation plates 117 and 122 respectively.
  • notches 120 g are formed on the base portions of the bus bars 120 of the part module 114 to accommodate the holding portions 150 a .
  • Each notch 120 g extends rearwardly from the rear surface of the upright welding portion 120 a of the bus bar.
  • Similar notches 116 g are formed on the base portions of the bus bars 116 of the connector module 113 to accommodate the engaging portions 150 c of the partitioning plates 150 .
  • supporting strips 151 are formed integrally with the insulation plate 117 and stand up adjacent to both peripheral edges of the rear surface of the respective welding portion 116 c .
  • the supporting strips 151 support both sides of the base portion of the bus bar 116 provided on the connector module 113 , thus preventing the welding portion 116 c from moving sideways or backwards away from the welding portion 120 a .
  • the engaging portion 150 c of the partitioning plate 150 supports the rear surface of the welding portion 116 c through the supporting strip 151 .
  • the part module 114 is mounted on the connector module 113 by inserting partitioning plates 150 of the part module 114 between the adjacent welding portions 116 c of the connector module 113 from above the welding portions 116 c as shown in FIG. 10B. Then, the mating welding portions 116 c and 120 a may be welded to each other.
  • welding may be achieved by ultrasonic welding, laser welding or gas welding, instead of resistance welding.
  • the fuse module and the relay module are separate from each other. Instead, the fuse module and the relay module may be integral with each other to form a composite module.
  • a fuse receiving portion 12 a ′ and a relay receiving portion 12 b ′ are formed in the upper case 12 ′.
  • a connector receiving portion 11 a ′ is formed in the lower case 11 ′ in which terminal portions of bus bars of the connector module are disposed.
  • the positioning plate is formed on the part module 114 . However, it could be formed on the connector module 113 .
  • each of the fuse module and the relay module may be divided into two parts, respectively.
  • the fuse module and the relay module are divided into three or more parts, many assembling stages are required.
  • it is preferably to divide the fuse module and the relay module into at most two parts, respectively, in the case of a large junction box.
  • the connector connection bus bars of the connector module, the fuse connection bus bars of the fuse module, and the relay connection bus bars of the relay module may be welded to each other in any of the following three patterns, selected according to the circuit design:
  • a connector connection bus bar and a fuse connection bus bar are welded to each other.
  • a connector connection bus bar is welded to a fuse connection bus bar and to a relay connection bus bar.
  • the fuse connection bus bar may be welded to a welding portion of the connector connection bus bar at one end thereof; the relay connection bus bar may be welded to the welding portion of the connector connection bus bar at the other end thereof; and a tab provided at a third portion of the connector connection bus bar may be connected to a connector.
  • the lower and upper case parts may accommodate a circuit consisting of electrical wires connected to pressure contact terminals on the base circuit.
  • the wires may also connect to connectors which fit in the connector receiving portion.
  • the connector connection bus bars are separately provided from the fuse connection bus bars and the relay connection bus bars, using discrete substrates.
  • tabs for connecting the connector connection bus bars, the fuse connection bus bars, and the relay connection bus bars to connectors, fuses and relays, respectively are disposed at different positions and do not overlap each other. Accordingly, it is unnecessary to increase the number of layers of the bus bars to provide them with tabs. Consequently, it is possible to form a thin junction box or otherwise to achieve a compact and logical layout.
  • the number of bus bars can be reduced from six layers required in the conventional junction box to four layers. Thus, it is possible to reduce the thickness of the junction box.
  • the partitioning plate formed on one of the mating modules partitions a plurality of the mating welding portions from each other, thus preventing the welding portions from moving sideways out of alignment.
  • the welding portions can be reliably aligned and maintained in position.
  • the engaging portion formed on the partitioning plate is capable of engaging the rear surface of the welding portion of the mating module, thus preventing the welding portions from moving backwards apart from each other. Accordingly, the welding portions can be reliably prevented from being dislocated during welding.
  • the fuse connection tabs and the relay connection tabs are separate from the bus bars of the base circuit, it is easy to handle and arrange the bus bars of the base circuit. Thus, it is possible to reduce the area of the bus bars and hence the area of the junction box. Consequently, in the case where the bus bars are divided and the ends of the bus bars are welded to each other, the area of the entire bus bars is not large and hence the area of the junction box is not increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Or Junction Boxes (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Multi-Conductor Connections (AREA)

Abstract

An electrical junction box for a vehicle has a casing and in the casing a connector circuit having first bus bars fixed on a connector circuit substrate to connect to electrical connectors, a fuse circuit with second bus bars on a fuse circuit substrate, discrete from the connector circuit, to connect to fuses, and a relay circuit having third bus bars on a relay circuit substrate, discrete from the connector circuit, to connect to relays. The first bus bars have welding portions welded to and the bus bars of one of the fuse and relay circuits have welding portions opposed thereto. At the adjacent pairs of these welded connections an insulating partitioning member is interposed between the welded connections so as to prevent contact between them.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of Invention [0001]
  • The present invention relates to an electrical junction box suitable to be connected for example to a wire harness in a vehicle such as an automobile and a method of assembling the junction box. [0002]
  • 2. Description of Related Art [0003]
  • Recently, the increase of electrical and electronic component parts which are mounted in a vehicle has led to increase of circuits to be accommodated in electrical connection boxes and junction boxes in the vehicle. Thus, when forming branch circuits at a high density, it is necessary to mount a large number of component parts on a junction box or the like, which causes increase of manufacturing complexity. [0004]
  • In a junction box disclosed in Japanese Laid-Open Patent Publication No. 2000-92660 and shown in FIG. 12, [0005] bus bars 5A-5D are laminated one upon another between an upper case part 2 and a lower case part 3, with insulation plates 4A-4E interposed between the bus bars 5A-5D. The upper case part 2 has a connector receiving portion 2 a, a relay receiving portion 2 b, and a fuse receiving portion 2 c, on which in use connectors 6, relays 7 and fuses 8 are mounted respectively. Terminals of the connectors 6, the relays 7 and the fuses 8 are connected to tabs 5 a projecting from the bus bars directly or are connected to the bus bars through relaying terminals. The lower case part 3 has also a connector receiving portion 3 a to connect connectors to tabs projecting from the bus bars.
  • In the [0006] junction box 1, with the increase of the number of circuits, the area and the number of layers of the bus bars increase and thus the size of the junction box becomes large. If the connector, relay and fuse receiving portions are arranged on both the upper and lower case parts to connect connectors, relays and fuses to internal circuits of the junction box, it is possible to make the area of the junction box smaller than in the case where the receiving portions are mounted on only the upper case part or the lower case part.
  • However, if the connector, relay and fuse receiving portions are mounted on both the upper and lower case parts such that they are opposed vertically, the bent tabs of bus bars must overlap each other and thus cannot be easily arranged. In this case, it is necessary to form tabs on bus bars of other layers, which causes an increase of number of layers of bus bars, and thus leads to the increase of the height of the junction box. That is, the junction box is necessarily large. [0007]
  • Further, the above-described junction box is so constructed that the bus bars are connected to the connectors, the fuses and the relays. Thus, when the specification of the connection between the internal circuit and the fuses and/or the relays is altered, it is necessary to alter the entire internal circuit. Consequently the above-described junction box is incapable of allowing a circuit alteration easily. [0008]
  • Some proposals have been made for replaceable modules in electrical circuits of automobiles. [0009]
  • U.S. Pat. No. 5,179,503 shows a modular automobile power distribution box having replaceable modules carrying relays or fuses. The relays or fuses in each module are directly connected to terminals of leads of wire harnesses. A pair of bus bars connect power terminals to the fuses of three maxi-fuse modules. There is no discussion of interconnection of the modules. [0010]
  • U.S. Pat. No. 5,581,130 discloses removable multi-function modules in individual casings which are mounted on a circuit board. Each module is electrically connected to the power supply distribution layer of the board by a pin. Alternatively, three modules are shown connected together by two electrical and mechanical coupling bars. [0011]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a junction box which can be made thin without increasing the number of layers of bus bars to be accommodated therein and which can cope with a circuit alteration easily. [0012]
  • According to the present invention, there is provided an electrical junction box that provides electrical connection to a plurality of electrical connectors, a plurality of fuses and a plurality of relays. The electrical junction box includes [0013]
  • (i) a casing, [0014]
  • (ii) a connector circuit in the casing having at least one connector circuit insulation substrate and plurality of first bus bars fixed on the insulation substrate, the first bus bars being arranged to provide electrical connection to electrical connectors in use, [0015]
  • (iii) a fuse circuit in the casing having at least one fuse circuit insulation substrate, which is discrete from the connector circuit, and a plurality of second bus bars fixed on the fuse circuit insulation substrate, the second bus bars being arranged to provide electrical connection to fuses in use, and [0016]
  • (iv) a relay circuit in the casing having at least one relay circuit insulation substrate which is discrete from the connector circuit, and a plurality of third bus bars fixed on the relay circuit insulation substrate, the third bus bars being arranged to provide electrical connection to relays in use. [0017]
  • The first bus bars have respective welding portions standing up from the connector circuit insulation substrate and arranged alongside one another. The bus bars of one of the fuse and relay circuits have respective welding portions standing up from the respective insulation substrate and arranged alongside one another opposed to the welding portions of said first bus bars. A plurality of welded connections are formed by welding together of the opposed welding portions. [0018]
  • At at least one adjacent pair of the welded connections, one of the respective circuits provides an insulating partitioning member which is interposed between said pair of welded connections so as to prevent contact between the pair of adjacent welded connections. [0019]
  • Preferably, the welded portions are formed by bending an end of each of the bus bars perpendicularly to a surface of the insulation plate, the portions being arranged in parallel or coplanar. [0020]
  • According to the invention, there is also provided a method of assembling the electrical junction box described above. The method includes the steps of: [0021]
  • (i) arranging a first welding portions respectively to opposite second welding portions in position to be welded thereto at a plurality of welding locations, with at least one insulating partitioning member provided by one of the respective circuits interposed between an adjacent pair of the welding locations so as to prevent contact during welding between the welding portions of a first one of the pair of welding locations with the welding portions of the other of the pair of welding locations, and [0022]
  • (ii) after step (i), welding together the first and second welding portions at the respective welding locations. [0023]
  • The partitioning plate is erected on the insulation plate of the connector module or the fuse module and/or the relay module in such a way that the partitioning plate is inserted into a gap between the aligned welding portions of the connector module or the fuse module and/or the relay module. [0024]
  • The electrical junction box of the present invention has a modular construction. As described above, in the junction box of the present invention, the fuse circuit substrate and the relay circuit substrate are separately provided from the connector circuit substrate and are then joined by welding of the bus bars. This is in contrast with the conventional method, in which electrically conductive sheets are punched to form unitarily the connector connection circuit, the fuse connection circuit, and the relay connection circuit and form tabs to be connected to connectors, tabs to be connected to fuses, and tabs to be connected to relays and stacked in a single stack, the circuits thus being handled and arranged in a complicated manner. Consequently, the area of the bus bars increases and a large number of bus bars are necessary. [0025]
  • On the other hand, in the present invention, because the circuits are separately provided and welded, it is possible to avoid the complication of tabs overlapping each other and avoid a large number of bus bars. Thus, it is possible to form a thin or compact junction box. Further, because the circuits of the bus bars can be handled and arranged easily, the area of each bus bar can be reduced. Consequently, even though the bus bars are separately provided for the connector connections on the one hand and the fuse connections and the relay connections on the other hand, it is possible to reduce the total area of the bus bars and avoid increase of the area of the junction box. [0026]
  • Preferably, the connector module having the connector circuit, the fuse module having the fuse circuit, and the relay module having the relay circuit are all separately provided i.e. the respective insulation substrates are discrete from each other. Thus, if any one of the specification of the connector circuit, the fuse circuit, and the relay circuit is altered, the design of only any one of the modules need be changed. That is, the construction can cope with the alteration of the specification easily. [0027]
  • The first bus bars are provided separately from the second or/and third bus bars but connected thereto by means of welding. Thus this construction does not reduce reliability of the electrical connections. The welding portions may be connected to each other by ultrasonic welding, resistance welding, laser welding or gas welding. [0028]
  • When welding the welding portions to each other, a positioning portion of the partitioning plate is inserted into a gap between the arranged welding portions of the connector module or the fuse module and/or the relay module. Therefore, the welding portions are not dislocated and can be aligned and welded to each other, with the welding portions reliably held at a confronting position. Further, the partitioning plate partitions the welding portions from adjacent welding portions after they are welded to each other. Thus, there is no possibility that flexure of the welding portions causes adjacent welding portions to contact each other. [0029]
  • Preferably, the partitioning plate has an engaging portion which is positioned behind a rear surface of the welding portion of the connector module or the fuse module and/or the relay module and is capable of engaging the rear surface of the welding portion. Thereby, when welding the mating welding portions to each other, the engaging operation of the engaging portion prevents the mating portions from moving apart from each other. Accordingly, it is possible to maintain the position of the welding portions both longitudinally and widthwise. [0030]
  • Preferably, a supporting strip is provided on the insulation plate of the connector module or the fuse module and/or the relay module in opposition to both peripheral edges of the rear surface of the connector module or the fuse module and/or the relay module and the engaging portion of the partitioning plate is capable of engaging the rear surface of the welding portion of the connector module or the fuse module and/or the relay module through the supporting strip. This allows the superimposing position of the welding portions to be highly accurate. [0031]
  • Although the fuse circuit and the relay circuit may be separately formed, it is possible to integrate them with each other to form a fuse/relay composite circuit which receives fuses and relays on the same substrate which has bus bars for fuses and relays on it. In this case, if it is necessary to connect the circuit of any of the bus bars for fuses to any of the bus bars for relays, the respective bus bars are welded to each other or the bus bars may be integrally formed.[0032]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will now be described by way of non-limitative example with reference to the accompanying drawings. In the drawings: [0033]
  • FIG. 1 is a schematic exploded perspective view showing a junction box of a first embodiment of the present invention; [0034]
  • FIG. 2 is a sectional view showing a state in which the junction box of FIG. 1 has been assembled; [0035]
  • FIG. 3 is a sectional view showing the junction box of FIG. 2, taken along a line perpendicular to FIG. 2; [0036]
  • FIG. 4 is a schematic perspective view of a connector module of the box of FIG. 1 viewed from the underside thereof; [0037]
  • FIG. 5 is a schematic view showing fuse connection bus bars; [0038]
  • FIG. 6 is a schematic view showing a relay connection bus bar; [0039]
  • FIG. 7A is a plan view showing a partitioning plate aligning a connector module and a fuse module to be connected to each other. [0040]
  • FIG. 7B is a sectional view of the construction shown in FIG. 7A; [0041]
  • FIG. 8A is a plan view showing the superimposed welding portions of a connector module and a fuse module. [0042]
  • FIGS. 8B and 8C are sectional views each showing stages in a connection process; [0043]
  • FIG. 9 is a sectional view showing a state in which the welding portions have been welded to each other; [0044]
  • FIG. 10A is a plan view of a modified embodiment in which a connector module and a part module have been abutted to each other; [0045]
  • FIGS. 10B and 10C are sectional side views each showing stages in a connection process of the embodiment of FIG. 10A; [0046]
  • FIG. 11A is a plan view showing a junction box of another embodiment of present invention; [0047]
  • FIG. 11B is a bottom view showing the junction box of another embodiment of the present invention; and [0048]
  • FIG. 12 is an exploded perspective view showing a conventional junction box.[0049]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Exemplary embodiments of the present invention will be described below with reference to the drawings. [0050]
  • FIG. 1 is a schematic exploded perspective view showing component parts constituting a [0051] junction box 10 which, in use, is mounted in a vehicle body and is connected to a wire harness of the vehicle body. The box 10 has a casing formed of molded synthetic resin including upper and lower casing parts herein called lower case part 11 and upper case part 12. In the casing, there are a connector module 13 constituting a connector circuit, a fuse module 14 constituting a fuse circuit and a relay module 15 constituting a relay circuit. Although not shown in FIG. 1, the casing formed by the lower case part 11 and the upper case part 12 accommodates an electronic control unit 40, seen in FIGS. 2 and 3.
  • The [0052] lower case part 11 has a plurality of connector receiving portions 11 a in the form of sockets projecting outwardly and a plurality of relay receiving portions 11 b also in the form of sockets arranged in a row along one longitudinal side. The upper case part 12 has a fuse receiving portion 12 a having sockets to receive a plurality of fuses, formed at one widthwise side. The remaining part of the upper case part 12 is formed as a closed portion 12 c which covers and contacts the upper surface of the electronic control unit 40 housed within the case. The upper case part 12 also has a connector receiving portion or socket 12 e on the periphery face of its other widthwise side. The lower case part 11 and the upper case part 12 are locked to each other by fitting their peripheral walls on each other. Suitable conventional locking fittings (not shown) may be provided. The upper case part 12 also has fixing brackets 12 d projecting from its opposite ends, for fixing it to for example a vehicle body.
  • FIG. 4 is a schematic perspective view showing the bottom side of the [0053] connector module 13 of FIG. 1. The connector module 13 has a plurality of layers of connector connection bus bars 16 laminated one upon another with interposed insulation plates in a stack 17. In this embodiment, there are four layers of the connector connection bus bars. In FIG. 1, the connector module 13 is schematically shown, with one insulation plate of the stack 17 as the uppermost layer. By molding in resin, it is possible to form the insulation plate stack 17 and a multi-layer integral assembly of the bus bars 16.
  • Each layer of the bus bars [0054] 16 of the connector module 13 has circuit portions 16 a having a required configuration obtained by punching a conductive plate. At least one tab 16 b stands perpendicularly from each circuit portion 16 a towards the lower case part 11 to project through a terminal hole 11 c of one of the connector receiving portions 11 a of the lower case part 11. A connector (not shown) secured on one end of a wire harness is in use fitted in the connector receiving portion 11 a to connect a terminal in the connector to the tab 16 b.
  • As shown in FIG. 1, the connector connection bus bars [0055] 16 have welding tabs 16 c and 16 d, projecting from holes of the insulation plate stack 17 at the upper side of the connector circuit 13 and welding tabs 16 e projecting from the periphery of the insulation plate stack 17. The welding tabs 16 c and 16 e are welded to fuse connection bus bars 20 formed on the fuse module 14. The welding tabs 16 d are welded to relay connection bus bars 30 formed on the relay module 15 which project upwardly through a slot in the connector module 13. The welding tabs 16 c and the welding tabs 20 a of the bus bars 20 are placed adjacent each other vertically. Similarly the welding tabs 16 d and the welding tabs 30 a of the bus bars 30 are placed adjacent each other extending vertically. The welding tabs 16 e are welded to welding tabs 20 b of the fuse connection bus bars 20 by laminating them on each other vertically and horizontally. There are thus a plurality of sets of each of the welding tabs 16 c, 16 d and 16 e in each case parallel with one another.
  • The [0056] fuse module 14, partly shown schematically in FIG. 5, has the fuse connection bus bars 20 arranged between two superimposed insulation plates 22A and 22B (see FIG. 1), formed by molding resin. The fuse connection bus bars 20 in use connect to terminals 25 a or 25 b of replaceable fuses 25. As shown in FIG. 5 (where the upper insulation plate is not shown), each fuse connection bus bar 20 has horizontal portions 20 e-1 and 20 e-2 fixed to the substrate 22B, terminal portions 20 c-1 and 20 c-2 formed by bending the fuse connection bus bar 20 upward at one end of the horizontal portion 20 e-1 and 20 e-2, and pressure connection grooves 20 d-1 and 20 d-2 formed at the upper end of the terminal portions 20 c-1 and 20 c-2 respectively to allow the terminals 25 a and 25 b of the fuse 25 to be fitted in the grooves 20 d-1 and 20 d-2 respectively. The end of one bus bar 20 (e.g., the left one in FIG. 5) opposite to its end to be connected to the terminal 25 a projects to form the welding portion 20 a. The end of the other bus bar 20 (e.g., the right one in FIG. 5) opposite to its end to be connected to the terminal 25 b projects laterally to form the welding portion 20 b. The welding portion 20 a is projected horizontally from one edge of the substrate 21 in its longitudinal direction and bent vertically upward so that in the assembled position the welding portion 20 a and the welding portion 16 c of a connector bus bar 16 lie adjacent each other, as shown in FIG. 7. It is possible to fix the bus bar 20 to the insulation plate 22B by, for example, caulking. In this case, a caulking projection may be formed on the insulation plate 22B and inserted through a hole formed on the bus bar 20. Then, the caulking projection may be deformed to fix the bus bar 20 at a predetermined position.
  • The [0057] relay module 15 has a construction similar to that of the fuse module 14. More specifically, the relay module 15 has a large number of relay connection bus bars 30 fixed between upper and lower insulation plates 31A and 31B (see FIG. 1). The bus bars 30 are separated from each other and individually connected to terminals of relays in use. As shown schematically in FIG. 6 (where the insulation plate 31B is not shown), each bus bar 30 of the relay module 15 has a horizontal portion 30 b, a terminal portion 30 c formed by bending the bus bar 30 upwards at one end of the horizontal portion 30 b, and a pressure connection groove 30 d formed at the outer end of the terminal portion 30 c to allow a terminal 35 a of a relay 35 to be fitted therein. The welding tab 30 a is formed by bending the other end of the horizontal portion 30 b in the shape of an “L” to permit the welding tab 30 a and the welding tab 16 d of one of the connector bus bars 16 to be aligned adjacent each other vertically in the assembled state.
  • FIGS. [0058] 7 to 9 show in detail the construction of the connector module 13 and the fuse module 14 in the region where the upstanding tabs or welding portions 20 a of the fuse module 14 are brought together with and joined to tabs 16 c of the connector module 13 by welding, with the fuse module 14 overlying the connector module 13. The details shown in these figures are omitted in FIGS. 1 to 6 for simplicity. On each module, the tabs 16 c and 20 a lie in a common vertical plane and are spaced laterally from each other.
  • As shown in FIG. 7A, at the end of the [0059] fuse module 14 where the welding portions 20 a project, a plurality of partitioning plates 50 are integral with the covering insulation plate 22A and stand up on both sides of each of the welding portions 20 a. Each partitioning plate 50 is a little lower in height than the adjacent welding portion or portions 20 a. One end of each partitioning plate 50 extends behind a rear surface of each of the respective adjacent welding portions 20 a and forms a holding portion 50 a for preventing the welding portions 20 a from deflecting backwards. The holding portion 50 a engages the rear surface of the welding portions 20 a by extending only minimally behind the surfaces so that the holding portion 50 a does not interfere with the contact zone of a welding tool when the welding portion 20 a is welded to the welding portion 16 c.
  • Extending from the holding [0060] portion 50 a of the partitioning plate 50 is a positioning portion 50 b which is inserted into a gap between the respective pair of adjacent welding portions 16 c on the connector module 13. The positioning portion 50 b aligns the mating welding portions 16 c and 20 a confronting each other. The partitioning plate 50 includes an engaging portion 50 c formed at the opposite end of the positioning portion 50 b from the holding portion 50 a. When the mating welding portions 16 c and 20 a are arranged adjacent each other, the engaging portion 50 c extends behind and supports the rear surface of the welding portion 16 c. The engaging portion 50 c engages the rear surface of the welding portion 16 c by extending only minimally behind the surface so that the engaging portion 50 c does not interfere with the contact zone of the welding tool used when the welding portions 16 c and 20 a are welded to each other.
  • In the first embodiment, the [0061] partitioning plate 50 is mounted on the fuse module 14 and the welding portion 16 c of the connector module 13 and the welding portion 20 a of the fuse module 14 are welded to each other. The partitioning plate 50 may alternatively be mounted on the connector module 13. Similar partitioning plates 50 are provided on the relay module 15 where the welding portions 16 d of the connector module 13 and the welding portions 30 a of the relay module 15 are to be welded to each other.
  • In assembling the [0062] junction box 10 from the above-described component parts, initially, the fuse module 14 is disposed over one portion of the connector module 13. In this case, as shown in FIGS. 8A and 8B, the positioning portions 50 b of the partitioning plate 50 on the fuse module 14 are inserted from above into the respective gaps between the adjacent welding portions 16 c of the connector module 13. At the same time, the fuse module 14 is positioned (see FIG. 8C) in such a way that the engaging portions 50 c engage an upper portion of the rear surface of each of the adjacent welding portions 16 c. Thus, the partitioning plates 50 prevent the welding portions 16 c and 20 a from moving sideways away from each other. Further, owing to the engaging operation of the engaging portion 50 c, welding portions 16 c and 20 a are prevented from moving apart backwards and separating from each other. That is, the welding portions 16 c and 20 a can be reliably aligned and maintained in position, in readiness for welding.
  • When the [0063] vertical welding portions 16 c and 20 a are aligned next to each other, the projection P formed on the welding portion 16 c maintains a required spacing between the mating surfaces of welding portions 16 c and 20 a, in readiness for welding. When the welding portions 16 c and 20 a are welded to each other by compressing them with a resistance welding device (not shown), the projection P serving as the welding point is crushed. Consequently, as shown in FIG. 9, the welding portions 16 c and 20 a move to a connection position at which the mating surfaces thereof contact each other. In the welding operation, the partitioning plate 50 prevents the welding portions 16 c and 20 a from moving sideways relative to each other. Thus, the welding portions 16 c and 20 a are prevented from being dislocated.
  • The welding tabs are welded to each other by a suitable welding method such as ultrasonic welding, resistance welding, laser welding or gas welding. It is preferable to form a projection P on one or both confronting surfaces of each of the [0064] welding portions 16 c, 20 a, 16 e, 20 b, 30 a, and 16 d to increase the welding effect at the projection P.
  • Further after the pair of [0065] welding portions 16 c and 20 a are welded to each other, they are prevented from shifting and thus prevented from contacting the adjacent pair of welding portions 16 c and 20 a. In this manner, the connector module 13 and the fuse module 14 are reliably connected to each other. Although detailed description is omitted herein, the connection between the connector module 13 and the relay module 15, when the relay module 15 is superimposed on the lower surface of the connector module 13 to connect the connector module 13 and the relay module 15 to each other, can be formed in a similar manner.
  • As described above, the [0066] fuse module 14 is mounted over the connector module 13 at one widthwise side thereof, and the relay module 15 is disposed under the connector module 13 at one longitudinal side thereof to integrate the three modules. Then, this subassembly of the three modules 13, 14 and 15 is accommodated in the lower case part 11. In this case, the terminal portions of the connector module 13 are disposed in the connector receiving sockets 11 a, and the terminal portions 30 c of the relay module 15 are disposed in the relay receiving sockets 11 b.
  • Then, the [0067] electronic control unit 40 is mounted on the connector module 13 at a portion thereof on which the fuse module 14 is not mounted (see FIGS. 2-3). The electronic control unit 40 has, at one side thereof, a connector portion 44 having bent and projecting conductive pins 43 connected with electrical conductors 42 fixed to a substrate 41 thereof. The electrical conductors 42 are connected to tabs 16 f projecting from the bus bars 16 of the connector module 13. The conductors 42 are connected to a large number of electronic component parts 45 mounted on the substrate 41. The electronic component parts 45 is fixed to the substrate 41, with the electronic component parts 45 projecting downward. The welding tabs of the bus bars 16, 20 and 30 are disposed in a dead space below the electronic control unit 40.
  • After the [0068] electronic control unit 40 is mounted on the connector module 13, the upper case part 12 is mounted on the lower case part 11. At this time, the terminal portions 20 c of the bus bars 20 fixed to the fuse module 14 become located in the fuse receiving portions 12 a.
  • At this time, the [0069] connector portion 44 of the electronic control unit 40 is fitted in a notch 12 e of the upper case 12. The assembling of the junction box 10 is completed by locking the upper case 12 and the lower case 11 to each other.
  • As shown in FIGS. 5 and 6, when the [0070] fuses 25 and the relays 35 are inserted into the fuse accommodation portion 11 a and the relay accommodation portion 11 b, respectively, they are fitted in and connected to the pressure connection grooves 20 d of the fuse connection bus bars 20 and the pressure connection grooves 30 d of the relay connection bus bars 30, respectively.
  • FIGS. 10A and 10B show a second embodiment. The [0071] connector module 113 is connected to a part module 114 such as the fuse module or the relay module not by superimposing them on each other but by butting them to each other at their edges as shown in FIG. 10C. Bus bars 116 and 120 are fixed to the surface of the insulation plates 117 and 122 respectively. In correspondence to the positions of holding portions 150 a of partitioning plates 150, notches 120 g are formed on the base portions of the bus bars 120 of the part module 114 to accommodate the holding portions 150 a. Each notch 120 g extends rearwardly from the rear surface of the upright welding portion 120 a of the bus bar. Similar notches 116 g are formed on the base portions of the bus bars 116 of the connector module 113 to accommodate the engaging portions 150 c of the partitioning plates 150. In the region of each notch 116 g, supporting strips 151 are formed integrally with the insulation plate 117 and stand up adjacent to both peripheral edges of the rear surface of the respective welding portion 116 c. The supporting strips 151 support both sides of the base portion of the bus bar 116 provided on the connector module 113, thus preventing the welding portion 116 c from moving sideways or backwards away from the welding portion 120 a. In the second embodiment, the engaging portion 150 c of the partitioning plate 150 supports the rear surface of the welding portion 116 c through the supporting strip 151.
  • The [0072] part module 114 is mounted on the connector module 113 by inserting partitioning plates 150 of the part module 114 between the adjacent welding portions 116 c of the connector module 113 from above the welding portions 116 c as shown in FIG. 10B. Then, the mating welding portions 116 c and 120 a may be welded to each other.
  • In the first and second embodiments, welding may be achieved by ultrasonic welding, laser welding or gas welding, instead of resistance welding. [0073]
  • In the embodiments described above, the fuse module and the relay module are separate from each other. Instead, the fuse module and the relay module may be integral with each other to form a composite module. In this case, as shown in FIGS. 11A and 11B, a [0074] fuse receiving portion 12 a′ and a relay receiving portion 12 b′, in which terminal portions of bus bars of the composite module are disposed, are formed in the upper case 12′. Formed in the lower case 11′ is a connector receiving portion 11 a′ in which terminal portions of bus bars of the connector module are disposed. In the second embodiment, the positioning plate is formed on the part module 114. However, it could be formed on the connector module 113.
  • The junction box of the present invention is not limited to the above-described embodiments. For example, each of the fuse module and the relay module may be divided into two parts, respectively. In this case, when the specification of any one of the fuses or the relays is altered, it is possible to replace only the module associated with the fuse or the relay which should be altered. However, if the fuse module and the relay module are divided into three or more parts, many assembling stages are required. Thus, it is preferably to divide the fuse module and the relay module into at most two parts, respectively, in the case of a large junction box. [0075]
  • The connector connection bus bars of the connector module, the fuse connection bus bars of the fuse module, and the relay connection bus bars of the relay module may be welded to each other in any of the following three patterns, selected according to the circuit design: [0076]
  • (1) A connector connection bus bar and a fuse connection bus bar are welded to each other. [0077]
  • (2) A connector connection bus bar and a relay connection bus bar are welded to each other. [0078]
  • (3) A connector connection bus bar is welded to a fuse connection bus bar and to a relay connection bus bar. [0079]
  • In case (3), the fuse connection bus bar may be welded to a welding portion of the connector connection bus bar at one end thereof; the relay connection bus bar may be welded to the welding portion of the connector connection bus bar at the other end thereof; and a tab provided at a third portion of the connector connection bus bar may be connected to a connector. [0080]
  • In addition to the connector module, fuse module, relay module and the electronic control unit, the lower and upper case parts may accommodate a circuit consisting of electrical wires connected to pressure contact terminals on the base circuit. The wires may also connect to connectors which fit in the connector receiving portion. It is also possible to add a circuit formed as an electrically conductive portion of an FPC (flexible printed circuit), a PCB (printed circuit board) or a highly electrically conductive resin molded with insulating resin. [0081]
  • As is apparent from the foregoing description, in the junction box of the present invention, the connector connection bus bars are separately provided from the fuse connection bus bars and the relay connection bus bars, using discrete substrates. Thus, tabs for connecting the connector connection bus bars, the fuse connection bus bars, and the relay connection bus bars to connectors, fuses and relays, respectively are disposed at different positions and do not overlap each other. Accordingly, it is unnecessary to increase the number of layers of the bus bars to provide them with tabs. Consequently, it is possible to form a thin junction box or otherwise to achieve a compact and logical layout. For example, in the case of the construction of the first embodiment, the number of bus bars can be reduced from six layers required in the conventional junction box to four layers. Thus, it is possible to reduce the thickness of the junction box. [0082]
  • Further, the partitioning plate formed on one of the mating modules partitions a plurality of the mating welding portions from each other, thus preventing the welding portions from moving sideways out of alignment. Thus, the welding portions can be reliably aligned and maintained in position. Further, the engaging portion formed on the partitioning plate is capable of engaging the rear surface of the welding portion of the mating module, thus preventing the welding portions from moving backwards apart from each other. Accordingly, the welding portions can be reliably prevented from being dislocated during welding. [0083]
  • Further, as described above, because the fuse connection tabs and the relay connection tabs are separate from the bus bars of the base circuit, it is easy to handle and arrange the bus bars of the base circuit. Thus, it is possible to reduce the area of the bus bars and hence the area of the junction box. Consequently, in the case where the bus bars are divided and the ends of the bus bars are welded to each other, the area of the entire bus bars is not large and hence the area of the junction box is not increased. [0084]
  • Further, if the specification of the fuses and the relays is altered, the fuse module, the relay module or the composite module of the fuse module and the relay module is replaced. Thus, it is unnecessary to alter the entire upper and lower cases including the base circuit. That is, the construction can permit the alteration of the specification quickly and at low cost. [0085]
  • While the invention has been illustrated by the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention. [0086]

Claims (12)

What is claimed is:
1. An electrical junction box that provides electrical connection to a plurality of electrical connectors, a plurality of fuses and a plurality of relays, comprising;
(i) a casing;
(ii) a connector circuit in said casing having at least one connector circuit insulation substrate and a plurality of first bus bars fixed on said insulation substrate, said first bus bars being arranged to provide electrical connection to electrical connectors in use;
(iii) a fuse circuit in said casing having at least one fuse circuit insulation substrate, which is discrete from said connector circuit, and a plurality of second bus bars fixed on said fuse circuit insulation substrate, said second bus bars being arranged to provide electrical connection to fuses in use; and
(iv) a relay circuit in said casing having at least one relay circuit insulation substrate which is discrete from said connector circuit, and a plurality of third bus bars fixed on said relay circuit insulation substrate, said third bus bars being arranged to provide electrical connection to relays in use;
wherein said first bus bars have respective welding portions standing up from said connector circuit insulation substrate and arranged alongside one another, and said bus bars of one of said fuse and relay circuits have respective welding portions standing up from the respective insulation substrate and arranged alongside one another opposed to said welding portions of said first bus bars, the opposed welding portions being welded together to form a plurality of welded connections, and
wherein at at least one adjacent pair of said welded connections one of the respective circuits provides an insulating partitioning member which is interposed between said pair of welded connections and prevents contact between said pair of adjacent welded connections.
2. An electrical junction box according to claim 1, wherein said partitioning member has at least one support portion located rearwardly of a rear face of one of said welding portions to provide support of the welding portion against rearward bending.
3. An electrical junction box according to claim 2, wherein said partitioning member has a spaced pair of said support portions which are located respectively rearwardly of the rear faces of both welded-together welding portions of one said welded connection.
4. An electrical junction box according to claim 2, wherein at said welded connections, the other of the respective circuits has at least one upstanding support member interposed between said support portion of said partitioning member and said rear face of said welding portion supported thereby.
5. An electrical junction box according to claim 1, wherein said partitioning member is molded in one-piece with the respective insulation substrate.
6. An electrical junction box according to claim 1, wherein said fuse circuit insulation substrate and said relay circuit insulation substrate are discrete from each other, whereby said fuse circuit and said relay circuit constitute separate modules in said junction box.
7. An electrical junction box according to claim 1, wherein said fuse circuit insulation substrate and said relay circuit insulation substrate are combined as a unitary common substrate carrying said second bus bars and said third bus bars, whereby said fuse circuit and said relay circuit constitute a combined module in said junction box.
8. An electrical junction box according to claim 1, wherein said casing comprises upper and lower case parts, which are respectively molded synthetic resin members, at least one of said upper and lower case parts comprising connector sockets for receiving electrical connectors in use.
9. A vehicle having at least one electrical junction box according to claim 1.
10. A method of assembling an electrical junction box that provides electrical connection to a plurality of electrical connectors, a plurality of fuses and a plurality of relays, said electrical junction box comprising:
(a) a connector circuit having at least one connector circuit insulation substrate and a plurality of first bus bars fixed on said insulation substrate said first bus bars being arranged to provide electrical connection to electrical connectors in use;
(b) a fuse circuit having at least one fuse circuit insulation substrate, which is discrete from said connector circuit, and a plurality of second bus bars fixed on said fuse circuit insulation substrate, said second bus bars being arranged to provide electrical connection to fuses in use; and
(c) a relay circuit having at least one relay circuit insulation substrate which is discrete from said connector circuit, and a plurality of third bus bars fixed on said relay circuit insulation substrate, said third bus bars being arranged to provide electrical connection to relays in use;
wherein said first bus bars have first welding portions standing up from said connector circuit insulation substrate and arranged alongside one another, and said bus bars of one of said fuse and relay circuits have second welding portions stand up from the respective insulation substrate,
said method including the steps of:
(i) arranging said first welding portions respectively opposite said second welding portions in position to be welded thereto at a plurality of welding locations, with at least one insulating partitioning member provided by one of the respective circuits interposed between an adjacent pair of said welding locations so as to prevent contact, during welding, between said welding portions of one of said pair of welding locations with said welding portions of the other of said pair of welding locations, and
(ii) after step (i), welding together said first and second welding portions at the respective welding locations.
11. A method according to claim 10, further comprising a step of locating at least one support portion of said partitioning member rearwardly of a rear face of one of said welding portions at at least one of the pair of welding locations to provide support of the welding portion against rearward bending.
12. A method according to claim 10, wherein the welding portions at each said welding location are joined by one of ultrasonic welding, resistance welding, laser welding and gas welding.
US09/924,529 2000-08-09 2001-08-09 Junction box Expired - Lifetime US6402530B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000240655A JP4097392B2 (en) 2000-08-09 2000-08-09 Junction box and assembly method of junction box
JP2000-240655 2000-08-09

Publications (2)

Publication Number Publication Date
US20020028590A1 true US20020028590A1 (en) 2002-03-07
US6402530B1 US6402530B1 (en) 2002-06-11

Family

ID=18731977

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/924,529 Expired - Lifetime US6402530B1 (en) 2000-08-09 2001-08-09 Junction box

Country Status (3)

Country Link
US (1) US6402530B1 (en)
EP (1) EP1179453A3 (en)
JP (1) JP4097392B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607115B2 (en) * 2000-07-21 2003-08-19 Sumitomo Wiring Systems, Ltd. Junction box
US20060238938A1 (en) * 2005-04-22 2006-10-26 Lear Corporation Relayless and fuseless junction box
US20100227515A1 (en) * 2009-03-09 2010-09-09 Vanslembrouck Mark L Weld terminal, switch assembly and methods of attachment
KR101023885B1 (en) 2008-11-27 2011-03-22 현대자동차주식회사 Junction box for vehicle
KR101103276B1 (en) * 2010-01-13 2012-01-10 영화테크(주) Junction Box
CN102481883A (en) * 2009-09-03 2012-05-30 利萨·德雷克塞迈尔有限责任公司 Modular power distributor
US8802982B2 (en) 2007-06-12 2014-08-12 Valeo Systemes Thermiques Housing consisting of shells assembled together to protect an electronic device
DE102014222597A1 (en) * 2014-11-05 2016-05-12 Mahle International Gmbh Method for producing an arrangement with a housing part and at least two conductor tracks

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1145914B1 (en) * 2000-04-13 2006-05-17 Sumitomo Wiring Systems, Ltd. Electrical junction box
JP4097387B2 (en) * 2000-07-21 2008-06-11 住友電装株式会社 Junction box
DE60125008T2 (en) * 2000-10-26 2007-07-05 Sumitomo Wiring Systems, Ltd., Yokkaichi Electric motor vehicle junction box
US6514091B2 (en) * 2000-11-28 2003-02-04 Sumitomo Wiring Systems, Ltd. Electrical junction box for a vehicle
JP3977609B2 (en) * 2001-04-27 2007-09-19 矢崎総業株式会社 Electrical junction box
JP2002374075A (en) * 2001-06-13 2002-12-26 Fujitsu Ten Ltd Method for connecting wirings and wiring connecting structure
JP2003218554A (en) * 2001-11-14 2003-07-31 Yazaki Corp Power supply distribution box, and power device module
US6797889B1 (en) * 2002-05-30 2004-09-28 Johnson Controls Automotive Electronics Assembly of power circuits and numerical data printed on a multilayer board
JP2004096917A (en) * 2002-09-02 2004-03-25 Sumitomo Wiring Syst Ltd Connecting structure of bus bar to relay terminal
JP2004096950A (en) * 2002-09-03 2004-03-25 Sumitomo Wiring Syst Ltd Conductive material
JP3861777B2 (en) * 2002-09-04 2006-12-20 住友電装株式会社 Conductive material
JP2004253759A (en) * 2002-12-24 2004-09-09 Auto Network Gijutsu Kenkyusho:Kk Control circuit board and circuit construct
JP4077346B2 (en) 2003-03-17 2008-04-16 矢崎総業株式会社 Electrical connection box busbar connection structure
JP4424042B2 (en) * 2004-04-06 2010-03-03 住友電装株式会社 Automotive relays and electrical junction boxes
DE102005038114B4 (en) * 2004-08-16 2008-09-25 Sumitomo Wiring Systems, Ltd., Yokkaichi Electrical connection box
FI120068B (en) * 2006-04-20 2009-06-15 Abb Oy Electrical connection and electrical component
JP4939899B2 (en) * 2006-10-30 2012-05-30 オムロンオートモーティブエレクトロニクス株式会社 Conductive terminal welding method and conductive terminal structure
JP5223591B2 (en) * 2008-10-28 2013-06-26 住友電装株式会社 Electrical junction box
JP5378864B2 (en) * 2009-04-03 2013-12-25 富士通テン株式会社 Housing structure for automotive electronic devices
JP5570016B2 (en) * 2009-11-26 2014-08-13 日本圧着端子製造株式会社 Flat cable connector, harness, and method of manufacturing harness
KR102485328B1 (en) 2016-12-09 2023-01-06 현대자동차주식회사 Apparatus for charge controlling of electric vehicle
CN113794081B (en) * 2021-08-16 2024-05-31 西安空间无线电技术研究所 Multi-component electronic product interconnection method and structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836166B1 (en) * 1978-08-28 1979-11-29 Kostal Fa Leopold Central electrics in motor vehicles and processes for their manufacture
US5179503A (en) * 1991-04-19 1993-01-12 United Technologies Automotive, Inc. Modular automobile power distribution box
FR2690601B1 (en) * 1992-04-22 2002-02-01 Valeo Electronique Service board for controlling and / or supplying electrical components to vehicles.
JP2953335B2 (en) * 1995-02-14 1999-09-27 住友電装株式会社 Branch junction box
US5764487A (en) * 1996-08-06 1998-06-09 Yazaki Corporation Junction block with integral printed circuit board and electrical connector for same
DE69734095T2 (en) * 1996-10-24 2006-07-13 Thomas & Betts International Inc., Sparks POWER DISTRIBUTION UNIT
JPH11243618A (en) * 1998-02-23 1999-09-07 Sumitomo Wiring Syst Ltd Electric connection box
JP3336971B2 (en) * 1998-09-09 2002-10-21 住友電装株式会社 Automotive electrical junction box
DE69908896T2 (en) * 1999-01-04 2004-05-19 Sumitomo Wiring Systems, Ltd., Yokkaichi Electrical junction box with a busbar
JP3495939B2 (en) * 1999-02-26 2004-02-09 矢崎総業株式会社 Electrical junction box
JP3355146B2 (en) * 1999-03-11 2002-12-09 株式会社オートネットワーク技術研究所 Circuit connection structure in junction block

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607115B2 (en) * 2000-07-21 2003-08-19 Sumitomo Wiring Systems, Ltd. Junction box
US8570699B2 (en) 2005-04-22 2013-10-29 Lear Corporation Relayless and fuseless junction box
US20060238938A1 (en) * 2005-04-22 2006-10-26 Lear Corporation Relayless and fuseless junction box
US8802982B2 (en) 2007-06-12 2014-08-12 Valeo Systemes Thermiques Housing consisting of shells assembled together to protect an electronic device
KR101023885B1 (en) 2008-11-27 2011-03-22 현대자동차주식회사 Junction box for vehicle
US7878871B2 (en) 2009-03-09 2011-02-01 Inteva Products, Llc. Weld terminal, switch assembly and methods of attachment
US8282432B2 (en) 2009-03-09 2012-10-09 Inteva Products Llc Weld terminal, switch assembly and methods of attachment
US20110189904A1 (en) * 2009-03-09 2011-08-04 Vanslembrouck Mark L Weld terminal, switch assembly and methods of attachment
US20100227515A1 (en) * 2009-03-09 2010-09-09 Vanslembrouck Mark L Weld terminal, switch assembly and methods of attachment
CN102481883A (en) * 2009-09-03 2012-05-30 利萨·德雷克塞迈尔有限责任公司 Modular power distributor
US8947859B2 (en) 2009-09-03 2015-02-03 Lisa Dräxlmaier GmbH Modular power distributor
KR101103276B1 (en) * 2010-01-13 2012-01-10 영화테크(주) Junction Box
DE102014222597A1 (en) * 2014-11-05 2016-05-12 Mahle International Gmbh Method for producing an arrangement with a housing part and at least two conductor tracks
US10421225B2 (en) 2014-11-05 2019-09-24 Mahle International Gmbh Method for manufacturing an arrangement comprising a housing part and at least two conductor paths

Also Published As

Publication number Publication date
JP4097392B2 (en) 2008-06-11
EP1179453A2 (en) 2002-02-13
US6402530B1 (en) 2002-06-11
EP1179453A3 (en) 2004-07-28
JP2002058133A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
US6402530B1 (en) Junction box
US6506060B2 (en) Electrical junction box
EP1674346B1 (en) Electric distribution box and method of assembling the same
US6870096B2 (en) Electrical junction box and method of manufacturing the same
US6430054B1 (en) Electrical junction box
US6607115B2 (en) Junction box
US6514091B2 (en) Electrical junction box for a vehicle
US6672883B2 (en) Electrical junction box for a vehicle
JP2001196128A (en) High-speed card edge connector
US7907423B2 (en) Modular power distribution assembly and method of making same
US20040185698A1 (en) Structure and method for connecting bus bars in electric junction box
US7172436B2 (en) Circuit board assembling structure
JPH05258813A (en) Power distribution device for automobile
EP1577977B1 (en) Electrical junction box
JP2004040888A (en) Method and structure for connecting terminals, and electric junction box comprising it
JP3698030B2 (en) Junction box and junction box assembly method
US6666729B2 (en) Joint connector having plural connecting units and a joint plate
JP3678138B2 (en) Junction box
JP4470989B2 (en) Junction box
JP3506101B2 (en) Junction box internal circuit and relay connection structure
JP4049546B2 (en) Junction box
JP4201069B2 (en) Junction box
JP4188866B2 (en) Electrical junction box
JPH05266935A (en) Connector for connecting cable
JP2003102118A (en) Junction block

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO WIRING SYSTEMS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, YUKITAKA;SUMIDA, TATSUYA;KOBAYASHI, NORIKO;REEL/FRAME:012067/0383

Effective date: 20010809

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12