US20020019306A1 - Ceramic matrix composites - Google Patents

Ceramic matrix composites Download PDF

Info

Publication number
US20020019306A1
US20020019306A1 US09/198,979 US19897998A US2002019306A1 US 20020019306 A1 US20020019306 A1 US 20020019306A1 US 19897998 A US19897998 A US 19897998A US 2002019306 A1 US2002019306 A1 US 2002019306A1
Authority
US
United States
Prior art keywords
ceramic
composite
fiber
coating
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/198,979
Other versions
US6350713B1 (en
Inventor
Daniel Ralph Petrak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COI Ceramics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to DOW CORNING CORPORATION reassignment DOW CORNING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PETRAK, DANIEL RALPH
Priority to US09/198,979 priority Critical patent/US6350713B1/en
Priority to DE69909714T priority patent/DE69909714T2/en
Priority to EP99309252A priority patent/EP1004559B1/en
Priority to JP33270099A priority patent/JP4727781B2/en
Priority to US10/023,581 priority patent/US20020079623A1/en
Publication of US20020019306A1 publication Critical patent/US20020019306A1/en
Publication of US6350713B1 publication Critical patent/US6350713B1/en
Application granted granted Critical
Assigned to COI CERAMICS, INC. reassignment COI CERAMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOW CORNING CORPORATION
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: ORBITAL ATK, INC., ORBITAL SCIENCES CORPORATION
Assigned to EAGLE INDUSTRIES UNLIMITED, INC., ALLIANT TECHSYSTEMS INC., FEDERAL CARTRIDGE CO., ORBITAL ATK, INC. (F/K/A ALLIANT TECHSYSTEMS INC.), AMMUNITION ACCESSORIES, INC. reassignment EAGLE INDUSTRIES UNLIMITED, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A.
Assigned to ORBITAL ATK, INC. reassignment ORBITAL ATK, INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62871Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/486Boron containing organic compounds, e.g. borazine, borane or boranyl
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2916Rod, strand, filament or fiber including boron or compound thereof [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2971Impregnation

Definitions

  • This invention pertains to ceramic matrix composites that comprise ceramic fibers coated with at least one binary coating comprised of boron nitride (BN) and silicon nitride (Si 3 N 4 ) within ceramic matrix.
  • the ceramic matrix is derived from curable preceramic polymers.
  • the composites can be formed into complex shapes which have good oxidation resistance at high temperature, high flexural strength and are resistant to moisture.
  • U.S. Pat. Nos. 5,580,643 and 5,202,059 disclose duplex coated ceramic filler materials wherein the filler material may be a fiber and the coatings are boron nitride (BN) and silicon carbide (SiC).
  • BN boron nitride
  • SiC silicon carbide
  • This invention pertains to a ceramic matrix composite comprising a ceramic fiber coated with at least one binary coating comprised of boron nitride (BN) and silicon nitride (Si 3 N 4 ).
  • BN boron nitride
  • Si 3 N 4 silicon nitride
  • FIG. 1 represents a bar chart representation of the interlaminar shear strength of ceramic matrix composites containing a fiber having a BN interfacial coating before and after rain/engine thermal cycle exposure.
  • FIG. 2 represents a bar chart representation of the interlaminar shear strength of ceramic matrix composites containing a fiber having an interfacial coating of this invention before and after rain/engine thermal cycle exposure.
  • This invention pertains to matrix composites comprising ceramic fibers having coated thereon at least one binary layered coating comprised of boron nitride (BN) and silicon nitride (Si 3 N 4 ).
  • the ceramic fibers which may be used in this invention comprise high-modulus fibers which are compatible with the coatings and matrices described herein and which can withstand the polymer inpregnation process. These fibers are well known in the art and many are commercially available. Examples of suitable fibers include those of silicon carbide, silicon nitride, silicon carbide deposited on a carbon core, aluminum borate, aluminum oxide, silicon oxide, silicon carbide containing titanium, silicon oxycarbides, silicon oxycarbonitrides, carbon and the like.
  • such fibers should have a modulus of greater than 100 GPa, preferably greater than 150 GPa.
  • These fibers may contain any desirable number of filaments per tow and have a diameter in the range of about 5 ⁇ m to about 500 ⁇ m.
  • Examples of specific fibers include, but are not limited to, silicon carbide fibers with a diameter in the range of 10-20 ⁇ m manufactured by Nippon Carbon (Nicalon®); fibers comprising silicon carbide deposited on a carbon core with a diameter of about 143 ⁇ m manufactured by Avco; alumina-boria-silica fibers with a diameter of about 10-12 ⁇ m manufactured by 3M; Al 2 O 3 fibers with a diameter of about 20 ⁇ m manufactured by DuPont; SiO 2 fibers with a diameter of about 8-10 ⁇ m manufactured by J. P.
  • any of the above fibers are functional, those preferred herein comprise ceramic fibers of silicon and carbon and optionally oxygen. Especially preferred are silicon oxycarbide fibers (Nicalon® and Tyranno®) and silicon carbide fibers (Nicalon® and SylramicTM).
  • the ceramic fibers are coated with at least one binary coating comprised of boron nitride and silicon nitride.
  • the binary coating is applied to the ceramic fiber by first applying a layer of boron nitride onto the ceramic fiber followed by the application of a coating of silicon nitride over the boron nitride coating. Additional binary coatings of boron nitride and silicon nitride may be applied to the ceramic fiber in the same manner. However, it is preferred to produce a fiber having one binary coating of boron nitride and silicon nitride.
  • Each individual coating thickness (BN or Si 3 N 4 ) is typically in the range of 0.02 to 1 ⁇ m, preferably from 0.05 to 0.3 ⁇ m.
  • the coatings may be deposited by any means known in the art such as chemical vapor deposition or by coating with polymer precursors followed by pyrolysis.
  • additional coatings may be applied over a single binary coating of BN/Si 3 N 4 or between multiple layers of the binary coating (i.e. over the Si 3 N 4 but under the next BN/Si 3 N 4 coating).
  • These additional coatings may be any known interface coating such as coatings of carbon, silicon carbide, and aluminum nitride, preferably silicon carbide.
  • the coatings are applied by chemical vapor deposition techniques.
  • boron trichloride and ammonia are heated to a temperature of 980° C. to 1000° C. at a pressure in the range of 0.2 torr to 1.0 torr to produce the boron nitride coating.
  • silicon tetrachloride and ammonia are used at the same deposition conditions.
  • the coated fibers may be used in nearly any length and may be arranged in the matrix in nearly any manner desired.
  • the fibers are essentially continuous and are either aligned unidirectionally, woven as a 2-dimensional fabric or shaped as a 3-dimensional reinforced preform. It is preferable to heat the coated fiber to about 1100° C. to 1300° C., preferably about 1200° C., prior to its use in preparing the composite.
  • the fiber is heated under atmospheric pressure in a nitrogen environment in a carbon lined furnace.
  • the matrices are derived from curable preceramic polymers.
  • curable is used herein to describe polymers which can be deep section infusibilized (cured) in the composite under moderate conditions by means such as mild heat, radiation, curing catalysts, or curing agents. This curability prevents the composite from delaminating during pyrolysis.
  • curable preceramic polymer may be used in the present invention.
  • Preferable curable preceramic polymers are organosilicon polymers selected from the group consisting of polysiloxanes, polysilazanes, polysilanes, polycarbosilanes, polysilsesquioxanes, polymetallosiloxanes and others, preferably polysilazanes.
  • These curable organosilicon preceramic polymers are well known in the art and are described in U.S. Pat. Nos. 5,447,893 and 5,707,471 to Petrak et al., commonly owned, herein incorporated by reference for the teaching of curable organosilicon preceramic polymers.
  • Suitable polysilazanes include, but are not limited to hydridopolysilazanes, silacyclobutasilazanes, boron modified hydridopolysilazanes and vinyl-modified hydridopolysilazanes.
  • the composites may also contain fillers.
  • Suitable fillers are known in the art and may be exemplified by, but not limited to, powders, whiskers or particulates of metal oxides such as Al 2 O 3 , SiO 2 , silicon carbide, silicon nitride, silicon hexaboride, aluminum nitride, boron nitride, boron carbide, titanium boride, boron, titanium carbide, aluminum nitride and others.
  • the preferred fillers are boron nitride, silicon carbide and silicon nitride.
  • Such fillers are generally included in amounts up to about 65 volume percent based on the volume of the matrix material, preferably from 5 to 50 volume percent.
  • the composites herein may be produced by polymer impregnation. This process comprises first impregnating the coated fibers with a liquid preceramic mixture comprising the curable preceramic polymer and optionally, fillers.
  • the preceramic mixture can be formed by either a solution or melt route.
  • the curable preceramic polymer and fillers are mixed in an organic solvent.
  • the preferred solvents are those with a low vaporization point, preferably ⁇ 125° C., at atmospheric pressure to facilitate removal from the impregnated fibers and those with less than about 1 wt% water.
  • suitable organic solvents include aliphatic hydrocarbons such as hexane, heptane and others and aromatic hydrocarbons such as benzene, toluene and others.
  • concentration of curable preceramic polymer in solution can be varied over a wide range with higher concentrations generally resulting in larger amounts of the preceramic polymer impregnating the fiber. Preferably, concentrations in the range of about 20 to about 60 weight percent are employed herein.
  • the curable preceramic polymer is heated to a temperature above its melting point yet below its curing temperature in an inert environment. Fillers may also be mixed in the molten polymer if desired.
  • the coated fibers are then impregnated with the preceramic mixture by any convenient means.
  • the fibers can be immersed in the mixture, sprayed with the mixture, held under a stream of the mixture and others.
  • the impregnated fibers can additionally be manipulated to uniformly distribute the matrix mixture in the fibers. Following impregnation, any excess matrix mixture on the fibers is allowed to drain off.
  • the solvent is allowed to evaporate.
  • any practical method such as air evaporation at room temperature or the use of vacuum or mild heat may be used.
  • the resultant fibers which have been impregnated and the solvent evaporated are commonly called a “pre-preg”.
  • the impregnated fibers can merely be cooled to form the “pre-preg”.
  • the melt impregnated fibers may be formed prior to cooling by a process such as filament winding or pulltrusion. When these fibers are cooled, they can be immediately cured and fired as set forth below.
  • the pre-preg is subjected to externally applied pressure while heating to form the composite into the desired shape and cause uniformity of resin and the coated fibers. Generally, this is accomplished by pressing the pre-preg into a mold at a temperature and pressure which allows the resin to flow throughout the mold.
  • the pressing conditions generally used therein include temperatures in the range of about 150° C. to about 300° C., pressures in the range of about 6.9 to 6,900 kPa (1 to 1000 psi), and times in the range of about 30 minutes to about 15 hours. Pressing at about 175° C. to 230° C., 1380 to 2760 kPa (200-400 psi) and 6 to 15 hours generally provides satisfactory results. Temperatures and pressure which result in resin being forced out of the mold should be avoided.
  • the formed pre-preg is next infusibilized (cured) to insure complete or nearly complete crosslinking such that deformation on pyrolysis will not occur.
  • Any method which produces the desired result may be used so long as the temperature does not cause ceramification.
  • a preferred method comprises heating at 250° C. to 300° C. for up to 16 hours, preferably for 2 to 16 hours.
  • This infusibilization (curing) step may be performed in the mold under pressure or it may be accomplished in a conventional oven under nitrogen without any applied pressure.
  • the pressed and cured product (green composite or molded part) is then fired in a furnace to a temperature of at least 1000° C. in an inert atmosphere until the product ceramifies. It is preferred that the green composite be fired at a temperature of about 1200° C. to 1300° C.
  • the cured product is slow fired wherein the composite is heated in a slow (e.g. 2° C./min.), stepwise, linear fashion until the majority of any higher boiling volatiles present escape the composite after which time the temperature can be quickly raised to the ultimate firing temperature.
  • the composite After completion of the firing process the composite is cooled to ⁇ 100° C. When cooled, the resulting material is uniform, hard, strong fiber reinforced composite.
  • the volume percentage of coated fibers in the resulting composite can vary over a wide range depending on the desired use. Generally, it is preferred that about 10 to 65 vol % of the composite is fiber.
  • the composites formed by the above process are generally quite porous. Since it may be preferred to produce dense objects, the composites may be reimpregnated and pyrolyzed until the desired density is achieve. This is accomplished by merely impregnating the composite with the curable preceramic polymer (without filler) as describe above (e.g. solution route or melt route), curing the reimpregnated composite and then firing. This reimpregnation process is then repeated until a composite with the desired density and strength is achieved.
  • the curable preceramic polymer without filler
  • the composites produced herein have many desirable properties such as high flexural strength, good oxidation resistance at high temperatures, high strength and toughness, a wide range of dielectric properties and moisture resistance (as measured by retention of flexural strength and/or shear strength after exposure to moisture).
  • the matrix precursor was prepared by mixing the filler powder (Table 1) with a boro hydridopolysilazane polymer (Boro-HPZ) in toluene.
  • the filler and Boro-HPZ i.e. solids
  • BN was used as the filler it was 20% of the solids.
  • SiC powder was used as the filler, it was 25% of the solids.
  • Mixing of the matrix slurry was done by ball milling the total mixture for two hours in a plastic jar with 0.25 inch diameter SiC balls. The plastic jar was 500 cm volume and 200g of SiC balls were used during the mixing operation. The total weight of the slurry produced was 150 g.
  • prepreg The preparation of prepreg was done by pouring the matrix slurry over the coated cloth and gently rubbing the slurry into the woven cloth to assure penetration of the slurry into the fiber tows. The saturated cloth was then run through a set of metal rolls to remove excess matrix precursor. The piece of cloth was then suspended in a hood to evaporate the toluene solvent. After typically one hour, the prepreg was drapeable and slightly tacky. At that stage, the solids content of the matrix precursor was 40 to 50% of the weight of the prepreg total.
  • Preparation of unidirectional tape was done by dripping the matrix slurry on the coated fiber tape which was wound on a one meter diameter drum. This was done while using a rotating drum which tended to spread the slurry uniformly over the tape. The tape had previously been wound to carefully place a monolayer of fiber tow on the drum.
  • the procedure to mold the composites was to cut the prepreg cloth test specimens into approximately 16.5 cm ⁇ 16.5 cm pieces. Eight pieces (plies) of prepreg were cut using a razor knife. The plies were stacked as warp direction aligned symmetrical eight ply composites in the case of woven cloth composites. Most typically an 8 harness satin weave cloth was used for these composites. The satin weave produces high volume fraction fiber compared to plain weave.
  • the tapes were stacked as either one direction reinforced composites or 0/90 lay-up where the direction of the tapes were alternating.
  • the 0/90 architectures were also stacked to be symmetrical about a mid-plane.
  • the prepreg plies were stacked they were ready for vacuum bagging. This consisted of an aluminum plate 30 cm ⁇ 50 cm, one layer of peel ply, the stack of prepreg plies, another peel ply, a second 18 cm ⁇ 18 cm aluminum plate and a sheet of Vac-Pac UHT-650-XT bonded to the larger aluminum plate using a high temperature tape (Schnee-Morehead 5158). A vacuum port and breather fabric were introduced through the Vac-Pac sheet.
  • Molding was done by placing the cull plate and vacuum bag in a warm molding press that was preheated to 120° C.
  • the vacuum bag was loaded to produce a stress on the stack of plies of 689.5 MPa (100 psi).
  • the conditions of 120° C. and 689.5 MPa (100 psi) were maintained for 30 minutes.
  • the temperature was then increased to 180° C. for one hour and raised again to 260° C. for 2 hours.
  • the pressure was raised to 1034 MPa (150 psi) during the 260° C./2 hour hold.
  • the press was cooled and the pressure was allowed to slowly release due to cooling the press.
  • the post-cured composite panels were heated in a furnace with a nitrogen atmosphere to 1000° C. at 100° C. per hour. The temperature was held for one hour. The temperature was then raised to 1200° C. in one hour and held for 2 hours. After cooling to less than 100° C. the panels were removed from the furnace and inspected. Typically, the panels would not change dimensions but the composite would loose approximately 9% of its weight.
  • That weight loss produced approximately 30% open porosity in the pyrolyzed composite.
  • the composite panels were then impregnated with a 50% solution of HPZ polymer in toluene. The impregnation was done at room temperature by placing the panel in an evacuated chamber and introducing the HPZ solution. Once the part was submerged in the solution, the vacuum was released and the chamber pressure was raised to ambient pressure.
  • the panels were permitted to remain in the solution for 30 minutes; then they were removed from the solution and placed in an exhaust hood to evaporate the toluene solvent for at least one hour. After the solvent was removed the panel was heated again to 1200° C. in flowing nitrogen using the same heating schedule described above. This reimpregnation and pyrolysis cycle was repeated until the composites showed an open porosity level that was measured to be 6% or less using a liquid immersion method. As few as 10 or as many as 17 pyrolysis cycles were required to reduce the open porosity to less than six percent.
  • Composite panels made from the same matrix and fiber using the same process as described in Example 1 were made with a non-woven fiber architecture and binary interface coatings.
  • Panel 2 was prepared as a 0/90 architecture composite from a unidirectional tape.
  • the interface coating was one binary coating of 0.3 micrometers of BN and 0.2 micrometers of Si 3 N 4 deposited on the fiber.
  • Table 2 lists the properties of a 12-ply composite that used 20% BN as the matrix filler.
  • Specimen 2 - a showed as made average three-point flexure strength to be 431.2 MPa (62.5 ksi).
  • Specimen 2 - b was subjected to the 24 hour water boil test as described in Example 1.
  • Speciment 2 - b showed an average 3-point flexure strength 318.1 Mpa (46.1). That level of strength retention after water exposure, 73.4% was substantially improved compared to the BN interfaced coated materials produced in Example 1.
  • Specimens taken from panel 3 were fabricated using a unidirectional tape where all the fibers were aligned in one direction. Otherwise, this panel was processed the same as the panels in Example 1.
  • the interface coating used in panel 3 was six binary coatings of BN and Si 3 N 4 . The total coating thickness though was approximately 0.7 micrometers. This panel also used BN as the matrix filler.
  • specimens 3 - a and 3 - b show that the water boil exposure produced improved flexure strength compared to the as made strength.
  • Specimen 3 - c demonstrates that this panel retains good four-point flexure strength at 1000° C. in air.
  • the carbon interface composites show rapid reduction in strength when exposed to these test conditions.
  • Example 4 Specimens prepared in Example 4 were molded using 8 harness satin woven cloth. The processing was done in a manner similar to Example 1 except that the molding thermal cycle also included a higher temperature cure step of 300° C. for 4 hours. In addition, some of the panels were also subjected to a one-time thermal treatment at the fourteenth or fifteenth pyrolysis cycle to 1300° C.
  • Table 3 lists the filler type, the number of pyrolysis cycles used to densify the composite panels and a designation for the interface coating. A description of the “Mods” is listed in Table 4. Table 3 also lists four point flexure strengths in the as made connection, at 1100° C. and after heating specimens at 1100° C. for 50 h in air.
  • the asterick (*) specimens listed in Table 3 were panels prepared with a combined unitape and 8 harness satin woven cloth architecture.
  • the plies of the composite were 0/90/0/8HS/8HS/8HS/8HS/0/90/0. This symmetrical architecture used three tape plies on the outsides of four plies of 8 harness satin woven cloth.
  • Panels prepared as in Example 4 were subjected to interlaminar shear strength tests before and after a rain and simulated engine thermal cycle exposure for fourteen and twenty-eight days. This combined exposure to water and thermal stress evaluates the durability of CMC parts for some aerospace applications.
  • the test consisted of tensile fatigue of specimens to 69 MPa (10 ksi) at room temperature at 10 4 fatigue cycles prior to the rain exposure. Specimens were then subjected to simulated rain at the rate of 0.254 cm per day (approximately 2 minutes). After the rain simulation, specimens were stored at 90° F. and 90% relative humidity for approximately 22 hours and then subjected to a simulated Engine Thermal Cycle (see Table 5).
  • FIGS. 1 and 2 show the results for fibers coated with only BN.
  • FIG. 2 shows the results for fibers with the various MOD coatings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

This invention pertains to ceramic matrix composites that comprise the coated ceramic fibers wherein the coating comprises at least one binary coating of boron nitride (BN) and silicon nitride (Si3N4) within ceramic matrices derived from curable preceramic polymers. The composites can be formed into complex shapes which have good oxidation resistance at high temperature, good resistance to moisture high flexural strength and are resistant to moisture.

Description

    FIELD OF THE INVENTION
  • This invention pertains to ceramic matrix composites that comprise ceramic fibers coated with at least one binary coating comprised of boron nitride (BN) and silicon nitride (Si[0001] 3N4) within ceramic matrix. The ceramic matrix is derived from curable preceramic polymers. The composites can be formed into complex shapes which have good oxidation resistance at high temperature, high flexural strength and are resistant to moisture.
  • BACKGROUND OF THE INVENTION
  • It is well known that for ceramic matrix composites, interfacial bonding between the reinforcing fiber and matrix controls the mechanical properties of the composite. In many ceramic matrix composites reinforced with siliconoxycarbide fibers, carbon coatings on the fiber have been shown to control interfacial bonding between fiber and matrix to produce desired mechanical properties. It is possible to apply the carbon coating to the fiber before fabricating the composite, or to process the composite for short durations at approximately 1000° C. under non-oxidizing conditions to produce a thin carbon layer on the fiber. [0002]
  • Unfortunately, the use of these ceramic matrix composites in high temperature (>500° C.), oxidizing environments tends to degrade strength and strain tolerance. In some cases it has been shown that the use of BN coatings in place of the carbon coating between the fiber and the matrix substantially improves the oxidative stability of the ceramic matrix composite. For example, U.S. Pat. No. 4,642,271 to Rice discloses a ceramic fiber composite material comprised of boron nitride (BN) coated ceramic fibers embedded in a ceramic matrix. U.S. Pat. No. 5,198,302 discloses silicon nitride reinforcing fibers provided with a protective surface coating comprising a BN base layer and optionally an alumina overcoating. U.S. Pat. No. 5,354,602 to Stranford et al. discloses the use of BN coated fibers in a matrix of black glass ceramic. U.S. Pat. No. 5,707,471 to Petrak et al., discloses the fibers coated with carbon, boron nitride, silicon carbide, silicon nitride, aluminum nitride and combinations of these. [0003]
  • It has now been found that ceramic matrix composites, with polymer derived matrices, that use BN coated fibers are susceptible to moisture corrosion at low temperatures (≦100° C.). [0004]
  • U.S. Pat. Nos. 5,580,643 and 5,202,059 disclose duplex coated ceramic filler materials wherein the filler material may be a fiber and the coatings are boron nitride (BN) and silicon carbide (SiC). However, this duplex coating does not provide the benefits of this invention, including the moisture resistance. [0005]
  • Kowbel et al. in “A Chemical Vapor Deposition (CVD) BN Si[0006] 3N4 Interfacial Coating for Improved Oxidation Resistance of SiC-SiC Composites”, Journal of Materials Synthesis and Processing, Vol. 3, No. 2 (1995) pp. 121-131 disclose the use of a mixture of BN and Si3N4 to coat SiC fibers. However, as can be seen in FIG. 11, these composites have about the same flexural strength as a BN coated fiber.
  • It is an object of this to provide ceramic matrix composites which contain coated fibers wherein the coating comprises at least one binary layer comprised of boron nitride and silicon nitride. [0007]
  • SUMMARY OF THE INVENTION
  • This invention pertains to a ceramic matrix composite comprising a ceramic fiber coated with at least one binary coating comprised of boron nitride (BN) and silicon nitride (Si[0008] 3N4). The ceramic matrix composites containing the coated fibers maintain flexural strength when exposed to moisture.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 represents a bar chart representation of the interlaminar shear strength of ceramic matrix composites containing a fiber having a BN interfacial coating before and after rain/engine thermal cycle exposure. [0009]
  • FIG. 2 represents a bar chart representation of the interlaminar shear strength of ceramic matrix composites containing a fiber having an interfacial coating of this invention before and after rain/engine thermal cycle exposure.[0010]
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention pertains to matrix composites comprising ceramic fibers having coated thereon at least one binary layered coating comprised of boron nitride (BN) and silicon nitride (Si[0011] 3N4). The ceramic fibers which may be used in this invention comprise high-modulus fibers which are compatible with the coatings and matrices described herein and which can withstand the polymer inpregnation process. These fibers are well known in the art and many are commercially available. Examples of suitable fibers include those of silicon carbide, silicon nitride, silicon carbide deposited on a carbon core, aluminum borate, aluminum oxide, silicon oxide, silicon carbide containing titanium, silicon oxycarbides, silicon oxycarbonitrides, carbon and the like. Generally, such fibers should have a modulus of greater than 100 GPa, preferably greater than 150 GPa. These fibers may contain any desirable number of filaments per tow and have a diameter in the range of about 5 μm to about 500 μm.
  • Examples of specific fibers include, but are not limited to, silicon carbide fibers with a diameter in the range of 10-20 μm manufactured by Nippon Carbon (Nicalon®); fibers comprising silicon carbide deposited on a carbon core with a diameter of about 143 μm manufactured by Avco; alumina-boria-silica fibers with a diameter of about 10-12 μm manufactured by 3M; Al[0012] 2O3 fibers with a diameter of about 20 μm manufactured by DuPont; SiO2 fibers with a diameter of about 8-10 μm manufactured by J. P. Stevens; Al2O3—SiO2 fibers with a diameter in the range of about 9-17 micrometers manufactured by Sumitomo; silicon carbide fibers containing titanium with a diameter in the range of 8-10 μm manufactured by Ube (Tyranno®); silicon carbide fiber with a diameter in the range of 6-10 μm manufactured by Avco; silicon oxycarbonitride fibers with a diameter in the range of about 10-15 μm; silicon carbide fibers with a diameter in the range of about 10-15 μm manufacture by Dow Coming (Sylaramic™); silicon nitride fibers such as those produced by Tonen or Rhone Poulanc and Al2O3—ZrO2 fibers with a diameter of about 20 μm manufactured by DuPont. These commercial fibers may be supplied with a surface sizing. It is preferable to remove the sizing prior to the application of the coating.
  • Although any of the above fibers are functional, those preferred herein comprise ceramic fibers of silicon and carbon and optionally oxygen. Especially preferred are silicon oxycarbide fibers (Nicalon® and Tyranno®) and silicon carbide fibers (Nicalon® and Sylramic™). [0013]
  • The ceramic fibers are coated with at least one binary coating comprised of boron nitride and silicon nitride. The binary coating is applied to the ceramic fiber by first applying a layer of boron nitride onto the ceramic fiber followed by the application of a coating of silicon nitride over the boron nitride coating. Additional binary coatings of boron nitride and silicon nitride may be applied to the ceramic fiber in the same manner. However, it is preferred to produce a fiber having one binary coating of boron nitride and silicon nitride. Each individual coating thickness (BN or Si[0014] 3N4) is typically in the range of 0.02 to 1 μm, preferably from 0.05 to 0.3 μm. The coatings may be deposited by any means known in the art such as chemical vapor deposition or by coating with polymer precursors followed by pyrolysis.
  • Optionally, additional coatings may be applied over a single binary coating of BN/Si[0015] 3N4 or between multiple layers of the binary coating (i.e. over the Si3N4 but under the next BN/Si3N4 coating). These additional coatings may be any known interface coating such as coatings of carbon, silicon carbide, and aluminum nitride, preferably silicon carbide.
  • Preferably the coatings are applied by chemical vapor deposition techniques. For example, boron trichloride and ammonia are heated to a temperature of 980° C. to 1000° C. at a pressure in the range of 0.2 torr to 1.0 torr to produce the boron nitride coating. To produce the silicon nitride coating, silicon tetrachloride and ammonia are used at the same deposition conditions. By products are removed from the deposition system down stream and away from the coated fiber. [0016]
  • The coated fibers may be used in nearly any length and may be arranged in the matrix in nearly any manner desired. Generally, the fibers are essentially continuous and are either aligned unidirectionally, woven as a 2-dimensional fabric or shaped as a 3-dimensional reinforced preform. It is preferable to heat the coated fiber to about 1100° C. to 1300° C., preferably about 1200° C., prior to its use in preparing the composite. Preferably the fiber is heated under atmospheric pressure in a nitrogen environment in a carbon lined furnace. [0017]
  • The matrices are derived from curable preceramic polymers. The expression “curable” is used herein to describe polymers which can be deep section infusibilized (cured) in the composite under moderate conditions by means such as mild heat, radiation, curing catalysts, or curing agents. This curability prevents the composite from delaminating during pyrolysis. [0018]
  • Any curable preceramic polymer may be used in the present invention. Preferable curable preceramic polymers are organosilicon polymers selected from the group consisting of polysiloxanes, polysilazanes, polysilanes, polycarbosilanes, polysilsesquioxanes, polymetallosiloxanes and others, preferably polysilazanes. These curable organosilicon preceramic polymers are well known in the art and are described in U.S. Pat. Nos. 5,447,893 and 5,707,471 to Petrak et al., commonly owned, herein incorporated by reference for the teaching of curable organosilicon preceramic polymers. Suitable polysilazanes include, but are not limited to hydridopolysilazanes, silacyclobutasilazanes, boron modified hydridopolysilazanes and vinyl-modified hydridopolysilazanes. [0019]
  • In addition to above fibers and curable preceramic polymers, the composites may also contain fillers. Suitable fillers are known in the art and may be exemplified by, but not limited to, powders, whiskers or particulates of metal oxides such as Al[0020] 2O3, SiO2, silicon carbide, silicon nitride, silicon hexaboride, aluminum nitride, boron nitride, boron carbide, titanium boride, boron, titanium carbide, aluminum nitride and others. The preferred fillers are boron nitride, silicon carbide and silicon nitride. Such fillers are generally included in amounts up to about 65 volume percent based on the volume of the matrix material, preferably from 5 to 50 volume percent.
  • The composites herein may be produced by polymer impregnation. This process comprises first impregnating the coated fibers with a liquid preceramic mixture comprising the curable preceramic polymer and optionally, fillers. The preceramic mixture can be formed by either a solution or melt route. [0021]
  • In the solution route, the curable preceramic polymer and fillers are mixed in an organic solvent. The preferred solvents are those with a low vaporization point, preferably <125° C., at atmospheric pressure to facilitate removal from the impregnated fibers and those with less than about 1 wt% water. Examples of suitable organic solvents include aliphatic hydrocarbons such as hexane, heptane and others and aromatic hydrocarbons such as benzene, toluene and others. The concentration of curable preceramic polymer in solution can be varied over a wide range with higher concentrations generally resulting in larger amounts of the preceramic polymer impregnating the fiber. Preferably, concentrations in the range of about 20 to about 60 weight percent are employed herein. [0022]
  • In the melt route, the curable preceramic polymer is heated to a temperature above its melting point yet below its curing temperature in an inert environment. Fillers may also be mixed in the molten polymer if desired. [0023]
  • The coated fibers are then impregnated with the preceramic mixture by any convenient means. For instance, the fibers can be immersed in the mixture, sprayed with the mixture, held under a stream of the mixture and others. The impregnated fibers can additionally be manipulated to uniformly distribute the matrix mixture in the fibers. Following impregnation, any excess matrix mixture on the fibers is allowed to drain off. [0024]
  • If the solution route to the preceramic mixture is used, the solvent is allowed to evaporate. Generally, any practical method such as air evaporation at room temperature or the use of vacuum or mild heat may be used. The resultant fibers which have been impregnated and the solvent evaporated are commonly called a “pre-preg”. [0025]
  • If the melt route to the preceramic mixture is used, the impregnated fibers can merely be cooled to form the “pre-preg”. Alternatively, however, the melt impregnated fibers may be formed prior to cooling by a process such as filament winding or pulltrusion. When these fibers are cooled, they can be immediately cured and fired as set forth below. [0026]
  • The pre-preg is subjected to externally applied pressure while heating to form the composite into the desired shape and cause uniformity of resin and the coated fibers. Generally, this is accomplished by pressing the pre-preg into a mold at a temperature and pressure which allows the resin to flow throughout the mold. The pressing conditions generally used therein include temperatures in the range of about 150° C. to about 300° C., pressures in the range of about 6.9 to 6,900 kPa (1 to 1000 psi), and times in the range of about 30 minutes to about 15 hours. Pressing at about 175° C. to 230° C., 1380 to 2760 kPa (200-400 psi) and 6 to 15 hours generally provides satisfactory results. Temperatures and pressure which result in resin being forced out of the mold should be avoided. [0027]
  • It should be noted that if a 3-dimensional (3-D) shape is desired, the above steps are often altered. To manufacture 3-D objects by this process, one generally first forms the coated fiber into the desired shape and then impregnates the formed coated fiber with the polymer mixture. The impregnated fibers are then pressed, cured, and fired as set forth herein. [0028]
  • The formed pre-preg is next infusibilized (cured) to insure complete or nearly complete crosslinking such that deformation on pyrolysis will not occur. Any method which produces the desired result may be used so long as the temperature does not cause ceramification. A preferred method comprises heating at 250° C. to 300° C. for up to 16 hours, preferably for 2 to 16 hours. This infusibilization (curing) step may be performed in the mold under pressure or it may be accomplished in a conventional oven under nitrogen without any applied pressure. [0029]
  • The pressed and cured product (green composite or molded part) is then fired in a furnace to a temperature of at least 1000° C. in an inert atmosphere until the product ceramifies. It is preferred that the green composite be fired at a temperature of about 1200° C. to 1300° C. Preferably, the cured product is slow fired wherein the composite is heated in a slow (e.g. 2° C./min.), stepwise, linear fashion until the majority of any higher boiling volatiles present escape the composite after which time the temperature can be quickly raised to the ultimate firing temperature. [0030]
  • After completion of the firing process the composite is cooled to <100° C. When cooled, the resulting material is uniform, hard, strong fiber reinforced composite. The volume percentage of coated fibers in the resulting composite can vary over a wide range depending on the desired use. Generally, it is preferred that about 10 to 65 vol % of the composite is fiber. [0031]
  • The composites formed by the above process are generally quite porous. Since it may be preferred to produce dense objects, the composites may be reimpregnated and pyrolyzed until the desired density is achieve. This is accomplished by merely impregnating the composite with the curable preceramic polymer (without filler) as describe above (e.g. solution route or melt route), curing the reimpregnated composite and then firing. This reimpregnation process is then repeated until a composite with the desired density and strength is achieved. [0032]
  • The composites produced herein have many desirable properties such as high flexural strength, good oxidation resistance at high temperatures, high strength and toughness, a wide range of dielectric properties and moisture resistance (as measured by retention of flexural strength and/or shear strength after exposure to moisture). [0033]
  • So that those skilled in the art can understand and appreciate the invention taught herein, the following examples are presented, it being understood that these examples should not be used to limit the scope of this invention found in the claims. [0034]
  • EXAMPLES Example 1-Comparative
  • Matrix Precursor Formulation [0035]
  • The matrix precursor was prepared by mixing the filler powder (Table 1) with a boro hydridopolysilazane polymer (Boro-HPZ) in toluene. In each case the filler and Boro-HPZ (i.e. solids) was 50% of the slurry by weight. When BN was used as the filler it was 20% of the solids. When SiC powder was used as the filler, it was 25% of the solids. Mixing of the matrix slurry was done by ball milling the total mixture for two hours in a plastic jar with 0.25 inch diameter SiC balls. The plastic jar was 500 cm volume and 200g of SiC balls were used during the mixing operation. The total weight of the slurry produced was 150 g. [0036]
  • Prepreg Preparation [0037]
  • The preparation of prepreg was done by pouring the matrix slurry over the coated cloth and gently rubbing the slurry into the woven cloth to assure penetration of the slurry into the fiber tows. The saturated cloth was then run through a set of metal rolls to remove excess matrix precursor. The piece of cloth was then suspended in a hood to evaporate the toluene solvent. After typically one hour, the prepreg was drapeable and slightly tacky. At that stage, the solids content of the matrix precursor was 40 to 50% of the weight of the prepreg total. [0038]
  • Preparation of unidirectional tape was done by dripping the matrix slurry on the coated fiber tape which was wound on a one meter diameter drum. This was done while using a rotating drum which tended to spread the slurry uniformly over the tape. The tape had previously been wound to carefully place a monolayer of fiber tow on the drum. [0039]
  • After the solvent was evaporated, approximately one hour, the rotating drum was stopped and the tape was removed by cutting one time to create an impregnated tape approximately 3.14 meters long. The tape is then ready for laying-up into a composite. [0040]
  • Composite Molding Procedure [0041]
  • The procedure to mold the composites was to cut the prepreg cloth test specimens into approximately 16.5 cm×16.5 cm pieces. Eight pieces (plies) of prepreg were cut using a razor knife. The plies were stacked as warp direction aligned symmetrical eight ply composites in the case of woven cloth composites. Most typically an 8 harness satin weave cloth was used for these composites. The satin weave produces high volume fraction fiber compared to plain weave. [0042]
  • In the case of composites formed by the use of prepreg ini-tapes, the tapes were stacked as either one direction reinforced composites or 0/90 lay-up where the direction of the tapes were alternating. The 0/90 architectures were also stacked to be symmetrical about a mid-plane. [0043]
  • Once the prepreg plies were stacked they were ready for vacuum bagging. This consisted of an aluminum plate 30 cm×50 cm, one layer of peel ply, the stack of prepreg plies, another peel ply, a second 18 cm×18 cm aluminum plate and a sheet of Vac-Pac UHT-650-XT bonded to the larger aluminum plate using a high temperature tape (Schnee-Morehead 5158). A vacuum port and breather fabric were introduced through the Vac-Pac sheet. [0044]
  • Molding was done by placing the cull plate and vacuum bag in a warm molding press that was preheated to 120° C. The vacuum bag was loaded to produce a stress on the stack of plies of 689.5 MPa (100 psi). The conditions of 120° C. and 689.5 MPa (100 psi) were maintained for 30 minutes. The temperature was then increased to 180° C. for one hour and raised again to 260° C. for 2 hours. The pressure was raised to 1034 MPa (150 psi) during the 260° C./2 hour hold. The press was cooled and the pressure was allowed to slowly release due to cooling the press. [0045]
  • The composites were then weighed and checked for dimensions. Excess resin that was squeezed from the plies was removed from the edge of the panel. A 20 hour post-cure cycle was also completed by heating to 285° C. in a nitrogen atmosphere. [0046]
  • Pyrolysis and Composite Densification [0047]
  • The post-cured composite panels were heated in a furnace with a nitrogen atmosphere to 1000° C. at 100° C. per hour. The temperature was held for one hour. The temperature was then raised to 1200° C. in one hour and held for 2 hours. After cooling to less than 100° C. the panels were removed from the furnace and inspected. Typically, the panels would not change dimensions but the composite would loose approximately 9% of its weight. [0048]
  • That weight loss produced approximately 30% open porosity in the pyrolyzed composite. In order to reduce the open porosity, the composite panels were then impregnated with a 50% solution of HPZ polymer in toluene. The impregnation was done at room temperature by placing the panel in an evacuated chamber and introducing the HPZ solution. Once the part was submerged in the solution, the vacuum was released and the chamber pressure was raised to ambient pressure. [0049]
  • The panels were permitted to remain in the solution for 30 minutes; then they were removed from the solution and placed in an exhaust hood to evaporate the toluene solvent for at least one hour. After the solvent was removed the panel was heated again to 1200° C. in flowing nitrogen using the same heating schedule described above. This reimpregnation and pyrolysis cycle was repeated until the composites showed an open porosity level that was measured to be 6% or less using a liquid immersion method. As few as 10 or as many as 17 pyrolysis cycles were required to reduce the open porosity to less than six percent. [0050]
  • Five composite panels were fabricated using this process method. They are identified as C[0051] 1-a, C1-b, C1-c, C1-d and C1-e. All panels were prepared using a Boro-HPZ prepreg resin and CG Nicalon™ fiber reinforcement. But each panel used a different combination of interface coating and filler as shown in Table 1. Panels C1-a through C1-e using CG Nicalon™ fiber in the form of an 8 harness satin woven cloth.
  • All panels exhibited good three-point flexure strength at room temperature in the as made condition. However, panels [0052] 1-a and 1-b, which used a BN interface coating, showed relatively poor flexure strength after being subjected to boiling distilled water for 24 hours. Panels C1-c, C1-d and C1-e had a carbon interface coating and produced better retention of flexure strength than panels C1-a and C1-b after the 24 hour water boil test. However, it is known that the carbon interface is also susceptible to oxidation at elevated temperatures an therefore would be less effective in structural applications.
    TABLE 1
    Properties of CG Nicalon ™ Fiber Composites with
    various filler and interface coatings.
    Flexural Strength, MPa
    Example Fiber Coating Filler Before After % Retention
    C1-a BN BN 368.5 104.2 28.3
    C1-b BN SiC 400.2  93.8 23.4
    C1-c C BN 345.0 144.9 42.0
    C1-d C None 387.8 317.4 81.9
    C1-e C SiC 263.6 258.1 97.7
  • Example 2
  • Composite panels made from the same matrix and fiber using the same process as described in Example 1 were made with a non-woven fiber architecture and binary interface coatings. [0053] Panel 2 was prepared as a 0/90 architecture composite from a unidirectional tape. The interface coating was one binary coating of 0.3 micrometers of BN and 0.2 micrometers of Si3N4 deposited on the fiber. Table 2 lists the properties of a 12-ply composite that used 20% BN as the matrix filler. Specimen 2-a showed as made average three-point flexure strength to be 431.2 MPa (62.5 ksi). Specimen 2-b was subjected to the 24 hour water boil test as described in Example 1. Speciment 2-b showed an average 3-point flexure strength 318.1 Mpa (46.1). That level of strength retention after water exposure, 73.4% was substantially improved compared to the BN interfaced coated materials produced in Example 1.
  • Example 3
  • Specimens taken from [0054] panel 3 were fabricated using a unidirectional tape where all the fibers were aligned in one direction. Otherwise, this panel was processed the same as the panels in Example 1. The interface coating used in panel 3 was six binary coatings of BN and Si3N4. The total coating thickness though was approximately 0.7 micrometers. This panel also used BN as the matrix filler. As it shown in Table 2, specimens 3-a and 3-b show that the water boil exposure produced improved flexure strength compared to the as made strength. Specimen 3-c demonstrates that this panel retains good four-point flexure strength at 1000° C. in air. The carbon interface composites show rapid reduction in strength when exposed to these test conditions. Specimen 3-c showed relatively good retention of strength in oxidizing conditions.
    TABLE 2
    CG Nicalon ™ Fiber reinforced composites with Multi-layer
    Interface Coatings on Non-woven Fiber.
    Flexural
    Bulk Density Open Strength,
    Example g/cm3 Porosity % MPa Comments
    2a 2.10 10.8  430.6 3 pt. RT test as
    made condition
    2b 2.12 10.6  318.1 3 pt. RT test after
    24 H2O Boil
    3a 2.16 2.5 478.2 3 pt. RT test as
    made condition
    3b 2.13 2.9 601.7 3 pt RT test after 24
    H2O Boil
    3c 2.14 5.4 369.8 4 pt 1000° C. test
    (no aging)
  • Example 4
  • Specimens prepared in Example 4 were molded using 8 harness satin woven cloth. The processing was done in a manner similar to Example 1 except that the molding thermal cycle also included a higher temperature cure step of 300° C. for 4 hours. In addition, some of the panels were also subjected to a one-time thermal treatment at the fourteenth or fifteenth pyrolysis cycle to 1300° C. [0055]
  • Table 3 lists the filler type, the number of pyrolysis cycles used to densify the composite panels and a designation for the interface coating. A description of the “Mods” is listed in Table 4. Table 3 also lists four point flexure strengths in the as made connection, at 1100° C. and after heating specimens at 1100° C. for 50 h in air. [0056]
  • The asterick (*) specimens listed in Table 3 were panels prepared with a combined unitape and 8 harness satin woven cloth architecture. The plies of the composite were 0/90/0/8HS/8HS/8HS/8HS/0/90/0. This symmetrical architecture used three tape plies on the outsides of four plies of 8 harness satin woven cloth. [0057]
  • Samples F, G and J-M are for comparison. In general, the multi-layer interface coatings perform as well as or better than the BN or BN/SiC interface coated specimens in flexure tests. [0058]
    TABLE 4
    Description of various binary interface coatings
    Mod 1 = 1 binary coating of 0.3 μm BN, 0.2 μm Si3N4
    Mod 2 = 2 binary coatings of 0.05 μm BN, 0.05 μm Si3N4
    Mod 3 = 2 binary coatings of 0.05 μm BN, 0.05 μm SiC
    Mod
    4 = 5 binary coatings of 0.02 μm BN, 0.02 μm Si3N4
  • Example 5
  • Panels prepared as in Example 4 were subjected to interlaminar shear strength tests before and after a rain and simulated engine thermal cycle exposure for fourteen and twenty-eight days. This combined exposure to water and thermal stress evaluates the durability of CMC parts for some aerospace applications. The test consisted of tensile fatigue of specimens to 69 MPa (10 ksi) at room temperature at 10[0059] 4 fatigue cycles prior to the rain exposure. Specimens were then subjected to simulated rain at the rate of 0.254 cm per day (approximately 2 minutes). After the rain simulation, specimens were stored at 90° F. and 90% relative humidity for approximately 22 hours and then subjected to a simulated Engine Thermal Cycle (see Table 5).
  • The results are shown in FIGS. 1 and 2. FIG. 1 shows the results for fibers coated with only BN. FIG. 2 shows the results for fibers with the various MOD coatings. [0060]
    TABLE 5
    Engine Thermal Cycle
    Time (min) Temperature (° C.)
    4 135
    1 925
    17  450
    3 925
    5 450
    2 925
    4 450
    26  290
    8 135
    end cycle room temp.
  • [0061]
    TABLE 3
    Process and Properties of CG Nicalon ™ Fiber Reinforced Ceramic Matrix Composites
    Four Pt Flexural Strength, MPa
    # Cycles Process Room R.T. after 50 h
    Sample Interface Filler Densification Temp ° C. Temp. @1100° C. at 1100° C.
    A Mod 1 Si3N4 15 1200 594.8 531.3 618.2
    B Mod 1 Si3N4 17 1300 492.9 480.2 487.8
    C Mod 2 Si3N4 17 1300 443.0 546.5 468.5
    D Mod 2 Si3N4 17  1200* 464.4 572.0 474.0
    E Mod 2 Si3N4 17  1300* 499.6 565.1 464.4
    F Mod 3 Si3N4 15 1200 330.5 394.0 457.5
    G Mod 3 Si3N4 17 1300 323.6 402.3 391.2
    H Mod 4 Si3N4 15 1200 373.3 356.0 347.8
    I Mod 4 Si3N4 17 1300 411.9 527.8 478.2
    J BN BN 15 1200 389.8 426.4 573.4
    K BN BN 17 1300 349.8 393.3 496.8
    L BN Si3N4 15 1200 348.4 436.8 364.3
    L BN Si3N4 17 1300 280.1 267.7 479.6
    M BN None 17 1300 248.4 285.0 193.9

Claims (15)

What is claimed is:
1. A ceramic composite comprising
a ceramic matrix having within the ceramic matrix a ceramic fiber coated with at least one binary coating of boron nitride and silicon nitride wherein the silicon nitride is applied over the boron nitride.
2. A ceramic composite as claimed in claim 1 wherein the boron nitride coating has a thickness of 0.1 to 1 μm.
3. A ceramic composite as claimed in claim 1 wherein the silicon nitride coating has a thickness of 0.1 to 1 μm.
4. A ceramic composite as claimed in claim 1 wherein the fiber is comprised of silicon and carbon.
5. A ceramic composite as claimed in claim 1 wherein the fiber is comprised of silicon, carbon and oxygen.
6. The ceramic composite as claimed in claim 1 wherein the ceramic matrix is produced from a preceramic composition comprising a curable preceramic polymer selected from the group consisting of polysiloxanes, polysilazanes, polysilanes, polycarbosilanes, polysilsesquioxanes and polymetallosiloxanes.
7. The ceramic composite of claim 6 wherein the curable preceramic polymer is a polysilazane selected from the group consisting of hydridopolysilazanes, silacyclobutasilazanes, boron modified hydridopolysilazanes and vinyl-modified hydridopolysilazanes.
8. The ceramic composite of claim 1 wherein about 10 to 65 percent by volume of the composite comprises fiber.
9. The ceramic composite of claim 6 wherein the preceramic composition additionally comprises fillers.
10. The ceramic composite of claim 9 wherein the fillers are selected from the group consisting of Al2O3, SiO2, boron nitride, silicon carbide, silicon nitride, silicon hexaboride, boron carbide, titanium boride, boron, titanium carbide and aluminum nitride.
11. A method of forming a fiber-reinforced ceramic matrix composite comprising:
(a) impregnating a ceramic fiber coated with at least one layer binary coating comprised of boron nitride and silicon nitride wherein the silicon nitride is applied over the boron nitride with a preceramic composition comprising a curable preceramic polymer;
(b) forming the impregnated fibers into a desired shape;
(c) curing the formed impregnated fibers;
(d) heating the cured impregnated fibers of (c) to a temperature of at least 1000° C. in an inert atmosphere for a time effective to convert the preceramic polymer to a ceramic.
12. The method of claim 11 wherein the cured impregnated fibers are heated in step (d) to a temperature of at least 1200° C.
14. The method of claim 13 wherein the preceramic composition additionally comprises fillers.
15. The method as claimed in claim 1 wherein there is an additional coating over the binary coating.
16. The method as claimed in claim 1 wherein the additional coating is silicon carbide.
US09/198,979 1998-11-24 1998-11-24 Ceramic matrix composites Expired - Lifetime US6350713B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/198,979 US6350713B1 (en) 1998-11-24 1998-11-24 Ceramic matrix composites
DE69909714T DE69909714T2 (en) 1998-11-24 1999-11-19 Composite materials with ceramic matrix
EP99309252A EP1004559B1 (en) 1998-11-24 1999-11-19 Ceramic matrix composites
JP33270099A JP4727781B2 (en) 1998-11-24 1999-11-24 Ceramic composite material
US10/023,581 US20020079623A1 (en) 1998-11-24 2001-12-18 Method of forming a fiber-reinforced ceramic matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/198,979 US6350713B1 (en) 1998-11-24 1998-11-24 Ceramic matrix composites

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/023,581 Division US20020079623A1 (en) 1998-11-24 2001-12-18 Method of forming a fiber-reinforced ceramic matrix composite

Publications (2)

Publication Number Publication Date
US20020019306A1 true US20020019306A1 (en) 2002-02-14
US6350713B1 US6350713B1 (en) 2002-02-26

Family

ID=22735706

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/198,979 Expired - Lifetime US6350713B1 (en) 1998-11-24 1998-11-24 Ceramic matrix composites
US10/023,581 Abandoned US20020079623A1 (en) 1998-11-24 2001-12-18 Method of forming a fiber-reinforced ceramic matrix composite

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/023,581 Abandoned US20020079623A1 (en) 1998-11-24 2001-12-18 Method of forming a fiber-reinforced ceramic matrix composite

Country Status (4)

Country Link
US (2) US6350713B1 (en)
EP (1) EP1004559B1 (en)
JP (1) JP4727781B2 (en)
DE (1) DE69909714T2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147688A1 (en) * 2004-12-30 2006-07-06 General Electric Company Functionally gradient SiC/SiC ceramic matrix composites with tailored properties for turbine engine applications
US20100279845A1 (en) * 2009-04-30 2010-11-04 General Electric Company Process of producing ceramic matrix composites
US20130082426A1 (en) * 2011-09-30 2013-04-04 Michael A. Kmetz Method for fabricating ceramic material
US8668864B2 (en) 2011-05-31 2014-03-11 MRA Systems Inc. Polymer composite materials and processes therefor
WO2014159557A1 (en) * 2013-03-14 2014-10-02 Rolls-Royce Corporation Multi-layer fiber coating containing a sic and bn coating layer
JP2016504265A (en) * 2013-01-14 2016-02-12 シーオーアイ・セラミックス・インコーポレーテッド Method for forming a ceramic matrix composite structure, apparatus for forming a ceramic matrix composite structure, and ceramic matrix composite structure
US9446989B2 (en) 2012-12-28 2016-09-20 United Technologies Corporation Carbon fiber-reinforced article and method therefor
US20210245490A1 (en) * 2015-02-23 2021-08-12 Raytheon Technologies Corporation Nanofiber interlaminar layer for ceramic matrix composites
CN113511913A (en) * 2021-04-27 2021-10-19 中国科学院兰州化学物理研究所 Bionic fiber monolithic structure boron nitride high-temperature self-lubricating material and preparation method thereof
US20220177373A1 (en) * 2016-11-30 2022-06-09 Hrl Laboratories, Llc Formulations with active functional additives for 3d printing of preceramic polymers, and methods of 3d-printing the formulations
CN117105674A (en) * 2023-09-08 2023-11-24 飞渡航天科技有限公司 Preparation method and application of wave-transparent high-temperature-resistant high-strength neutron shielding material

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901215B4 (en) * 1999-01-14 2004-02-19 Menzolit-Fibron Gmbh Disc brake, pressing tool and method for producing a brake disc
US7041370B1 (en) * 2003-02-11 2006-05-09 Ensci Inc Metal non-oxide coated substrates
US6821621B1 (en) * 2003-02-11 2004-11-23 Ensci Inc. Metal non-oxide coated porous substrates
US6821622B1 (en) * 2003-02-11 2004-11-23 Ensci Inc Thin film metal non-oxide coated substrates
DE10333961A1 (en) * 2003-07-25 2005-02-10 Robert Bosch Gmbh Process for producing a precursor ceramic
US7306826B2 (en) * 2004-02-23 2007-12-11 General Electric Company Use of biased fabric to improve properties of SiC/SiC ceramic composites for turbine engine components
DE602005001247T2 (en) * 2004-09-28 2008-01-24 General Electric Co. Cost effective manufacturing process for high performance ceramic matrix composites
US7223465B2 (en) * 2004-12-29 2007-05-29 General Electric Company SiC/SiC composites incorporating uncoated fibers to improve interlaminar strength
US7446066B1 (en) 2005-11-07 2008-11-04 Jai-Lin Sun Reverse reaction sintering of Si3N4/SiC composites
US7510742B2 (en) * 2005-11-18 2009-03-31 United Technologies Corporation Multilayered boron nitride/silicon nitride fiber coatings
US8323796B2 (en) * 2007-07-17 2012-12-04 United Technologies Corporation High temperature refractory coatings for ceramic substrates
US8409491B1 (en) 2007-09-28 2013-04-02 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) In-situ formation of reinforcement phases in ultra high temperature ceramic composites
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
KR100841749B1 (en) 2008-02-13 2008-06-27 황경순 Ceramic object for thermal power plant
CN102138022B (en) * 2008-08-08 2015-06-10 福乐尼·乐姆宝公开有限公司 Method for making a ceramic matrix material for friction components of brakes and ceramic matrix material made by such method
KR101104762B1 (en) * 2009-04-23 2012-01-12 한국에너지기술연구원 Method for preparing ceramic fiber reinforced ceramic composites by using silicon nitride
US20110071014A1 (en) * 2009-09-24 2011-03-24 United Technologies Corporation Hybred polymer cvi composites
CN101913878B (en) * 2010-07-19 2012-06-27 北京科技大学 Method for preparing silicon carbide particle-reinforced silicon nitride composite ceramic parts
US8347636B2 (en) 2010-09-24 2013-01-08 General Electric Company Turbomachine including a ceramic matrix composite (CMC) bridge
US8524317B2 (en) * 2010-09-30 2013-09-03 United Technologies Corporation Composite article and method therefor
WO2015053937A1 (en) 2013-10-08 2015-04-16 United Technologies Corporation Method for providing crystalline silicon-containing ceramic material
CN104072145B (en) * 2014-05-24 2015-12-30 芜湖浙鑫新能源有限公司 A kind of Ti alloy casting ceramic core
KR102318231B1 (en) * 2015-01-29 2021-10-27 엘지이노텍 주식회사 Inorganic filler, resin composition comprising the same and heat radiation board using the same
US11072565B2 (en) 2015-02-27 2021-07-27 General Electric Company Ceramic matrix composite structures with controlled microstructures fabricated using chemical vapor infiltration (CVI)
CN104909785A (en) * 2015-05-19 2015-09-16 铜陵宏正网络科技有限公司 Alumina fiber reinforced alumina ceramic matrix composite and preparation method thereof
US10472713B2 (en) 2016-05-31 2019-11-12 United Technologies Corporation Method for ceramic matrix composite with carbon coating for wetting
CN106747537B (en) * 2016-11-21 2019-09-17 湖北三江航天江北机械工程有限公司 The preparation method of the modified C/SiC heat-resistant composite material of graphene
US10391724B2 (en) * 2017-02-15 2019-08-27 General Electric Company Method of forming pre-form ceramic matrix composite mold and method of forming a ceramic matrix composite component
CN107033357B (en) * 2017-05-08 2020-08-04 苏州大学 Carborane ceramic precursor system and preparation method and application thereof
DE102019216849A1 (en) * 2019-10-31 2021-05-06 MTU Aero Engines AG PROCESS FOR MANUFACTURING A COMPONENT FROM A SiC / SiC FIBER COMPOSITE MATERIAL
JP7321952B2 (en) * 2020-02-14 2023-08-07 信越化学工業株式会社 Transparent low-dielectric glass prepreg, transparent low-dielectric glass film, transparent low-dielectric glass substrate, and manufacturing method thereof
CN113414083A (en) * 2021-06-08 2021-09-21 温州市特种设备检测科学研究院(温州市特种设备应急处置中心) Surface modification method for wear resistance and corrosion resistance of high-temperature heating surface pipe of boiler

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642271A (en) 1985-02-11 1987-02-10 The United States Of America As Represented By The Secretary Of The Navy BN coating of ceramic fibers for ceramic fiber composites
US5015540A (en) * 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5585165A (en) 1987-06-12 1996-12-17 Lanxide Technology Company, Lp Composite materials and methods for making the same
US5202059A (en) 1987-06-12 1993-04-13 Lanxide Technology Company, Lp Coated ceramic filler materials
US4944904A (en) * 1987-06-25 1990-07-31 General Electric Company Method of obtaining a fiber-containing composite
US5021367A (en) * 1987-06-25 1991-06-04 General Electric Company Fiber-containing composite
US5198302A (en) 1990-04-23 1993-03-30 Corning Incorporated Coated inorganic fiber reinforcement materials and ceramic composites comprising the same
US5354602A (en) 1991-02-12 1994-10-11 Allied-Signal Inc. Reinforced silicon carboxide composite with boron nitride coated ceramic fibers
US5275984A (en) * 1991-03-13 1994-01-04 Northrop Corporation Fiber coating of unbonded multi-layers for toughening ceramic fiber-matrix composites
US5153152A (en) * 1991-10-04 1992-10-06 Corning Incorporated Multicomponent ceramic matrix composites
US5707471A (en) 1991-12-20 1998-01-13 Dow Corning Corporation Method for making ceramic matrix composites
CA2084243A1 (en) * 1991-12-20 1993-06-21 Daniel R. Petrak Ceramic matrix composites and method for making same
US5447893A (en) 1994-08-01 1995-09-05 Dow Corning Corporation Preparation of high density titanium carbide ceramics with preceramic polymer binders
JP2949041B2 (en) * 1994-10-14 1999-09-13 川崎重工業株式会社 Method for producing fiber-reinforced ceramic composite material
US5593728A (en) * 1994-11-01 1997-01-14 Advanced Ceramics Corporation Interface coating for ceramic fibers
CA2175433A1 (en) * 1995-05-11 1996-11-12 Gregg Alan Zank Ceramic matrix composites using modified hydrogen silsesquioxane resin
US5687787A (en) * 1995-08-16 1997-11-18 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite internal combustion engine exhaust manifold
JPH1059780A (en) * 1996-08-20 1998-03-03 Toshiba Corp Ceramic-base fiber composite material and its production
JPH10120472A (en) * 1996-10-22 1998-05-12 Ube Ind Ltd Inorganic fiber-reinforced ceramic composite material
US5866244A (en) * 1996-12-20 1999-02-02 The United States Of America As Represented By The Secretary Of The Navy Ceramic structure with backfilled channels
US5962103A (en) * 1997-01-13 1999-10-05 General Electric Company Silicon carbide-silicon composite having improved oxidation resistance and method of making
US5952100A (en) * 1997-05-21 1999-09-14 General Electric Company Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597838B2 (en) 2004-12-30 2009-10-06 General Electric Company Functionally gradient SiC/SiC ceramic matrix composites with tailored properties for turbine engine applications
US20060147688A1 (en) * 2004-12-30 2006-07-06 General Electric Company Functionally gradient SiC/SiC ceramic matrix composites with tailored properties for turbine engine applications
US20100279845A1 (en) * 2009-04-30 2010-11-04 General Electric Company Process of producing ceramic matrix composites
US8668864B2 (en) 2011-05-31 2014-03-11 MRA Systems Inc. Polymer composite materials and processes therefor
US20130082426A1 (en) * 2011-09-30 2013-04-04 Michael A. Kmetz Method for fabricating ceramic material
US9533918B2 (en) * 2011-09-30 2017-01-03 United Technologies Corporation Method for fabricating ceramic material
US9446989B2 (en) 2012-12-28 2016-09-20 United Technologies Corporation Carbon fiber-reinforced article and method therefor
JP2016504265A (en) * 2013-01-14 2016-02-12 シーオーアイ・セラミックス・インコーポレーテッド Method for forming a ceramic matrix composite structure, apparatus for forming a ceramic matrix composite structure, and ceramic matrix composite structure
WO2014159557A1 (en) * 2013-03-14 2014-10-02 Rolls-Royce Corporation Multi-layer fiber coating containing a sic and bn coating layer
US20210245490A1 (en) * 2015-02-23 2021-08-12 Raytheon Technologies Corporation Nanofiber interlaminar layer for ceramic matrix composites
US20220177373A1 (en) * 2016-11-30 2022-06-09 Hrl Laboratories, Llc Formulations with active functional additives for 3d printing of preceramic polymers, and methods of 3d-printing the formulations
US12049427B2 (en) * 2016-11-30 2024-07-30 Hrl Laboratories, Llc Formulations with active functional additives for 3D printing of preceramic polymers, and methods of 3D-printing the formulations
CN113511913A (en) * 2021-04-27 2021-10-19 中国科学院兰州化学物理研究所 Bionic fiber monolithic structure boron nitride high-temperature self-lubricating material and preparation method thereof
CN117105674A (en) * 2023-09-08 2023-11-24 飞渡航天科技有限公司 Preparation method and application of wave-transparent high-temperature-resistant high-strength neutron shielding material

Also Published As

Publication number Publication date
US20020079623A1 (en) 2002-06-27
JP4727781B2 (en) 2011-07-20
DE69909714D1 (en) 2003-08-28
DE69909714T2 (en) 2004-04-15
JP2000169249A (en) 2000-06-20
EP1004559A3 (en) 2000-11-08
EP1004559A2 (en) 2000-05-31
US6350713B1 (en) 2002-02-26
EP1004559B1 (en) 2003-07-23

Similar Documents

Publication Publication Date Title
US6350713B1 (en) Ceramic matrix composites
US5707471A (en) Method for making ceramic matrix composites
US6024898A (en) Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
US6576076B1 (en) Process for producing fiber-reinforced silicon carbide composites
US6743393B1 (en) Method for producing ceramic matrix composites
US5512351A (en) Prepreg, process for preparation of prepreg, and products derived therefrom
EP0891956B2 (en) Silicon-silicon carbide material and silicon carbide fiber-reinforced silicon-silicon carbide composite material
US5294387A (en) Method of producing fiber-reinforced and particle-dispersion reinforced mullite composite material
EP0742184B1 (en) Method of forming Ceramic matrix composites using modified hydrogen silsesquioxane resin
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
JP4507138B2 (en) Method for changing dielectric properties of ceramic matrix composites
EP3124458A1 (en) Improved uniformity of fiber spacing in cmc materials
EP0549224B1 (en) Ceramic matrix composites and method for making same
CA2936679A1 (en) Improved uniformity of fiber spacing in cmc materials
US4929472A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
EP1004558A2 (en) Coated ceramic fibers
US5399377A (en) Borazine oligomers and composite materials including boron nitride and methods of making the same
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPH0597554A (en) Composite carbon material reinforced with carbon fiber and inorganic fiber
US4975302A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
DiCarlo et al. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)
Lee Processing of carbon fiber reinforced composites with particulate-filled precursor-derived Si-CN matrix phases
JPH0517243A (en) Production of fiber reinforced ceramics
Glogar et al. Oxidation Behavior and Mechanical Properties of Carbon Fiber Composites with Methylphenylsiloxane‐Based Matrix and Pyrolytic Carbon Coating
JPH0543337A (en) Carbon fiber-reinforced composite material and its production

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW CORNING CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PETRAK, DANIEL RALPH;REEL/FRAME:009609/0194

Effective date: 19981109

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: COI CERAMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOW CORNING CORPORATION;REEL/FRAME:016216/0001

Effective date: 20020425

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNORS:ORBITAL ATK, INC.;ORBITAL SCIENCES CORPORATION;REEL/FRAME:036732/0170

Effective date: 20150929

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINIS

Free format text: SECURITY AGREEMENT;ASSIGNORS:ORBITAL ATK, INC.;ORBITAL SCIENCES CORPORATION;REEL/FRAME:036732/0170

Effective date: 20150929

AS Assignment

Owner name: ORBITAL ATK, INC. (F/K/A ALLIANT TECHSYSTEMS INC.), VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:036816/0624

Effective date: 20150929

Owner name: AMMUNITION ACCESSORIES, INC., ALABAMA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:036816/0624

Effective date: 20150929

Owner name: ORBITAL ATK, INC. (F/K/A ALLIANT TECHSYSTEMS INC.)

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:036816/0624

Effective date: 20150929

Owner name: ALLIANT TECHSYSTEMS INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:036816/0624

Effective date: 20150929

Owner name: EAGLE INDUSTRIES UNLIMITED, INC., MISSOURI

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:036816/0624

Effective date: 20150929

Owner name: FEDERAL CARTRIDGE CO., MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:036816/0624

Effective date: 20150929

AS Assignment

Owner name: ORBITAL ATK, INC., VIRGINIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT;REEL/FRAME:046477/0874

Effective date: 20180606