US20020008572A1 - Transconductance-capacitance filter system - Google Patents

Transconductance-capacitance filter system Download PDF

Info

Publication number
US20020008572A1
US20020008572A1 US09/903,948 US90394801A US2002008572A1 US 20020008572 A1 US20020008572 A1 US 20020008572A1 US 90394801 A US90394801 A US 90394801A US 2002008572 A1 US2002008572 A1 US 2002008572A1
Authority
US
United States
Prior art keywords
transconductance
circuit
adjusting
capacitance filter
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/903,948
Other versions
US6388510B2 (en
Inventor
Hiroki Hayashi
Shiro Dosho
Takashi Morie
Hirokuni Fujiyama
Tomoyuki Katada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOSHO, SHIRO, FUJIYAMA, HIROKUNI, HAYASHI, HIROKI, KATADA, TOMOYUKI, MORIE, TAKASHI
Publication of US20020008572A1 publication Critical patent/US20020008572A1/en
Application granted granted Critical
Publication of US6388510B2 publication Critical patent/US6388510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/0422Frequency selective two-port networks using transconductance amplifiers, e.g. gmC filters

Definitions

  • the present invention is related to a transconductance-capacitance filter system equipped with a transconductance-capacitance filter circuit and an adjusting circuit thereof.
  • transconductance-capacitance filter systems (will be referred to as a “gm-C filer system” hereinafter) are employed in portable electronic appliances such as portable telephone sets.
  • FIG. 7 schematically represents an example of conventional gm-C filter systems.
  • This gm-C filter system is equipped with a transconductance-capacitance filter circuit (will be referred to as a “gm-C filter circuit hereinafter) 1 , and an adjusting circuit 16 for adjusting a cut-off frequency of this gm-C filter circuit 1 .
  • the gm-C filter circuit 1 is arranged by employing a transconductance amplifier (will be referred to as a “gm amplifier” hereinafter) 1 a and a capacitor 1 b , and may constitute, for example, a low-pass filter.
  • the adjusting circuit 1 b is provided with an oscillator 3 having a gm amplifier 3 a and a capacitor 3 b , comparators 14 and 15 designed for waveform shaping operation, and a frequency comparator 13 .
  • the gm amplifier 3 a of the oscillator 3 owns the same structure as that of the gm amplifier 1 a of the gm-C filter circuit 1 .
  • an oscillation signal OSC is supplied from the oscillator 3 via the comparator 14 to the frequency comparator 13 , and also a reference clock signal CK is supplied from an externally provided crystal oscillator (not shown) via the comparator 15 to this frequency comparator 13 , so that the frequency of the oscillation signal OSC is compared with the frequency of the reference clock signal CK.
  • a bias current “i BIAS ” is produced based upon a frequency error of the oscillation signal OSC with respect to the reference clock signal CK.
  • This bias current “IBIAS” is supplied to the gm amplifier 3 a employed in the oscillator 3 so as to adjust a value of a transconductance (will be referred to as a “gm value” hereinafter) of the gm amplifier 3 a .
  • a bias current “i BIAS ” capable of reducing the gm value of the gm amplifier 3 a employed in the oscillator 3 is outputted from the frequency comparator 13 , so that the oscillation frequency of the oscillator 3 is reduced.
  • such a bias current “i BIAS ” capable of increasing the gm value of the gm amplifier 3 a employed in the oscillator 3 is outputted from the frequency comparator 13 , so that the oscillation frequency of the oscillator 3 is increased.
  • the bias current “i BIAS ” is varied in such a manner that the oscillation frequency of the oscillator 3 is made coincident with the frequency of the reference clock signal CK, so that the gm value of the gm amplifier 3 a employed in the oscillator 3 is adjusted.
  • the bias current “i BIAS ” supplied from the frequency comparator 13 is also supplied to the gm amplifier 1 a provided in the gm-C filter circuit 1 so as to adjust the gm value of this gm amplifier.
  • the cut-off frequency is adjusted.
  • the oscillation frequency of the oscillator 3 may correspond to the cut-off frequency of the gm-C filter circuit 1 in an one-to-one correspondence relationship.
  • the oscillation frequency of the oscillator 3 may be adjusted based upon such a frequency clock signal CK having a frequency corresponding to this desirable frequency value.
  • the adjusting circuit 16 arranged by the oscillator 3 , the comparators 14 / 15 , and the frequency comparator 13 is continuously operated so as to adjust the cut-off frequency of the gm-C filter circuit 1 . Since this adjusting circuit 16 is continuously operated, the power consumption of the entire gm-C filter system would be increasede.
  • the present invention has been made to solve such a conventional problem, and therefore, has an object to provide a gm-C filter system having low power consumption.
  • a transconductance-capacitance filter system comprises: a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor; an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of the transconductance-capacitance filter circuit, the adjusting circuit producing a digital adjusting value used to adjust the transconductance of the transconductance amplifier of the oscillator based upon an oscillation signal outputted from the oscillator; a register for holding the digital adjusting value supplied from the adjusting circuit; and a D/A converter for converting the digital adjusting value held in the register into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of the transconductance capacitance filter circuit; wherein the adjusting circuit is operated in an intermittent manner.
  • transconductancetransconductancefurther comprises a temperature sensing circuit for sensing an ambient temperature of the transconductance-capacitance filter system, and wherein the adjusting circuit is operated in the intermittent manner based upon a change contained in the ambient temperatures.
  • transconductancetransconductancefurther comprises a power supply voltage sensing circuit for sensing a power supply voltage of the transconductance-capacitance filter system, and wherein the adjusting circuit is operated in the intermittent manner based upon a change contained in the power supply voltages.
  • transconductancetransconductancefurther comprises a temperature sensing circuit for sensing an ambient temperature of the transconductancecapacitance filter system, and a power supply voltage sensing circuit for sensing a power supply voltage of the transconductance-capacitance filter system, and wherein the adjusting circuit is operated in the intermittent manner based upon either a change contained in the ambient temperatures or a variation of the power supply voltages.
  • a transconductance-capacitance filter system comprises: a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor; an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of the transconductance-capacitance filter circuit, the adjusting circuit producing a digital adjusting the transconductance of the transconductance amplifier of the oscillator based upon an oscillation signal outputted from the oscillator; a register for holding the digital adjusting value supplied from the adjusting circuit; a D/A converter for converting the digital adjusting value held in the register into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of the transconductance-capacitance filter circuit; and a temperature compensating circuit for producing such a drive bias current capable of compensating for a variation component of the transconductance values of the transconductance amplifier
  • a transconductance-capacitance filter system comprises a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor; an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of the transconductance-capacitance filter circuit, the adjusting circuit for producing a digital adjusting the transconductance of the transconductance amplifier of the oscillator based upon an oscillation signal outputted from the oscillator; a register for holding the digital adjusting value supplied from the adjusting circuit; a temperature compensating circuit for producing such a drive bias current capable of compensating for a variation component of the transconductance values of the transconductance amplifier of the transconductance-capacitance filter circuit with respect to a change contained in ambient temperatures of the transconductance-capacitance filter system based upon externally-supplied temperature data, and capable of driving the D/A converter
  • FIG. 2 is an explanatory diagram for explaining a method for setting a digital adjusting value (two-dividing method) outputted from a digital control circuit, corresponding to an oscillation frequency of an oscillator 3 ;
  • FIG. 3 is a waveform diagram for describing a method for adjusting an oscillation amplitude of the oscillator 3 ;
  • FIG. 4 is a time chart for explaining operation of an adjusting circuit 2 ;
  • FIG. 5 is a block diagram for indicating an arrangement of a gm-C filter system according to a second embodiment mode of the present invention
  • FIG. 6 is a block diagram for indicating an arrangement of a gm-C filter system according to a third embodiment mode of the present invention.
  • FIG. 7 is a block diagram for indicating an example of the conventional gm-C filter system.
  • FIG. 1 is a block diagram for representing an arrangement of a gm-C filter system according to a first embodiment of the present invention.
  • the gm-C filter system is provided with a gm-C filter circuit 1 , an adjusting circuit 2 , registers 9 and 10 , digital-to-analog converters (will be referred to as “D/A converters” hereinafter) 7 and 8 , and a temperature sensing circuit 12 .
  • the adjusting circuit 2 adjusts a filter characteristic (both cut-off frequency and output amplitude) of this gm-C filter circuit 1 .
  • the registers 9 and 10 are employed so as to hold digital adjusting values outputted from the adjusting circuit 2 .
  • the D/A converters 7 and 8 convert the digital adjusting values held in these registers 9 and 10 into analog adjusting values, and supply the analog adjusting values to the gm-C filter circuit 1 .
  • the temperature sensing circuit 12 senses an ambient temperature of this gm-C filter system based upon temperature data which is supplied from an external device so as to control the operation of the adjusting circuit 2 .
  • the gm-C filter circuit 1 is arranged by employing a gm amplifier 1 a and a capacitor 1 b , and constitutes, for example, a low-pass filter.
  • the adjusting circuit 2 is arranged by employing an oscillator 3 , a digital control circuit 4 , a D/A converter 5 , and another D/A converter 6 .
  • the oscillator 3 is constructed of a gm amplifier 3 a and a capacitor 3 b .
  • the digital control circuit 4 produces a digital adjusting value based upon an oscillation signal OSC outputted from this oscillator 3 to output the produced digital adjusting value.
  • the D/A converter 5 converts an adjusting value “Dor or ” into a corresponding analog adjusting value, and then supplies this analog adjusting value as a bias current to the gm amplifier 3 a .
  • This adjusting value “D or ” is to adjust output resistance values of the gm amplifiers 3 a and 1 a among the digital adjusting values outputted from the digital control circuit 4 .
  • the D/A converter 6 converts another adjusting value “D gm ” into a corresponding analog adjusting value, and supplies this analog adjusting value as another bias current to the gm amplifier 3 a .
  • the adjusting value “D gm ” is to adjust the gm values of the gm amplifiers 3 a and 1 a among the above-explained digital adjusting values.
  • the oscillation amplitude of the oscillator 3 is adjusted.
  • the gm value of the gm amplifier 3 a is adjusted, the oscillation frequency of the oscillator 3 is adjusted.
  • the gm amplifier 3 a of the oscillator 3 owns the same construction as that of the gm amplifier 1 a of the gm-C filter circuit 1 .
  • the digital adjusting value “D or ” outputted from the digital control circuit 4 is also supplied as a analog adjusting value (bias current) via both the register 9 and the D/A converter 7 to the gm amplifier 1 a .
  • the digital adjusting value “D gm ” outputted from the digital control circuit 4 is also supplied via both the register 10 and the D/A converter 8 as another analog adjusting value (bias current) to the gm amplifier 1 a .
  • the output resistance value of the gm amplifier 1 a is adjusted so as to become zero, an error contained in the filter characteristic of the gm-C filter circuit 1 is reduced.
  • the cut-off frequency of the gm-C filter circuit 1 is adjusted.
  • the oscillation frequency of the oscillator 3 corresponds to the cut-off frequency of the gm-C filter circuit 1 in an one-to-one correspondence relationship.
  • the oscillation frequency of the oscillator 3 maybe adjusted to be equal to a value corresponding to this desirable value.
  • the digital adjusting value “D gm ” is set to “ ⁇ fraction (X/4) ⁇ ”, (namely, state “B” shown in FIG. 2).
  • the oscillation frequency is again monitored.
  • the digital adjusting value “D gm ” is controlled in such a manner that the oscillation frequency is made coincident with a desirable frequency.
  • the digital adjusting value D gm is arranged by 7 bits, an adjusting value corresponding to the desirable frequency can be obtained in a seventh time operation.
  • FIGS. 3A to 3 C a description will be made of a method for adjusting an oscillating amplitude of the oscillator 3 .
  • the oscillation amplitude of the oscillator 3 is varied based upon the output resistance value of the gm amplifier 3 a thereof.
  • the output resistance value is negative
  • an oscillation signal is diverged as indicated in FIG. 3A.
  • an oscillation signal is attenuated, so that an oscillation state is not maintained as indicated in FIG. 3C.
  • this embodiment mode as represented in FIG.
  • the output resistance value of the gm amplitude 3 a is adjusted as follows. In other words, for instance, while the output resistance value of the gm amplitude 3 a is changed in 5 stages, a judgement is made as to whether the oscillation is diverged, or attenuated in each stage. Then, the output resistance value of the gm amplifier 3 a is adjusted to be equal to such a value defined between the output resistance value obtained when the oscillation is diverged and the output resistance value obtained when the oscillation is attenuated.
  • FIG. 4A indicates a change contained in ambient temperatures of the filter system
  • FIG. 4B shows a change contained in operation conditions of the adjusting circuit 2 .
  • the adjusting circuit 2 commences the adjusting operation of the filter characteristic when the gm-C filter system is initiated (time instance “t A ”).
  • both the digital adjusting values “D or ” and “D gm ” supplied from the adjusting circuit 2 are held in the registers 9 and 10 , respectively, and the operation of the adjusting circuit 20 is stopped (power off state, time instance t A′ ).
  • both the digital adjusting values D or and D gm saved in the registers 9 and 10 are supplied via the D/A converts 7 / 8 as analog adjusting values (bias currents) to the gm amplifier 1 a of the gm-C filter circuit 1 .
  • the adjusting circuit 2 is controlled in response to a control “CTL” supplied from the temperature sensing circuit 12 .
  • the temperature sensing circuit 12 senses the ambient temperature of the gm-C filter system in response to the externally supplied temperature data.
  • This temperature sensing circuit 12 supplies the control signal CTR in order that at a time instant (time instant t B ) when the ambient temperature is changed by, for example, 10 degrees, the operation of the adjusting circuit 2 is commenced.
  • the adjusting circuit 2 commences the adjusting operation of the filter characteristic.
  • the respective adjusting values D or and D gm saved in the resisters 9 and 10 are updated, the operation of the adjusting circuit 2 is stopped (power off) at a time instant t B′ . Subsequently, the adjusting circuit 2 repeatedly performs such an intermittent adjusting operation (time instants tc and tc′).
  • the adjusting circuit 2 is operated in the intermittent manner in order to adjust the filter characteristic.
  • the power consumption of this gm-C filter system can be reduced, as compared with that of the conventional filter system.
  • the temperature sensing circuit 12 may be replaced by a power supply voltage sensing circuit.
  • the power supply voltage of this gm-C filter system is subdivided into just a half of this supply voltage by employing a resistor, and then, this voltage may be entered to the power supply voltage sensing circuit.
  • the power supply voltage sensing circuit for example, while an input voltage is converted into a digital value by an A/D converter, a digital signal processing operation is carried out in such a manner that the control signal CTL is outputted to the control circuit 2 by which the operation of the adjusting circuit 2 is commenced when the voltage is changed by 0.1 V. In this operation manner, the adjusting circuit may be intermittently carried out based upon the variation of the power supply voltage.
  • both the above-explained temperature sensing circuit 12 and the power supply voltage sensing circuit may be employed.
  • the control signal outputted from the temperature sensing circuit is AND-gated with the control signal outputted from the power supply voltage sensing circuit, and then, the AND-gated control signal is used to control the adjusting circuit 2 . Since such an AND-gated control signal is used, the adjusting circuit 2 may be intermittently operated based upon either a change contained in the ambient temperatures or a variation contained in the power supply voltages.
  • the temperature sensing circuit 12 may be replaced by a counter circuit.
  • the control signal CTL is supplied from this counter circuit with respect to the adjusting circuit 2 in order to commence the operation of the adjusting circuit 2 .
  • the counter circuit is reset.
  • the adjusting circuit 2 may be intermittently operated in response to an elapse of time.
  • the operation of the adjusting circuit 2 may be commenced within systematically empty time of an electronic appliance in which the gm-C filter system is employed.
  • FIG. 5 is a block diagram for representing an arrangement of a gm-C filter system according to a second embodiment mode of the present invention. It should be noted that the same reference numerals used in the first embodiment mode shown in FIG. 1 will be employed as those for denoting the same, or similar constructions of this second embodiment mode, and therefore, descriptions thereof are omitted.
  • a temperature compensating circuit 11 produces a drive bias current “i TEMP ” based upon externally-supplied temperature data, and this drive bias current “i TEMP ” is to compensate a variation component of output resistance values derived from the gm amplifiers 3 a and 1 a with respect to a change contained in ambient temperature.
  • This temperature compensating circuit 11 drives the D/A converters 5 and 7 based upon this drive bias current “i TEMP1 ” capable of compensating for variation components in gm values of both the gm amplifiers 3 a and 1 a with respect to a change contained in ambient temperatures. Then, the temperature compensating circuit 11 drives the D/A converters 6 and 8 based upon this drive bias current i TEMP2 . The temperature compensating circuit 11 produces both the drive bias currents “i TEMP1 ” and “i TEMP2 ” based upon, for instance, data related to temperature-to-drive bias currents stored in a ROM.
  • the adjusting circuit 2 commences the adjusting operation of the filter characteristic when the gm-C filter system is initiated. After the adjusting operation has been ended, both the digital adjusting values “D or ” and “D gm ” supplied from the adjusting circuit 2 are held in the registers 9 and 10 , respectively, and the operation of the adjusting circuit 20 is stopped (power off state).
  • both the digital adjusting value D or and D gm saved in the registers 9 and 10 are supplied via the D/A converters 7 / 8 as analog adjusting values (bias currents) to the gm amplifier 1 a of the gm-C filter circuit 1 .
  • the adjusting circuit 2 is not operated, which is different from the above-explained operation of the first embodiment mode. Instead, both the drive bias currents “i TEMP ” and “i TEMP2 ” are supplied from the temperature compensating circuit 11 to the D/A converters 7 / 8 , respectively, so that the filter characteristic is adjusted.
  • the adjusting circuit 2 is operated only when the gm-C filter system is initiated in order to adjust the filter characteristic, so that the power consumption can be reduced, as compared with that of the conventional filter system.
  • FIG. 6 is a block diagram for representing an arrangement of a gm-C filter system according to a third embodiment mode of the present invention. It should be noted that the same reference numeral used in the first embodiment mode shown in FIG. 1 will be employed as those for denoting the same, or similar constructions of this third embodiment mode, and therefore, descriptions thereof are omitted. In FIG. 1
  • a temperature compensating circuit 11 ′ produces such a compensating digital adjusting value “D orc ” capable of compensating for a variation component of output resistance values of the gm amplifier 1 a with respect to a change contained in ambient temperatures based upon externally supplied temperature data, and also produces another compensating digital adjusting value “D gmc ” capable of compensating a variation component of gm values of the gm amplifier 1 a with respect to a change contained in ambient temperatures.
  • An adder 21 executes a digital calculation with respect to both the compensating digital adjusting value “D orc ” supplied from the temperature compensating circuit 11 ′, and also a digital adjusting value “D or ” held in the register 9 .
  • this adder 21 supplies the digitally calculated result to the D/A converter 7 .
  • the adder 22 performs a digital calculation with respect to both the compensating digital adjusting value “D gmc ” supplied from the temperature compensating circuit 11 ′ and also a digital adjustment value “D gm ” held in the register 10 . Then, this adder 21 supplies the digitally calculated result to the D/A converter 8 .
  • the adjusting circuit 2 commences the adjusting operation of the filter characteristic when the gm-C filter system is initiated. After the adjusting operation has bee ended, both the digital adjusting values “D or ” and “D gm ” supplied from the adjusting circuit 2 are held in the registers 9 and 10 , respectively, and the operation of the adjusting circuit 20 is stopped (power off state).
  • both the digital adjusting values D or and D gm saved in the registers 9 and 10 are supplied via the D/A converters 7 and 8 as analog adjusting values (bias currents) to the gm amplifier 1 a of the gm-C filter circuit 1 .
  • the adjusting circuit 2 is not operated, which is different from the above-explained operation of the first embodiment mode. Instead, both the compensating digital adjusting values “D orc ” and “D gmc ” are supplied from the temperature compensating circuit 11 ′ to the adders 21 and 22 , respectively, so that the filter characteristic is adjusted.
  • the adjusting circuit 2 is operated only when the gm-C filter system is initiated in order to adjust the filter characteristic, so that the power consumption can be reduced, as compared with that of the conventional filter system.
  • the adjusting circuit for adjusting the filter characteristic is operated in the intermittent manner (otherwise, only when filter system is initiated), the gm-C filter system whose power consumption is low can be provided.
  • the gm-C filter system of the present invention may be effectively used when, for instance, this gm-C filter system is used as such a filter system mounted on an LSI designed for a portable electronic appliance such as a portable telephone set.

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

A gm-C filter system having low power consumption is provided. An adjusting circuit 2 is equipped with an oscillator 3 constructed of a gm amplifier 3 a having the same arrangement as that of a gm amplifier 1 a of a gm-C filter circuit 1. The adjusting circuit 2 generates a digital adjusting value “Dgm” based upon an oscillation signal OSC outputted from this oscillation 3, and this digital adjusting value “Dgm” is used to adjust a gm value of the gm amplifier 3 a of the oscillator 3. This digital adjusting value “Dgm” is held in a register 10. The digital adjusting value “Dgm” held in this register 10 is converted into an analog adjusting value (bias current) by a D/A converter 8, and then, this analog adjusting value is supplied to the gm amplifier 1 a of the gm-C filter circuit 1 so as to adjust the gm value. The adjusting circuit 2 is operated in an intermittent manner based upon, for example, a change contained in ambient temperatures of the gm-C filter system.

Description

    BACKGROUND OF THE INVENTION
  • The present invention is related to a transconductance-capacitance filter system equipped with a transconductance-capacitance filter circuit and an adjusting circuit thereof. [0001]
  • For instance, transconductance-capacitance filter systems (will be referred to as a “gm-C filer system” hereinafter) are employed in portable electronic appliances such as portable telephone sets. FIG. 7 schematically represents an example of conventional gm-C filter systems. This gm-C filter system is equipped with a transconductance-capacitance filter circuit (will be referred to as a “gm-C filter circuit hereinafter) [0002] 1, and an adjusting circuit 16 for adjusting a cut-off frequency of this gm-C filter circuit 1. The gm-C filter circuit 1 is arranged by employing a transconductance amplifier (will be referred to as a “gm amplifier” hereinafter) 1 a and a capacitor 1 b, and may constitute, for example, a low-pass filter. On the other hand, the adjusting circuit 1 b is provided with an oscillator 3 having a gm amplifier 3 a and a capacitor 3 b, comparators 14 and 15 designed for waveform shaping operation, and a frequency comparator 13. In this case, the gm amplifier 3 a of the oscillator 3 owns the same structure as that of the gm amplifier 1 a of the gm-C filter circuit 1.
  • In the gm-C filter system arranged in the above-explained manner, an oscillation signal OSC is supplied from the [0003] oscillator 3 via the comparator 14 to the frequency comparator 13, and also a reference clock signal CK is supplied from an externally provided crystal oscillator (not shown) via the comparator 15 to this frequency comparator 13, so that the frequency of the oscillation signal OSC is compared with the frequency of the reference clock signal CK. In other words, in the frequency comparator 13, a bias current “iBIAS” is produced based upon a frequency error of the oscillation signal OSC with respect to the reference clock signal CK. This bias current “IBIAS” is supplied to the gm amplifier 3 a employed in the oscillator 3 so as to adjust a value of a transconductance (will be referred to as a “gm value” hereinafter) of the gm amplifier 3 a. For example, in such a case that the oscillation frequency of the oscillator 3 is higher than the frequency of the reference clock signal CK corresponding to the set value, such a bias current “iBIAS” capable of reducing the gm value of the gm amplifier 3 a employed in the oscillator 3 is outputted from the frequency comparator 13, so that the oscillation frequency of the oscillator 3 is reduced. Conversely, in such a case that the oscillation frequency of the oscillator 3 is lower than the frequency of the reference clock signal CK corresponding to the set value, such a bias current “iBIAS” capable of increasing the gm value of the gm amplifier 3 a employed in the oscillator 3 is outputted from the frequency comparator 13, so that the oscillation frequency of the oscillator 3 is increased. In other words, the bias current “iBIAS” is varied in such a manner that the oscillation frequency of the oscillator 3 is made coincident with the frequency of the reference clock signal CK, so that the gm value of the gm amplifier 3 a employed in the oscillator 3 is adjusted.
  • On the other hand, the bias current “i[0004] BIAS” supplied from the frequency comparator 13 is also supplied to the gm amplifier 1 a provided in the gm-C filter circuit 1 so as to adjust the gm value of this gm amplifier. As a result, the cut-off frequency is adjusted. In this case, since the gm amplifier 3 a of the oscillator 3 owns the same structure as that of the gm-C filter circuit 1, the oscillation frequency of the oscillator 3 may correspond to the cut-off frequency of the gm-C filter circuit 1 in an one-to-one correspondence relationship. As a consequence, in order to set the cut-off frequency of the gm-C filter circuit 1 to a desirable frequency value, the oscillation frequency of the oscillator 3 may be adjusted based upon such a frequency clock signal CK having a frequency corresponding to this desirable frequency value.
  • However, in the above-explained conventional gm-C filter system, there is such a serious problem. That is, the adjusting [0005] circuit 16 arranged by the oscillator 3, the comparators 14/15, and the frequency comparator 13 is continuously operated so as to adjust the cut-off frequency of the gm-C filter circuit 1. Since this adjusting circuit 16 is continuously operated, the power consumption of the entire gm-C filter system would be increasede.
  • SUMMARY OF THE INVENTION
  • The present invention has been made to solve such a conventional problem, and therefore, has an object to provide a gm-C filter system having low power consumption. [0006]
  • To achieve the above-described object, according to a first aspect of the present invention, a transconductance-capacitance filter system comprises: a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor; an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of the transconductance-capacitance filter circuit, the adjusting circuit producing a digital adjusting value used to adjust the transconductance of the transconductance amplifier of the oscillator based upon an oscillation signal outputted from the oscillator; a register for holding the digital adjusting value supplied from the adjusting circuit; and a D/A converter for converting the digital adjusting value held in the register into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of the transconductance capacitance filter circuit; wherein the adjusting circuit is operated in an intermittent manner. [0007]
  • A transconductance-capacitance filter system, according to a second aspect of the present invention, transconductancetransconductancefurther comprises a temperature sensing circuit for sensing an ambient temperature of the transconductance-capacitance filter system, and wherein the adjusting circuit is operated in the intermittent manner based upon a change contained in the ambient temperatures. [0008]
  • A transconductance-capacitance filter system, according to a third aspect of the present invention, transconductancetransconductancefurther comprises a power supply voltage sensing circuit for sensing a power supply voltage of the transconductance-capacitance filter system, and wherein the adjusting circuit is operated in the intermittent manner based upon a change contained in the power supply voltages. [0009]
  • A transconductance-capacitance filter system, according to a fourth aspect of the present invention, transconductancetransconductancefurther comprises a temperature sensing circuit for sensing an ambient temperature of the transconductancecapacitance filter system, and a power supply voltage sensing circuit for sensing a power supply voltage of the transconductance-capacitance filter system, and wherein the adjusting circuit is operated in the intermittent manner based upon either a change contained in the ambient temperatures or a variation of the power supply voltages. [0010]
  • Also, according to a fifth aspect of the present invention, a transconductance-capacitance filter system comprises: a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor; an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of the transconductance-capacitance filter circuit, the adjusting circuit producing a digital adjusting the transconductance of the transconductance amplifier of the oscillator based upon an oscillation signal outputted from the oscillator; a register for holding the digital adjusting value supplied from the adjusting circuit; a D/A converter for converting the digital adjusting value held in the register into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of the transconductance-capacitance filter circuit; and a temperature compensating circuit for producing such a drive bias current capable of compensating for a variation component of the transconductance values of the transconductance amplifier of the transconductance-capacitance filter circuit with respect to a change contained in ambient temperatures of the transconductance-capacitance filter system based upon externally-supplied temperature data, and capable of driving the D/A converter by the drive bias current, wherein the adjusting circuit is operated only when the transconductancecapacitance filter system is initiated. [0011]
  • Further, according to a sixth aspect of the present invention, a transconductance-capacitance filter system comprises a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor; an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of the transconductance-capacitance filter circuit, the adjusting circuit for producing a digital adjusting the transconductance of the transconductance amplifier of the oscillator based upon an oscillation signal outputted from the oscillator; a register for holding the digital adjusting value supplied from the adjusting circuit; a temperature compensating circuit for producing such a drive bias current capable of compensating for a variation component of the transconductance values of the transconductance amplifier of the transconductance-capacitance filter circuit with respect to a change contained in ambient temperatures of the transconductance-capacitance filter system based upon externally-supplied temperature data, and capable of driving the D/A converter by the drive bias current; an adder for executing a digital calculation with respect to the compensating digital adjusting value supplied from the temperature compensating circuit and the digital adjusting value held in the register; and a D/A converter for converting a digital calculation result supplied form the adder into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of the transconductance-capacitance filter circuit, wherein the adjusting circuit is operated only when the transconductance-capacitance filter system is initiated.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram for showing an arrangement of a gm-C filter system according to a first embodiment mode of the present invention; [0013]
  • FIG. 2 is an explanatory diagram for explaining a method for setting a digital adjusting value (two-dividing method) outputted from a digital control circuit, corresponding to an oscillation frequency of an [0014] oscillator 3;
  • FIG. 3 is a waveform diagram for describing a method for adjusting an oscillation amplitude of the [0015] oscillator 3;
  • FIG. 4 is a time chart for explaining operation of an adjusting [0016] circuit 2;
  • FIG. 5 is a block diagram for indicating an arrangement of a gm-C filter system according to a second embodiment mode of the present invention; [0017]
  • FIG. 6 is a block diagram for indicating an arrangement of a gm-C filter system according to a third embodiment mode of the present invention; [0018]
  • FIG. 7 is a block diagram for indicating an example of the conventional gm-C filter system.[0019]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to drawing, embodiment modes of the present invention will be described in detail. [0020]
  • (First Embodiment Mode) [0021]
  • FIG. 1 is a block diagram for representing an arrangement of a gm-C filter system according to a first embodiment of the present invention. In FIG. 1, the gm-C filter system is provided with a gm-[0022] C filter circuit 1, an adjusting circuit 2, registers 9 and 10, digital-to-analog converters (will be referred to as “D/A converters” hereinafter) 7 and 8, and a temperature sensing circuit 12. The adjusting circuit 2 adjusts a filter characteristic (both cut-off frequency and output amplitude) of this gm-C filter circuit 1. The registers 9 and 10 are employed so as to hold digital adjusting values outputted from the adjusting circuit 2. The D/ A converters 7 and 8 convert the digital adjusting values held in these registers 9 and 10 into analog adjusting values, and supply the analog adjusting values to the gm-C filter circuit 1. The temperature sensing circuit 12 senses an ambient temperature of this gm-C filter system based upon temperature data which is supplied from an external device so as to control the operation of the adjusting circuit 2.
  • The gm-[0023] C filter circuit 1 is arranged by employing a gm amplifier 1 a and a capacitor 1 b, and constitutes, for example, a low-pass filter. On the other hand, the adjusting circuit 2 is arranged by employing an oscillator 3, a digital control circuit 4, a D/A converter 5, and another D/A converter 6. The oscillator 3 is constructed of a gm amplifier 3 a and a capacitor 3 b. The digital control circuit 4 produces a digital adjusting value based upon an oscillation signal OSC outputted from this oscillator 3 to output the produced digital adjusting value. The D/A converter 5 converts an adjusting value “Doror” into a corresponding analog adjusting value, and then supplies this analog adjusting value as a bias current to the gm amplifier 3 a. This adjusting value “Dor” is to adjust output resistance values of the gm amplifiers 3 a and 1 a among the digital adjusting values outputted from the digital control circuit 4. The D/A converter 6 converts another adjusting value “Dgm” into a corresponding analog adjusting value, and supplies this analog adjusting value as another bias current to the gm amplifier 3 a. The adjusting value “Dgm” is to adjust the gm values of the gm amplifiers 3 a and 1 a among the above-explained digital adjusting values. In this case, since the output resistance value of the gm amplifier 3 a is adjusted, the oscillation amplitude of the oscillator 3 is adjusted. Also, since the gm value of the gm amplifier 3 a is adjusted, the oscillation frequency of the oscillator 3 is adjusted. It should be noted that the gm amplifier 3 a of the oscillator 3 owns the same construction as that of the gm amplifier 1 a of the gm-C filter circuit 1.
  • Also, the digital adjusting value “D[0024] or” outputted from the digital control circuit 4 is also supplied as a analog adjusting value (bias current) via both the register 9 and the D/A converter 7 to the gm amplifier 1 a. On the other hand, the digital adjusting value “Dgm” outputted from the digital control circuit 4 is also supplied via both the register 10 and the D/A converter 8 as another analog adjusting value (bias current) to the gm amplifier 1 a. In this case, since the output resistance value of the gm amplifier 1 a is adjusted so as to become zero, an error contained in the filter characteristic of the gm-C filter circuit 1 is reduced. Also, since the gm value of the gm amplifier 1 a is adjusted, the cut-off frequency of the gm-C filter circuit 1 is adjusted.
  • Since the [0025] gm amplifier 3 a of the oscillator 3 owns the same construction as that of the gm amplifier 1 a of the gm-C filter circuit 1, the oscillation frequency of the oscillator 3 corresponds to the cut-off frequency of the gm-C filter circuit 1 in an one-to-one correspondence relationship. As a result, in order to set the cut-off frequency of the gm-C filter circuit 1 to a desirable value, the oscillation frequency of the oscillator 3 maybe adjusted to be equal to a value corresponding to this desirable value.
  • In the case that the digital adjusting value D[0026] gm outputted from the digital control circuit 4 corresponding to the oscillation frequency of the oscillator 3 is set, for instance, a so-called “two-dividing method” is employed. Referring now to FIG. 2, this two-dividing method will be described. In FIG. 2, an ordinate shows the digital adjusting value “Dgm” (oscillation frequency), and an abscissa indicates a time operation. It should be understood that the digital adjusting value “Dgm” is constituted by “n” bits (symbol “n”=natural number). In this case, a description will now be made of such a case that the digital adjusting value “Dgm” is constructed of 7 bits. First, assuming now that a 7-bit digital value (for example, maximum value) is equal to “X” when the gm-C filter system is initiated, this digital adjusting value “Dgm” is set to {fraction (X/2)} equal to a {fraction (1/2)} value of this 7-bit digital value (namely, condition shown as “A” of FIG. 2). Then, while the oscillation frequency of the oscillator 3 is monitored, in such a case that this monitored oscillation frequency is compared with a desirable frequency and then this oscillation frequency is lower than the desirable frequency, the digital adjusting value “Dgm” is set to {{fraction (X/2)}−(X−{fraction (X/2)})×½}=3{fraction (X/4)}. On the other hand, when this monitored oscillation frequency is higher than the desirable frequency, the digital adjusting value Dgm is set to {{fraction (X/2)}−(X−{fraction (X/2)})×½}=X/4. In the example, shown in FIG. 2, since the oscillation frequency is higher than the desirable frequency under state “A”, the digital adjusting value “Dgm” is set to “{fraction (X/4)}”, (namely, state “B” shown in FIG. 2). Then, the oscillation frequency is again monitored. Now since the oscillation frequency is lowered than the desirable frequency, {{fraction (X/4)}+{fraction (X/2)}−{fraction (X/4)}×½}=3{fraction (X/8)} is set as a next digital adjusting value. Subsequently, the digital adjusting value “Dgm” is controlled in such a manner that the oscillation frequency is made coincident with a desirable frequency. In such a case that the digital adjusting value Dgm is arranged by 7 bits, an adjusting value corresponding to the desirable frequency can be obtained in a seventh time operation.
  • Referring now to FIGS. 3A to [0027] 3C, a description will be made of a method for adjusting an oscillating amplitude of the oscillator 3. As indicated in FIG. 3A to FIG. 3C, the oscillation amplitude of the oscillator 3 is varied based upon the output resistance value of the gm amplifier 3 a thereof. In other words, in the case that the output resistance value is negative, an oscillation signal is diverged as indicated in FIG. 3A. Conversely, in the case that the output resistance value is positive, an oscillation signal is attenuated, so that an oscillation state is not maintained as indicated in FIG. 3C. In accordance with this embodiment mode, as represented in FIG. 3B, in order to realize such a state that the oscillation is maintained with keeping a constance amplitude, the output resistance value of the gm amplitude 3 a is adjusted as follows. In other words, for instance, while the output resistance value of the gm amplitude 3 a is changed in 5 stages, a judgement is made as to whether the oscillation is diverged, or attenuated in each stage. Then, the output resistance value of the gm amplifier 3 a is adjusted to be equal to such a value defined between the output resistance value obtained when the oscillation is diverged and the output resistance value obtained when the oscillation is attenuated.
  • It should also be noted that when the above-explained oscillation frequency adjusting method (two-dividing method) is combined with the oscillation amplitude adjusting method, if the oscillation frequency is adjusted, then the [0028] oscillator 3 is required to be brought into the oscillation state. As a result, the output resistance value of the gm amplifier 3 a is set in such a manner that the oscillation may be likely diverged, and the oscillation frequency is adjusted. Thereafter, the oscillation amplitude is adjusted.
  • Next, operations of the adjusting [0029] circuit 2 will now be explained with reference to a time chart of FIGS. 4A and 4B. FIG. 4A indicates a change contained in ambient temperatures of the filter system, and FIG. 4B shows a change contained in operation conditions of the adjusting circuit 2. First, the adjusting circuit 2 commences the adjusting operation of the filter characteristic when the gm-C filter system is initiated (time instance “tA”). After the adjusting operation has been ended, both the digital adjusting values “Dor” and “Dgm” supplied from the adjusting circuit 2 are held in the registers 9 and 10, respectively, and the operation of the adjusting circuit 20 is stopped (power off state, time instance tA′). While the operation of the adjusting circuit 2 is stopped (power off), both the digital adjusting values Dor and Dgm saved in the registers 9 and 10 are supplied via the D/A converts 7/8 as analog adjusting values (bias currents) to the gm amplifier 1 a of the gm-C filter circuit 1. Thereafter, the adjusting circuit 2 is controlled in response to a control “CTL” supplied from the temperature sensing circuit 12. The temperature sensing circuit 12 senses the ambient temperature of the gm-C filter system in response to the externally supplied temperature data. This temperature sensing circuit 12 supplies the control signal CTR in order that at a time instant (time instant tB) when the ambient temperature is changed by, for example, 10 degrees, the operation of the adjusting circuit 2 is commenced. In response to this control signal CTR, the adjusting circuit 2 commences the adjusting operation of the filter characteristic. After the adjusting operation has been accomplished, the respective adjusting values Dor and Dgm saved in the resisters 9 and 10 are updated, the operation of the adjusting circuit 2 is stopped (power off) at a time instant tB′. Subsequently, the adjusting circuit 2 repeatedly performs such an intermittent adjusting operation (time instants tc and tc′).
  • As previously described, in accordance with the gm-C filter system of this embodiment mode, the adjusting [0030] circuit 2 is operated in the intermittent manner in order to adjust the filter characteristic. As a result, the power consumption of this gm-C filter system can be reduced, as compared with that of the conventional filter system.
  • It should be noted that the [0031] temperature sensing circuit 12 may be replaced by a power supply voltage sensing circuit. In this alternative case, for instance, the power supply voltage of this gm-C filter system is subdivided into just a half of this supply voltage by employing a resistor, and then, this voltage may be entered to the power supply voltage sensing circuit. In the power supply voltage sensing circuit, for example, while an input voltage is converted into a digital value by an A/D converter, a digital signal processing operation is carried out in such a manner that the control signal CTL is outputted to the control circuit 2 by which the operation of the adjusting circuit 2 is commenced when the voltage is changed by 0.1 V. In this operation manner, the adjusting circuit may be intermittently carried out based upon the variation of the power supply voltage.
  • Alternatively, both the above-explained [0032] temperature sensing circuit 12 and the power supply voltage sensing circuit may be employed. In this alternative case, the control signal outputted from the temperature sensing circuit is AND-gated with the control signal outputted from the power supply voltage sensing circuit, and then, the AND-gated control signal is used to control the adjusting circuit 2. Since such an AND-gated control signal is used, the adjusting circuit 2 may be intermittently operated based upon either a change contained in the ambient temperatures or a variation contained in the power supply voltages.
  • Also, the [0033] temperature sensing circuit 12 may be replaced by a counter circuit. In this alternative case, while the reference clock signal is input into this counter circuit, at such a time instant when a count value of this counter circuit is reached to a predetermined, the control signal CTL is supplied from this counter circuit with respect to the adjusting circuit 2 in order to commence the operation of the adjusting circuit 2. At this time, the counter circuit is reset. As a result, the adjusting circuit 2 may be intermittently operated in response to an elapse of time.
  • Alternatively, the operation of the adjusting [0034] circuit 2 may be commenced within systematically empty time of an electronic appliance in which the gm-C filter system is employed.
  • It should also be understood that the adjustment of the output amplitude of the gm-[0035] C filter circuit 1 is no longer required, the above-explained D/A converter 5, register 9, and D/A converter 7 may be omitted.
  • (Second Embodiment Mode) [0036]
  • FIG. 5 is a block diagram for representing an arrangement of a gm-C filter system according to a second embodiment mode of the present invention. It should be noted that the same reference numerals used in the first embodiment mode shown in FIG. 1 will be employed as those for denoting the same, or similar constructions of this second embodiment mode, and therefore, descriptions thereof are omitted. In FIG. 5, a [0037] temperature compensating circuit 11 produces a drive bias current “iTEMP” based upon externally-supplied temperature data, and this drive bias current “iTEMP” is to compensate a variation component of output resistance values derived from the gm amplifiers 3 a and 1 a with respect to a change contained in ambient temperature. This temperature compensating circuit 11 drives the D/ A converters 5 and 7 based upon this drive bias current “iTEMP1” capable of compensating for variation components in gm values of both the gm amplifiers 3 a and 1 a with respect to a change contained in ambient temperatures. Then, the temperature compensating circuit 11 drives the D/ A converters 6 and 8 based upon this drive bias current iTEMP2. The temperature compensating circuit 11 produces both the drive bias currents “iTEMP1” and “iTEMP2” based upon, for instance, data related to temperature-to-drive bias currents stored in a ROM.
  • Next, a description will now be made of operations of the gm-C filter system according to this embodiment mode. First, the adjusting [0038] circuit 2 commences the adjusting operation of the filter characteristic when the gm-C filter system is initiated. After the adjusting operation has been ended, both the digital adjusting values “Dor” and “Dgm” supplied from the adjusting circuit 2 are held in the registers 9 and 10, respectively, and the operation of the adjusting circuit 20 is stopped (power off state). While the operation of the adjusting circuit 2 is stopped (power off), both the digital adjusting value Dor and Dgm saved in the registers 9 and 10 are supplied via the D/A converters 7/8 as analog adjusting values (bias currents) to the gm amplifier 1 a of the gm-C filter circuit 1. Thereafter, once the operation of the adjusting circuit 2 is stopped (power off), even when the ambient temperature is changed, the adjusting circuit 2 is not operated, which is different from the above-explained operation of the first embodiment mode. Instead, both the drive bias currents “iTEMP” and “iTEMP2” are supplied from the temperature compensating circuit 11 to the D/A converters 7/8, respectively, so that the filter characteristic is adjusted.
  • As previously explained, in accordance with the gm-C filter system of this embodiment mode, the adjusting [0039] circuit 2 is operated only when the gm-C filter system is initiated in order to adjust the filter characteristic, so that the power consumption can be reduced, as compared with that of the conventional filter system.
  • (Third Embodiment Mode) [0040]
  • FIG. 6 is a block diagram for representing an arrangement of a gm-C filter system according to a third embodiment mode of the present invention. It should be noted that the same reference numeral used in the first embodiment mode shown in FIG. 1 will be employed as those for denoting the same, or similar constructions of this third embodiment mode, and therefore, descriptions thereof are omitted. In FIG. 6, a [0041] temperature compensating circuit 11′ produces such a compensating digital adjusting value “Dorc” capable of compensating for a variation component of output resistance values of the gm amplifier 1 a with respect to a change contained in ambient temperatures based upon externally supplied temperature data, and also produces another compensating digital adjusting value “Dgmc” capable of compensating a variation component of gm values of the gm amplifier 1 a with respect to a change contained in ambient temperatures. An adder 21 executes a digital calculation with respect to both the compensating digital adjusting value “Dorc” supplied from the temperature compensating circuit 11′, and also a digital adjusting value “Dor” held in the register 9. Then, this adder 21 supplies the digitally calculated result to the D/A converter 7. Also, the adder 22 performs a digital calculation with respect to both the compensating digital adjusting value “Dgmc” supplied from the temperature compensating circuit 11′ and also a digital adjustment value “Dgm” held in the register 10. Then, this adder 21 supplies the digitally calculated result to the D/A converter 8.
  • Next, a description will now be made of operations of the gm-C filter system according to this embodiment mode. First, the adjusting [0042] circuit 2 commences the adjusting operation of the filter characteristic when the gm-C filter system is initiated. After the adjusting operation has bee ended, both the digital adjusting values “Dor” and “Dgm” supplied from the adjusting circuit 2 are held in the registers 9 and 10, respectively, and the operation of the adjusting circuit 20 is stopped (power off state). While the operation of the adjusting circuit 2 is stopped (power off), both the digital adjusting values Dor and Dgm saved in the registers 9 and 10 are supplied via the D/ A converters 7 and 8 as analog adjusting values (bias currents) to the gm amplifier 1 a of the gm-C filter circuit 1. Thereafter, once the operation of the adjusting circuit 2 is stopped (power off state), even when the ambient temperature is changed, the adjusting circuit 2 is not operated, which is different from the above-explained operation of the first embodiment mode. Instead, both the compensating digital adjusting values “Dorc” and “Dgmc” are supplied from the temperature compensating circuit 11′ to the adders 21 and 22, respectively, so that the filter characteristic is adjusted.
  • As previously explained, in accordance with the gm-C filter system of this embodiment mode, the adjusting [0043] circuit 2 is operated only when the gm-C filter system is initiated in order to adjust the filter characteristic, so that the power consumption can be reduced, as compared with that of the conventional filter system.
  • As apparent from the above-explained description, in accordance with the present invention, since the adjusting circuit for adjusting the filter characteristic is operated in the intermittent manner (otherwise, only when filter system is initiated), the gm-C filter system whose power consumption is low can be provided. The gm-C filter system of the present invention may be effectively used when, for instance, this gm-C filter system is used as such a filter system mounted on an LSI designed for a portable electronic appliance such as a portable telephone set. [0044]

Claims (6)

What is claimed is:
1. A transconductance-capacitance filter system comprising:
a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor;
an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of said transconductance-capacitance filter circuit, said adjusting circuit producing a digital adjusting value used to adjust the transconductance of the transconductance amplifier of said oscillator based upon an oscillation signal outputted from said oscillator;
a register for holding said digital adjusting value supplied from said adjusting circuit; and
a D/A converter for converting said digital adjusting value held in said register into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of said transconductance-capacitance filter circuit,
wherein said adjusting circuit is operated in an intermittent manner.
2. A transconductance-capacitance filter system as claimed in claim 1, further comprising a temperature sensing circuit for sensing an ambient temperature of said transconductance-capacitance filter system,
wherein said adjusting circuit is operated in the intermittent manner based upon a change contained in said ambient temperatures.
3. A transconductance-capacitance filter system as claimed in claim 1 further comprising a power supply voltage sensing circuit for sensing a power supply voltage of said transconductance-capacitance filter system,
wherein said adjusting circuit is operated in the intermittent manner based upon a change contained in said power supply voltages.
4. A transconductance-capacitance filter system as claimed in claim 1 further comprising a temperature sensing circuit for sensing an ambient temperature of said transconductance-capacitance filter system, and a power supply voltage sensing circuit for sensing a power supply voltage of said transconductance-capacitance filter system,
wherein said adjusting circuit is operated in the intermittent manner based upon either a change contained in the ambient temperatures or a variation of said power supply voltages.
5. A transconductance-capacitance filter system comprising:
a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor;
an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of said transconductance-capacitance filter circuit, said adjusting circuit producing a digital adjusting the transconductance of the transconductance amplifier of said oscillator based upon an oscillation signal outputted from said oscillator;
a register for holding said digital adjusting value supplied from said adjusting circuit;
a D/A converter for converting said digital adjusting value held in said register into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of said transconductance-capacitance filter circuit; and
a temperature compensating circuit for producing such a drive bias current capable of compensating for a variation component of the transconductance values of the transconductance amplifier of said transconductance-capacitance filter circuit with respect to a change contained in ambient temperatures of said transconductance-capacitance filter system based upon externally-supplied temperature data, and capable of driving said D/A converter by said drive bias current,
wherein said adjusting circuit is operated only when said transconductance-capacitance filter system is initiated.
6. A transconductance-capacitance filter system comprising:
a transconductance-capacitance filter circuit including a transconductance amplifier and a capacitor;
an adjusting circuit including an oscillator containing a transconductance amplifier having the same structure as that of the transconductance amplifier of said transconductance-capacitance filter circuit, said adjusting circuit producing a digital adjusting the transconductance of the transconductance amplifier of said oscillator based upon an oscillation signal outputted from said oscillator;
a register for holding said digital adjusting value supplied from said adjusting circuit;
a temperature compensating circuit for producing such a drive bias current capable of compensating for a variation component of the transconductance values of the transconductance amplifier of said transconductance-capacitance filter circuit with respect to a change contained in ambient temperatures of said transconductance-capacitance filter system based upon externally-supplied temperature data, and capable of driving said D/A converter by said drive bias current;
an adder for executing a digital calculation with respect to said compensating digital adjusting value supplied from said temperature compensating circuit and the digital adjusting value held in said register; and
a D/A converter for converting a digital calculation result supplied form said adder into an analog adjusting value which is used to adjust the transconductance of the transconductance amplifier of said transconductance-capacitance filter circuit,
wherein said adjusting circuit is operated only when said transconductance-capacitance filter system is initiated.
US09/903,948 2000-07-21 2001-07-12 Transconductance-capacitance filter system Expired - Fee Related US6388510B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000220778A JP3449970B2 (en) 2000-07-21 2000-07-21 Transconductance-capacitive filter system
JPP.2000-220778 2000-07-21
JP2000-220778 2000-07-21

Publications (2)

Publication Number Publication Date
US20020008572A1 true US20020008572A1 (en) 2002-01-24
US6388510B2 US6388510B2 (en) 2002-05-14

Family

ID=18715320

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/903,948 Expired - Fee Related US6388510B2 (en) 2000-07-21 2001-07-12 Transconductance-capacitance filter system

Country Status (3)

Country Link
US (1) US6388510B2 (en)
EP (1) EP1175007A3 (en)
JP (1) JP3449970B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175136A1 (en) * 2004-02-05 2005-08-11 Stephen Wu High precision continuous time gmC BPF tuning
US7705665B2 (en) 2008-03-13 2010-04-27 Samsung Electro-Mechanics Co., Ltd. Digital tuning circuit of GM-C filter
US20110025411A1 (en) * 2008-06-19 2011-02-03 Qualcomm Incorporated Apparatus and Method for Tuning a GM-C Filter
US20110166817A1 (en) * 2010-01-06 2011-07-07 Yun-Cheol Han Method for calibrating frequency of gm-c filter and devices using the method
US20180084325A1 (en) * 2016-09-19 2018-03-22 Wade Goeke High fidelity, professional grade microphone system for direct coupling to recording components

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040198287A1 (en) * 2002-10-08 2004-10-07 Kramer Bradley A. Simultaneous Gm-C filter and variable gain amplifier circuit
JP2004172911A (en) * 2002-11-19 2004-06-17 Matsushita Electric Ind Co Ltd Filter device
KR100452825B1 (en) * 2002-12-27 2004-10-15 삼성전기주식회사 liner channel select filter
US7313201B2 (en) * 2003-07-28 2007-12-25 Microtune (Texas), L.P. Multi-range transconductor and method of operation
US7218179B2 (en) 2004-05-27 2007-05-15 Silicon Laboratories Inc. Methods and apparatus for calibrating gm-Z
US7164311B2 (en) * 2004-09-30 2007-01-16 Silicon Laboratories Inc. Method and apparatus for tuning GMC filter
EP1713180A4 (en) * 2005-01-24 2010-03-17 Panasonic Corp Receiver apparatus and electronic device using the same
US7583948B2 (en) 2005-04-28 2009-09-01 Kabushiki Kaisha Toshiba Time constant automatic adjusting circuit, filter circuit system, and method of automatically adjusting time constant
US8390371B2 (en) 2010-07-30 2013-03-05 Tialinx, Inc. Tunable transconductance-capacitance filter with coefficients independent of variations in process corner, temperature, and input supply voltage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023491A (en) * 1988-01-18 1991-06-11 Nec Corporation Filter circuit arrangements with automatic adjustment of cut-off frequencies
US5093634A (en) 1990-10-31 1992-03-03 At&T Bell Laboratories Merged current clamp in triple-input transconductor, for use in oscillator
JP2829123B2 (en) * 1990-11-15 1998-11-25 株式会社東芝 Automatic adjustment IC filter circuit
JPH05121503A (en) 1991-10-25 1993-05-18 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
KR100312623B1 (en) * 1993-02-26 2001-12-28 이데이 노부유끼 Active filter circuit device
JP3208975B2 (en) * 1993-12-28 2001-09-17 株式会社日立製作所 Active filter control method
JP3318725B2 (en) * 1994-01-12 2002-08-26 株式会社日立製作所 Analog filter circuit
US5489872A (en) * 1994-01-25 1996-02-06 Texas Instruments Incorporated Transconductance-capacitor filter circuit with current sensor circuit
US5625317A (en) * 1994-08-08 1997-04-29 Texas Instruments Incorporated Tuning method for integrated continuous-time filters
JPH08191231A (en) * 1995-01-06 1996-07-23 Sony Corp Filter circuit
US5570049A (en) 1995-05-30 1996-10-29 Exar Corporation Transconductor element for high speed GM-C integrated filters
US5731737A (en) * 1996-04-16 1998-03-24 International Business Machines Corporation Method and apparatus for reducing clock switching noise in continuous time filters
JPH10209809A (en) 1997-01-17 1998-08-07 Hitachi Ltd Filter circuit
JP3720963B2 (en) * 1997-10-16 2005-11-30 株式会社東芝 Time constant automatic correction circuit for filter circuit and filter circuit device using the same
JP2000341089A (en) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp Filter circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175136A1 (en) * 2004-02-05 2005-08-11 Stephen Wu High precision continuous time gmC BPF tuning
US7319731B2 (en) * 2004-02-05 2008-01-15 Broadcom Corporation High precision continuous time gmC BPF tuning
US7705665B2 (en) 2008-03-13 2010-04-27 Samsung Electro-Mechanics Co., Ltd. Digital tuning circuit of GM-C filter
US20110025411A1 (en) * 2008-06-19 2011-02-03 Qualcomm Incorporated Apparatus and Method for Tuning a GM-C Filter
US8810307B2 (en) 2008-06-19 2014-08-19 Qualcomm Incorporated Apparatus and method for tuning a GM-C filter
US20110166817A1 (en) * 2010-01-06 2011-07-07 Yun-Cheol Han Method for calibrating frequency of gm-c filter and devices using the method
US8762094B2 (en) * 2010-01-06 2014-06-24 Samsung Electronics Co., Ltd. Method for calibrating frequency of gm-C filter and devices using the method
US20180084325A1 (en) * 2016-09-19 2018-03-22 Wade Goeke High fidelity, professional grade microphone system for direct coupling to recording components

Also Published As

Publication number Publication date
JP3449970B2 (en) 2003-09-22
EP1175007A2 (en) 2002-01-23
JP2002043894A (en) 2002-02-08
EP1175007A3 (en) 2007-05-09
US6388510B2 (en) 2002-05-14

Similar Documents

Publication Publication Date Title
US6388510B2 (en) Transconductance-capacitance filter system
JP4285506B2 (en) Auto gain control circuit
US20170294888A1 (en) Audio amplifier system
JPH1056329A (en) Frequency control oscillator
JPH11220327A (en) Temperature compensation circuit for oscillator
WO1996032775A1 (en) Quartz oscillator device and its adjusting method
JPWO2003021765A1 (en) Oscillator and communication equipment
JPH09270707A (en) Digital/analog converter and controller using the converter
JP2002026734A (en) Digital/analog converter and digital/analog conversion method
JPH08116214A (en) Function generator and oscillation circuit with temperature compensation
CN101911495B (en) Oscillation frequency control circuit, DC-DC converter including the oscillation frequency control circuit, and semiconductor device
JPH10145139A (en) Crystal oscillator and its adjustment method
JP3253207B2 (en) Temperature compensated crystal oscillator
JPH1168461A (en) Piezoelectric oscillation circuit
JP2003152449A (en) Digital control temperature compensation crystal oscillator and electronic apparatus using the same
JP3556497B2 (en) Signal conversion circuit
JPH08298417A (en) Variable attenuator circuit
JP5178457B2 (en) Oscillator
US6307438B1 (en) Multistage operational amplifier with stability control
JPH10256899A (en) Non-adjustment voltage controlled oscillation circuit
JPH0629737A (en) Clock frequency correcting system
US7443328B2 (en) Apparatus and method of using spread pulse modulation to increase the control resolution of an electronic device
JP2584991B2 (en) Digitally controlled temperature compensated crystal oscillator
JP3389772B2 (en) Power amplification circuit for portable equipment and portable high-frequency device using the same
JPH10322128A (en) Temperature-compensating device for piezoelectric oscillator

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAYASHI, HIROKI;DOSHO, SHIRO;MORIE, TAKASHI;AND OTHERS;REEL/FRAME:011990/0020

Effective date: 20010703

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140514