US20020007670A1 - Engine torque-detecting method and an apparatus therefore - Google Patents

Engine torque-detecting method and an apparatus therefore Download PDF

Info

Publication number
US20020007670A1
US20020007670A1 US09/932,751 US93275101A US2002007670A1 US 20020007670 A1 US20020007670 A1 US 20020007670A1 US 93275101 A US93275101 A US 93275101A US 2002007670 A1 US2002007670 A1 US 2002007670A1
Authority
US
United States
Prior art keywords
engine
pressure
shaft
change
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/932,751
Inventor
Taketoshi Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/932,751 priority Critical patent/US20020007670A1/en
Publication of US20020007670A1 publication Critical patent/US20020007670A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/08Testing internal-combustion engines by monitoring pressure in cylinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/24Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
    • G01L3/245Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity by measuring and simultaneously multiplying pressure and velocity

Definitions

  • This invention relates to an engine torque-detecting method and apparatus therefor, and more particularly to an improved method and apparatus for measuring engine torque during running.
  • fuel economy and exhaust emission control may be achieved by operating the engine on a so-called “lean burn” system at least at low and partial lows.
  • lean burn running the fuel-air mixture supplied to the combustion chamber is less than stoichiometric.
  • the limits of lean burn may be readily determined by measuring the output torque of the engine. When the output torque falls below a predetermined value it is known that the stability and engine running speed will deteriorate significantly. Therefore, it is desirable to be able to measure the output torque of the engine during its running so as to permit optimization of the lean burn running.
  • This invention is adapted to be embodied in a method and apparatus for measuring the torque of an engine during its running and for a selected cycle.
  • the engine has a combustion chamber and an output shaft that is driven by combustion in the combustion chamber.
  • Means are provided for measuring the pressure in the combustion chamber and also for measuring the output shaft angle.
  • the combustion chamber pressure is measured between no more than two different crank angles, and the engine output torque is determined from these two measurements.
  • means are provided for reading the combustion chamber pressure at two distinct crank angles and calculating the engine torque from these two readings.
  • instantaneous engine speed for a portion of the rotation of the output shaft of an engine is measured.
  • the engine comprises a shaft driven by the engine and an associated fixed component of the engine that is juxtaposed to a portion of the shaft.
  • a permanent magnet is fixed to one of the shaft portion and the component and a coil is fixed to the other of the shaft portion and the component and is adapted to output a pulse upon the passage of the coil and the permanent magnet upon rotation of the shaft for indicating the angular position of the shaft.
  • the method comprises the steps of determining the shaft angle when the maximum positive pulse is generated by the coil, determining the shaft angle when the maximum negative pulse is generated by the coil, and measuring the time interval between the maximum positive and negative pulses to determine instantaneous shaft rotational speed.
  • Another feature of the invention is adapted to be embodied in a method of sensing both absolute pressure in an engine combustion chamber and the instantaneous change in pressure.
  • This method comprises a piezoelectric device that is adapted to be exposed to combustion chamber pressure and output a first electrical signal indicative of the change in pressure in the combustion chamber.
  • An amplifier circuit receives the first electrical signal and transforms the first electrical signal into a second electrical signal indicative of the pressure in the combustion chamber.
  • the method comprises the selection of one of the first or second electrical signals to determine either the change in pressure in the combustion chamber or the absolute pressure in the combustion chamber.
  • FIG. 1 is a block diagram and partial schematic of an embodiment of the invention.
  • FIG. 2 shows the time histories demonstrating operation of the embodiment of FIG. 1.
  • FIG. 3 shows crank angle histories of the combustion pressure P 2 and dP/d2 and the two detecting crank angles ⁇ 1 , ⁇ 2 for the output torque [T].
  • FIG. 4 is a block diagram of a second embodiment of the invention, whereby pressure and rate of pressure signals are used to determine the output torque [T].
  • FIG. 5 is a third embodiment of the invention where one sensor value of either pressure P or dP/d ⁇ is predetermined and corresponds to a function represented in either Table 1, shown in FIG. 12, or Table 3, shown in FIG. 14.
  • FIG. 6 is a fourth embodiment of the invention corresponding to functions represented in Table 2 shown in FIG. 13 and Formula 1 shown in FIG. 11.
  • FIG. 7 is a fifth embodiment of the invention incorporating the functions in Table 4 shown in FIG. 15.
  • FIG. 8 shows an alternate time T′ of positive-to-negative pulses instead of the time between positive top dead center pulses T; this correspondence is represented in Table 4 shown in FIG. 15.
  • FIG. 9 shows alternate crank angles 2 i wherein the second angle is biased and the first angle is compensated as shown in Table 5 shown in FIG. 16.
  • FIG. 10 shows alternate times T i wherein the second time may be predetermined as shown in Table 6 shown in FIG. 17.
  • FIG. 11 shows Formula 1 which can be used to generate reference time T.
  • FIG. 12 shows Table 1, which shows sample functions to calculate detecting crank angles ⁇ i based on the engine speed R.
  • FIG. 13 shows Table 2, which shows sample functions to calculate detecting times T i based on Formula 1, also a function of engine speed R.
  • FIG. 14 shows Table 3, which shows alternate functions for crank angles ⁇ i without the engine speed R.
  • FIG. 15 shows Table 4, which shows the derivation of alternate interval T′ for positive-to-negative pluses using a predetermined angle ⁇ T′ .
  • FIG. 16 shows Table 5, which shows the derivation of the first angle if the second angle is biased and refers to the embodiment of FIG. 9.
  • FIG. 17 shows Table 6, which shows the derivation of the first time if the second time is predetermined, as shown in the embodiment of FIG. 10.
  • the measurement of the torque of an internal combustion engine for a motor vehicle is desirable for control of the fuel injection and ignition timing, control of the EGR flow rate, control of the secondary airflow rate to add to the exhaust gas, and, for an engine with variable valve timing, control of the opening and closing times of the intake and exhaust valves.
  • a four-cycle engine is indicated generally by reference numeral 11 and is shown as a cross-section through a single cylinder. Since the internal details of the engine 11 are not necessary to understand the construction and operation of the invention, they will be described only summarily and by reference to a schematic drawing. Where a detailed description is omitted, it may be considered to be conventional.
  • the engine 11 includes a cylinder block 12 having one or more cylinder bores in which pistons 14 are supported for reciprocation.
  • the pistons 14 are connected by means of connecting rods 18 to the throws of a crankshaft, indicated generally by the reference numeral 20 , and supported within a crankcase in a known manner.
  • a fuel-air charge is delivered to the combustion chambers 16 through an induction system that includes an air cleaner (not shown), which draws atmospheric air and delivers it to an induction manifold 22 .
  • a flow-controlling throttle valve 24 is provided in the induction manifold 22 .
  • This charge-forming system thus supplies an air charge to the intake manifold 22 and includes an electronically-operated fuel injector 26 having a discharge nozzle (not shown) that sprays fuel into the intake manifold 22 downstream of the throttle valves 24 .
  • manifold injection is disclosed, it is to be understood that the invention may also be employed in conjunction with direct cylinder injection or other types of charge-forming systems, such as carburetors or the like.
  • the charge formed in the induction system is then delivered to the combustion chamber through the intake manifold 22 and past an intake valve 28 operated by an overhead mounted camshaft (not shown).
  • the charge is compressed in the combustion chambers 16 .
  • This charge is then fired by a spark plug 30 mounted in the cylinder head of the engine and having its spark gap extending into the combustion chamber 16 .
  • An ignition coil (not shown) is connected to the spark plug 30 for it's firing, and the ignition coil is controlled by an ignition circuit 32 .
  • the burnt charge is discharged past exhaust valves 34 operated by an overhead exhaust camshaft 36 to an exhaust system (not shown).
  • the fuel injector 26 and ignition system are controlled by an air-fuel ratio control unit, the construction of which may be considered to be conventional, and therefore details of its construction will not be discussed further except insofar as how the invention can be practiced with such conventional control systems.
  • the engine torque-detecting system employs a pair of sensors one of which is a combustion chamber pressure sensor 38 which may be of the piezoelectric type and which produces a first electrical signal indicative of change in pressure, which is normally interconnected with a charge amplifier so as to produce, as an output, second electrical signal indicative of pressure.
  • This pressure signal may be employed for certain types of controls but in accordance with a feature of the invention, the direct output of the piezoelectric device of the sensor 38 is employed for measuring the torque of the engine.
  • the output signal is indicative of a change or differential in pressure rather than absolute pressure and this is important in being able to practice the invention and measure output torque, as will be described.
  • crank reference angle sensor 40 which is employed to provide signals for other controls for the engine indicative of position of the shaft or by counting the pulses in a given time the average shaft speed.
  • the output of this position sensor is utilized so as to measure engine speed during single cycle of operation so as to permit the accurate determination of the engine output torque.
  • the reference angle signal is associated with one of the camshafts, in this case the exhaust camshaft 36 which like the intake camshaft (not shown) is driven in a suitable manner from the crankshaft 20 at one-half crankshaft speed.
  • the engine output torque may be accurately determined during each cycle of operation of the engine by taking measurements at ⁇ finite crank angle or time positions and either integrating the output of the piezoelectric sensor 38 during this time period or actually comparing actual pressure measurements at the two time periods.
  • the embodiment of FIGS. 1 and 2 uses the former method and selects as the two time periods the time when the change in combustion chamber pressure in relation to time (dP/dt) is at its maximum (pressure increase rate is the greatest) and at another time when the change in pressure in relation to time (dP/dt) is zero (this being the point of maximum pressure, as will be seen hereinafter). Also, rather than measuring the initial time t 1 when the change in pressure is the greatest, it is possible to make a calculation indicative of the crank angle position when this condition will occur, as will become apparent by the following description.
  • an engine control unit 42 may be of the preferred construction as shown.
  • Other engine control or protection systems may be incorporated in the CPU 42 , but these embodiments will not be detailed in the discussion of the present invention which deals only with the way engine torque is measured to permit lean burn operation with maximum stability. Of course other applications for this principle will present themselves to those skilled in the art.
  • the CPU 42 may first include a means 44 to determine the reference crank angle 2 0 occurring at the time t 0 .
  • a means 46 to calculate the reference time L for the engine to rotate through a known angle and hence instantaneous speed N s .
  • a means 48 to calculate the time D from the reference crank angle position t 0 to the time t 1 where it will be known that dP/dt is maximum. From the calculation of the time D it is possible to determine at a stage 50 of the CPU 42 the time t 1 when the change in pressure is maximum.
  • FIG. 2 shows, among other things, the output signal from the crank or camshaft angle sensor 40 (curve A).
  • the camshaft angle sensor 40 is comprised of a permanent magnet that is affixed at a point on the camshaft 36 which is indicative of top dead center position after the intake valve has closed and when combustion has been initiated. This magnet cooperates with a winding that is fixed relative to the engine in proximity to the camshaft 36 and which will output first a positive output signal when the magnet passes it and then a signal which diminishes to a maximum negative value when the camshaft 36 has rotated through a predetermined crank angle 2 from the initial crank angle 2 0 at the time T 0 .
  • This rotational angle 2 N is then used at the stage 46 so as to determine the time duration L that it takes the engine shaft (camshaft 36 in this embodiment) to rotate through this angle and this speed N s .
  • This time is calculated by using a timer that outputs a number of equal time pulses and the number of pulses for the camshaft to rotate through the angle 2 N is determine by the output of the counter. This in essence gives an instantaneous crankshaft speed and the time period L can be employed to determine from known parameters the time delay D after T 0 when the maximum change in pressure will occur from the following equation:
  • This time signal t 1 is outputted to an integrating circuit 54 so as to open a gate and permit this integrating circuit 54 to receive the output signal from the piezoelectric device of the pressure sensor 38 so as to perform an integrating function as follows:
  • This time interval G is also equal to L ⁇ w where w is a constant and L is the value previously calculated by determining the speed of rotation of the camshaft.
  • the integrating function occurring at the stage 54 thus calculates output torque from an equation that can be determined experimentally and then output signals are outputted to a fuel control circuit, indicated at 56 and an ignition timing control circuit 58 which controls the firing of the spark plug 30 through the ignition circuit 32 . This can be done in accordance with any desired control strategy.
  • crankshaft measurement angles ⁇ 1 and ⁇ 2 may be determined to be the points in time when the change in pressure in relation to time or crank angle is at a maximum and 0, respectively as with the previously described embodiments. These points are not determined by actual pressure measurements but merely by crank angles. This may be seen by reference to FIG. 3 which shows the combustion pressures as functions of the crank angles 2 i .
  • the first angle 2 1 may be chosen as the position near to the top dead center (TDC) of the piston stroke; the other angle ⁇ 2 may be 10 to 20 degrees after the TDC.
  • ⁇ 1 is the crank angle corresponding to time t 1 and crank angle ⁇ 2 corresponds to time t 2 .
  • the pressure differential dP/d2 may then be derived from the aforementioned angle-time relationships and shown as in the lower curve of FIG. 3, as a function of crank angle ⁇ .
  • the output of the piezoelectric sensor portion of the pressure sensor 38 shown schematically at 139 in FIG. 4 is indicative of dP/dt while the actual output of the sensor and its amplifier, indicated schematically at 138 in FIG. 4 is indicative of the actual combustion chamber pressure P.
  • the system shown in FIG. 4 can be employed to measure the pressure at the maximum pressure change condition and the second maximum pressure by actually determining when these pressure conditions occur.
  • A/D analog-to-digital converter
  • a data converter 144 which generates the parameters as a function of the crank angle 2.
  • P( ⁇ ) and dP/d ⁇ ( ⁇ ) are used by a data selector means 146 to determine the values P( ⁇ 1 ) and P( ⁇ 2 ).
  • These values at the appropriate angle times may then be incorporated in the calculating elements 148 , 150 to generate the difference between these pressures, which is used to calculate engine torque [T].
  • the computer must have a program and memories to determine when the value dP/dt is maximum and also if it is 0 so as to select the two measurements at the points ⁇ 1 and ⁇ 2 as shown in FIG. 4.
  • this is well within the scope of those skilled in the computer art.
  • a data converter 244 next generates the pressure as a function of crank angle ⁇ , while a calculating means 243 generates the engine speed R, which may be determined as a function of the interval of the dead center pulses.
  • Sample values of the functions for the crank angles ⁇ 1 and ⁇ 2 may be as shown in Table 1, and the values for constants ⁇ , ⁇ and ( are kept in a memory element 245 .
  • Table 1 may then be combined with the engine speed information in a calculating element 247 ; the resultant angles ⁇ 1 and ⁇ 2 are then utilized in a data selector unit 246 , which determines the corresponding pressures at those angles.
  • Calculating means 248 , 250 then generate the difference between the pressures to output the estimated engine torque [T].
  • the system operates by having a series of measured crank angles at which point the pressure or change in pressure must be measured in order to obtain the torque reading.
  • FIG. 6 does not utilize engine speed information.
  • a TDC angle sensor 340 and a chamber pressure sensor 338 are processed by an A/D unit 342 to generate digitized values; the discrete angle sensor value is then used to generate a reference time T in a calculating element 343 based on Formula 1, as set out below and reproduced in FIG. 11
  • the engine speed R has been generally considered the speed that requires the engine to rotate through a complete or series of revolutions.
  • the normal output pulses from a crankshaft rotational speed sensor are measured and summed in a time period to determine engine speed as shown by the distance T in FIG. 8 which shows successive pulses during a complete revolution either of the crankshaft or, in the embodiments as described, of the camshaft.
  • T′ an instantaneous time determination
  • a value for T is determined in a calculating means 444 .
  • the constants ⁇ , ⁇ , ⁇ and ⁇ , in a memory 445 are utilized with time T in a calculating element 447 to generate the times T ⁇ 1 for angles ⁇ 1 and ⁇ 2 .
  • An integrating element 449 is utilized to determine the pressures at the crank angle times by integrating the rate values from the time T ⁇ 1 to the T ⁇ 2 directly to output the signal P (T ⁇ 1) -P (T ⁇ 2) to the calculating means 450 .
  • Calculating means 450 determines the estimated engine torque value [T] from this data.
  • crank angles for the detecting pressures, or the detecting times may be chosen by the CPU 42 based upon the engine speed R, and at a low engine speed both of the times or angles may be delayed, while at a high engine speed they may be advanced.
  • ⁇ x ⁇ , ⁇ , and ⁇ are all constant values.
  • the detecting crank angles may be changed as shown in FIG. 9 and Table 5 set out below and reproduced in FIG. 16.
  • T ⁇ ′2 or T ⁇ ′′2 which is predetermined
  • T ⁇ ′1 must be used as the first detecting time.
  • crank angle sensor in addition to providing a signal indicative of crank angle, can be utilized to provide an indication of accurate instantaneous engine shaft speed. Although in the illustrated embodiments this has been done with one sensor, it is to be understood that a number of such sensors may be positioned at spaced intervals around the shaft so as to measure instantaneous shaft speeds at desired shaft angles.

Abstract

A method and apparatus for measuring the instantaneous torque of an engine by measuring the change in pressure in the combustion chamber at two crank angles. The crank angles are chosen to approximate the time when the change in pressure is the greatest and when the pressure is the greatest and the change in pressure is zero. These crank angles may be either determined by measuring the values or by approximating the crank angles at which the values will exist. In some instances, the torque is measured by summing the change in pressures during the time interval and in other methods the torque is measured by determining the pressure differences at the two crank angles.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a divisional of application No. 08/833,767, filed Apr. 9, 1997, which application is a file wrapper of application No. 08/207,273, filed Mar. 7, 1994, all entitled “ENGINE TORQUE-DETECTING METHOD AND AN APPARATUS THEREFOR”, and assigned to the assignee hereof.[0001]
  • BACKGROUND OF THE INVENTION
  • This invention relates to an engine torque-detecting method and apparatus therefor, and more particularly to an improved method and apparatus for measuring engine torque during running. [0002]
  • It is well known to attempt to improve the efficiency and exhaust emission control of an internal combustion engine to operate it in such a manner as to accurately control the amount of fuel supplied to the engine. Also, other engine parameters are controlled in order to maintain good combustion with the minimum amount of fuel for environmental and efficiency reasons. In order to ensure stable running, however, it is necessary to ensure that adequate amounts of fuel are provided to the engine and that other running conditions are accurately controlled. Therefore, there is a need to measure the actual engine output so as to ensure stability in its operation. [0003]
  • For example, it is known that fuel economy and exhaust emission control may be achieved by operating the engine on a so-called “lean burn” system at least at low and partial lows. With lean burn running the fuel-air mixture supplied to the combustion chamber is less than stoichiometric. However, it is also known that the limits of lean burn may be readily determined by measuring the output torque of the engine. When the output torque falls below a predetermined value it is known that the stability and engine running speed will deteriorate significantly. Therefore, it is desirable to be able to measure the output torque of the engine during its running so as to permit optimization of the lean burn running. [0004]
  • Obviously, it is not possible to measure the engine output in the form of torque through the use of normal measuring apparatus employed for engine testing. That is, the torque-measuring devices used to determine the performance of the engine cannot be incorporated feasibly in a motor vehicle. [0005]
  • There have, therefore, been proposed methods for attempting to measure the engine output torque during its running by measuring some other parameter of the engine. It has been found that pressure in the combustion chamber can be utilized to project engine output torque and ensure stability in running. One method for measuring the engine output torque has been to sample the pressure readings at a number of output shaft angles during a single cycle of operation beginning near the end of the compression stroke and ending during the power or expansion stroke and then predict the engine torque from these readings. However, the necessity of taking multiple readings at varying crank angles provides a very complicated system, and normal computers cannot make the necessary calculations in the time period to adjust the engine to maintain stability without time lags. These problems are particularly acute when the engine is running at a high speed. [0006]
  • It is has also been proposed to measure or estimate the output torque of the engine by measuring the peak combustion chamber pressure. Such a system obviously only requires one pressure reading. However, it has been found that this value is not as closely related to engine output torque as was thought, particularly when cycle-to-cycle measurements are being made and compared with each other. [0007]
  • It is, therefore, a principal object of this invention to provide an improved method and apparatus for measuring the torque output of an engine during its running and per cycle. [0008]
  • It is a further object of this invention to provide an improved method and apparatus for measuring engine torque per cycle that can be utilized with a minimum number of readings. [0009]
  • In conjunction with measuring the torque of the engine and other engine measurements, it is desirable to be able to determine accurately the engine speed. It is commonly the practice to employ with engines a crankshaft or other shaft position detector that outputs a pulse when the shaft rotates to a particular angle. These sensors normally employ a permanent magnet and a related coil, in which the pulse is generated as the magnet and coil are brought into registry with each other. These sensors are normally employed not only to determine a reference angle position for the shaft, such as top dead center, but also to measure engine speed by counting the number of pulses generated in a time period. Although these devices are particularly useful, they provide indications of average engine speed, and not engine speed during a single revolution or a portion of a revolution. With some measurements, such as the measurement of engine torque, it is desirable to measure the instantaneous angular rotational speed of the engine shaft during a single cycle of engine operation. [0010]
  • It is, therefore, a further object of this invention to provide an improved measuring device that can provide not only a reference signal indicative of engine shaft position but also includes means for determining instantaneous engine shaft angular velocity in less than a complete revolution. [0011]
  • As has been previously noted, methods for determining or predicting engine torque have employed sensors for sensing the pressure in the combustion chamber. Such pressure sensors are well known and normally employ piezoelectric devices, which are exposed to the combustion chamber pressure. These devices actually output a first signal that is indicative of the change in pressure exerted on the piezoelectric device. An amplifier circuit is incorporated in conjunction with the piezoelectric device to receive the first signal and convert it into a second signal that will provide an actual pressure reading. [0012]
  • In some instances it is desirable to measure engine torque by actually measuring absolute pressure at certain time intervals. On the other hand, some torque measuring methods may be utilized to measure the accumulated pressure over a time period by integrating a differential pressure signal. [0013]
  • It is, therefore, a still further object of this invention to provide a method for utilizing a pressure sensor to derive either instantaneous change in pressure signals or absolute pressure signals. [0014]
  • SUMMARY OF THE INVENTION
  • This invention is adapted to be embodied in a method and apparatus for measuring the torque of an engine during its running and for a selected cycle. The engine has a combustion chamber and an output shaft that is driven by combustion in the combustion chamber. Means are provided for measuring the pressure in the combustion chamber and also for measuring the output shaft angle. [0015]
  • In accordance with a method for practicing the invention, the combustion chamber pressure is measured between no more than two different crank angles, and the engine output torque is determined from these two measurements. [0016]
  • In accordance with an apparatus for performing this invention, means are provided for reading the combustion chamber pressure at two distinct crank angles and calculating the engine torque from these two readings. [0017]
  • In accordance with a method embodying another feature of the invention, instantaneous engine speed for a portion of the rotation of the output shaft of an engine is measured. The engine comprises a shaft driven by the engine and an associated fixed component of the engine that is juxtaposed to a portion of the shaft. A permanent magnet is fixed to one of the shaft portion and the component and a coil is fixed to the other of the shaft portion and the component and is adapted to output a pulse upon the passage of the coil and the permanent magnet upon rotation of the shaft for indicating the angular position of the shaft. The method comprises the steps of determining the shaft angle when the maximum positive pulse is generated by the coil, determining the shaft angle when the maximum negative pulse is generated by the coil, and measuring the time interval between the maximum positive and negative pulses to determine instantaneous shaft rotational speed. [0018]
  • Another feature of the invention is adapted to be embodied in a method of sensing both absolute pressure in an engine combustion chamber and the instantaneous change in pressure. This method comprises a piezoelectric device that is adapted to be exposed to combustion chamber pressure and output a first electrical signal indicative of the change in pressure in the combustion chamber. An amplifier circuit receives the first electrical signal and transforms the first electrical signal into a second electrical signal indicative of the pressure in the combustion chamber. The method comprises the selection of one of the first or second electrical signals to determine either the change in pressure in the combustion chamber or the absolute pressure in the combustion chamber.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram and partial schematic of an embodiment of the invention. [0020]
  • FIG. 2 shows the time histories demonstrating operation of the embodiment of FIG. 1. [0021]
  • FIG. 3 shows crank angle histories of the combustion pressure P[0022] 2 and dP/d2 and the two detecting crank angles θ1, θ2 for the output torque [T].
  • FIG. 4 is a block diagram of a second embodiment of the invention, whereby pressure and rate of pressure signals are used to determine the output torque [T]. [0023]
  • FIG. 5 is a third embodiment of the invention where one sensor value of either pressure P or dP/dθ is predetermined and corresponds to a function represented in either Table 1, shown in FIG. 12, or Table 3, shown in FIG. 14. [0024]
  • FIG. 6 is a fourth embodiment of the invention corresponding to functions represented in Table 2 shown in FIG. 13 and [0025] Formula 1 shown in FIG. 11.
  • FIG. 7 is a fifth embodiment of the invention incorporating the functions in Table 4 shown in FIG. 15. [0026]
  • FIG. 8 shows an alternate time T′ of positive-to-negative pulses instead of the time between positive top dead center pulses T; this correspondence is represented in Table 4 shown in FIG. 15. [0027]
  • FIG. 9 shows [0028] alternate crank angles 2i wherein the second angle is biased and the first angle is compensated as shown in Table 5 shown in FIG. 16.
  • FIG. 10 shows alternate times T[0029] i wherein the second time may be predetermined as shown in Table 6 shown in FIG. 17.
  • FIG. 11 shows [0030] Formula 1 which can be used to generate reference time T.
  • FIG. 12 shows Table 1, which shows sample functions to calculate detecting crank angles θ[0031] i based on the engine speed R.
  • FIG. 13 shows Table 2, which shows sample functions to calculate detecting times T[0032] i based on Formula 1, also a function of engine speed R.
  • FIG. 14 shows Table 3, which shows alternate functions for crank angles θ[0033] i without the engine speed R.
  • FIG. 15 shows Table 4, which shows the derivation of alternate interval T′ for positive-to-negative pluses using a predetermined angle θ[0034] T′.
  • FIG. 16 shows Table 5, which shows the derivation of the first angle if the second angle is biased and refers to the embodiment of FIG. 9. [0035]
  • FIG. 17 shows Table 6, which shows the derivation of the first time if the second time is predetermined, as shown in the embodiment of FIG. 10.[0036]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The measurement of the torque of an internal combustion engine for a motor vehicle is desirable for control of the fuel injection and ignition timing, control of the EGR flow rate, control of the secondary airflow rate to add to the exhaust gas, and, for an engine with variable valve timing, control of the opening and closing times of the intake and exhaust valves. Referring now in detail to FIG. 1, a four-cycle engine is indicated generally by [0037] reference numeral 11 and is shown as a cross-section through a single cylinder. Since the internal details of the engine 11 are not necessary to understand the construction and operation of the invention, they will be described only summarily and by reference to a schematic drawing. Where a detailed description is omitted, it may be considered to be conventional.
  • The [0038] engine 11 includes a cylinder block 12 having one or more cylinder bores in which pistons 14 are supported for reciprocation. The pistons 14 and cylinder bores, as well as an attached cylinder head, define a combustion chamber 16. The pistons 14 are connected by means of connecting rods 18 to the throws of a crankshaft, indicated generally by the reference numeral 20, and supported within a crankcase in a known manner.
  • A fuel-air charge is delivered to the [0039] combustion chambers 16 through an induction system that includes an air cleaner (not shown), which draws atmospheric air and delivers it to an induction manifold 22. A flow-controlling throttle valve 24 is provided in the induction manifold 22. This charge-forming system thus supplies an air charge to the intake manifold 22 and includes an electronically-operated fuel injector 26 having a discharge nozzle (not shown) that sprays fuel into the intake manifold 22 downstream of the throttle valves 24. Although manifold injection is disclosed, it is to be understood that the invention may also be employed in conjunction with direct cylinder injection or other types of charge-forming systems, such as carburetors or the like.
  • The charge formed in the induction system is then delivered to the combustion chamber through the [0040] intake manifold 22 and past an intake valve 28 operated by an overhead mounted camshaft (not shown). The charge is compressed in the combustion chambers 16. This charge is then fired by a spark plug 30 mounted in the cylinder head of the engine and having its spark gap extending into the combustion chamber 16. An ignition coil (not shown) is connected to the spark plug 30 for it's firing, and the ignition coil is controlled by an ignition circuit 32. The burnt charge is discharged past exhaust valves 34 operated by an overhead exhaust camshaft 36 to an exhaust system (not shown). The fuel injector 26 and ignition system are controlled by an air-fuel ratio control unit, the construction of which may be considered to be conventional, and therefore details of its construction will not be discussed further except insofar as how the invention can be practiced with such conventional control systems.
  • The engine torque-detecting system employs a pair of sensors one of which is a combustion [0041] chamber pressure sensor 38 which may be of the piezoelectric type and which produces a first electrical signal indicative of change in pressure, which is normally interconnected with a charge amplifier so as to produce, as an output, second electrical signal indicative of pressure. This pressure signal may be employed for certain types of controls but in accordance with a feature of the invention, the direct output of the piezoelectric device of the sensor 38 is employed for measuring the torque of the engine. By using the direct output of the piezoelectric device 38, the output signal is indicative of a change or differential in pressure rather than absolute pressure and this is important in being able to practice the invention and measure output torque, as will be described.
  • In addition, the engine is provided with a crank [0042] reference angle sensor 40 which is employed to provide signals for other controls for the engine indicative of position of the shaft or by counting the pulses in a given time the average shaft speed. In conjunction with the torque measuring aspect, the output of this position sensor is utilized so as to measure engine speed during single cycle of operation so as to permit the accurate determination of the engine output torque. Again, this will be described in more detail later but in accordance with a feature of the invention the reference angle signal is associated with one of the camshafts, in this case the exhaust camshaft 36 which like the intake camshaft (not shown) is driven in a suitable manner from the crankshaft 20 at one-half crankshaft speed. By operating this sensor from the camshaft rather than the crankshaft it is possible to measure the speed at top dead center at the time when combustion is occurring without having to discriminate between the cycle when the engine fires and the portion of the cycle when the engine does not fire.
  • It has been determined that the engine output torque may be accurately determined during each cycle of operation of the engine by taking measurements at θ finite crank angle or time positions and either integrating the output of the [0043] piezoelectric sensor 38 during this time period or actually comparing actual pressure measurements at the two time periods. The embodiment of FIGS. 1 and 2 uses the former method and selects as the two time periods the time when the change in combustion chamber pressure in relation to time (dP/dt) is at its maximum (pressure increase rate is the greatest) and at another time when the change in pressure in relation to time (dP/dt) is zero (this being the point of maximum pressure, as will be seen hereinafter). Also, rather than measuring the initial time t1 when the change in pressure is the greatest, it is possible to make a calculation indicative of the crank angle position when this condition will occur, as will become apparent by the following description.
  • Referring now again to FIG. 1, an [0044] engine control unit 42, or CPU, may be of the preferred construction as shown. Other engine control or protection systems may be incorporated in the CPU 42, but these embodiments will not be detailed in the discussion of the present invention which deals only with the way engine torque is measured to permit lean burn operation with maximum stability. Of course other applications for this principle will present themselves to those skilled in the art.
  • As shown in FIG. 1, the [0045] CPU 42 may first include a means 44 to determine the reference crank angle 20 occurring at the time t0. Second, a means 46 to calculate the reference time L for the engine to rotate through a known angle and hence instantaneous speed Ns. Third, a means 48 to calculate the time D from the reference crank angle position t0 to the time t1 where it will be known that dP/dt is maximum. From the calculation of the time D it is possible to determine at a stage 50 of the CPU 42 the time t1 when the change in pressure is maximum.
  • These relationships can be best understood by reference to FIG. 2 which shows, among other things, the output signal from the crank or camshaft angle sensor [0046] 40 (curve A). The camshaft angle sensor 40 is comprised of a permanent magnet that is affixed at a point on the camshaft 36 which is indicative of top dead center position after the intake valve has closed and when combustion has been initiated. This magnet cooperates with a winding that is fixed relative to the engine in proximity to the camshaft 36 and which will output first a positive output signal when the magnet passes it and then a signal which diminishes to a maximum negative value when the camshaft 36 has rotated through a predetermined crank angle 2 from the initial crank angle 20 at the time T0. This rotational angle 2N is then used at the stage 46 so as to determine the time duration L that it takes the engine shaft (camshaft 36 in this embodiment) to rotate through this angle and this speed Ns. This time is calculated by using a timer that outputs a number of equal time pulses and the number of pulses for the camshaft to rotate through the angle 2N is determine by the output of the counter. This in essence gives an instantaneous crankshaft speed and the time period L can be employed to determine from known parameters the time delay D after T0 when the maximum change in pressure will occur from the following equation:
  • D=Lθ[f+rθ(/L−C)]
  • In the foregoing equation, the factors f, r, and c are all constants which can be determined experimentally. [0047]
  • As has been previously noted, it would be possible to measure the point t[0048] 1 by checking the output of the piezoelectric part of the pressure sensor 38, but it is equally as acceptable to calculate this time from the aforenoted equation and thus simplify the overall control circuitry.
  • Thus, at the [0049] stage 50 of the CPU 42 the time t1 is calculated as being equal to the following equation:
  • t 1 =t 0 +D
  • This time signal t[0050] 1 is outputted to an integrating circuit 54 so as to open a gate and permit this integrating circuit 54 to receive the output signal from the piezoelectric device of the pressure sensor 38 so as to perform an integrating function as follows:
  • T(torque)=ƒt 2 t 2 dP
  • This integrating [0051] circuit 54 is shut off by a shut-off device 52 which shuts off the gate when the output from the piezoelectric device of the pressure sensor 38 indicates that dP/dt=0, this being the time t2 on the pressure curve shown in the FIG. 2C and also the time when the change in pressure from the combustion chamber pressure sensor 38 in relation to time reaches 0. This time interval G is also equal to Lθw where w is a constant and L is the value previously calculated by determining the speed of rotation of the camshaft.
  • The integrating function occurring at the [0052] stage 54 thus calculates output torque from an equation that can be determined experimentally and then output signals are outputted to a fuel control circuit, indicated at 56 and an ignition timing control circuit 58 which controls the firing of the spark plug 30 through the ignition circuit 32. This can be done in accordance with any desired control strategy.
  • In the previously described embodiment, two specific time intervals were chosen depending upon the rate of change of pressure in the combustion chamber and the pressure variations during this time period were integrated to determine torque. It has also been determined that torque can be accurately determined by measuring the actual difference in pressure signals from the [0053] pressure sensor 38 at two different time intervals or degrees of crankshaft rotation during each cycle of engine operation so long as the angular positions are accurately chosen. These two crankshaft measurement angles θ1 and θ2 may be determined to be the points in time when the change in pressure in relation to time or crank angle is at a maximum and 0, respectively as with the previously described embodiments. These points are not determined by actual pressure measurements but merely by crank angles. This may be seen by reference to FIG. 3 which shows the combustion pressures as functions of the crank angles 2i. The first angle 21 may be chosen as the position near to the top dead center (TDC) of the piston stroke; the other angle θ2 may be 10 to 20 degrees after the TDC. Here, θ1 is the crank angle corresponding to time t1 and crank angle θ2 corresponds to time t2. The pressure differential dP/d2 may then be derived from the aforementioned angle-time relationships and shown as in the lower curve of FIG. 3, as a function of crank angle θ.
  • In determining the time or crank angles θ[0054] 1 and θ2 when the pressure measurements are made it has to be borne in mind that the change in pressure in the combustion chamber is a function of when spark timing occurs. That is, the pressure begins to rise rapidly whence the spark plug is fired after the intake valve has been closed. Thus, in order to practice this embodiment of the invention it is desirable to vary the angles θ1 and θ2 in response to the change in spark timing. Most engines operate with timing curves that vary in relation to engine speed R and hence the shift in the measurement angles θ1 and θ2 can be varied in response to engine speed. Table 1 as shown in FIG. 12 and reproduced below shows a number of variations in which this may be done in relation to engine speed R. In this table the values of θx, α, β and φ are constant and θ0 is the reference angle position when the camshaft position sensor 40 outputs its maximum plus signal as seen in FIG. 2A.
    TABLE 1
    ( θ 1 = θ 0 + θ x - UR θ 1 = θ 0 + α R θ 1 = θ 0 + α R θ 1 = θ 0 + α log R )
    Figure US20020007670A1-20020124-M00001
    ( θ 2 = θ 1 + β θ 2 = θ 1 + β - α · R θ 2 = θ 1 + β + α R θ 2 = θ 1 + β + α R θ 2 = θ 1 + β + α log R )
    Figure US20020007670A1-20020124-M00002
  • It is also possible to practice the invention by actually measuring the points when the change in pressure in relation to time or crank angle is the maximum and when it is 0 by actually measuring these conditions. As has been noted, the output of the piezoelectric sensor portion of the [0055] pressure sensor 38, shown schematically at 139 in FIG. 4 is indicative of dP/dt while the actual output of the sensor and its amplifier, indicated schematically at 138 in FIG. 4 is indicative of the actual combustion chamber pressure P. The system shown in FIG. 4 can be employed to measure the pressure at the maximum pressure change condition and the second maximum pressure by actually determining when these pressure conditions occur. This is done by using the pressure value detected by the pressure sensor 138, when the value dP/dt detected by the dP/dt sensor 139 is maximum and a maximum pressure when the value of the dP/dt sensor 139 is zero. The estimated output torque [T] is then calculated by the difference between the higher pressure and the lower pressure.
  • The structure for doing this is as shown in FIG. 4. An analog-to-digital converter (A/D) [0056] 142, is used to provide digitized input to a data converter 144, which generates the parameters as a function of the crank angle 2. These parameters, P(θ) and dP/dθ(θ), are used by a data selector means 146 to determine the values P(θ1) and P(θ2). These values at the appropriate angle times may then be incorporated in the calculating elements 148, 150 to generate the difference between these pressures, which is used to calculate engine torque [T].
  • Of course, in the system shown in FIG. 4, the computer must have a program and memories to determine when the value dP/dt is maximum and also if it is 0 so as to select the two measurements at the points θ[0057] 1 and θ2 as shown in FIG. 4. Of course, this is well within the scope of those skilled in the computer art.
  • As has been noted in conjunction with the description of the embodiment involving the use of Table 1 as shown above and in FIG. 12, it is possible to have the system merely preprogrammed for the angles θ[0058] 1 and θ2 when the pressure or change in pressure measurements are made. These points in time can be determined experimentally by actual engine testing and then programmed into the computer. Such another embodiment of the invention is depicted in FIG. 5, whereby the crank angles θi for the detecting pressures, or the detecting times, are based on the engine speed R. A TDC angle sensor 240 is utilized in conjunction with a chamber pressure sensor 238 and a A/D element 242 to generate the digital signals. A data converter 244 next generates the pressure as a function of crank angle θ, while a calculating means 243 generates the engine speed R, which may be determined as a function of the interval of the dead center pulses. Sample values of the functions for the crank angles θ1 and θ2 may be as shown in Table 1, and the values for constants ∀, ∃ and ( are kept in a memory element 245. The functions shown in FIG. 12, Table 1 may then be combined with the engine speed information in a calculating element 247; the resultant angles θ1 and θ2 are then utilized in a data selector unit 246, which determines the corresponding pressures at those angles. Calculating means 248, 250 then generate the difference between the pressures to output the estimated engine torque [T].
  • In the embodiment shown in FIG. 5, the system operates by having a series of measured crank angles at which point the pressure or change in pressure must be measured in order to obtain the torque reading. [0059]
  • The embodiment of FIG. 6 does not utilize engine speed information. A [0060] TDC angle sensor 340 and a chamber pressure sensor 338 are processed by an A/D unit 342 to generate digitized values; the discrete angle sensor value is then used to generate a reference time T in a calculating element 343 based on Formula 1, as set out below and reproduced in FIG. 11 T θ 1 = T θ 0 + T α R = T θ 0 360 + T × α × R 360 = 1 360 ( T × θ 0 + T × α × 60 T ) = μ T + υ FORMULA  1
    Figure US20020007670A1-20020124-M00003
  • , wherein μ and ν are constants. As shown in Table 2, as set out below and reproduced in FIG. 13 sample functions are used to determine the times for the detecting crank angles θ[0061] 1 and θ2, which are based on predetermined constants μ, ν, γ and κ.
    TABLE 2
    ( T θ 1 = μ T + υ T θ 1 = μT + υT 2 T θ 1 = μT + υT T T θ 1 + μT + υ T log T )
    Figure US20020007670A1-20020124-M00004
    ( T θ 2 = T θ 1 + λT T θ 2 = T θ 1 + λT + K T θ 2 = T θ 1 + λT + KT 2 T θ 2 = T θ 1 + λT + KT T T θ 2 = T θ 1 + λT + K T log t )
    Figure US20020007670A1-20020124-M00005
  • These values are stored in a [0062] memory 345 and used in a calculating means 347 to determine times Tθ1 and Tθ2 for the corresponding angles θ1 and θ2. A data selector unit 346 next determines the pressures at the selected times of the selected crank angles, which pressures then go into calculating means 348,350 to determine the difference in the pressures and the estimated engine torque [T].
  • In the discussion previously when reference has been made to engine speed R, the engine speed R has been generally considered the speed that requires the engine to rotate through a complete or series of revolutions. The normal output pulses from a crankshaft rotational speed sensor are measured and summed in a time period to determine engine speed as shown by the distance T in FIG. 8 which shows successive pulses during a complete revolution either of the crankshaft or, in the embodiments as described, of the camshaft. However, as was noted in the earlier discussion, it is possible to make an instantaneous time determination T′ of a shorter time interval between when the output pulse is at a maximum and minimum. This may be utilized to shorten the sample time interval required for the aforementioned calculations and if this data is used, then some of the tables must be modified for this measure of calculation. See for example Table 3, which is shown in FIG. 14 and reproduced below, that could be utilized with the embodiment of FIG. 5 wherein different values are given for the variable constants dependent upon this information. [0063]
    TABLE 3
    ( θ 1 = θ 0 + θ R - α 1 T θ 1 = θ 0 + α 1 T θ 1 = θ 0 + α 1 T θ 1 = θ 0 + α 1 1 logT )
    Figure US20020007670A1-20020124-M00006
    ( θ 2 = θ 1 T β 1 θ 2 = θ 1 T β - α 1 T θ 2 = θ 1 + α 1 T θ 2 = θ 0 + α 1 T θ 1 = θ 0 + β 1 - α 1 1 log T )
    Figure US20020007670A1-20020124-M00007
  • An embodiment using this time T′ as shown in FIG. 7, whereby a [0064] crank angle sensor 440 is utilized along with a pressure rate sensor 439. The values are processed through an A/D unit 442, and the resulting digitized angle is processed in a detector element for T′443.
  • Referring to Table 4, shown in FIG. 15 and also set out below, a value for T is determined in a calculating means [0065] 444. Referring again to Table 2, the constants μ, ν, γ and κ, in a memory 445, are utilized with time T in a calculating element 447 to generate the times Tθ1 for angles θ1 and θ2. An integrating element 449 is utilized to determine the pressures at the crank angle times by integrating the rate values from the time Tθ1 to the Tθ2 directly to output the signal P(Tθ1)-P(Tθ2) to the calculating means 450. Calculating means 450 determines the estimated engine torque value [T] from this data.
    TABLE 4
    R = 60 × θ T 360 × T 1 = θT 1 60 T 1
    Figure US20020007670A1-20020124-M00008
    T = 360 θT 1 T 1
    Figure US20020007670A1-20020124-M00009
  • As previously noted, because the ignition timing is controlled relative to the engine speed R, it is shown in Table 1 that the crank angles for the detecting pressures, or the detecting times, may be chosen by the [0066] CPU 42 based upon the engine speed R, and at a low engine speed both of the times or angles may be delayed, while at a high engine speed they may be advanced. As shown in Table 1, θx α, β, and γ are all constant values. The detecting crank angles may be changed as shown in FIG. 9 and Table 5 set out below and reproduced in FIG. 16. If a second detecting crank angle θ2 is biased by a delta value (Δθ), the first detecting crank angle would then be advanced by a value equal to a constant C multiplied by this delta value, where C is a value less than one.
    TABLE 5
    θ 2 - θ 2 1 = Δ θ θ 1 - θ 1 1 = C · Δ θ θ 2 11 - θ 2 = Δ θ 1 θ 1 - θ 1 1 = C 1 · Δ θ 1 C < 1 C 1 < 1
    Figure US20020007670A1-20020124-M00010
  • Similarly, as shown in FIG. 10 and Table 6, shown below and in FIG. 17 the detecting times may be changed. A calculating program may choose T[0067] θ′2 or Tθ″2 (which is predetermined) instead of Tθ2 as a second detecting time. In this case, Tθ′1 must be used as the first detecting time.
    TABLE 6
    T θ 2 - T θ . 2 = ΔTθ T θ 1 - T θ . 1 = C · ΔT θ C < 1 T θ ¨ 2 - T θ 2 = ΔTθ 1 T θ 1 - T θ . 1 = C . · ΔT θ 1 C . < 1
    Figure US20020007670A1-20020124-M00011
  • The preferred and alternate embodiments previously described demonstrate that the use of one or two crank angle sensors yields several possibilities for the generation of an engine torque value. It has also been indicated that the crank angle sensor, in addition to providing a signal indicative of crank angle, can be utilized to provide an indication of accurate instantaneous engine shaft speed. Although in the illustrated embodiments this has been done with one sensor, it is to be understood that a number of such sensors may be positioned at spaced intervals around the shaft so as to measure instantaneous shaft speeds at desired shaft angles. Various other changes and modifications may be made from the embodiments presented herein without departure from the spirit and scope of the invention, as defined by the appended claims. [0068]

Claims (8)

What is claimed is:
1. The method of measuring instantaneous engine speed for a portion of rotation of an output shaft of an engine comprising a shaft driven by the engine and an associated fixed component of the engine juxtaposed to a portion of the shaft, a permanent magnet fixed to one of the shaft and the component and an electrical coil fixed to the other of the shaft and the component and adapted to output a pulse upon passage of the coil and the permanent magnet upon rotation of the shaft for indicating the angular position of the shaft, said method comprising the steps of determining the shaft angle when the maximum positive pulse is generated by the coil, determining the shaft angle when the maximum negative pulse is generated by the coil, and measuring the time interval between the maximum positive and negative pulses to determine instantaneous shaft rotational speed.
2. A method of measuring instantaneous engine speed as in claim 1, wherein the engine is a four-cycle engine.
3. A method of measuring instantaneous engine speed as in claim 2, wherein the shaft comprises a cam shaft driven by the engine crankshaft and rotating at one-half crankshaft speed.
4. A method of measuring instantaneous engine speed as in claim 3, wherein the coil and permanent magnet are disposed to provide an indication of top dead center.
5. A method of measuring instantaneous engine speed as in claim 4, further comprising determining the actual shaft angle from the output pulse and summing the output pulses for a given time period to determine average shaft rotational speed.
6. A method of sensing both absolute pressure in an engine combustion chamber and its instantaneous change of pressure comprising a piezoelectric device adapted to be exposed to combustion chamber pressure and outputting a first electrical signal indicative of the change in pressure in the combustion chamber, and an amplifier circuit receiving the first electrical signal and transforming the first electrical signal into a second electrical signal indicative of the pressure in the combustion chamber, said method comprising the step of selecting which of said electrical signals is read to provide either a change in pressure signal or an absolute pressure signal.
7. A method of sensing both absolute pressure in an engine combustion chamber and its instantaneous change of pressure as in claim 6, wherein the method further comprises summing the first electrical signals for a given time period to determine engine torque.
8. A method of sensing both absolute pressure in an engine combustion chamber and its instantaneous change of pressure as in claim 7, wherein the time period is selected to begin at the time when the change in pressure is at a maximum and end the summing when the change in pressure is zero.
US09/932,751 1993-03-08 2001-08-17 Engine torque-detecting method and an apparatus therefore Abandoned US20020007670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/932,751 US20020007670A1 (en) 1993-03-08 2001-08-17 Engine torque-detecting method and an apparatus therefore

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5-70715 1993-03-08
JP7071593 1993-03-08
US20727394A 1994-03-07 1994-03-07
US08/833,767 US6332352B1 (en) 1993-03-08 1997-04-09 Engine torque-detecting method and an apparatus therefor
US09/932,751 US20020007670A1 (en) 1993-03-08 2001-08-17 Engine torque-detecting method and an apparatus therefore

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/833,767 Division US6332352B1 (en) 1993-03-08 1997-04-09 Engine torque-detecting method and an apparatus therefor

Publications (1)

Publication Number Publication Date
US20020007670A1 true US20020007670A1 (en) 2002-01-24

Family

ID=13439548

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/833,767 Expired - Lifetime US6332352B1 (en) 1993-03-08 1997-04-09 Engine torque-detecting method and an apparatus therefor
US09/932,751 Abandoned US20020007670A1 (en) 1993-03-08 2001-08-17 Engine torque-detecting method and an apparatus therefore

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/833,767 Expired - Lifetime US6332352B1 (en) 1993-03-08 1997-04-09 Engine torque-detecting method and an apparatus therefor

Country Status (2)

Country Link
US (2) US6332352B1 (en)
EP (1) EP0615117A3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100031924A1 (en) * 2008-08-07 2010-02-11 Ruonan Sun Method and system of transient control for homogeneous charge compression ignition (HCCI) engines
US20110130942A1 (en) * 2008-07-31 2011-06-02 Fuchino Co., Ltd. Device and method for measuring engine torque and control program
US8166951B2 (en) * 2006-05-11 2012-05-01 Yanmar Co., Ltd. Engine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167755B1 (en) 1993-12-14 2001-01-02 Robert Bosch Gmbh Device for determining load in an internal combustion engine
IT1305390B1 (en) * 1998-09-10 2001-05-04 Magneti Marelli Spa METHOD FOR DETERMINING THE PERFORMANCE OF THE TORQUE LOAD IN AN ENDOTHERMAL ENGINE
US7249588B2 (en) * 1999-10-18 2007-07-31 Ford Global Technologies, Llc Speed control method
JP2001186794A (en) * 1999-12-27 2001-07-06 Kaneo Takaku High-accuracy instantaneous produced torque detector for three-phase alternating-current motor
GB0227672D0 (en) * 2002-11-27 2003-01-08 Ricardo Consulting Eng Improved engine management
CA2525020C (en) * 2004-11-09 2011-12-20 Honda Motor Co., Ltd. A combustion state detecting apparatus for an engine
US7047125B1 (en) 2005-02-25 2006-05-16 Caterpillar Inc. Internal combustion engine performance calibration systems
US7201044B1 (en) * 2005-09-27 2007-04-10 Honeywell International, Inc. Torque sensor integrated with engine components
US8851884B2 (en) * 2008-10-02 2014-10-07 Coprecitec, S.L. Control system for the ignition of a gas burner
US8882492B2 (en) * 2008-10-02 2014-11-11 Coprecitec, S.L. Control systems for the ignition of a gas burner
US8352149B2 (en) * 2008-10-02 2013-01-08 Honeywell International Inc. System and method for providing gas turbine engine output torque sensor validation and sensor backup using a speed sensor
FR2944464B1 (en) * 2009-04-17 2011-04-08 Renault Georges Ets METHOD FOR AUTOMATICALLY ADAPTING THE SPINDLE OF A TOOL OF SUCCESSIVE PALLETS TOOL AND CORRESPONDING TOOLS.
CN102507083B (en) * 2011-09-30 2014-02-26 中国海洋大学 Pulsating drag force determination method of wake flow riser
JP2018071368A (en) * 2016-10-25 2018-05-10 スズキ株式会社 Engine control device and engine control method
JP7366827B2 (en) * 2020-03-31 2023-10-23 本田技研工業株式会社 Detection device and control device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444730A (en) * 1964-12-02 1969-05-20 Dresser Ind Method and apparatus for indicating and controlling the torque on an internal combustion engine
US3978718A (en) * 1973-07-30 1976-09-07 Schorsch Ronald W Electronic dynamometer
JPS5757235A (en) * 1980-09-24 1982-04-06 Toyota Motor Corp Measuring method for friction torque of engine
US4633707A (en) * 1982-09-13 1987-01-06 Jodon Engineering Associates, Inc. Method and apparatus for measuring engine compression ratio, clearance volume and related cylinder parameters
US4567755A (en) * 1983-03-03 1986-02-04 Nippon Soken, Inc. Ignition/misfire detector for an internal combustion engine
US4539841A (en) * 1984-02-13 1985-09-10 General Motors Corporation Method of determining engine cylinder compression pressure and power output
EP0199431A3 (en) * 1985-02-22 1988-08-31 Wayne State University Instantaneous friction indicator for reciprocating internal combustion engines and method for calculating instantaneous friction
US4691288A (en) * 1985-03-18 1987-09-01 United Technologies Corporation Torque sensor for internal-combustion engine
JPS6212827A (en) * 1985-07-10 1987-01-21 Hitachi Ltd Detector for combustion pressure of engine
JPS635231A (en) * 1986-06-25 1988-01-11 Honda Motor Co Ltd Method for detecting pressure maximum angle in cylinder of internal combustion engine
JPS639679A (en) * 1986-06-28 1988-01-16 Honda Motor Co Ltd Control of ignition timing of internal combustion engine
US4892075A (en) * 1987-11-02 1990-01-09 Nissan Motor Co., Ltd. Crank angle detecting system for internal combustion engines
DE3743066A1 (en) * 1987-12-18 1989-06-29 Asea Brown Boveri METHOD FOR DETERMINING THE MEDIUM ACTION TORQUE OF AN INTERNAL COMBUSTION ENGINE
US4843870A (en) * 1988-07-25 1989-07-04 Purdue Research Foundation Cylinder-by-cylinder engine pressure and pressure torque waveform determination utilizing crankshaft speed fluctuations
JP2611502B2 (en) * 1990-06-13 1997-05-21 三菱電機株式会社 Misfire detection device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8166951B2 (en) * 2006-05-11 2012-05-01 Yanmar Co., Ltd. Engine
US20110130942A1 (en) * 2008-07-31 2011-06-02 Fuchino Co., Ltd. Device and method for measuring engine torque and control program
US8695408B2 (en) * 2008-07-31 2014-04-15 Fuchino Co., Ltd. Device and method for measuring engine torque and control program
US20100031924A1 (en) * 2008-08-07 2010-02-11 Ruonan Sun Method and system of transient control for homogeneous charge compression ignition (HCCI) engines
US8055432B2 (en) * 2008-08-07 2011-11-08 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Method and system of transient control for homogeneous charge compression ignition (HCCI) engines

Also Published As

Publication number Publication date
EP0615117A3 (en) 1995-01-11
EP0615117A2 (en) 1994-09-14
US6332352B1 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US6332352B1 (en) Engine torque-detecting method and an apparatus therefor
US7269495B2 (en) Engine output calculation method and engine output calculation apparatus
US5715794A (en) Engine control system and method
US6276319B2 (en) Method for evaluating the march of pressure in a combustion chamber
US6560526B1 (en) Onboard misfire, partial-burn detection and spark-retard control using cylinder pressure sensing
US6876919B2 (en) Cylinder specific performance parameter computed for an internal combustion engine
US6167755B1 (en) Device for determining load in an internal combustion engine
EP0454191B1 (en) Method and apparatus for determining air mass in a combustion chamber of a two-stroke engine
US6557526B1 (en) Setting minimum spark advance for best torque in an internal combustion engine
JPH0623666B2 (en) Engine exhaust back pressure measuring method and measuring apparatus
US4958516A (en) Method and means for determining air mass in a crankcase scavenged two-stroke engine
US6196197B1 (en) Engine control apparatus and method having cylinder-charged air quantity correction by intake/exhaust valve operation
EP0408180B1 (en) Method and apparatus for determining air mass in a crankcase scavenged two-stroke engine
EP1437498B1 (en) 4&amp;minus;STROKE ENGINE CONTROL DEVICE AND CONTROL METHOD
US7657359B2 (en) Apparatus and method for calculating work load of engine
JPH02196153A (en) Ignition timing controller for engine
CA2017523C (en) Method and means for determining air mass in a crankcase scavenged two-stroke engine
CN102549252B (en) Control device for internal combustion engine
US4987773A (en) Method and means for determining air mass in a crankcase scavenged two-stroke engine
US5427069A (en) Apparatus and method for fuel injection timing control of an internal combustion engine
JP4115677B2 (en) Atmospheric pressure detection device for internal combustion engine
US6912997B2 (en) Method and arrangement for determining a fuel wall film mass
JPH025745A (en) Device for method for calculating intake air quantity of engine
JPH0320597B2 (en)
JP3078008B2 (en) Engine fuel control device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION