US20020006861A1 - Hafnium transition metal catalyst compounds and catalyst systems - Google Patents

Hafnium transition metal catalyst compounds and catalyst systems Download PDF

Info

Publication number
US20020006861A1
US20020006861A1 US09/931,351 US93135101A US2002006861A1 US 20020006861 A1 US20020006861 A1 US 20020006861A1 US 93135101 A US93135101 A US 93135101A US 2002006861 A1 US2002006861 A1 US 2002006861A1
Authority
US
United States
Prior art keywords
group
catalyst
hydrogen
cyclic
catalyst system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/931,351
Inventor
David McConville
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/931,351 priority Critical patent/US20020006861A1/en
Publication of US20020006861A1 publication Critical patent/US20020006861A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Definitions

  • the present invention relates to a Group 15 containing hafnium transition metal catalyst compound, a catalysts system thereof and its use in the polymerization of olefin(s).
  • Clark et al. “Titanium (IV) complexes incorporating the aminodiamide ligand [(SiMe 3 )N ⁇ CH 2 CH 2 N (SiMe 3 ) ⁇ 2 ] 2 ⁇ (L); the X-ray crystal structure of TiMe 2 (L)] and TiCl ⁇ CH(SiMe 3 ) 2 ⁇ (L)]”, Journal of Organometallic Chemistry, Vol 50, pp. 333-340, 1995; (8) Scollard et al., “Living Polymerization of alpha-olefins by Chelating Diamide Complexes of Titanium”, J. Am. Chem. Soc., Vol 118, No. 41, pp.
  • U.S. Pat. No. 5,576,460 describes a preparation of arylamine ligands and U.S. Pat. No. 5,889,128 discloses a process for the living polymerization of olefins using initiators having a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms.
  • EP 893 454 Al also describes preferably titanium transition metal amide compounds.
  • U.S. Pat. No. 5,318,935 discusses amido transition metal compounds and catalyst systems especially for the producing isotactic polypropylene. Polymerization catalysts containing bidentate and tridentate ligands are further discussed in U.S. Pat. No. 5,506,184.
  • This invention provides for an improved catalyst compound, a catalyst system and for its use in a polymerizing process.
  • the invention is directed to a Group 15 containing hafnium catalyst compound, a catalyst system including the Group 15 containing catalyst compound and to their use in the polymerization of olefin(s).
  • the invention is directed to a Group 15 containing bidentate or tridentate ligated hafnium transition metal catalyst compound, a catalyst system including the bidentate or tridentate ligated hafnium metal catalyst compound and to their use in the polymerization of olefin(s).
  • the invention is directed to a catalyst compound having a hafnium transition metal bound to at least one leaving group and also bound to at least two Group 15 atoms, at least one of which is also bound to a Group 15 or 16 atom through another group, a catalyst system of this hafnium transition metal compound and to their use in the polymerization of olefin(s).
  • the invention is directed to a method for supporting the multidentate hafnium based catalysts system, and to the supported catalyst system itself.
  • the invention is directed to a process for polymerizing olefin(s), particularly in a gas phase or slurry phase process, utilizing any one of the catalyst systems or supports catalyst systems discussed above.
  • hafnium based Group 15 containing catalyst compounds exhibit much higher catalyst productivity as compared to their zirconium or titanium analogs.
  • these Group 15 containing hafnium catalyst compounds of the invention provide for an improved supported catalysts system, particularly for use in slurry phase or gas phase polymerizations. It is well known in the art that supporting catalyst compounds typically results in a lowering of the overall catalyst productivity. This in fact is the case with the zirconium analogs of the Group 15 containing hafnium compounds of the invention.
  • the zirconium analogs are not well suited to being supported.
  • these catalysts compounds are supportable and retain commercially useful productivities.
  • the hafnium based catalyst compounds of the invention are Group 15 bidentate or tridentate ligated hafnium transition metal compound, the preferred Group 15 elements are nitrogen and/or phosphorous, most preferably nitrogen.
  • the Group 15 containing hafnium catalyst compounds of the invention generally include a hafnium metal atom bound to at least one leaving group and also bound to at least two Group 15 atoms, at least one of which is also bound to a Group 15 or 16 atom through another group.
  • At least one of the Group 15 atoms is also bound to a Group 15 or 16 atom through another group, which may be a hydrocarbon group, preferably a hydrocarbon group having 1 to 20 carbon atoms, a heteroatom containing group, preferably silicon, germanium, tin, lead, or phosphorus.
  • a Group 15 or 16 atom be bound to nothing or a hydrogen, a Group 14 atom containing group, a halogen, or a heteroatom containing group.
  • each of the two Group 15 atoms are also bound to a cyclic group that may optionally be bound to hydrogen, a halogen, a heteroatom or a hydrocarbyl group, or a heteroatom containing group.
  • the Group 15 containing hafnium compound of the invention is represented by the formulae:
  • M is hafnium; each X is independently a leaving group, preferably, an anionic leaving group, and more preferably hydrogen, a hydrocarbyl group, a heteroatom or a halogen, and most preferably an alkyl;
  • y is 0 or 1 (when y is 0 group L′ is absent);
  • n is the oxidation state of M, preferably +2, +3 or +4, and more preferably +4;
  • m is the formal charge of the YZL or the YZL′ ligand, preferably 0, ⁇ 1, ⁇ 2 or ⁇ 3, and more preferably ⁇ 2;
  • L is a Group 15 or 16 element, preferably nitrogen
  • L′ is a Group 15 or 16 element or Group 14 containing group, preferably carbon, silicon or germanium;
  • Y is a Group 15 element, preferably nitrogen or phosphorus, and more preferably nitrogen;
  • Z is a Group 15 element, preferably nitrogen or phosphorus, and more preferably nitrogen;
  • R 1 and R 2 are independently a C 1 to C 20 hydrocarbon group, a heteroatom containing group having up to twenty carbon atoms, silicon, germanium, tin, lead, or phosphorus, preferably a C 2 to C 20 alkyl, aryl or arylalkyl group, more preferably a linear, branched or cyclic C 2 to C 20 alkyl group, most preferably a C 2 to C 6 hydrocarbon group;
  • R 3 is absent or a hydrocarbon group, hydrogen, a halogen, a heteroatom containing group, preferably a linear, cyclic or branched alkyl group having 1 to 20 carbon atoms, more preferably R 3 is absent, hydrogen or an alkyl group, and most preferably hydrogen;
  • R 4 and R 5 are independently an alkyl group, an aryl group, substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, a cyclic arylalkyl group, a substituted cyclic arylalkyl group or multiple ring system, preferably having up to 20 carbon atoms, more preferably between 3 and 10 carbon atoms, and even more preferably a C 1 to C 20 hydrocarbon group, a C 1 to C 20 aryl group or a C 1 to C 20 arylalkyl group, or a heteroatom containing group, for example PR 3 , where R is an alkyl group;
  • R 1 and R 2 may be interconnected to each other, and/or R 4 and R 5 may be interconnected to each other;
  • R 6 and R 7 are independently absent, or hydrogen, an alkyl group, halogen, heteroatom or a hydrocarbyl group, preferably a linear, cyclic or branched alkyl group having 1 to 20 carbon atoms, more preferably absent; and
  • R* is absent, or is hydrogen, a Group 14 atom containing group, a halogen, a heteroatom containing group.
  • Formal charge of the YZL or YZL′ ligand it is meant the charge of the entire ligand absent the metal and the leaving groups X.
  • R 1 and R 2 may also be interconnected” it is meant that R 1 and R 2 may be directly bound to each other or may be bound to each other through other groups.
  • R 4 and R 5 may also be interconnected” it is meant that R 4 and R 5 may be directly bound to each other or may be bound to each other through other groups.
  • An alkyl group may be a linear, branched alkyl radicals, or alkenyl radicals, alkynyl radicals, cycloalkyl radicals or aryl radicals, acyl radicals, aroyl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl-or dialkyl-carbamoyl radicals, acyloxy radicals, acylamino radicals, aroylamino radicals, straight, branched or cyclic, alkylene radicals, or combination thereof.
  • An arylalkyl group is defined to be a substituted aryl group.
  • R 4 and R 5 are independently a group represented by the following formula:
  • R 8 to R 12 are each independently hydrogen, a C 1 to C 40 alkyl group, a halide, a heteroatom, a heteroatom containing group containing up to 40 carbon atoms, preferably a C 1 to C 20 linear or branched alkyl group, preferably a methyl, ethyl, propyl or butyl group, any two R groups may form a cyclic group and/or a heterocyclic group.
  • the cyclic groups may be aromatic.
  • R 9 , R 10 and R 12 are independently a methyl, ethyl, propyl or butyl group (including all isomers), in a preferred embodiment R 9 , R 10 and R 12 are methyl groups, and R 8 and R 11 are hydrogen.
  • R 4 and R 5 are both a group represented by the following formula:
  • M is hafnium; each of L, Y, and Z is nitrogen; each of R 1 and R 2 is a hydrocarbyl group, preferably —CH 2 —CH 2 —; R 3 is hydrogen; and R 6 and R 7 are absent.
  • the Group 15 containing metal compound is represented by the formula:
  • Ph phenyl
  • the Group 15 containing hafnium catalyst compounds of the invention are prepared by methods known in the art, such as those disclosed in EP 0 893 454 A1, U.S. Pat. No. 5,889,128 and the references cited in U.S. Pat. No. 5,889,128 which are all herein incorporated by reference.
  • U.S. application Ser. No. 09/312,878, filed May 17, 1999 discloses a gas or slurry phase polymerization process using a supported bisamide catalyst, which is also incorporated herein by reference.
  • a preferred direct synthesis of these compounds comprises reacting the neutral ligand, (see for example YZL or YZL′ of Formula I or II) with HfX n , n is the oxidation state of Hf, each X is an anionic group, such as halide, in a non-coordinating or weakly coordinating solvent, such as ether, toluene, xylene, benzene, methylene chloride, and/or hexane or other solvent having a boiling point above 60° C., at about 20° C. to about 150° C. (preferably 20° C.
  • magnesium salts are removed by filtration, and the metal complex isolated by standard techniques.
  • the Group 15 containing hafnium catalyst compound is prepared by a method comprising reacting a neutral ligand, (see for example YZL or YZL′ of formula 1 or 2) with a compound represented by the formula HfX n (where n is the oxidation state of Hf, each X is an anionic leaving group) in a non-coordinating or weakly coordinating solvent, at about 20° C. or above, preferably at about 20° C. to about 100° C., then treating the mixture with an excess of an alkylating agent, then recovering the metal complex.
  • a neutral ligand see for example YZL or YZL′ of formula 1 or 2
  • HfX n where n is the oxidation state of Hf, each X is an anionic leaving group
  • the solvent has a boiling point above 60° C., such as toluene, xylene, benzene, and/or hexane.
  • the solvent comprises ether and/or methylene chloride, either being preferable.
  • the above described Group 15 containing hafnium catalyst compounds are typically activated in various ways to yield catalyst compounds having a vacant coordination site that will coordinate, insert, and polymerize olefin(s).
  • activator is defined to be any compound or component or method which can activate any of the Group 15 containing bidentate or tridentate ligated haffium catalyst compounds of the invention as described above.
  • Non-limiting activators for example may include a Lewis acid or a non-coordinating ionic activator or ionizing activator or any other compound including Lewis bases, aluminum alkyls, conventional-type cocatalysts and combinations thereof that can convert a neutral Group 15 containing hafiiium catalyst compound to a catalytically active Group 15 containing hafnium cation.
  • alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronaphtyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983) or combination thereof, that would ionize the neutral catalyst compound.
  • ionizing activators neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronaphtyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983) or combination thereof, that would
  • an activation method using ionizing ionic compounds not containing an active proton but capable of producing both a catalyst cation and a non-coordinating anion are also contemplated, and are described in EP-A-0 426 637, EP-A-0 573 403 and U.S. Pat. No. 5,387,568, which are all herein incorporated by reference.
  • Organoaluminum compounds as activators include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum and the like.
  • Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion of the ionizing compound.
  • Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-B1-0 500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Pat. Nos. 5,153,157, 5,198,401, 5,066,741, 5,206,197, 5,241,025, 5,384,299 and 5,502,124 and U.S. patent application Ser. No. 08/285,380, filed Aug. 3, 1994, all of which are herein fully incorporated by reference.
  • activators include those described in PCT publication WO 98/07515 such as tris (2, 2′, 2′′- nonafluorobiphenyl) fluoroaluminate, which publication is fully incorporated herein by reference.
  • Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, EP-B1 0 573 120, PCT publications WO 94/07928 and WO 95/14044 and U.S. Pat. Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference.
  • WO 98/09996 incorporated herein by reference describes activating catalyst compounds with perchlorates, periodates and iodates including their hydrates.
  • WO 98/30602 and WO 98/30603 incorporated by reference describe the use of lithium (2, 2′-bisphenyl-ditrimethylsilicate)•4THF as an activator for a catalyst compound.
  • WO 99/18135 incorporated herein by reference describes the use of organo-boron-aluminum activators.
  • EP-B1-0 781 299 describes using a silylium salt in combination with a non-coordinating compatible anion.
  • activation such as using radiation (see EP-B 1-0 615 981 herein incorporated by reference), electro-chemical oxidation, and the like are also contemplated as activating methods for the purposes of rendering the neutral catalyst compound or precursor to a catalyst cation capable of polymerizing olefins.
  • Other activators or methods for activating a catalyst compound are described in for example, U.S. Pat. Nos. 5,849,852, 5,859,653 and 5,869,723 and WO 98/32775, WO 99/42467 (dioctadecylmethylawhionium-bis(tris(pentafluorophenyl)borane)benzimidazolide), which are herein incorporated by reference.
  • the invention provides for one or more Group 15 containing hafnium catalyst compounds used in combination with one or more activators discussed above.
  • the above described Group 15 containing hafnium catalyst compounds and catalyst systems may be combined with one or more support materials or carriers using one of the support methods well known in the art or as described below.
  • a Group 15 containing hafnium catalyst compound or catalyst system is in a supported form, for example deposited on, contacted with, vaporized with, bonded to, or incorporated within, adsorbed or absorbed in, or on, a support or carrier.
  • support or “carrier” are used interchangeably and are any support material, preferably a porous support material, including inorganic or organic support materials.
  • inorganic support materials include inorganic oxides and inorganic chlorides.
  • Other carriers include resinous support materials such as polystyrene, functionalized or crosslinked organic supports, such as polystyrene divinyl benzene polyolefins or polymeric compounds or any other organic or inorganic support material and the like, or mixtures thereof.
  • the preferred carriers are inorganic oxides that include those Group 2, 3, 4, 5, 13 or 14 metal oxides.
  • the preferred supports include silica, alumina, silica-alumina, and mixtures thereof.
  • Other useful supports include magnesia, titania, zirconia, magnesium chloride, montmorillonite (EP-B1 0 511 665), phyllosilicate, zeolites, talc, clays and the like.
  • combinations of these support materials may be used, for example, silica-chromium, silica-alumina, silica-titania and the like.
  • Additional support materials may include those porous acrylic polymers described in EP 0 767 184 B 1, which is incorporated herein by reference.
  • the carrier most preferably an inorganic oxide, has a surface area in the range of from about 10 to about 100 m 2 /g, pore volume in the range of from about 0.1 to about 4.0 cc/g and average particle size in the range of from about 5 to about 500 ⁇ m. More preferably, the surface area of the carrier is in the range of from about 50 to about 500 m 2 /g, pore volume of from about 0.5 to about 3.5 cc/g and average particle size of from about 10 to about 200 ⁇ m.
  • the surface area of the carrier is in the range is from about 100 to about 400 m 2 /g, pore volume from about 0.8 to about 5.0 cc/g and average particle size is from about 5 to about 100 ⁇ m.
  • the average pore size of the carrier of the invention typically has pore size in the range of from 10 to 1000 ⁇ , preferably 50 to about 500 ⁇ , and most preferably 75 to about 450 ⁇ .
  • the Group 15 containing hafnium catalyst compounds of the invention may contain a polymer bound ligand as described in U.S. Pat. Nos. 5,473,202 and 5,770,755, which is herein fully incorporated by reference; the Group 15 containing haffiium catalyst compounds of the invention may be spray dried as described in U.S. Pat. No.
  • the invention provides for a Group 15 containing hafnium catalyst system that includes an antistatic agent or surface modifier that is used in the preparation of the supported catalyst system as described in PCT publication WO 96/11960, which is herein fully incorporated by reference.
  • the catalyst systems of the invention can be prepared in the presence of an olefin, for example hexene-1.
  • the Group 15 containing hafnium catalyst system can be combined with a carboxylic acid salt of a metal ester, for example aluminum carboxylates such as aluminum mono, di- and tri- stearates, aluminum octoates, oleates and cyclohexylbutyrates, as described in U.S. application Ser. No. 09/113,216, filed Jul. 10, 1998.
  • a carboxylic acid salt of a metal ester for example aluminum carboxylates such as aluminum mono, di- and tri- stearates, aluminum octoates, oleates and cyclohexylbutyrates, as described in U.S. application Ser. No. 09/113,216, filed Jul. 10, 1998.
  • a preferred method for producing a supported Group 15 containing hafrijum catalyst system is described below and is described in U.S. application Ser. Nos. 265,533, filed Jun. 24, 1994 and 265,532, filed Jun. 24, 1994 and PCT publications WO 96/00245 and WO 96/00243 both published Jan. 4, 1996, all of which are herein fully incorporated by reference.
  • the Group 15 containing hafnium catalyst compound is slurried in a liquid to form a solution and a separate solution is formed containing an activator and a liquid.
  • the liquid may be any compatible solvent or other liquid capable of forming a solution or the like with the Group 15 containing hafnium catalyst compounds and/or activator of the invention.
  • the liquid is a cyclic aliphatic or aromatic hydrocarbon, most preferably toluene.
  • the Group 15 containing haffium catalyst compounds and activator solutions are mixed together and added to a porous support such that the total volume of Group 15 containing hafnium catalyst compound solution and the activator solution or the Group 15 containing hafnium catalyst compound solution and activator solution is less than four times the pore volume of the porous support, more preferably less than three times, even more preferably less than two times; preferred ranges being from 1.1 times to 3.5 times range and most preferably in the 1.2 to 3 times range.
  • the mole ratio of the metal of the activator component to the metal of the supported Group 15 containing hafnium catalyst compound are in the range of between 0.3:1 to 1000:1, preferably 20:1 to 800:1, and most preferably 50:1 to 500:1.
  • the activator is an ionizing activator such as those based on the anion tetrakis(pentafluorophenyl) boron
  • the mole ratio of the metal of the activator component to the metal component of the Group 15 containing haffium catalyst compound is preferably in the range of between 0.3:1 to 3:1.
  • olefin(s), preferably C 2 to C 30 olefin(s) or alpha-olefin(s), preferably ethylene or propylene or combinations thereof are prepolymerized in the presence of a supported Group 15 containing hafnium catalyst system of the invention prior to the main polymerization.
  • the prepolymerization can be carried out batchwise or continuously in gas, solution or slurry phase including at elevated pressures.
  • the prepolymerization can take place with any olefin monomer or combination and/or in the presence of any molecular weight controlling agent such as hydrogen.
  • any molecular weight controlling agent such as hydrogen.
  • the catalyst systems, supported catalyst systems or compositions of the invention described above are suitable for use in any prepolymerization and/or polymerization process over a wide range of temperatures and pressures.
  • the temperatures may be in the range of from ⁇ 60° C. to about 280° C., preferably from 50° C. to about 200° C.
  • the pressures employed may be in the range from 1 atmosphere to about 500 atmospheres or higher.
  • Polymerization processes include solution, gas phase, slurry phase and a high pressure process or a combination thereof. Particularly preferred is a gas phase or slurry phase polymerization of one or more olefins at least one of which is ethylene or propylene.
  • the process of this invention is directed toward a solution, high pressure, slurry or gas phase polymerization process of one or more olefin monomers having from 2 to 30 carbon atoms, preferably 2 tol2 carbon atoms, and more preferably 2 to 8 carbon atoms.
  • the invention is particularly well suited to the polymerization of two or more olefin monomers of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene-1 and decene-1.
  • Other monomers useful in the process of the invention include ethylenically unsaturated monomers, diolefins having 4 to 18 carbon atoms, conjugated or nonconjugated dienes, polyenes, vinyl monomers and cyclic olefins.
  • Non-limiting monomers useful in the invention may include norbornene, norbornadiene, isobutylene, isoprene, vinylbenzocyclobutane, styrenes, alkyl substituted styrene, ethylidene norbornene, dicyclopentadiene and cyclopentene.
  • a copolymer of ethylene is produced, where with ethylene, a comonomer having at least one alpha-olefin having from 4 to 15 carbon atoms, preferably from 4 to 12 carbon atoms, and most preferably from 4 to 8 carbon, atoms, is polymerized in a gas phase process.
  • ethylene or propylene is polymerized with at least two different comonomers, optionally one of which may be a diene, to form a terpolymer.
  • the invention is directed to a polymerization process, particularly a gas phase or slurry phase process, for polymerizing propylene alone or with one or more other monomers including ethylene, and/or other olefins having from 4 to 12 carbon atoms.
  • a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor.
  • a gas fluidized bed process for producing polymers a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer.
  • the reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 2 50 psig (1724 kPa) to about 350 psig (2414 kPa).
  • the reactor temperature in a gas phase process may vary from about 30° C. to about 120° C., preferably from about 60° C. to about 1 15° C., more preferably in the range of from about 70° C. to 110° C., and most preferably in the range of from about 70° C. to about 95° C.
  • gas phase processes contemplated by the process of the invention include series or multistage polymerization processes. Also gas phase processes contemplated by the invention include those described in U.S. Pat. Nos. 5,627,242, 5,665,818 and 5,677,375, and European publications EP-A-0 794 200 EP-Bl-0 649 992, EP-A-0 802 202 and EP-B-634 421 all of which are herein fully incorporated by reference.
  • the reactor utilized in the present invention is capable and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr).
  • a slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0° C. to about 120° C.
  • a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers and often hydrogen along with catalyst are added.
  • the suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor.
  • the liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane.
  • the medium employed should be liquid under the conditions of polymerization and relatively inert.
  • a propane medium When used the process must be operated above the reaction diluent critical temperature and pressure.
  • a hexane or an isobutane medium is employed.
  • a preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
  • a particle form polymerization or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
  • Such technique is well known in the art, and described in for instance U.S. Pat. No. 3,248,179 which is fully incorporated herein by reference.
  • Other slurry processes include those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof.
  • Non-limiting examples of slurry processes include continuous loop or stirred tank processes.
  • other examples of slurry processes are described in U.S. Pat. No. 4,613,484, which is herein fully incorporated by reference.
  • the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr).
  • the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).
  • a preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the presence of Group 15 containing hafnium catalyst system of the invention and in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
  • any scavengers such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
  • the method of the invention provides for injecting an unsupported Group 15 containing hafnium catalyst system into a reactor, particularly a gas phase reactor.
  • the Group 15 containing hafnium polymerization catalyst is used in the unsupported form, preferably in a liquid form such as described in U.S. Pat. Nos. 5,317,036 and 5,693,727 and European publication EP-A-0 593 083, all of which are herein incorporated by reference.
  • the polymerization catalyst in liquid form can be fed with an activator together or separately to a reactor using the injection methods described in PCT publication WO 97/46599, which is fully incorporated herein by reference.
  • the mole ratio of the metal of the activator component to the metal of the Group 15 containing hafnium catalyst compound is in the range of between 0.3:1 to 10,000:1, preferably 100:1 to 5000:1, and most preferably 500:1 to 2000:1.
  • the polymers produced by the process of the invention can be used in a wide variety of products and end-use applications.
  • the polymers produced by the process of the invention include linear low density polyethylene, elastomers, plastomers, high density polyethylenes, medium density polyethylenes, low density polyethylenes, polypropylene and polypropylene copolymers.
  • the polymers typically ethylene based polymers, have a density in the range of from 0.86 g/cc to 0.97 g/cc, preferably in the range of from 0.88 g/cc to 0.965 g/cc, more preferably in the range of from 0.900 g/cc to 0.96 g/cc, even more preferably in the range of from 0.905 g/cc to 0.95 g/cc, yet even more preferably in the range from 0.910 g/cc to 0.940 g/cc, and most preferably greater than 0.915 g/cc, preferably greater than 0.920 g/cc, and most preferably greater than 0.925 g/cc. Density is measured in accordance with ASTM-D-1238.
  • the polymers produced by the process of the invention typically have a molecular weight distribution, a weight average molecular weight to number average molecular weight (M w /M n ) of greater than 1.5 to about 15, particularly greater than 2 to about 10, more preferably greater than about 2.2 to less than about 8, and most preferably from 2.5 to 8.
  • M w /M n weight average molecular weight to number average molecular weight
  • the polymers of the invention typically have a narrow composition distribution as measured by Composition Distribution Breadth Index (CDBI). Further details of determining the CDBI of a copolymer are known to those skilled in the art. See, for example, PCT Patent Application WO 93/03093, published Feb. 18, 1993, which is fully incorporated herein by reference.
  • CDBI Composition Distribution Breadth Index
  • the polymers of the invention in one embodiment have CDBI's generally in the range of greater than 50% to 100%, preferably 99%, preferably in the range of 55% to 85%, and more preferably 60% to 80%, even more preferably greater than 60%, still even more preferably greater than 65%.
  • polymers produced using a catalyst system of the invention have a CDBI less than 50%, more preferably less than 40%, and most preferably less than 30%.
  • the polymers of the present invention in one embodiment have a melt index (MI) or (I 2 ) as measured by ASTM-D-1238-E in the range from no measurable flow to 1000 dg/min, more preferably from about 0.01 dg/min to about 100 dg/min, even more preferably from about 0.1 dg/min to about 50 dg/min, and most preferably from about 0.1 dg/min to about 10 dg/min.
  • MI melt index
  • I 2 melt index
  • the polymers of the invention in an embodiment have a melt index ratio (I 21 /I 2 ) ( 21 is measured by ASTM-D-1238-F) of from 10 to less than 25, more preferably from about 15 to less than 25.
  • the polymers of the invention in a preferred embodiment have a melt index ratio (I 21 /I 2 ) (I 21 is measured by ASTM-D-1238-F) of from preferably greater than 25, more preferably greater than 30, even more preferably greater that 40, still even more preferably greater than 50 and most preferably greater than 65.
  • the polymer of the invention may have a narrow molecular weight distribution and a broad composition distribution or vice-versa, and may be those polymers described in U.S. Pat. No. 5,798,427 incorporated herein by reference.
  • propylene based polymers are produced in the process of the invention. These polymers include atactic polypropylene, isotactic polypropylene, hemi-isotactic and syndiotactic polypropylene. Other propylene polymers include propylene block or impact copolymers. Propylene polymers of these types are well known in the art see for example U.S. Pat. Nos. 4,794,096, 3,248,455, 4,376,851, 5,036,034 and 5,459,117, all of which are herein incorporated by reference.
  • the Group 15 containing hafnium metal compound when used alone, produces a high weight average molecular weight M w polymer (such as for example above 100,000, preferably above 150,000, preferably above 200,000, preferably above 250,000, more preferably above 300,000).
  • the polymers of the invention may be blended and/or coextruded with any other polymer.
  • Non-limiting examples of other polymers include linear low density polyethylenes, elastomers, plastomers, high pressure low density polyethylene, high density polyethylenes, polypropylenes and the like.
  • Polymers produced by the process of the invention and blends thereof are useful in such forming operations as film, sheet, and fiber extrusion and co-extrusion as well as blow molding, injection molding and rotary molding.
  • Films include blown or cast films formed by coextrusion or by lamination useful as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc. in food-contact and non-food contact applications.
  • Fibers include melt spinning, solution spinning and melt blown fiber operations for use in woven or non-woven form to make filters, diaper fabrics, medical garments, geotextiles, etc.
  • Extruded articles include medical tubing, wire and cable coatings, pipe, geomembranes, and pond liners. Molded articles include single and multi-layered constructions in the form of bottles, tanks, large hollow articles, rigid food containers and toys, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a Group 15 containing hafnium catalyst compound, a catalyst system and a supported catalyst system thereof and to a process for polymerizing olefin(s) utilizing them.

Description

    RELATED APPLICATION DATA
  • The present application is a divisional of U.S. patent application Ser. No. 09/425,390, now issued as U.S. Pat. No. ______[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to a Group 15 containing hafnium transition metal catalyst compound, a catalysts system thereof and its use in the polymerization of olefin(s). [0002]
  • BACKGROUND OF THE INVENTION
  • Advances in polymerization and catalysis have resulted in the capability to produce many new polymers having improved physical and chemical properties useful in a wide variety of superior products and applications. With the development of new catalysts the choice of polymerization-type (solution, slurry, high pressure or gas phase) for producing a particular polymer has been greatly expanded. Also, advances in polymerization technology have provided more efficient, highly productive and economically enhanced processes. Especially illustrative of these advances is the development of technology utilizing bulky ligand metallocene-type catalyst systems. [0003]
  • More recently, developments have lead to the discovery of anionic, multidentate heteroatom ligands as discussed by the following articles: (1) Kempe et al., “Aminopyridinato Ligands—New Directions and Limitations”, 80[0004] th Canadian Society for Chemistry Meeting, Windsor, Ontario, Canada, Jun. 1-4, 1997; (2) Kempe et al., Inorg. Chem. 1996 vol 35 6742; (3) Jordan et al. of polyolefin catalysts based on hydroxyquinolines (Bei, X.; Swenson, D. C.; Jordan, R. F., Organometallics 1997, 16, 3282); (4) Horton, et.al., “Cationic Alkylzirconium Complexes Based on a Tridentate Diamide Ligand: New Alkene Polymerization Catalysts”, Organometallics, 1996, 15, 2672-2674 relates to tridentate zirconium complexes; (5) Baumann, et al., “ Synthesis of Titanium and Zirconium Complexes that Contain the Tridentate Diamido Ligand [((t-Bu-d6) N—O—C6H4)2O]2−{[NON}2−) and the Living Polymerization of 1-Hexene by Activated [NON]ZrMe2”, Journal of the American Chemical Society, Vol. 119, pp. 3830-3831; (6) Cloke et al., “Zirconium Complexes incorporating the New Tridentate Diamide Ligand [(Me3Si)N{CH2CH2N(SiMe3)}2]2−(L); the Crystal Structure [Zr(BH4)2L] and [ZrCl{CH(SiMe3)2}L”, J. Chem. Soc. Dalton Trans, pp. 25-30, 1995; (7) Clark et al., “Titanium (IV) complexes incorporating the aminodiamide ligand [(SiMe3)N{CH2CH2N (SiMe3)}2]2−(L); the X-ray crystal structure of TiMe2(L)] and TiCl{CH(SiMe3)2}(L)]”, Journal of Organometallic Chemistry, Vol 50, pp. 333-340, 1995; (8) Scollard et al., “Living Polymerization of alpha-olefins by Chelating Diamide Complexes of Titanium”, J. Am. Chem. Soc., Vol 118, No. 41, pp. 10008-10009, 1996; and (9) Guerin et al., “Conformationally Rigid Diamide Complexes: Synthesis and Structure of Titanium (IV) Alkyl Derivatives”, Organometallics, Vol 15, No. 24, pp. 5085-5089, 1996.
  • Furthermore, U.S. Pat. No. 5,576,460 describes a preparation of arylamine ligands and U.S. Pat. No. 5,889,128 discloses a process for the living polymerization of olefins using initiators having a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. EP 893 454 Al also describes preferably titanium transition metal amide compounds. In addition, U.S. Pat. No. 5,318,935 discusses amido transition metal compounds and catalyst systems especially for the producing isotactic polypropylene. Polymerization catalysts containing bidentate and tridentate ligands are further discussed in U.S. Pat. No. 5,506,184. [0005]
  • While all these compounds have been described in the art, there is still a need for an improved catalyst compound. [0006]
  • SUMMARY OF THE INVENTION
  • This invention provides for an improved catalyst compound, a catalyst system and for its use in a polymerizing process. [0007]
  • In one embodiment, the invention is directed to a Group 15 containing hafnium catalyst compound, a catalyst system including the Group 15 containing catalyst compound and to their use in the polymerization of olefin(s). [0008]
  • In another embodiment, the invention is directed to a Group 15 containing bidentate or tridentate ligated hafnium transition metal catalyst compound, a catalyst system including the bidentate or tridentate ligated hafnium metal catalyst compound and to their use in the polymerization of olefin(s). [0009]
  • In another embodiment, the invention is directed to a catalyst compound having a hafnium transition metal bound to at least one leaving group and also bound to at least two Group 15 atoms, at least one of which is also bound to a Group 15 or 16 atom through another group, a catalyst system of this hafnium transition metal compound and to their use in the polymerization of olefin(s). [0010]
  • In still another embodiment, the invention is directed to a method for supporting the multidentate hafnium based catalysts system, and to the supported catalyst system itself. [0011]
  • In another embodiment, the invention is directed to a process for polymerizing olefin(s), particularly in a gas phase or slurry phase process, utilizing any one of the catalyst systems or supports catalyst systems discussed above.[0012]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Introduction [0013]
  • It has unexpectedly been found that the hafnium based Group 15 containing catalyst compounds exhibit much higher catalyst productivity as compared to their zirconium or titanium analogs. As a result of this discovery it is now possible to provide a highly active polymerization with commercially acceptable level of productivity:Furthermore, it has also been discovered that these Group 15 containing hafnium catalyst compounds of the invention provide for an improved supported catalysts system, particularly for use in slurry phase or gas phase polymerizations. It is well known in the art that supporting catalyst compounds typically results in a lowering of the overall catalyst productivity. This in fact is the case with the zirconium analogs of the Group 15 containing hafnium compounds of the invention. As a result of this detrimental effect, the zirconium analogs are not well suited to being supported. However, as a result of the substantially higher activity of the hafnium based multidentate catalyst compounds of this invention, these catalysts compounds are supportable and retain commercially useful productivities. [0014]
  • Group 15 containing Hafnium Catalyst Compound and Catalyst Systems [0015]
  • In one embodiment, the hafnium based catalyst compounds of the invention are Group 15 bidentate or tridentate ligated hafnium transition metal compound, the preferred Group 15 elements are nitrogen and/or phosphorous, most preferably nitrogen. [0016]
  • The Group 15 containing hafnium catalyst compounds of the invention generally include a hafnium metal atom bound to at least one leaving group and also bound to at least two Group 15 atoms, at least one of which is also bound to a Group 15 or 16 atom through another group. [0017]
  • In one preferred embodiment, at least one of the Group 15 atoms is also bound to a Group 15 or 16 atom through another group, which may be a hydrocarbon group, preferably a hydrocarbon group having 1 to 20 carbon atoms, a heteroatom containing group, preferably silicon, germanium, tin, lead, or phosphorus. In this embodiment, it is further preferred that the Group 15 or 16 atom be bound to nothing or a hydrogen, a Group 14 atom containing group, a halogen, or a heteroatom containing group. Additionally in these embodiment, it is preferred that each of the two Group 15 atoms are also bound to a cyclic group that may optionally be bound to hydrogen, a halogen, a heteroatom or a hydrocarbyl group, or a heteroatom containing group. [0018]
  • In an embodiment of the invention, the Group 15 containing hafnium compound of the invention is represented by the formulae: [0019]
    Figure US20020006861A1-20020117-C00001
  • wherein M is hafnium; each X is independently a leaving group, preferably, an anionic leaving group, and more preferably hydrogen, a hydrocarbyl group, a heteroatom or a halogen, and most preferably an alkyl; [0020]
  • y is 0 or 1 (when y is 0 group L′ is absent); [0021]
  • n is the oxidation state of M, preferably +2, +3 or +4, and more preferably +4; [0022]
  • m is the formal charge of the YZL or the YZL′ ligand, preferably 0, −1, −2 or −3, and more preferably −2; [0023]
  • L is a Group 15 or 16 element, preferably nitrogen; [0024]
  • L′ is a Group 15 or [0025] 16 element or Group 14 containing group, preferably carbon, silicon or germanium;
  • Y is a Group 15 element, preferably nitrogen or phosphorus, and more preferably nitrogen; [0026]
  • Z is a Group 15 element, preferably nitrogen or phosphorus, and more preferably nitrogen; [0027]
  • R[0028] 1 and R2 are independently a C1 to C20 hydrocarbon group, a heteroatom containing group having up to twenty carbon atoms, silicon, germanium, tin, lead, or phosphorus, preferably a C2 to C20 alkyl, aryl or arylalkyl group, more preferably a linear, branched or cyclic C2 to C20 alkyl group, most preferably a C2 to C6 hydrocarbon group;
  • R[0029] 3 is absent or a hydrocarbon group, hydrogen, a halogen, a heteroatom containing group, preferably a linear, cyclic or branched alkyl group having 1 to 20 carbon atoms, more preferably R3 is absent, hydrogen or an alkyl group, and most preferably hydrogen;
  • R[0030] 4 and R5 are independently an alkyl group, an aryl group, substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, a cyclic arylalkyl group, a substituted cyclic arylalkyl group or multiple ring system, preferably having up to 20 carbon atoms, more preferably between 3 and 10 carbon atoms, and even more preferably a C1 to C20 hydrocarbon group, a C1 to C20 aryl group or a C1 to C20 arylalkyl group, or a heteroatom containing group, for example PR3, where R is an alkyl group;
  • R[0031] 1 and R2 may be interconnected to each other, and/or R4 and R5 may be interconnected to each other;
  • R[0032] 6 and R7 are independently absent, or hydrogen, an alkyl group, halogen, heteroatom or a hydrocarbyl group, preferably a linear, cyclic or branched alkyl group having 1 to 20 carbon atoms, more preferably absent; and
  • R* is absent, or is hydrogen, a Group 14 atom containing group, a halogen, a heteroatom containing group. [0033]
  • By “formal charge of the YZL or YZL′ ligand”, it is meant the charge of the entire ligand absent the metal and the leaving groups X. [0034]
  • By “R[0035] 1 and R2 may also be interconnected” it is meant that R1 and R2 may be directly bound to each other or may be bound to each other through other groups. By “R4 and R5 may also be interconnected” it is meant that R4 and R5 may be directly bound to each other or may be bound to each other through other groups.
  • An alkyl group may be a linear, branched alkyl radicals, or alkenyl radicals, alkynyl radicals, cycloalkyl radicals or aryl radicals, acyl radicals, aroyl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl-or dialkyl-carbamoyl radicals, acyloxy radicals, acylamino radicals, aroylamino radicals, straight, branched or cyclic, alkylene radicals, or combination thereof. An arylalkyl group is defined to be a substituted aryl group. [0036]
  • In a preferred embodiment R[0037] 4 and R5 are independently a group represented by the following formula:
    Figure US20020006861A1-20020117-C00002
  • wherein R[0038] 8 to R12 are each independently hydrogen, a C1 to C40 alkyl group, a halide, a heteroatom, a heteroatom containing group containing up to 40 carbon atoms, preferably a C1 to C20 linear or branched alkyl group, preferably a methyl, ethyl, propyl or butyl group, any two R groups may form a cyclic group and/or a heterocyclic group. The cyclic groups may be aromatic. In a preferred embodiment R9, R10 and R12 are independently a methyl, ethyl, propyl or butyl group (including all isomers), in a preferred embodiment R9, R10 and R12 are methyl groups, and R8 and R11 are hydrogen.
  • In a particularly preferred embodiment R[0039] 4 and R5 are both a group represented by the following formula:
    Figure US20020006861A1-20020117-C00003
  • In this embodiment, M is hafnium; each of L, Y, and Z is nitrogen; each of R[0040] 1 and R2 is a hydrocarbyl group, preferably —CH2—CH2—; R3 is hydrogen; and R6 and R7 are absent.
  • In a particularly preferred embodiment the Group 15 containing metal compound is represented by the formula: [0041]
    Figure US20020006861A1-20020117-C00004
  • Ph equals phenyl. For convenience the above formula will be referred to as Compound (1) (Hf—HN3). [0042]
  • The Group 15 containing hafnium catalyst compounds of the invention are prepared by methods known in the art, such as those disclosed in EP 0 893 454 A1, U.S. Pat. No. 5,889,128 and the references cited in U.S. Pat. No. 5,889,128 which are all herein incorporated by reference. U.S. application Ser. No. 09/312,878, filed May 17, 1999, discloses a gas or slurry phase polymerization process using a supported bisamide catalyst, which is also incorporated herein by reference. A preferred direct synthesis of these compounds comprises reacting the neutral ligand, (see for example YZL or YZL′ of Formula I or II) with HfX[0043] n, n is the oxidation state of Hf, each X is an anionic group, such as halide, in a non-coordinating or weakly coordinating solvent, such as ether, toluene, xylene, benzene, methylene chloride, and/or hexane or other solvent having a boiling point above 60° C., at about 20° C. to about 150° C. (preferably 20° C. to 100° C.), preferably for 24 hours or more, then treating the mixture with an excess (such as four or more equivalents) of an alkylating agent, such as methyl magnesium bromide in ether. The magnesium salts are removed by filtration, and the metal complex isolated by standard techniques.
  • In one embodiment the Group 15 containing hafnium catalyst compound is prepared by a method comprising reacting a neutral ligand, (see for example YZL or YZL′ of formula 1 or 2) with a compound represented by the formula HfX[0044] n (where n is the oxidation state of Hf, each X is an anionic leaving group) in a non-coordinating or weakly coordinating solvent, at about 20° C. or above, preferably at about 20° C. to about 100° C., then treating the mixture with an excess of an alkylating agent, then recovering the metal complex. In a preferred embodiment the solvent has a boiling point above 60° C., such as toluene, xylene, benzene, and/or hexane. In another embodiment the solvent comprises ether and/or methylene chloride, either being preferable.
  • Activator and Activation Methods [0045]
  • The above described Group 15 containing hafnium catalyst compounds are typically activated in various ways to yield catalyst compounds having a vacant coordination site that will coordinate, insert, and polymerize olefin(s). [0046]
  • For the purposes of this patent specification and appended claims, the term “activator” is defined to be any compound or component or method which can activate any of the Group 15 containing bidentate or tridentate ligated haffium catalyst compounds of the invention as described above. Non-limiting activators, for example may include a Lewis acid or a non-coordinating ionic activator or ionizing activator or any other compound including Lewis bases, aluminum alkyls, conventional-type cocatalysts and combinations thereof that can convert a neutral Group 15 containing hafiiium catalyst compound to a catalytically active Group 15 containing hafnium cation. It is within the scope of this invention to use alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronaphtyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983) or combination thereof, that would ionize the neutral catalyst compound. While most of the publications discussed herein refer to a bulky ligand metallocene-type catalyst, it contemplated that the activators and activation methods utilized for these bully-ligand metallocene-type catalyst compounds are applicable to the Group 15 containing hafnium catalyst compounds of this invention. [0047]
  • In one embodiment, an activation method using ionizing ionic compounds not containing an active proton but capable of producing both a catalyst cation and a non-coordinating anion are also contemplated, and are described in EP-A-0 426 637, EP-A-0 573 403 and U.S. Pat. No. 5,387,568, which are all herein incorporated by reference. [0048]
  • There are a variety of methods for preparing alumoxane and modified alumoxanes, non-limiting examples of which are described in U.S. Pat. Nos. 4,665,208, 4,952,540, 5,091,352, 5,206,199, 5,204,419, 4,874,734, 4,924,018, 4,908,463, 4,968,827, 5,308,815, 5,329,032, 5,248,801, 5,235,081, 5,157,137, 5,103,031, 5,391,793, 5,391,529, 5,693,838, 5,731,253, 5,731,451, 5,744,656, 5,847,177, 5,854,166, 5,856,256 and 5,939,346 and European publications EP-A-0 561 476, EP-B1-0 279 586, EP-A-0 594-218 and EP-B1-0 586 665, and PCT publication WO 94/10180, all of which are herein fully incorporated by reference. [0049]
  • Organoaluminum compounds as activators include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum and the like. [0050]
  • Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion of the ionizing compound. Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-B1-0 500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Pat. Nos. 5,153,157, 5,198,401, 5,066,741, 5,206,197, 5,241,025, 5,384,299 and 5,502,124 and U.S. patent application Ser. No. 08/285,380, filed Aug. 3, 1994, all of which are herein fully incorporated by reference. [0051]
  • Other activators include those described in PCT publication WO 98/07515 such as tris (2, 2′, 2″- nonafluorobiphenyl) fluoroaluminate, which publication is fully incorporated herein by reference. Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, EP-B1 0 573 120, PCT publications WO 94/07928 and WO 95/14044 and U.S. Pat. Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference. WO 98/09996 incorporated herein by reference describes activating catalyst compounds with perchlorates, periodates and iodates including their hydrates. WO 98/30602 and WO 98/30603 incorporated by reference describe the use of lithium (2, 2′-bisphenyl-ditrimethylsilicate)•4THF as an activator for a catalyst compound. WO 99/18135 incorporated herein by reference describes the use of organo-boron-aluminum activators. EP-B1-0 781 299 describes using a silylium salt in combination with a non-coordinating compatible anion. Also, methods of activation such as using radiation (see EP-B 1-0 615 981 herein incorporated by reference), electro-chemical oxidation, and the like are also contemplated as activating methods for the purposes of rendering the neutral catalyst compound or precursor to a catalyst cation capable of polymerizing olefins. Other activators or methods for activating a catalyst compound are described in for example, U.S. Pat. Nos. 5,849,852, 5,859,653 and 5,869,723 and WO 98/32775, WO 99/42467 (dioctadecylmethylawhionium-bis(tris(pentafluorophenyl)borane)benzimidazolide), which are herein incorporated by reference. [0052]
  • In another embodiment, the invention provides for one or more Group 15 containing hafnium catalyst compounds used in combination with one or more activators discussed above. [0053]
  • It is further contemplated by the invention that other catalysts including bulky ligand metallocene-type catalyst compounds and/or conventional-type catalyst compounds can be combined with the Group 15 containing hafnium catalyst compounds of this invention. [0054]
  • Supports, Carriers and General Supporting Techniques [0055]
  • The above described Group 15 containing hafnium catalyst compounds and catalyst systems may be combined with one or more support materials or carriers using one of the support methods well known in the art or as described below. For example, in a most preferred embodiment, a Group 15 containing hafnium catalyst compound or catalyst system is in a supported form, for example deposited on, contacted with, vaporized with, bonded to, or incorporated within, adsorbed or absorbed in, or on, a support or carrier. [0056]
  • The terms “support” or “carrier” are used interchangeably and are any support material, preferably a porous support material, including inorganic or organic support materials. Non-limiting examples of inorganic support materials include inorganic oxides and inorganic chlorides. Other carriers include resinous support materials such as polystyrene, functionalized or crosslinked organic supports, such as polystyrene divinyl benzene polyolefins or polymeric compounds or any other organic or inorganic support material and the like, or mixtures thereof. [0057]
  • The preferred carriers are inorganic oxides that include those Group 2, 3, 4, 5, 13 or 14 metal oxides. The preferred supports include silica, alumina, silica-alumina, and mixtures thereof. Other useful supports include magnesia, titania, zirconia, magnesium chloride, montmorillonite (EP-B1 0 511 665), phyllosilicate, zeolites, talc, clays and the like. Also, combinations of these support materials may be used, for example, silica-chromium, silica-alumina, silica-titania and the like. Additional support materials may include those porous acrylic polymers described in EP 0 767 184 B 1, which is incorporated herein by reference. [0058]
  • It is preferred that the carrier, most preferably an inorganic oxide, has a surface area in the range of from about 10 to about 100 m[0059] 2/g, pore volume in the range of from about 0.1 to about 4.0 cc/g and average particle size in the range of from about 5 to about 500 μm. More preferably, the surface area of the carrier is in the range of from about 50 to about 500 m2/g, pore volume of from about 0.5 to about 3.5 cc/g and average particle size of from about 10 to about 200 μm. Most preferably the surface area of the carrier is in the range is from about 100 to about 400 m2/g, pore volume from about 0.8 to about 5.0 cc/g and average particle size is from about 5 to about 100 μm. The average pore size of the carrier of the invention typically has pore size in the range of from 10 to 1000 Å, preferably 50 to about 500 Å, and most preferably 75 to about 450 Å.
  • Examples of supporting catalyst systems again replacing the bulky ligand metallocene-type catalyst compound with the Group 15 containing hafnium catalyst compounds of the invention are described in U.S. Pat. Nos. 4,701,432, 4,808,561, 4,912,075, 4,925,821, 4,937,217, 5,008,228, 5,238,892, 5,240,894, 5,332,706, 5,346,925, 5,422,325, 5,466,649, 5,466,766, 5,468,702, 5,529,965, 5,554,704, 5,629,253, 5,639,835, 5,625,015, 5,643,847, 5,665,665, 5,698,487, 5,714,424, 5,723,400, 5,723,402, 5,731,261, 5,759,940, 5,767,032, 5,770,664, 5,846,895 and 5,939,348 and U.S. application Ser. Nos. 271,598 filed Jul. 7, 1994 and 788,736 filed Jan. 23, 1997 and PCT publications WO 95/32995, WO 95/14044, WO 96/06187 and WO 97/02297, and EP-BI-0 685 494 all of which are herein fully incorporated by reference. [0060]
  • There are various other methods in the art for supporting a polymerization catalyst compound or catalyst system of the invention. For example, the Group 15 containing hafnium catalyst compounds of the invention may contain a polymer bound ligand as described in U.S. Pat. Nos. 5,473,202 and 5,770,755, which is herein fully incorporated by reference; the Group 15 containing haffiium catalyst compounds of the invention may be spray dried as described in U.S. Pat. No. 5,648,310, which is herein fully incorporated by reference; the support used with the Group 15 containing hafnium catalyst compounds of the invention is functionalized as described in European publication EP-A-0 802 203, which is herein fully incorporated by reference, or at least one substituent or leaving group is selected as described in U.S. Pat. No. 5,688,880, which is herein fully incorporated by reference. [0061]
  • In a preferred embodiment, the invention provides for a Group 15 containing hafnium catalyst system that includes an antistatic agent or surface modifier that is used in the preparation of the supported catalyst system as described in PCT publication WO 96/11960, which is herein fully incorporated by reference. The catalyst systems of the invention can be prepared in the presence of an olefin, for example hexene-1. [0062]
  • In a preferred embodiment, the Group 15 containing hafnium catalyst system can be combined with a carboxylic acid salt of a metal ester, for example aluminum carboxylates such as aluminum mono, di- and tri- stearates, aluminum octoates, oleates and cyclohexylbutyrates, as described in U.S. application Ser. No. 09/113,216, filed Jul. 10, 1998. [0063]
  • A preferred method for producing a supported Group 15 containing hafrijum catalyst system is described below and is described in U.S. application Ser. Nos. 265,533, filed Jun. 24, 1994 and 265,532, filed Jun. 24, 1994 and PCT publications WO 96/00245 and WO 96/00243 both published Jan. 4, 1996, all of which are herein fully incorporated by reference. In this preferred method, the Group 15 containing hafnium catalyst compound is slurried in a liquid to form a solution and a separate solution is formed containing an activator and a liquid. The liquid may be any compatible solvent or other liquid capable of forming a solution or the like with the Group 15 containing hafnium catalyst compounds and/or activator of the invention. In the most preferred embodiment the liquid is a cyclic aliphatic or aromatic hydrocarbon, most preferably toluene. The Group 15 containing haffium catalyst compounds and activator solutions are mixed together and added to a porous support such that the total volume of Group 15 containing hafnium catalyst compound solution and the activator solution or the Group 15 containing hafnium catalyst compound solution and activator solution is less than four times the pore volume of the porous support, more preferably less than three times, even more preferably less than two times; preferred ranges being from 1.1 times to 3.5 times range and most preferably in the 1.2 to 3 times range. [0064]
  • Procedures for measuring the total pore volume of a porous support are well known in the art. Details of one of these procedures is discussed in Volume 1, [0065] Experimental Methods in Catalytic Research (Academic Press, 1968) (specifically see pages 67-96). This preferred procedure involves the use of a classical BET apparatus for nitrogen absorption. Another method well known in the art is described in Innes, Total Porosity and Particle Density ofFluid Catalysts By Liquid Titration, Vol. 28, No. 3, Analytical Chemistry 332-334 (March, 1956).
  • The most preferred methods for supporting the Group 15 metal hafnium compounds of the invention are described in U.S. application Ser. No. 09/312,878, filed May 17, 1999, which is fully incorporated herein by reference. [0066]
  • The mole ratio of the metal of the activator component to the metal of the supported Group 15 containing hafnium catalyst compound are in the range of between 0.3:1 to 1000:1, preferably 20:1 to 800:1, and most preferably 50:1 to 500:1. Where the activator is an ionizing activator such as those based on the anion tetrakis(pentafluorophenyl) boron, the mole ratio of the metal of the activator component to the metal component of the Group 15 containing haffium catalyst compound is preferably in the range of between 0.3:1 to 3:1. [0067]
  • In one embodiment of the invention, olefin(s), preferably C[0068] 2 to C30 olefin(s) or alpha-olefin(s), preferably ethylene or propylene or combinations thereof are prepolymerized in the presence of a supported Group 15 containing hafnium catalyst system of the invention prior to the main polymerization. The prepolymerization can be carried out batchwise or continuously in gas, solution or slurry phase including at elevated pressures. The prepolymerization can take place with any olefin monomer or combination and/or in the presence of any molecular weight controlling agent such as hydrogen. For examples of prepolymerization procedures, see U.S. Pat. Nos. 4,748,221, 4,789,359, 4,923,833, 4,921,825, 5,283,278 and 5,705,578 and European publication EP-B-0279 863 and PCT Publication WO 97/44371 all of which are herein fully incorporated by reference.
  • Polymerization Process [0069]
  • The catalyst systems, supported catalyst systems or compositions of the invention described above are suitable for use in any prepolymerization and/or polymerization process over a wide range of temperatures and pressures. The temperatures may be in the range of from −60° C. to about 280° C., preferably from 50° C. to about 200° C., and the pressures employed may be in the range from 1 atmosphere to about 500 atmospheres or higher. [0070]
  • Polymerization processes include solution, gas phase, slurry phase and a high pressure process or a combination thereof. Particularly preferred is a gas phase or slurry phase polymerization of one or more olefins at least one of which is ethylene or propylene. [0071]
  • In one embodiment, the process of this invention is directed toward a solution, high pressure, slurry or gas phase polymerization process of one or more olefin monomers having from 2 to 30 carbon atoms, preferably 2 tol2 carbon atoms, and more preferably 2 to 8 carbon atoms. The invention is particularly well suited to the polymerization of two or more olefin monomers of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene-1 and decene-1. [0072]
  • Other monomers useful in the process of the invention include ethylenically unsaturated monomers, diolefins having 4 to 18 carbon atoms, conjugated or nonconjugated dienes, polyenes, vinyl monomers and cyclic olefins. Non-limiting monomers useful in the invention may include norbornene, norbornadiene, isobutylene, isoprene, vinylbenzocyclobutane, styrenes, alkyl substituted styrene, ethylidene norbornene, dicyclopentadiene and cyclopentene. [0073]
  • In the most preferred embodiment of the process of the invention, a copolymer of ethylene is produced, where with ethylene, a comonomer having at least one alpha-olefin having from 4 to 15 carbon atoms, preferably from 4 to 12 carbon atoms, and most preferably from 4 to 8 carbon, atoms, is polymerized in a gas phase process. [0074]
  • In another embodiment of the process of the invention, ethylene or propylene is polymerized with at least two different comonomers, optionally one of which may be a diene, to form a terpolymer. [0075]
  • In one embodiment, the invention is directed to a polymerization process, particularly a gas phase or slurry phase process, for polymerizing propylene alone or with one or more other monomers including ethylene, and/or other olefins having from 4 to 12 carbon atoms. [0076]
  • Typically in a gas phase polymerization process a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor. Generally, in a gas fluidized bed process for producing polymers, a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer. (See for example U.S. Pat. Nos. 4,543,399, 4,588,790, 5,028,670, 5,317,036, 5,352,749, 5,405,922, 5,436,304, 5,453,471, 5,462,999, 5,616,661 and 5,668,228, all of which are fully incorporated herein by reference.) [0077]
  • The reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 2 50 psig (1724 kPa) to about 350 psig (2414 kPa). [0078]
  • The reactor temperature in a gas phase process may vary from about 30° C. to about 120° C., preferably from about 60° C. to about 1 15° C., more preferably in the range of from about 70° C. to 110° C., and most preferably in the range of from about 70° C. to about 95° C. [0079]
  • Other gas phase processes contemplated by the process of the invention include series or multistage polymerization processes. Also gas phase processes contemplated by the invention include those described in U.S. Pat. Nos. 5,627,242, 5,665,818 and 5,677,375, and European publications EP-A-0 794 200 EP-Bl-0 649 992, EP-A-0 802 202 and EP-B-634 421 all of which are herein fully incorporated by reference. [0080]
  • In a preferred embodiment, the reactor utilized in the present invention is capable and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr). [0081]
  • A slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0° C. to about 120° C. In a slurry polymerization, a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers and often hydrogen along with catalyst are added. The suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor. The liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane. The medium employed should be liquid under the conditions of polymerization and relatively inert. When a propane medium is used the process must be operated above the reaction diluent critical temperature and pressure. Preferably, a hexane or an isobutane medium is employed. [0082]
  • A preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution. Such technique is well known in the art, and described in for instance U.S. Pat. No. 3,248,179 which is fully incorporated herein by reference. Other slurry processes include those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof. Non-limiting examples of slurry processes include continuous loop or stirred tank processes. Also, other examples of slurry processes are described in U.S. Pat. No. 4,613,484, which is herein fully incorporated by reference. [0083]
  • In an embodiment the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr). In another embodiment the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr). [0084]
  • Examples of solution processes are described in U.S. Pat. Nos. 4,271,060, 5,001,205, 5,236,998 and 5,589,555 and PCT WO 99/32525, which are fully incorporated herein by reference [0085]
  • A preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the presence of Group 15 containing hafnium catalyst system of the invention and in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like. This preferred process is described in PCT publication WO 96/08520 and U.S. Pat. No. 5,712,352 and 5,763,543, which are herein fully incorporated by reference. [0086]
  • In an embodiment, the method of the invention provides for injecting an unsupported Group 15 containing hafnium catalyst system into a reactor, particularly a gas phase reactor. In one embodiment the Group 15 containing hafnium polymerization catalyst is used in the unsupported form, preferably in a liquid form such as described in U.S. Pat. Nos. 5,317,036 and 5,693,727 and European publication EP-A-0 593 083, all of which are herein incorporated by reference. The polymerization catalyst in liquid form can be fed with an activator together or separately to a reactor using the injection methods described in PCT publication WO 97/46599, which is fully incorporated herein by reference. Where an unsupported Group 15 containing hafnium catalyst compound is used the mole ratio of the metal of the activator component to the metal of the Group 15 containing hafnium catalyst compound is in the range of between 0.3:1 to 10,000:1, preferably 100:1 to 5000:1, and most preferably 500:1 to 2000:1. [0087]
  • Polymer Products [0088]
  • The polymers produced by the process of the invention can be used in a wide variety of products and end-use applications. The polymers produced by the process of the invention include linear low density polyethylene, elastomers, plastomers, high density polyethylenes, medium density polyethylenes, low density polyethylenes, polypropylene and polypropylene copolymers. [0089]
  • The polymers, typically ethylene based polymers, have a density in the range of from 0.86 g/cc to 0.97 g/cc, preferably in the range of from 0.88 g/cc to 0.965 g/cc, more preferably in the range of from 0.900 g/cc to 0.96 g/cc, even more preferably in the range of from 0.905 g/cc to 0.95 g/cc, yet even more preferably in the range from 0.910 g/cc to 0.940 g/cc, and most preferably greater than 0.915 g/cc, preferably greater than 0.920 g/cc, and most preferably greater than 0.925 g/cc. Density is measured in accordance with ASTM-D-1238. [0090]
  • The polymers produced by the process of the invention typically have a molecular weight distribution, a weight average molecular weight to number average molecular weight (M[0091] w/Mn) of greater than 1.5 to about 15, particularly greater than 2 to about 10, more preferably greater than about 2.2 to less than about 8, and most preferably from 2.5 to 8.
  • Also, the polymers of the invention typically have a narrow composition distribution as measured by Composition Distribution Breadth Index (CDBI). Further details of determining the CDBI of a copolymer are known to those skilled in the art. See, for example, PCT Patent Application WO 93/03093, published Feb. 18, 1993, which is fully incorporated herein by reference. [0092]
  • The polymers of the invention in one embodiment have CDBI's generally in the range of greater than 50% to 100%, preferably 99%, preferably in the range of 55% to 85%, and more preferably 60% to 80%, even more preferably greater than 60%, still even more preferably greater than 65%. [0093]
  • In another embodiment, polymers produced using a catalyst system of the invention have a CDBI less than 50%, more preferably less than 40%, and most preferably less than 30%. [0094]
  • The polymers of the present invention in one embodiment have a melt index (MI) or (I[0095] 2) as measured by ASTM-D-1238-E in the range from no measurable flow to 1000 dg/min, more preferably from about 0.01 dg/min to about 100 dg/min, even more preferably from about 0.1 dg/min to about 50 dg/min, and most preferably from about 0.1 dg/min to about 10 dg/min.
  • The polymers of the invention in an embodiment have a melt index ratio (I[0096] 21/I2) (21 is measured by ASTM-D-1238-F) of from 10 to less than 25, more preferably from about 15 to less than 25.
  • The polymers of the invention in a preferred embodiment have a melt index ratio (I[0097] 21/I2) (I21 is measured by ASTM-D-1238-F) of from preferably greater than 25, more preferably greater than 30, even more preferably greater that 40, still even more preferably greater than 50 and most preferably greater than 65. In an embodiment, the polymer of the invention may have a narrow molecular weight distribution and a broad composition distribution or vice-versa, and may be those polymers described in U.S. Pat. No. 5,798,427 incorporated herein by reference.
  • In yet another embodiment, propylene based polymers are produced in the process of the invention. These polymers include atactic polypropylene, isotactic polypropylene, hemi-isotactic and syndiotactic polypropylene. Other propylene polymers include propylene block or impact copolymers. Propylene polymers of these types are well known in the art see for example U.S. Pat. Nos. 4,794,096, 3,248,455, 4,376,851, 5,036,034 and 5,459,117, all of which are herein incorporated by reference. [0098]
  • The Group 15 containing hafnium metal compound, when used alone, produces a high weight average molecular weight M[0099] w polymer (such as for example above 100,000, preferably above 150,000, preferably above 200,000, preferably above 250,000, more preferably above 300,000).
  • The polymers of the invention may be blended and/or coextruded with any other polymer. Non-limiting examples of other polymers include linear low density polyethylenes, elastomers, plastomers, high pressure low density polyethylene, high density polyethylenes, polypropylenes and the like. [0100]
  • Polymers produced by the process of the invention and blends thereof are useful in such forming operations as film, sheet, and fiber extrusion and co-extrusion as well as blow molding, injection molding and rotary molding. Films include blown or cast films formed by coextrusion or by lamination useful as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc. in food-contact and non-food contact applications. Fibers include melt spinning, solution spinning and melt blown fiber operations for use in woven or non-woven form to make filters, diaper fabrics, medical garments, geotextiles, etc. Extruded articles include medical tubing, wire and cable coatings, pipe, geomembranes, and pond liners. Molded articles include single and multi-layered constructions in the form of bottles, tanks, large hollow articles, rigid food containers and toys, etc. [0101]
  • EXAMPLES
  • In order to provide a better understanding of the present invention including representative advantages thereof, the following examples are offered. [0102]
  • Example 1
  • Preparation of [(2, 4, 6-Me[0103] 3C6H2)NHCH2CH2]2NII (Ligand)
  • A 2 L one-armed Schlenk flask was charged with a magnetic stir bar, diethylenetriamine (23.450 g, 0.227 mol), mesityl bromide (90.51 g, 0.455 mol), tris(dibenzylideneacetone)dipalladium (1.041 g, 1.14 mmol), racemic-2, 2′-bis(diphenylphosphino)-1, 1′-binaphthyl (2.123 g, 3.41 nmuol), sodium tert-butoxide (65.535 g, 0.682 mol), and toluene (800 mL). The reaction mixture was heated to 95° C. and stirred. After 4 days the reaction was complete, as judged by proton NMR spectroscopy. All solvent was removed under vacuum and the residues dissolved in diethyl ether (1 L). The ether was washed three times with water (1 L) and saturated aqueous NaCl (500 mL) and dried over magnesium sulfate. Removal of the ether in vacuo yielded a red oil which was dried at 70° C. for 12 h under vacuum (yield: 71.10 g, 92%). [0104] 1H NMR δ 8 6.83 (s, 4), 3.39 (br s, 2), 2.86 (t, 4), 2.49 (t, 4), 2.27 (s, 12), 2.21 (s, 6), 0.68 (br s, 1). 13C NMR δ 143.74, 131.35, 129.83, 129.55, 50.17, 48.56, 20.70, 18.51.
  • Comparative Example 2
  • Preparation of {[(2,4,6-Me[0105] 3C6H2)NCH2CH2]2NH}Zr(CH2Ph)2 (Zr—HN3)
  • A 500 mL round bottom flask was charged with a magnetic stir bar, tetrabenzyl zirconium (41.729 g, 91.56 mmol), and 300 niL of toluene under dry, oxygen-free nitrogen. Solid triamine ligand above (32.773 g, 96.52 mmol) was added with stirring over 1 minute (the desired compound precipitates). The volume of the slurry was reduced to 100 mL and 300 mL of pentane added with stirring. The solid yellow-orange product was collected by filtration and dried under vacuum (44.811 g, 80% yield). [0106] 1H NMR (C6D6) δ 7.22-6.81 (m, 12), 5.90 (d, 2), 3.38 (m, 2), 3.11 (m, 2), 3.01 (m, 1), 249 (m, 4), 2.43 (s, 6), 2.41 (s, 6), 2.18 (s, 6), 1.89 (s, 2), 0.96 (s, 2).
  • Example 3
  • Preparation of {[(2,4,6-Me[0107] 3C6H2)NCH2CH2]2NH}Hf(CH2Ph)2 (Hf—HN3)
  • A 250 mL round bottom flask was charged with a magnetic stir bar, tetrabenzyl hafnium (4.063 g, 7.482 mmol), and 150 niL of toluene under dry, oxygen-free nitrogen. Solid triamine ligand above (2.545 g, 7.495 mmol) was added with stirring over 1 minute (the desired compound precipitates). The volume of the slurry was reduced to 30 mL and 120 mL of pentane added with stirring. The solid pale yellow product was collected by filtration and dried under vacuum (4.562 g, 87% yield). [0108] 1H NMR (C6D6) δ 7.21-6.79 (m, 12), 6.16 (d, 2), 3.39 (m, 2), 3.14 (m, 2), 2.65 (s, 6), 2.40 (s, 6), 2.40 (s, 6), 2.35 (m, 2), 2.23 (m, 2), 2.19 (s, 6) 1.60 (s, 2), 1.26 (s, 2), NH obscured.
  • Comparative Example 4
  • Preparation of Catalyst A [0109]
  • To 1.335 g of MAO (4.450 g of a 30 weight percent solution in toluene, Albemarle) and 4.691 g of toluene in a 100 mL round bottom flask was added 0.117 g of Zr—HN3 prepared in Comparative Example 2. The solution was stirred for 15 minutes. 3.550 g of silica (Crossfield ES-70, calcined at 600° C., available from Crosfield Limited, Warrington, England) was added followed by mixing. The mixture was dried overnight under vacuum. Dry Witco Aluminum Stearate #22 (AlSt #22) (CH[0110] 3(CH2)16COO)2Al—OH available from Witco Corporation, Memphis, Tenn. (0.300 g, 6 weight percent) was added with mixing to yielding 5.160 g of finished catalyst with a loading of 0.35 weight percent zirconium and an Al/Zr ratio of 120: 1.
  • Example 5
  • Preparation of Catalyst B [0111]
  • To 1.321 g of MAO (4.405 g of a 30 weight percent solution in toluene, Albemarle) and 4.717 g of toluene in a 100 mL round bottom flask was added 0.133 g of Hf—HN3 prepared in Example 3. The solution was stirred for 15 minutes. 3.546 g of silica (Crossfield ES-70, calcined at 600° C. available from Crosfield Limited, Warrington, England) was added followed by mixing. The mixture was dried overnight under vacuum. Dry Witco Aluminum Stearate #22 (AlSt #22) (CH[0112] 3(CH2)16COO)2Al—OH available from Witco Corporation, Memphis, Tenn. (0.300 g, 6 weight percent) was added with mixing to yielding 5.040 g of finished catalyst with a loading of 0.67 weight percent hafnium and an Al/Hf ratio of 120:1.
  • Comparative Example 6
  • Polymerization with Catalyst A [0113]
  • Polymerization was performed in the slurry-phase in a 1-liter autoclave reactor equipped with a mechanical stirrer, an external waterjacket for temperature control, a septum inlet and vent line, and a regulated supply of dry nitrogen and ethylene. The reactor was dried and degassed at 160° C. Isobutane (400 mL) was added as a diluent and 0.7 mL of a 25 weight percent trioctyl aluminum solution in hexane was added as a scavenger using a gas tight syringe. The reactor was heated to 90° C. 0.100 g of finished Catalyst A (Zr—HN3) above was added with ethylene pressure and the reactor was pressurized with 137 psi (945 kPa) of ethylene. The polymerization was continued for 30 minutes while maintaining the reactor at 90° C. and 137 psi (945 kPa) by constant ethylene flow. The reaction was stopped by rapid cooling and vented. 21.0 g of polyethylene was obtained (FI=no flow, activity =1198 g polyethylene/mmol catalyst•atm•h). [0114]
  • Example 7
  • Polymerization with Catalyst B [0115]
  • Polymerization was performed in the slurry-phase in a 1-liter autoclave reactor equipped with a mechanical stirrer, an external water jacket for temperature control, a septum inlet and vent line, and a regulated supply of dry nitrogen and ethylene. The reactor was dried and degassed at 160° C. Isobutane (400 niL) was added as a diluent and 0.7 mL of a 25 weight percent trioctyl aluminum solution in hexane was added as a scavenger using a gas tight syringe. The reactor was heated to 90° C. 0.100 g of finished Catalyst B (Hf—HN3) above was added with ethylene pressure and the reactor was pressurized with 146 psi (1007 kPa) of ethylene. The polymerization was continued for 30 minutes while maintaining the reactor at 90° C. and 146 psi (1007 kPa) by constant ethylene flow. The reaction was stopped by rapid cooling and vented. 36.7 g of polyethylene was obtained (FI=no flow, activity=1990 g polyethylene/mmol catalyst•atme•h). [0116]
  • From the data presented above under similar conditions the Group 15 containing hafnium catalyst compound of the invention has almost double the productivity as its zirconium analog. [0117]
  • While the present invention has been described and illustrated by reference to particular embodiments, those of ordinary skill in the art will appreciate that the invention lends itself to variations not necessarily illustrated herein. For example, it is contemplated that two or more supported Group 15 containing catalyst compositions of the invention can be used. Also it is contemplated that a Group 15 containing hafnium catalyst compound can be used with a Group 15 containing titanium or zirconium catalyst compound. For this reason, then, reference should be made solely to the appended claims for purposes of determining the true scope of the present invention. [0118]

Claims (9)

We claim:
1. A supported catalyst system comprising a Group 15 containing hafnium catalyst compound, an activator and a carrier, wherein the Group 15 containing hafnium compound is represented by the formulae:
Figure US20020006861A1-20020117-C00005
Wherein M is hafnium;
each X is independenly a leaving group;
y is 0 or 1;
n is the oxidation state of M;
M is the formal charge of Y, Z and L or of Y, Z and L′;
L is a Group 15 element;
L′ is a Group 15 element;
Y is a Group 15 element;
Z is a Group 15 element;
R1 and R2 are independently a C1 to C20 hydrocarbon group, heteroaton containing group having up to twenty carbon atoms, silicon, germanium,tin, lead, or phosphorus;
R3 is absent, a hydrocarbon group, hydrogen,or heteroaton containing group;
R4 is and R5 are independenly an substituted cyclic alkyl group, a cyclic arylalkyl group,a substituted cyclyc alkyl group, a subtituted cyclic alkyl group, a cyclic arylalkyl group, subtituted cyclic arylalkyl group or a multiple ring system;
R1 and R2 may be interconnected to each other,and/or R4 and R5 may be interconnected to each other;
R6 and R7 are independently absent, hydrogen, an alkyl group, heteroatom or a hydrocarbyl group; and
R* is absent, hydrogen, a Group 14 atom contaning group, halogen, or a heteroatom containing group.
2. The supported caralyst system of claim 1 wherein the group 15 containing hafnium catalyst compound is contacted with the activator to form a reactoin product that is then contacted with the carrier.
3. The supported catalyst system of claim 1 wherein R1 and R2 are selected from the group, consisting of a C1 to C20 hydrocarbon group, a heteroatom containing Group, silicon, germanium, tin, lead, and phosphorus.
4. the supported catalyst system of claim 1 wherein L or L′ are bound to nothing, a hydrogen, a Group 14 atom containing group, a halogen, or a heteroatom containing group, and wherein each of the two 15 atoms are bound to a cyclic group and may optionally be bound to hydrogen, a halogen, a heterroatom, a hydrocarbyl group, or a heteroatom containig group.
5. The supported catalyst system of claim 1 wherein R1 and R5 are represented by the formula:
Figure US20020006861A1-20020117-C00006
wherein R8 to R12 are each independently hydrogen, a C1 to C40 alkyl group, a halide, a heteroatom, or a heteroatom containing group containing up to 40 carbon atoms, wherein any two R groups may form a cyclic group and/or a heterocyclic group, and wherein the cyclic groups may be aromatic.
6. The supported catalyst system of claim 1 wherein R9, R10 and R12 are independently a methyl, ethyl, propyl or butyl group and X is an aryl substituted alkyl group having greater than 10 carbon atoms.
7. The supported catalyst system of claim 1 wherein R9, R10 and R12 are methyl groups, and R8 and R11 are hydrogen and X is a alkyl substituted with an aryl group.
8. The supported catalyst system of claim 1 wherein L, Y, and Z are nitrogen, R1 and R2 are a hydrocarbon radical, R3 is hydrogen, and R6 and R7 are absent.
9. The supported catalyst system of claim 1 wherein L and Z are independently nitrogen, L′ is a hydrocarbyl radical, and R6 and R7 are absent.
US09/931,351 1999-10-22 2001-08-16 Hafnium transition metal catalyst compounds and catalyst systems Abandoned US20020006861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/931,351 US20020006861A1 (en) 1999-10-22 2001-08-16 Hafnium transition metal catalyst compounds and catalyst systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/425,390 US6300438B1 (en) 1999-10-22 1999-10-22 Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US09/931,351 US20020006861A1 (en) 1999-10-22 2001-08-16 Hafnium transition metal catalyst compounds and catalyst systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/425,390 Division US6300438B1 (en) 1999-10-22 1999-10-22 Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process

Publications (1)

Publication Number Publication Date
US20020006861A1 true US20020006861A1 (en) 2002-01-17

Family

ID=23686354

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/425,390 Expired - Lifetime US6300438B1 (en) 1999-10-22 1999-10-22 Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US09/931,351 Abandoned US20020006861A1 (en) 1999-10-22 2001-08-16 Hafnium transition metal catalyst compounds and catalyst systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/425,390 Expired - Lifetime US6300438B1 (en) 1999-10-22 1999-10-22 Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process

Country Status (2)

Country Link
US (2) US6300438B1 (en)
ZA (1) ZA200203053B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068276A1 (en) * 1999-05-10 2000-11-16 Japan As Represented By Director General Of The Agency Of Industrial Science And Technology Process for producing olefin living polymer
US6274684B1 (en) * 1999-10-22 2001-08-14 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6300439B1 (en) 1999-11-08 2001-10-09 Univation Technologies, Llc Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6281306B1 (en) * 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
US7199255B2 (en) * 2001-12-18 2007-04-03 Univation Technologies, Llc Imino-amide catalysts for olefin polymerization
US6919467B2 (en) * 2001-12-18 2005-07-19 Univation Technologies, Llc Imino-amide catalyst compositions for the polymerization of olefins
WO2007130305A2 (en) * 2006-05-05 2007-11-15 Dow Global Technologies Inc. Hafnium complexes of carbazolyl substituted imidazole ligands
ATE545664T1 (en) * 2008-04-28 2012-03-15 Univation Tech Llc METHOD FOR PRODUCING CATALYST SYSTEMS
BRPI1007430B1 (en) 2009-01-08 2020-05-12 Univation Technologies, Llc POLYOLEFINE POLYMERIZATION PROCESS
WO2010080871A1 (en) 2009-01-08 2010-07-15 Univation Technologies, Llc Additive for gas phase polymerization processes
CA2713042C (en) 2010-08-11 2017-10-24 Nova Chemicals Corporation Method of controlling polymer architecture
BR112013016116B1 (en) 2010-12-22 2020-04-28 Univation Tech Llc polymerization process and catalyst system
CA2739969C (en) 2011-05-11 2018-08-21 Nova Chemicals Corporation Improving reactor operability in a gas phase polymerization process
EP2785749B1 (en) 2011-11-30 2017-08-30 Univation Technologies, LLC Methods and systems for catalyst delivery
CA2760264C (en) 2011-12-05 2018-08-21 Nova Chemicals Corporation Passivated supports for use with olefin polymerization catalysts
CA2783494C (en) 2012-07-23 2019-07-30 Nova Chemicals Corporation Adjusting polymer composition
BR112015009968A2 (en) 2012-11-12 2017-07-11 Univation Tech Llc recycling gas cooler systems for gas phase polymerization processes
WO2016118599A1 (en) 2015-01-21 2016-07-28 Univation Technologies, Llc Methods for controlling polymer chain scission
CN107107433B (en) 2015-01-21 2019-09-13 尤尼威蒂恩技术有限责任公司 Method for the gel reduction in polyolefin
CA2891693C (en) 2015-05-21 2022-01-11 Nova Chemicals Corporation Controlling the placement of comonomer in an ethylene copolymer
CA2892552C (en) 2015-05-26 2022-02-15 Victoria Ker Process for polymerization in a fluidized bed reactor
CA2892882C (en) 2015-05-27 2022-03-22 Nova Chemicals Corporation Ethylene/1-butene copolymers with enhanced resin processability

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057565A (en) 1975-07-22 1977-11-08 E. I. Du Pont De Nemours And Company 2-Dialkylaminobenzyl and 2-dialkylaminomethylphenyl derivatives of selected transition metals
EP0197310A3 (en) 1985-03-07 1988-07-20 Mitsubishi Petrochemical Co., Ltd. Catalyst components for polymerizing olefins
WO1987002370A1 (en) 1985-10-11 1987-04-23 Sumitomo Chemical Company, Limited Catalyst for olefin polymerization and process for preparing olefin polymer by using the same
US5391629A (en) 1987-01-30 1995-02-21 Exxon Chemical Patents Inc. Block copolymers from ionic catalysts
JPH0278663A (en) 1988-09-14 1990-03-19 N O K Sogo Gijutsu Kenkyusho:Kk 26-ethylidenenitrilophenylpyridine, production thereof and metal salt complex
JPH05503546A (en) 1990-02-09 1993-06-10 エクソン・ケミカル・パテンツ・インク Block copolymer manufacturing method
WO1992012162A1 (en) 1990-12-27 1992-07-23 Exxon Chemical Patents Inc. An amido transition metal compound and a catalyst system for the production of isotactic polypropylene
AU2096895A (en) 1994-03-07 1995-09-25 Sugen, Incorporated Receptor tyrosine kinase inhibitors for inhibiting cell proliferative disorders and compositions thereof
US5707913A (en) 1994-06-15 1998-01-13 Basf Aktiengesellschaft Amidinato catalyst systems for the polymerization of olefins
JPH0881415A (en) 1994-07-12 1996-03-26 Ube Ind Ltd Production of alkenecarboxylic acid ester
US5426243A (en) 1994-08-17 1995-06-20 Albemarle Corporation Process for preparing 1,6-dibromo-2-naphthylene compounds
US5541349A (en) 1994-09-12 1996-07-30 The Dow Chemical Company Metal complexes containing partially delocalized II-bound groups and addition polymerization catalysts therefrom
BR9607232A (en) 1995-03-08 1997-11-11 Shell Int Research Catalytic composition and process for oligomerizing or oligomerizing alpha-olefins
JPH08277307A (en) 1995-04-06 1996-10-22 Asahi Chem Ind Co Ltd Catalyst for olefin polymerization and polymerization using the same
US5637660A (en) 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
DE19523891C1 (en) 1995-06-30 1996-11-21 Hoechst Ag Chiral manganese-triazanonane complexes and process for their preparation
DE19616523A1 (en) 1996-04-25 1997-11-06 Basf Ag Polymerization catalysts with beta-diketiminate ligands
DE69711718T2 (en) 1996-05-02 2002-10-17 Sod Conseils Rech Applic NEW COMPOUNDS CONTAINING A GROUP 13 ELEMENT BONDED TO A MONO- OR DIANIONIC THREE-TEED LIGAND, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS A POLYMERIZATION CATALYST
FI102476B (en) 1996-05-31 1998-12-15 Borealis As New transition metal complexes and method for their preparation
AU718884B2 (en) 1996-06-17 2000-04-20 Exxon Chemical Patents Inc. Mixed transition metal catalyst systems for olefin polymerization
WO1997048736A1 (en) 1996-06-17 1997-12-24 Exxon Chemical Patents Inc. Supported late transition metal catalyst systems
DE19624581C2 (en) 1996-06-20 1999-02-04 Targor Gmbh Transition metal compound and a process for their preparation, and their use
JPH107712A (en) 1996-06-25 1998-01-13 Mitsui Petrochem Ind Ltd Production of alpha-olefin oligomer
GB9613814D0 (en) 1996-07-02 1996-09-04 Bp Chem Int Ltd Supported polymerisation catalysts
JP3787902B2 (en) 1996-07-31 2006-06-21 住友化学株式会社 Process for producing poly-1,4-phenylene ether
IL129929A0 (en) 1996-12-17 2000-02-29 Du Pont Polymerization of ethylene with specific iron or cobalt complexes novel pyridinebis (imines) and novel complexes of pyridinebis(imines) with iron and cobalt
JP2001508446A (en) 1997-01-13 2001-06-26 ザ ペン ステイト リサーチ ファウンデイション Asymmetric synthesis and catalysis by chiral heterocyclic compounds
CN1243520A (en) 1997-01-13 2000-02-02 纳幕尔杜邦公司 Polymerization of propylene
US5851945A (en) 1997-02-07 1998-12-22 Exxon Chemical Patents Inc. Olefin polymerization catalyst compositions comprising group 5 transition metal compounds stabilized in their highest metal oxidation state
KR100320331B1 (en) 1997-02-07 2002-06-20 나까니시 히로유끼 Olefin polymerization catalyst and method for producing olefin polymer
US6100354A (en) 1997-02-24 2000-08-08 Exxon Chemical Patents Inc. Olefin copolymers from bridged bis(arylamido) Group 4 catalyst compounds
US5889128A (en) * 1997-04-11 1999-03-30 Massachusetts Institute Of Technology Living olefin polymerization processes
DE19724186C2 (en) 1997-06-02 2002-07-18 Schering Ag Process for the mono- and 1,7-bis-N-ß-hydroxyalkylation of cycles and the corresponding N-ß-hydroxyalkyl-1,4,7,10-tetraazacyclododecane-Li salt complexes
EP0890575A1 (en) 1997-07-08 1999-01-13 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Novel compounds containing an element of groups 11,12 or 14 and a tridentate ligand, process for their preparation and their use particularly as polymerisation catalysts
US6103946A (en) 1997-07-15 2000-08-15 E. I. Du Pont De Nemours And Company Manufacture of α-olefins
KR100516336B1 (en) * 1997-09-05 2005-09-22 비피 케미칼즈 리미티드 Polymerisation catalysts

Also Published As

Publication number Publication date
US6300438B1 (en) 2001-10-09
ZA200203053B (en) 2003-07-17

Similar Documents

Publication Publication Date Title
US6265505B1 (en) Catalyst system and its use in a polymerization process
US6300438B1 (en) Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6271323B1 (en) Mixed catalyst compounds, catalyst systems and their use in a polymerization process
AU764962B2 (en) Catalyst systems and their use in a polymerization process
AU766273B2 (en) A method for preparing a supported catalyst system and its use in a polymerization process
EP1112293B1 (en) Polymerization process using an improved bulky ligand metallocene-type catalyst system
US6300439B1 (en) Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US20050043497A1 (en) Catalyst system and its use in a polymerization process
AU779594B2 (en) A method for preparing a supported catalyst system and its use in a polymerization process
US6593438B2 (en) Catalyst composition and method of polymerization
AU2002324444B2 (en) Catalyst system and its use in a polymerization process
AU2002231225A1 (en) Catalyst composition and method of polymerization
US6852659B1 (en) Method for preparing a catalyst composition and its use in a polymerization process
AU2002324444A1 (en) Catalyst system and its use in a polymerization process
AU2001294965A1 (en) A method for preparing a catalyst composition and its use in a polymerization process
US6624107B2 (en) Transition metal catalyst compounds having deuterium substituted ligand and catalyst systems thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION