US20020004177A1 - Photosensitive resin composition - Google Patents

Photosensitive resin composition Download PDF

Info

Publication number
US20020004177A1
US20020004177A1 US09/482,859 US48285900A US2002004177A1 US 20020004177 A1 US20020004177 A1 US 20020004177A1 US 48285900 A US48285900 A US 48285900A US 2002004177 A1 US2002004177 A1 US 2002004177A1
Authority
US
United States
Prior art keywords
acid
polyimide
polyimide precursor
resin composition
photosensitive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/482,859
Inventor
Hideo Hagiwara
Makoto Kaji
Masataka Nunomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26335636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020004177(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US09/482,859 priority Critical patent/US20020004177A1/en
Publication of US20020004177A1 publication Critical patent/US20020004177A1/en
Priority to US10/713,036 priority patent/US7153631B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/008Azides
    • G03F7/012Macromolecular azides; Macromolecular additives, e.g. binders
    • G03F7/0125Macromolecular azides; Macromolecular additives, e.g. binders characterised by the polymeric binder or the macromolecular additives other than the macromolecular azides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • Y10S430/107Polyamide or polyurethane

Definitions

  • This invention relates to a photosensitive resin composition and a photosensitive resin composition for an i-line stepper which contains a photoinitiator.
  • inorganic materials have conventionally been used for interlaminar insulation.
  • organic materials having an excellent heat-resistance such as a polyimide resin have been put to use as materials for interlaminar insulation because of properties thereof.
  • a process for forming a pattern in a semiconductor integrated circuit or forming a pattern of a circuit on a print substrate comprises complex and various steps such as film formation of a resist material on a substrate surface; exposure of required portion to light; removal of unnecessary portion by etching or the like; and washing of the substrate surface. Therefore, development of heat-resistant photosensitive materials have been desired, which enables the required portion of the resist material to be remained as such and used as insulating materials even after the pattern is formed by exposure to light and development.
  • heat-resistant photosensitive materials comprising, for example, a photosensitive polyimide or a cyclized polybutadiene as a base polymer have been proposed.
  • the photosensitive polyimide has particularly attracted attentions since it has an excellent heat-resistance and impurities contained therein can easily be removed.
  • a photosensitive polyimide for example, one which comprises a polyimide precursor and a bichromate has been proposed for the first time in Japanese Patent Publication No. 17374/1974.
  • This photosensitive polyimide has an advantage that it has a photosensitivity suitable for practical uses and also has a high film-forming ability.
  • it also has a disadvantage that it has a low preservability and a low stability and that a chromium ion remains in the polyimide, and therefore it has not been put to practical use.
  • a photosensitive polyimide precursor in which a photosensitive group is introduced into a polyamic acid (polyimide precursor) by an ester bond has been proposed in Japanese Patent Publication No. 30207/1980.
  • This material has a disadvantage that a finally obtained product contains a chloride since a step for introducing the photosensitive group comprises a dehydrochlorination reaction.
  • the photosensitive polyimide precursor employs an aromatic monomer having an excellent heat-resistance and mechanical property as a fundamental structure and has a low light-transmittance in the ultraviolet region because the polyimide precursor itself absorbs the ultraviolet light. Therefore, photochemical reactions at the exposed portion are not sufficiently caused which results in the low sensitivity or unclear patterns.
  • a 1:1 projection exposing machine called as a mirror projection
  • a reduced projection exposing machine called as a stepper
  • the stepper utilizes monochromatic light such as a high power oscillation line of ultra-high pressure mercury lamp, an excimer laser.
  • a g-line stepper which employs a visible light (wavelength of 435 nm) called as a g-line of ultra-high pressure mercury lamp has conventionally been used in many cases.
  • further reduction of processing rule has been required.
  • i-line stepper having a wavelength of 365 nm has increasingly been used instead of the g-line stepper having a wavelength of 435 nm.
  • a base polymer of a conventional photosensitive polyimide designed for the contact/proximity exposing machine, the mirror projection exposing machine or the g-line stepper having a low transparency for the above-described reason, has substantially no transmittance particularly for the i-line having a wavelength of 365 nm. Therefore, the i-line stepper does not provide any useful pattern.
  • the present invention is to overcome the above described problems and it is an object of the present invention to provide a photosensitive resin composition and a photosensitive resin composition for an i-line stepper which contains a photoinitiator and which transmits light to be used for exposure sufficiently and also has an excellent image-forming ability with an i-line stepper, film property, heat-resistance and adhesive property.
  • the present invention relates to a photosensitive resin composition which comprises (A) a polyamic acid having a recurring unit represented by the formula (I):
  • [0014] represents a divalent organic group
  • R 1 is as defined above, and as R 2 , there may be mentioned a divalent aryl group such as
  • the polyamic acid (A) may contain at least one other recurring unit than the recurring unit represented by the formula (I).
  • the recurring unit represented by the formula (I) is contained 20 to 100 mole % based on the total amount of the recurring unit in the polyamic acid (A).
  • the polyamic acid (A) of the present invention can be obtained, for example, by carrying out a ring-opening polyaddition reaction of an acid component comprising oxydiphthalic acid or oxydiphthalic anhydride (trade name, 3,3′,4,4′-biphenyl ether tetracarboxylic dianhydride, hereinafter the same) and, if necessary, at least one other tetracarboxylic dianhydride, with a diamine in an organic solvent.
  • an acid component comprising oxydiphthalic acid or oxydiphthalic anhydride (trade name, 3,3′,4,4′-biphenyl ether tetracarboxylic dianhydride, hereinafter the same) and, if necessary, at least one other tetracarboxylic dianhydride, with a diamine in an organic solvent.
  • the oxydiphthalic acid and/or oxydiphthalic anhydride is/are used in total in an amount of 20 to 100 mole % based on the total amount of the acid component.
  • tetracarboxylic dianhydride such as pyrromellitic dianhydride, 3,3′,4,4,′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, sulfonyldiphthalic anhydride, m-terphenyl-3,3′,4,4′-tetracarboxylic dianhydride
  • R 3 and R 4 may be the same or different from each other and each represent a monovalent hydrocarbon group; s is an integer of 1 to 5; and when s is 2 or more, respective R 3 s or R 4 s may be the same or different from each other,
  • the monovalent hydrocarbon group of R 3 and R 4 may include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group; and a phenyl group, said phenyl group may be substituted by an alkyl group having 1 to 6 carbon atoms.
  • the above tetracarboxylic dianhydrides may be used if necessary in addition to oxydiphthalic anhydride which is an essential component. It may be used in an amount of 80 mole % or less based on the total amount of the acid component so that the transmittance of the formed polyamic acid is not lowered.
  • diamine which are not particularly limited, there may preferably be used 4,4′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone and metaphenylenediamine.
  • 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone and methaphenylenediamine are more preferred. These compounds may be used singly or in combination of two or more.
  • R 5 and R 6 each represent a divalent hydrocarbon group, preferably a divalent hydrocarbon group having 1 to 3 carbon atoms
  • R 7 and R 8 each represent a monovalent hydrocarbon group, preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms
  • each of R 5 , R 6 , R 7 and R 8 's may be the same or different
  • t represents an integer of 1 to 5.
  • diaminopolysiloxane there may be used, for example, 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane.
  • An amount of the compound of the formula (III) may be 1 to 10 mole % based on the total amount of the diamine component.
  • a hydroxyl group-containing diamine such as 3,3′-hydroxybenzidine, 3,4′-diamino-3′,4-dihydroxybiphenyl, 3,3′-dihydroxy-4,4′-diaminodiphenyloxide, 3,3′-dihydroxy-4,4′-diaminodiphenylsulfone, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 1,1,1,3,3,3-hexafluoro-2,2-bis-(3-amino-4-hydroxyphenyl) propane, bis-(3-hydroxy-4-aminophenyl)methane, 3,3′-dihydroxy-4,4,′-diaminobenzophenone, 1,1-bis(3-hydroxy-4-aminophenyl)ethane, 2,2-bis-(3-hydroxy-4-aminophenyl)propane, 1,1,1,3,3,3-hexafluoro-2,2-bis
  • a polar solvent which completely dissolves the formed polyimide precursor is generally preferred.
  • a polar solvent which completely dissolves the formed polyimide precursor is generally preferred.
  • N-methyl-2-pyrrolidone N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, tetramethylurea, hexamethylphosphoric triamide and ⁇ -butyrolactone.
  • ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, diethyl malonate, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofurane, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene, o-dichlorobenzene, hexane, heptane, octane, benzene, toluene, and xylene.
  • hydrocarbons for example, acetone, methyl ethyl ketone, methyl isobut
  • organic solvents may be used singly or in combination of two or more.
  • the organic solvent is used in an amount of 50 to 95% by weight based on the total amount of the ring-opening polyaddition reaction solution, and the polar solvent is used in an amount of 40 to 100% by weight based on the total amount of the organic solvent.
  • water may be contained in the solvent used for the above reaction. When water is contained, the solvent including the organic solvent and water is used in amount of 50 to 95% by weight based on the total amount of the above solution, and the amount of water is 0.5 to 6% by weight based on the total weight of the solvent.
  • the polyamic acid can be prepared by reacting the above acid component and the diamine, for example, in an amount of preferably 0.8 to 1.2 in terms of the molar ratio of the acid/the diamine, more preferably about 1.0, at a temperature of 0 to 100° C. at around normal pressure for 30 minutes to 10 hours.
  • the resulting polyamic acid has a number average molecular weight (Mn) of 3,000 to 200,000, preferably 5,000 to 100,000, more preferably 7,000 to 50,000. Also, the resulting polyamic acid solution has a viscosity of 1 to 300 poise, preferably 30 to 200 poise, and a solid component of 5 to 50% by weight, preferably 10 to 30% by weight.
  • Mn number average molecular weight
  • acryl compound having an amino group to be used as Component (B) in the present invention there may be mentioned, for example, N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, N,N-dimethylaminopropyl methacrylate, N,N-diethylaminopropyl methacrylate, N, N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, N,N-dimethylaminopropyl acrylate, N,N-diethylaminopropyl acrylate, N,N-dimethylaminoethylacrylamide, and N,N-diethylaminoethylacrylamide.
  • These acryl compounds may be used singly or in combination of two or more.
  • the acryl compound having an amino group (B) may be used in an amount of preferably 1 to 200% by weight, more preferably 5 to 50% by weight, based on the amount of the polyamic acid containing the recurring unit represented by Is the formula (I) in consideration of photosensitivity and strength of the heat-resistant film.
  • affinity with the polyamic acid can be improved.
  • the photosensitive resin composition of the present invention may contain, if necessary, (C) a photoinitiator as shown below.
  • a photoinitiator as shown below.
  • Such a composition can be used as a photosensitive resin composition for an i-line stepper.
  • the photoinitiator (C) there may be mentioned, for example, Michler's ketone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2-t-butylanthraquinone, 2-ethylanthraquinone, 4,4′-bis(diethylamino)benzophenone, acetophenone, benzophenone, thioxanthone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-[4-(methylthio)phenyl]-2-morpholino-1-propanone, benzil, diphenyldis
  • the photoinitiator (C) may be used in an amount of preferably 0.01 to 30% by weight, more preferably 0.05 to 10% by weight based on the polyamic acid (A) having the recurring unit represented by the formula (I) in consideration of photosensitivity and strength of the film.
  • the photosensitive resin composition may contain, if necessary, an addition-polymerizable compound (D) as shown below.
  • an addition-polymerizable compound (D) there may be mentioned, for example, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol methacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythr
  • the addition-polymerizable compound (D) may preferably be used in an amount of 1 to 200% by weight based on the polyamic acid having the recurring unit represented by the formula (I) in consideration of solubility in a developer, photosensitivity or strength of the film.
  • the photosensitive resin composition of the present invention may contain, if necessary, an azido compound (E) as shown below.
  • an azido compound (E) there may be mentioned, for example, the following compounds:
  • the azido compound may be used singly or in combination of two or more.
  • These compounds (E) may be used in an amount of preferably 0.01 to 30% by weight, more preferably 0.05 to 10% by weight based on the polyamic acid having the recurring unit represented by the formula (I) in consideration of photosensitivity and strength of the film.
  • the photosensitive resin composition of the present invention may contain a radical polymerization-inhibiting agent or a radical polymerization-suppressing agent such as p-methoxyphenol, hydroquinone, pyrogallol, phenothiazine, and a nitrosoamine.
  • a radical polymerization-inhibiting agent or a radical polymerization-suppressing agent such as p-methoxyphenol, hydroquinone, pyrogallol, phenothiazine, and a nitrosoamine.
  • the photosensitive resin composition of the present invention may be applied to a substrate such as a silicon wafer, a metal substrate, a glass substrate and a ceramic substrate by a dipping method, a spraying method, a screen printing method or a spinner coating method, then heat-dried to evaporate most of the solvent so that a film having no tackiness can be obtained.
  • the film is irradiated with active rays or chemical rays through a mask having required patterns.
  • the material of the present invention is suitable for an i-line stepper, but a contact/proximity exposing machine employing an ultrahigh-pressure mercury lamp, a mirror projection exposing machine (aligner), a g-line stepper or the other sources of ultraviolet rays, far-ultraviolet rays, visible light, X rays or electron rays may be used as the source of active rays or chemical rays for irradiation.
  • ultraviolet ray source may preferably be used as well as the i-line stepper.
  • the required relief pattern can be obtained by dissolving and removing the non-irradiated portion with an appropriate developer after the irradiation.
  • the developer there may be used a good solvent having a high dissolving power such as N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone, a mixed solvent of the above and a poor solvent having a low dissolving power such as a lower alcohol, water and an aromatic hydrocarbon, or a basic solution such as tetramethylammonium hydroxide aqueous solution and triethanolamine aqueous solution.
  • the film was rinsed with water or a poor solvent and dried at around 100° C. so that the pattern is stabilized.
  • the relief pattern is heated at 200 to 500° C., preferably 300 to 400° C. for several tens of minutes to several hours to form a highly heat-resistant polyimide having patterns.
  • the photosensitive resin composition of the present invention can be thus converted to a buffer coating film of a semiconductor or an interlaminar insulating film of a multi-layer wiring board.
  • the transmittance at 365 nm of films of the polyamic acid (polyimide precursor) solutions P-1 to P-8 prepared in Synthetic examples 1 to 8 are shown in Table 1.
  • the transmittance of the polyamic acid solution was determined by measuring the transmittance of a film obtained by spin-coating a glass substrate with the resin solution of the polyamic acid (polyimide precursor) and drying it at 85° C. for 3 minutes and then at 105° C. for 3 minutes.
  • the films obtained from the polyamic acid solutions of the present invention had good transmittances to the light having a wavelength of 365 nm (i.e., i-line).
  • i-line light was substantially absorbed by the films.
  • MDAP, CA, EAB and PDO used in Examples 1 to 6 and Comparative examples 1 to 2 were represented by the formulae:
  • MDAP N,N-dimethylaminopropyl methacrylate
  • CA 2,6-bis(4′-azidobenzal)-4-carboxycyclohexanone
  • each obtained solution was filtered and was drip spin-coated on a silicon wafer. Then, the wafer was heated at 100° C. for 150 seconds by using a hot plate to form a film having a thickness of 20 ⁇ m and the film was exposed by using an i-line stepper through a mask having patterns. The film was heated at 110° C. for 50 seconds and subjected to puddle development using a mixed solution comprising N-methyl-2-pyrrolidone and water with a weight ratio of 75:25. Then, the film was heated at 100° C. for 30 minutes, at 200° C. for 30 minutes and then at 350° C. for 60 minutes under nitrogen atmosphere to have the relief pattern of the polyimide.
  • the resolution was evaluated as the minimal size of developable through-hole by using a through-hole test pattern.
  • the post-developmental film remaining ratio was determined as (the thickness after development/the thickness before development) ⁇ 100 (%) by measuring the thicknesses of the film before and after the development.
  • the film thickness was measured with a film thickness measurement apparatus, Dektak-3030 (trade name) manufactured by Sloan Co.
  • Adhesive property was measured as follows. A film (film thickness: 5 ⁇ m) obtained by coating a silicon wafer with the photosensitive resin composition and heating it at 100° C. for 30 minutes, at 200° C. for 30 minutes and then at 350° C. for 60 minutes was subjected to a Pressure Cooker test (conditions: at 121° C., 2 atmospheric pressure for 100 hours) and then carried out a checkerboard test.
  • the photosensitive resin composition of the present invention has a remarkably excellent resolution.
  • the photosensitive resin composition having the post-developmental film-remaining ratio of 90% or more is good for practical use
  • the photosensitive resin composition having that of 60's % or less isn't suitable for practical use. Therefore, the photosensitive resin composition of the present invention has a remarkably excellent post-developmental film-remaining ratio.
  • the photosensitive resin composition and the photosensitive resin composition for an i-line stepper of the present invention which use a polyamic acid having excellent light-transmittance are excellent in image-forming ability and particularly suitable for pattern-formation with an i-line.
  • the polyimide obtained therefrom is also excellent in mechanical properties, heat-resistance and adhesive property of the film.

Abstract

There are disclosed a photosensitive resin composition which comprises
(A) a polyamic acid having recurring units represented by the formula (I):
Figure US20020004177A1-20020110-C00001
wherein R1 represents
Figure US20020004177A1-20020110-C00002
represents a divalent organic group, and
(B) an acryl compound having an amino group,
and also a photosensitive resin composition for an i-line stepper which further comprises a photoinitiator in addition to the photosensitive resin composition.

Description

  • This application is a Divisional application of application Ser. No. 08/664,515, filed Jun. 17, 1996, which is a Continuation application of application Ser. No. 08/299,628, filed Sep. 2, 1994.[0001]
  • BACKGROUND OF THE INVENTION
  • This invention relates to a photosensitive resin composition and a photosensitive resin composition for an i-line stepper which contains a photoinitiator. [0002]
  • In the semiconductor industries, inorganic materials have conventionally been used for interlaminar insulation. Recently, organic materials having an excellent heat-resistance such as a polyimide resin have been put to use as materials for interlaminar insulation because of properties thereof. [0003]
  • A process for forming a pattern in a semiconductor integrated circuit or forming a pattern of a circuit on a print substrate comprises complex and various steps such as film formation of a resist material on a substrate surface; exposure of required portion to light; removal of unnecessary portion by etching or the like; and washing of the substrate surface. Therefore, development of heat-resistant photosensitive materials have been desired, which enables the required portion of the resist material to be remained as such and used as insulating materials even after the pattern is formed by exposure to light and development. [0004]
  • As such a material, heat-resistant photosensitive materials comprising, for example, a photosensitive polyimide or a cyclized polybutadiene as a base polymer have been proposed. The photosensitive polyimide has particularly attracted attentions since it has an excellent heat-resistance and impurities contained therein can easily be removed. [0005]
  • As such a photosensitive polyimide, for example, one which comprises a polyimide precursor and a bichromate has been proposed for the first time in Japanese Patent Publication No. 17374/1974. This photosensitive polyimide has an advantage that it has a photosensitivity suitable for practical uses and also has a high film-forming ability. However, it also has a disadvantage that it has a low preservability and a low stability and that a chromium ion remains in the polyimide, and therefore it has not been put to practical use. [0006]
  • As another example, a photosensitive polyimide precursor in which a photosensitive group is introduced into a polyamic acid (polyimide precursor) by an ester bond has been proposed in Japanese Patent Publication No. 30207/1980. This material has a disadvantage that a finally obtained product contains a chloride since a step for introducing the photosensitive group comprises a dehydrochlorination reaction. [0007]
  • In order to avoid these problems, for example, a process for mixing a compound which contains a photosensitive group with a polyimide precursor is disclosed in Japanese Provisional Patent Publication No. 109828/1979; and a process for affording photosensitivity to a polyimide precursor by reacting a functional group in the polyimide precursor with a functional group of a photosensitive group-containing compound is disclosed in Japanese Provisional Patent Publications No. 24343/1981 and No. 100143/1985. [0008]
  • However, the photosensitive polyimide precursor employs an aromatic monomer having an excellent heat-resistance and mechanical property as a fundamental structure and has a low light-transmittance in the ultraviolet region because the polyimide precursor itself absorbs the ultraviolet light. Therefore, photochemical reactions at the exposed portion are not sufficiently caused which results in the low sensitivity or unclear patterns. [0009]
  • Recently, the higher and higher reduction has increasingly been required for a rule for producing a semiconductor, accompanied by the higher integration of semiconductors. Therefore, in addition to a conventional contact/proximity exposing machine using parallel rays, a 1:1 projection exposing machine called as a mirror projection and a reduced projection exposing machine called as a stepper have increasingly been used. The stepper utilizes monochromatic light such as a high power oscillation line of ultra-high pressure mercury lamp, an excimer laser. As the stepper, a g-line stepper which employs a visible light (wavelength of 435 nm) called as a g-line of ultra-high pressure mercury lamp has conventionally been used in many cases. However, further reduction of processing rule has been required. The process has already been carried out around the lower limit of diffraction of light and therefore it is required to shorten the wavelength of the stepper used for carrying out finer processing. Thus an i-line stepper having a wavelength of 365 nm has increasingly been used instead of the g-line stepper having a wavelength of 435 nm. However, a base polymer of a conventional photosensitive polyimide designed for the contact/proximity exposing machine, the mirror projection exposing machine or the g-line stepper, having a low transparency for the above-described reason, has substantially no transmittance particularly for the i-line having a wavelength of 365 nm. Therefore, the i-line stepper does not provide any useful pattern. On the other hand, as a polyimide film for surface protection, a further thicker film has been required in response to a LOC (lead on chip) which is a high density assembly method of a semiconductor element. When such a thicker film is used, the low light-transmittance causes more serious problem. For the above reasons, a photosensitive polyimide which is designed for the i-line stepper and has a high transmittance for the i-line has been highly required. [0010]
  • SUMMARY OF THE INVENTION
  • The present invention is to overcome the above described problems and it is an object of the present invention to provide a photosensitive resin composition and a photosensitive resin composition for an i-line stepper which contains a photoinitiator and which transmits light to be used for exposure sufficiently and also has an excellent image-forming ability with an i-line stepper, film property, heat-resistance and adhesive property. [0011]
  • The present invention relates to a photosensitive resin composition which comprises (A) a polyamic acid having a recurring unit represented by the formula (I): [0012]
    Figure US20020004177A1-20020110-C00003
  • wherein R[0013] 1 represents
    Figure US20020004177A1-20020110-C00004
  • represents a divalent organic group, and [0014]
  • (B) an acryl compound having an amino group, and relates to a photosensitive resin composition for an i-line stepper which further comprises a photoinitiator in addition to the above photosensitive resin composition. [0015]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In the following, the present invention is explained in detail. [0016]
  • In the formula (I), R[0017] 1 is as defined above, and as R2, there may be mentioned a divalent aryl group such as
    Figure US20020004177A1-20020110-C00005
  • Of these, particularly preferred are [0018]
    Figure US20020004177A1-20020110-C00006
  • The polyamic acid (A) may contain at least one other recurring unit than the recurring unit represented by the formula (I). The recurring unit represented by the formula (I) is contained 20 to 100 mole % based on the total amount of the recurring unit in the polyamic acid (A). [0019]
  • The polyamic acid (A) of the present invention can be obtained, for example, by carrying out a ring-opening polyaddition reaction of an acid component comprising oxydiphthalic acid or oxydiphthalic anhydride (trade name, 3,3′,4,4′-biphenyl ether tetracarboxylic dianhydride, hereinafter the same) and, if necessary, at least one other tetracarboxylic dianhydride, with a diamine in an organic solvent. [0020]
  • The oxydiphthalic acid and/or oxydiphthalic anhydride is/are used in total in an amount of 20 to 100 mole % based on the total amount of the acid component. [0021]
  • As the other tetracarboxylic dianhydride which may be used if necessary, there may be mentioned, for example, an aromatic tetracarboxylic dianhydride such as pyrromellitic dianhydride, 3,3′,4,4,′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, sulfonyldiphthalic anhydride, m-terphenyl-3,3′,4,4′-tetracarboxylic dianhydride, p-terphenyl-3,3′,4,4′-tetracarboxylic dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis(2,3- or 3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3- or 3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis{4-(2,3- or 3,4-dicarboxyphenoxy)phenyl}propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis{4-(2,3- or 3,4-dicarboxyphenoxy)phenyl}propane dianhydride and a tetracarboxylic anhydride represented by the formula (II): [0022]
    Figure US20020004177A1-20020110-C00007
  • wherein R[0023] 3 and R4 may be the same or different from each other and each represent a monovalent hydrocarbon group; s is an integer of 1 to 5; and when s is 2 or more, respective R3s or R4s may be the same or different from each other,
  • and the above tetracarboxylic dianhydrides may be used singly or in combination of two or more. [0024]
  • In the formula (II), the monovalent hydrocarbon group of R[0025] 3 and R4 may include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group; and a phenyl group, said phenyl group may be substituted by an alkyl group having 1 to 6 carbon atoms.
  • The above tetracarboxylic dianhydrides may be used if necessary in addition to oxydiphthalic anhydride which is an essential component. It may be used in an amount of 80 mole % or less based on the total amount of the acid component so that the transmittance of the formed polyamic acid is not lowered. [0026]
  • As the above diamine, which are not particularly limited, there may preferably be used 4,4′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone and metaphenylenediamine. Among them, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone and methaphenylenediamine are more preferred. These compounds may be used singly or in combination of two or more. [0027]
  • In addition to the above diamine, there may be used with an amount which does not lower the transmittance of the resulting polyimide precursor, for example, p-phenylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, 3,3′-dimethylbenzidine, 3,3′-dimethoxybenzidine, 4,4′- (or 3,4′-, 3,3′-, 2,4′-, 2,2′-) diaminodiphenylmethane, 2,2′-diaminodiphenyl ether, 3,4′- (or 2,4′-, 2,2′-)diaminodiphenyl sulfone, 4,4′- (or 3,4′-, 3,3′-, 2,4′-, 2,2′-)diaminodiphenylsulfide, 4,4′-benzophenonediamine, bis{4-(4′-aminophenoxy)phenyl}sulfone, 1,1,1,3,3,3-hexafluoro-2,2-bis(4-aminophenyl)propane, 2,2-bis{4-(4′-aminophenoxy)phenyl}propane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′,5,5′-tetramethyl-4,4′-diaminodiphenylmethane, bis{4-(3′-aminophenoxy)phenyl} sulfone, 2,2-bis(4-aminophenyl)propane, and an aliphatic diamine such as a diaminopolysiloxane represented by the formula (III): [0028]
    Figure US20020004177A1-20020110-C00008
  • wherein R[0029] 5 and R6 each represent a divalent hydrocarbon group, preferably a divalent hydrocarbon group having 1 to 3 carbon atoms; R7 and R8 each represent a monovalent hydrocarbon group, preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms; each of R5, R6, R7 and R8's may be the same or different; and t represents an integer of 1 to 5.
  • As the above diaminopolysiloxane, there may be used, for example, 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane. [0030]
  • An amount of the compound of the formula (III) may be 1 to 10 mole % based on the total amount of the diamine component. [0031]
  • There may be also used a hydroxyl group-containing diamine such as 3,3′-hydroxybenzidine, 3,4′-diamino-3′,4-dihydroxybiphenyl, 3,3′-dihydroxy-4,4′-diaminodiphenyloxide, 3,3′-dihydroxy-4,4′-diaminodiphenylsulfone, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 1,1,1,3,3,3-hexafluoro-2,2-bis-(3-amino-4-hydroxyphenyl) propane, bis-(3-hydroxy-4-aminophenyl)methane, 3,3′-dihydroxy-4,4,′-diaminobenzophenone, 1,1-bis(3-hydroxy-4-aminophenyl)ethane, 2,2-bis-(3-hydroxy-4-aminophenyl)propane, 1,1,1,3,3,3-hexafluoro-2,2-bis-(3-hydroxy-4-aminophenyl) propane, 1,3-diamino-4-hydroxybenzene, 1,3-diamino-5-hydroxybenzene, 1,3-diamino-4,6-dihydroxybenzene, 1,4-diamino-2-hydroxybenzene, and 1,4-diamino-2,5-dihydroxybenzene. These compounds may be used singly or in combination of two or more. [0032]
  • As the organic solvent to be used for the above reaction, a polar solvent which completely dissolves the formed polyimide precursor is generally preferred. There may be mentioned, for example, N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, tetramethylurea, hexamethylphosphoric triamide and γ-butyrolactone. [0033]
  • In addition to these polar solvents, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, diethyl malonate, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofurane, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene, o-dichlorobenzene, hexane, heptane, octane, benzene, toluene, and xylene. [0034]
  • These organic solvents may be used singly or in combination of two or more. [0035]
  • The organic solvent is used in an amount of 50 to 95% by weight based on the total amount of the ring-opening polyaddition reaction solution, and the polar solvent is used in an amount of 40 to 100% by weight based on the total amount of the organic solvent. If necessary, water may be contained in the solvent used for the above reaction. When water is contained, the solvent including the organic solvent and water is used in amount of 50 to 95% by weight based on the total amount of the above solution, and the amount of water is 0.5 to 6% by weight based on the total weight of the solvent. [0036]
  • The polyamic acid can be prepared by reacting the above acid component and the diamine, for example, in an amount of preferably 0.8 to 1.2 in terms of the molar ratio of the acid/the diamine, more preferably about 1.0, at a temperature of 0 to 100° C. at around normal pressure for 30 minutes to 10 hours. [0037]
  • The resulting polyamic acid has a number average molecular weight (Mn) of 3,000 to 200,000, preferably 5,000 to 100,000, more preferably 7,000 to 50,000. Also, the resulting polyamic acid solution has a viscosity of 1 to 300 poise, preferably 30 to 200 poise, and a solid component of 5 to 50% by weight, preferably 10 to 30% by weight. [0038]
  • As the acryl compound having an amino group to be used as Component (B) in the present invention, there may be mentioned, for example, N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, N,N-dimethylaminopropyl methacrylate, N,N-diethylaminopropyl methacrylate, N, N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, N,N-dimethylaminopropyl acrylate, N,N-diethylaminopropyl acrylate, N,N-dimethylaminoethylacrylamide, and N,N-diethylaminoethylacrylamide. These acryl compounds may be used singly or in combination of two or more. [0039]
  • The acryl compound having an amino group (B) may be used in an amount of preferably 1 to 200% by weight, more preferably 5 to 50% by weight, based on the amount of the polyamic acid containing the recurring unit represented by Is the formula (I) in consideration of photosensitivity and strength of the heat-resistant film. When the acryl compound is used, affinity with the polyamic acid can be improved. [0040]
  • The photosensitive resin composition of the present invention may contain, if necessary, (C) a photoinitiator as shown below. Such a composition can be used as a photosensitive resin composition for an i-line stepper. As the photoinitiator (C), there may be mentioned, for example, Michler's ketone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2-t-butylanthraquinone, 2-ethylanthraquinone, 4,4′-bis(diethylamino)benzophenone, acetophenone, benzophenone, thioxanthone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-[4-(methylthio)phenyl]-2-morpholino-1-propanone, benzil, diphenyldisulfide, phenanthrenequinone, 2-isopropylthioxanthone, riboflavin tetrabutyrate, 2,6-bis(p-diethylaminobenzal)-4-methyl-4-azacyclohexanone, N-ethyl-N-(p-chlorophenyl)glycine, N-ethyl-N-(p-chlorophenyl)glycine, N-phenyl-diethanolamine, 2-(o-ethoxycarbonyl)oxyimino-1,3-diphenylpropanedione, 1-phenyl-2-(o-ethoxycarbonyl)oxyiminopropan-1-one, 3,3′,4,4,′-tetra(t-butylperoxycarbonyl)benzophenone, 3,3′-carbonylbis(7-diethylaminocoumarin), bis(cyclopentadienyl)-bis[2,6-difluoro-3-(pyri-1-yl)phenyl] titanium. These compounds may be used singly or in combination of two or more. [0041]
  • The photoinitiator (C) may be used in an amount of preferably 0.01 to 30% by weight, more preferably 0.05 to 10% by weight based on the polyamic acid (A) having the recurring unit represented by the formula (I) in consideration of photosensitivity and strength of the film. [0042]
  • The photosensitive resin composition may contain, if necessary, an addition-polymerizable compound (D) as shown below. As the addition-polymerizable compound (D), there may be mentioned, for example, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol methacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 1,3-acryloyloxy-2-hydroxypropane, 1,3-methacryloyloxy-2-hydroxypropane, methylenebis(acrylamide), N,N-dimethylacrylamide, and N-methylolacrylamide. These compounds may be used singly or in combination of two or more. [0043]
  • The addition-polymerizable compound (D) may preferably be used in an amount of 1 to 200% by weight based on the polyamic acid having the recurring unit represented by the formula (I) in consideration of solubility in a developer, photosensitivity or strength of the film. [0044]
  • The photosensitive resin composition of the present invention may contain, if necessary, an azido compound (E) as shown below. As the azido compound (E), there may be mentioned, for example, the following compounds: [0045]
    Figure US20020004177A1-20020110-C00009
  • The azido compound may be used singly or in combination of two or more. [0046]
  • These compounds (E) may be used in an amount of preferably 0.01 to 30% by weight, more preferably 0.05 to 10% by weight based on the polyamic acid having the recurring unit represented by the formula (I) in consideration of photosensitivity and strength of the film. [0047]
  • The photosensitive resin composition of the present invention may contain a radical polymerization-inhibiting agent or a radical polymerization-suppressing agent such as p-methoxyphenol, hydroquinone, pyrogallol, phenothiazine, and a nitrosoamine. [0048]
  • The photosensitive resin composition of the present invention may be applied to a substrate such as a silicon wafer, a metal substrate, a glass substrate and a ceramic substrate by a dipping method, a spraying method, a screen printing method or a spinner coating method, then heat-dried to evaporate most of the solvent so that a film having no tackiness can be obtained. [0049]
  • The film is irradiated with active rays or chemical rays through a mask having required patterns. The material of the present invention is suitable for an i-line stepper, but a contact/proximity exposing machine employing an ultrahigh-pressure mercury lamp, a mirror projection exposing machine (aligner), a g-line stepper or the other sources of ultraviolet rays, far-ultraviolet rays, visible light, X rays or electron rays may be used as the source of active rays or chemical rays for irradiation. Among them, ultraviolet ray source may preferably be used as well as the i-line stepper. The required relief pattern can be obtained by dissolving and removing the non-irradiated portion with an appropriate developer after the irradiation. [0050]
  • As the developer, there may be used a good solvent having a high dissolving power such as N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone, a mixed solvent of the above and a poor solvent having a low dissolving power such as a lower alcohol, water and an aromatic hydrocarbon, or a basic solution such as tetramethylammonium hydroxide aqueous solution and triethanolamine aqueous solution. After the development, the film was rinsed with water or a poor solvent and dried at around 100° C. so that the pattern is stabilized. The relief pattern is heated at 200 to 500° C., preferably 300 to 400° C. for several tens of minutes to several hours to form a highly heat-resistant polyimide having patterns. [0051]
  • The photosensitive resin composition of the present invention can be thus converted to a buffer coating film of a semiconductor or an interlaminar insulating film of a multi-layer wiring board.[0052]
  • EXAMPLES
  • The present invention is described in detail by referring to Examples and Comparative examples, but the scope of the invention is not limited by these Examples. [0053]
  • Synthetic Example 1
  • To a 100 ml-flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 9.8917 g of 3,4′-diaminodiphenyl ether, 0.6462 g of 1,3-bis (3-aminopropyl)-1,3,3-tetramethyldisiloxane, 2.2484 g of water, 14.60 g of xylene and 58.38 g of N-methyl-2-pyrrolidone, and the mixture was dissolved by stirring under nitrogen flow at room temperature. Then, 16.4534 g of oxydiphthalic anhydride was added to the solution and the mixture was stirred for 5 hours to have a tacky polyamic acid (polyimide precursor) solution. The solution was heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-1. [0054]
  • Synthetic Example 2
  • To a 500 ml flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 49.4583 g of 2,4′-diaminodiphenyl ether, 3.2308 g of 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 72.10 g of xylene and 288.42 g of N-methyl-2-pyrrolidone and the mixture was dissolved by stirring at room temperature under nitrogen flow. Then, 80.6541 g of oxydiphthalic anhydride was added and the mixture was stirred for 5 hours to have a tacky polyamic acid (polyimide precursor) solution. The solution was then heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-2. [0055]
  • In Synthetic Example 3
  • To a 500 ml flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 57.0855 g of 3,3′-diaminodiphenylsulfone, 3.0071 g of 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 73.09 g of xylene and 292.35 g of N-methyl-2-pyrrolidone and the mixture was dissolved by stirring at room temperature under nitrogen flow. Then, 75.0703 g of oxydiphthalic anhydride was added to the solution and the mixture was stirred for 5 hours to have a tacky polyamic acid (polyimide precursor) solution. The solution was then heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-3. [0056]
  • Synthetic Example 4
  • To a 500 ml flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 57.0855 g of 4,4′-diaminodiphenylsulfone, 3.0071 g of 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 73.09 g of xylene and 292.35 g of N-methyl-2-pyrrolidone and the mixture was dissolved by stirring at room temperature under nitrogen flow. Then, 75.0703 g of oxydiphthalic anhydride was added to the solution and the mixture was stirred for 5 hours to have a tacky polyamic acid (polyimide precursor) solution. The solution was heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-4. [0057]
  • Synthetic Example 5
  • To a 100 ml-flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 6.3697 g of methaphenylenediamine, 0.7704 g of 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 2.6808 g of water, 14.47 g of xylene and 57.88 g of N-methyl-2-pyrrolidone and the mixture was dissolved by at room temperature under nitrogen flow. Then, 19.6176 g of oxydiphthalic anhydride was added to the solution and the mixture was stirred for 5 hours to have a tacky polyamic acid (polyimide precursor) solution. The solution was then heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-5. [0058]
  • Synthetic Example 6
  • To a 200 ml-flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 19.5931 g of 4,4′-diaminodiphenyl ether, 1.2799 g of 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 4.4536 g of water, 29.26 g of γ-butyrolactone and 117.02 g of N-methyl-2-pyrrolidone and the mixture was dissolved by stirring at room temperature under nitrogen flow. Then, 33.2295 g of oxydiphthalic anhydride was added to the solution and the mixture was stirred for 5 hours to have a polyamic acid (polyimide precursor) solution. The solution was then heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-6. [0059]
  • Synthetic Example 7
  • To a 100 ml-flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 11.9841 g of 4,4′-diaminodiphenyl ether, 0.7829 g of 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 2.7240 g of water, 14.48 g of xylene and 57.93 g of N-methyl-2-pyrrolidone and the mixture was dissolved by stirring at room temperature under nitrogen flow. Then, 14.0161 g of pyromellitic dianhydride was added to the solution and the mixture was stirred for 5 hours to have a tacky polyamic acid (polyimide precursor) solution. The solution was then heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-7. [0060]
  • Synthetic Example 8
  • To a 100 ml-flask equipped with a stirrer, a thermometer and an inlet for introducing nitrogen gas were added 10.0819 g of 4,4′-diaminodiphenyl ether, 0.6586 g of 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 2.2916 g of water, 14.41 g of xylene and 90.05 g of N-methyl-2-pyrrolidone and the mixture was dissolved by stirring at room temperature under nitrogen flow. Then, 15.9049 g of biphenyltetracarboxylic dianhydride was added to the solution and the mixture was stirred for 5 hours to have a polyamic acid (polyimide precursor) solution. The solution was then heated at 70° C. for adjusting the viscosity at 80 poise to have a polymer solution called as P-8. [0061]
  • The transmittance at 365 nm of films of the polyamic acid (polyimide precursor) solutions P-1 to P-8 prepared in Synthetic examples 1 to 8 are shown in Table 1. The transmittance of the polyamic acid solution was determined by measuring the transmittance of a film obtained by spin-coating a glass substrate with the resin solution of the polyamic acid (polyimide precursor) and drying it at 85° C. for 3 minutes and then at 105° C. for 3 minutes. [0062]
    TABLE 1
    Polyamic Transmittance (%)
    acid (thickness: 20
    solution μm, at 365 nm)
    Synthetic P-1 43
    example 1
    Synthetic P-2 48
    example 2
    Synthetic P-3 68
    example 3
    Synthetic P-4 60
    example 4
    Synthetic P-5 62
    example 5
    Synthetic P-6 40
    example 6
    Synthetic P-7 less than 1
    example 7
    Synthetic P-8 less than 1
    example 8
  • As can be seen from the above Table 1, the films obtained from the polyamic acid solutions of the present invention (Synthetic examples 1 to 6) had good transmittances to the light having a wavelength of 365 nm (i.e., i-line). To the contrary, in the films of comparative purpose (Synthetic examples 7 and 8), i-line light was substantially absorbed by the films. [0063]
  • EXAMPLES 1 to 6
  • To each 10 g of the polyamic acid (polyimide precursor) solutions P-1 to P-6 prepared in Synthetic examples 1 to 6 were added N,N-dimethylaminopropyl methacrylate (MDAP), 2,6-bis(4′-azidobenzal)-4-carboxycyclohexanone (CA), 4,4′-bis(diethylamino)benzophenone (EAB) and 1-phenyl-2-(o-ethoxycarbonyl)oxyiminopropan-1-one (PDO) in a prescribed amount as shown in Table 2 and were mixed while stirring to have uniform photosensitive resin composition solutions which were to be used in Examples 1 to 6, respectively. [0064]
  • Comparative Examples 1 and 2
  • To each 10 g of the polyamic acid (polyimide precursor) solutions P-7 and P-8 prepared in Synthetic examples 7 to 8 were added MDAP, CA, EAB and PDO in a prescribed amount as shown in Table 2 and were mixed while stirring to have uniform photosensitive resin composition solutions which were to be used in Comparative examples 1 to 2, respectively. [0065]
    TABLE 2
    Polyamic
    acid Formulation (g)
    solution MDAP CA EAB PDO
    Example 1 P-1 1.803 0.027 0.027 0.054
    Example 2 P-2 1.803 0.027 0.027 0.054
    Example 3 P-3 1.656 0.027 0.027 0.054
    Example 4 P-4 1.656 0.027 0.027 0.054
    Example 5 P-5 2.174 0.027 0.027 0.054
    Example 6 P-6 1.803 0.027 0.027 0.054
    Comparative P-7 2.198 0.027 0.027 0.054
    example 1
    Comparative P-8 1.861 0.027 0.027 0.054
    example 2
  • MDAP, CA, EAB and PDO used in Examples 1 to 6 and Comparative examples 1 to 2 were represented by the formulae: [0066]
  • MDAP (N,N-dimethylaminopropyl methacrylate):[0067]
  • CH2═C(CH3)CO2(CH2)3N(CH3)2;
  • CA (2,6-bis(4′-azidobenzal)-4-carboxycyclohexanone): [0068]
    Figure US20020004177A1-20020110-C00010
  • EAB (4,4′-bis(diethylamino)benzophenone): [0069]
    Figure US20020004177A1-20020110-C00011
  • PDO (1-phenyl-2-(O-ethoxycarbonyl) oxyiminopropan-1-one): [0070]
    Figure US20020004177A1-20020110-C00012
  • The each obtained solution was filtered and was drip spin-coated on a silicon wafer. Then, the wafer was heated at 100° C. for 150 seconds by using a hot plate to form a film having a thickness of 20 μm and the film was exposed by using an i-line stepper through a mask having patterns. The film was heated at 110° C. for 50 seconds and subjected to puddle development using a mixed solution comprising N-methyl-2-pyrrolidone and water with a weight ratio of 75:25. Then, the film was heated at 100° C. for 30 minutes, at 200° C. for 30 minutes and then at 350° C. for 60 minutes under nitrogen atmosphere to have the relief pattern of the polyimide. [0071]
  • Evaluation results thereof are shown in Table 3. The resolution, the post-developmental film-remaining ratio and the adhesive property were evaluated using methods as mentioned below, respectively. [0072]
  • The resolution was evaluated as the minimal size of developable through-hole by using a through-hole test pattern. [0073]
  • The post-developmental film remaining ratio was determined as (the thickness after development/the thickness before development)×100 (%) by measuring the thicknesses of the film before and after the development. The film thickness was measured with a film thickness measurement apparatus, Dektak-3030 (trade name) manufactured by Sloan Co. [0074]
  • Adhesive property was measured as follows. A film (film thickness: 5 μm) obtained by coating a silicon wafer with the photosensitive resin composition and heating it at 100° C. for 30 minutes, at 200° C. for 30 minutes and then at 350° C. for 60 minutes was subjected to a Pressure Cooker test (conditions: at 121° C., 2 atmospheric pressure for 100 hours) and then carried out a checkerboard test. [0075]
  • In the checkerboard test, the film was cut like a checkerboard by a knife so that 100 squares per 1 mm[0076] 2 are formed and peeled off by using a cellophane tape regulated by Japanese Industrial Standard (JIS K5400) to determine the ratio of the number of remaining squares to 100. The results are shown in Table 3.
    TABLE 3
    Post-
    development
    film-
    Resolution remaining Adhesive
    (μm) Pattern ratio (%) property
    Example 1 10 Good 95 100/100
    Example 2 10 Good 97 100/100
    Example 3 10 Good 94 100/100
    Example 4 10 Good 96 100/100
    Example 5 10 Good 96 100/100
    Example 6 10 Good 98 100/100
    Comparative 60 Poor 65 100/100
    Example 1
    Comparative 60 Poor 58 100/100
    Example 2
  • The smaller the value of the resolution is, the finer the pattern can be obtained, therefore, the higher the integration of LSI can be obtained. The photosensitive resin composition of the present invention has a remarkably excellent resolution. [0077]
  • Generally speaking, while the photosensitive resin composition having the post-developmental film-remaining ratio of 90% or more is good for practical use, the photosensitive resin composition having that of 60's % or less isn't suitable for practical use. Therefore, the photosensitive resin composition of the present invention has a remarkably excellent post-developmental film-remaining ratio. [0078]
  • The photosensitive resin composition and the photosensitive resin composition for an i-line stepper of the present invention which use a polyamic acid having excellent light-transmittance are excellent in image-forming ability and particularly suitable for pattern-formation with an i-line. The polyimide obtained therefrom is also excellent in mechanical properties, heat-resistance and adhesive property of the film. [0079]

Claims (19)

What is claimed is:
1. A semiconductor device, comprising:
a semiconductor substrate; and
a polyimide film overlying the semiconductor substrate, wherein said polyimide film includes a polyimide material formed from an oxydiphthalic acid or acid anhydride thereof as a reactant.
2. The semiconductor device according to claim 1, wherein said polyimide material is formed by forming a polyimide precursor formed by reacting the oxydiphthalic acid or acid anhydride thereof with a diamine, and then heating the polyimide precursor.
3. The semiconductor device according to claim 2, wherein said diamine is a diaminopolysiloxane.
4. The semiconductor device according to claim 1, wherein the semiconductor substrate includes a large-scale integrated circuit.
5. The semiconductor device according to claim 1, wherein the polyimide film is a buffer coating film of the semiconductor device.
6. A semiconductor device, comprising:
a semiconductor substrate; and
a polyimide film overlying the semiconductor substrate, the polyimide film being produced by coating a composition containing a polyimide precursor overlying the semiconductor substrate, thereby forming a composition coating, forming a pattern in the composition coating using an i-line stepper, thereby forming a patterned coating, and heating the patterned coating to form polyimide from the polyimide precursor, wherein the polyimide precursor is formed from an oxydiphthalic acid or acid anhydride thereof as a reactant.
7. The semiconductor device according to claim 6, wherein the polyimide precursor is a polyamic acid.
8. The semiconductor device according to claim 7, wherein the polyamic acid is a reaction product of the oxydiphthalic acid or acid anhydride thereof and diamine compound.
9. The semiconductor device according to claim 8, wherein said diamine compound is a diaminopolysiloxane.
10. A photosensitive resin composition which comprises (1) a polyimide precursor, formed from an oxydiphthalic acid or acid anhydride thereof as a reactant, a 20 μm film thickness of said polyimide precursor having a transmittance, at 365 nm, of at least 40%; and (2) a polymerization initiator.
11. The photosensitive resin composition according to claim 10, wherein the polyimide precursor is formed by reacting said oxydiphthalic acid or acid anhydride thereof with diamine.
12. The photosensitive resin composition according to claim 11, wherein said diamine is a diaminopolysiloxane.
13. The photosensitive resin composition according to claim 10, wherein said transmittance is in a range of 40%-68%.
14. The photosensitive resin composition according to claim 13, wherein the composition further includes an acryl compound having an amino group.
15. A polyimide precursor which is a reaction product of an oxydiphthalic acid or acid anhydride thereof and diaminopolysiloxane compound.
16. The polyimide precursor according to claim 15, wherein the oxydiphthalic acid or acid anhydride thereof and the diaminopolysiloxane compound are reacted in molar ratio of acid and acid anhydride, to diaminopolysiloxane of 0.8-1.2 to 1.0.
17. The polyimide precursor according to claim 15, the polyimide precursor being a polyamic acid.
18. The polyamic acid according to claim 17, having a number average molecular weight in a range of 3,000 to 200,000.
19. A polyimide formed by heating the polyamic acid of claim 17.
US09/482,859 1993-09-03 2000-01-14 Photosensitive resin composition Abandoned US20020004177A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/482,859 US20020004177A1 (en) 1993-09-03 2000-01-14 Photosensitive resin composition
US10/713,036 US7153631B2 (en) 1993-09-03 2003-11-17 Pattern-forming process using photosensitive resin composition

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP219720/1993 1993-09-03
JP21972093 1993-09-03
JP00228294A JP3687988B2 (en) 1993-09-03 1994-01-14 Photosensitive resin composition for i-line stepper
JP2282/1994 1994-01-14
US29962894A 1994-09-02 1994-09-02
US08/664,515 US5856059A (en) 1993-09-03 1996-06-17 Photosensitive resin composition
US09/136,610 US6194126B1 (en) 1993-09-03 1998-08-20 Pattern-forming process using photosensitive resin composition
US09/482,859 US20020004177A1 (en) 1993-09-03 2000-01-14 Photosensitive resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/136,610 Division US6194126B1 (en) 1993-09-03 1998-08-20 Pattern-forming process using photosensitive resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/713,036 Continuation US7153631B2 (en) 1993-09-03 2003-11-17 Pattern-forming process using photosensitive resin composition

Publications (1)

Publication Number Publication Date
US20020004177A1 true US20020004177A1 (en) 2002-01-10

Family

ID=26335636

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/664,515 Expired - Lifetime US5856059A (en) 1993-09-03 1996-06-17 Photosensitive resin composition
US09/136,610 Expired - Lifetime US6194126B1 (en) 1993-09-03 1998-08-20 Pattern-forming process using photosensitive resin composition
US09/482,859 Abandoned US20020004177A1 (en) 1993-09-03 2000-01-14 Photosensitive resin composition
US10/713,036 Expired - Fee Related US7153631B2 (en) 1993-09-03 2003-11-17 Pattern-forming process using photosensitive resin composition

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/664,515 Expired - Lifetime US5856059A (en) 1993-09-03 1996-06-17 Photosensitive resin composition
US09/136,610 Expired - Lifetime US6194126B1 (en) 1993-09-03 1998-08-20 Pattern-forming process using photosensitive resin composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/713,036 Expired - Fee Related US7153631B2 (en) 1993-09-03 2003-11-17 Pattern-forming process using photosensitive resin composition

Country Status (6)

Country Link
US (4) US5856059A (en)
EP (1) EP0642057B1 (en)
JP (1) JP3687988B2 (en)
KR (1) KR0161542B1 (en)
DE (1) DE69414787T2 (en)
TW (2) TWI221945B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203055A1 (en) * 2003-09-30 2007-08-30 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
CN113166411A (en) * 2018-11-28 2021-07-23 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687988B2 (en) * 1993-09-03 2005-08-24 日立化成工業株式会社 Photosensitive resin composition for i-line stepper
ES2146128B1 (en) * 1995-03-31 2001-03-16 Consejo Superior Investigacion PHOTOENMASKING PROCESS OF PHOTOSENSIBLE POLYIMIDES WITH ORGANOMETAL COMPOUNDS FOR PHOTOLITHOGRAPHIC PROCESSES IN SILICON TECHNOLOGY.
US6071667A (en) * 1995-04-13 2000-06-06 Hitachi Chemical Co., Ltd. Photosensitive resin composition containing a photosensitive polyamide resin
US6124074A (en) * 1999-03-11 2000-09-26 International Business Machines Corporation Photoresist compositions with cyclic olefin polymers and hydrophobic non-steroidal multi-alicyclic additives
JP4242597B2 (en) * 2002-02-28 2009-03-25 株式会社日本触媒 Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
US7083195B2 (en) * 2002-10-25 2006-08-01 Invacare Corporation Suspension with releasable locking system
US7524617B2 (en) * 2004-11-23 2009-04-28 E.I. Du Pont De Nemours And Company Low-temperature curable photosensitive compositions
KR102233088B1 (en) * 2014-01-31 2021-03-29 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. Novel polyimide compositions
US20200369831A1 (en) * 2018-02-13 2020-11-26 Virginia Tech Intellectual Properties, Inc. Additive manufacturing of aromatic thermoplastics from photocurable precursor salts

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952822B2 (en) 1978-04-14 1984-12-21 東レ株式会社 Heat-resistant photosensitive material
GB2092164B (en) 1980-12-17 1984-12-05 Hitachi Ltd Loght or radiation-sensitive polymer composition
JPS57168942A (en) 1981-04-13 1982-10-18 Hitachi Ltd Photosensitive polymer composition
US4548891A (en) * 1983-02-11 1985-10-22 Ciba Geigy Corporation Photopolymerizable compositions containing prepolymers with olefin double bonds and titanium metallocene photoinitiators
EP0119719B1 (en) 1983-03-03 1987-05-06 Toray Industries, Inc. Radiation sensitive polymer composition
JPS59160139A (en) * 1983-03-04 1984-09-10 Hitachi Ltd Photosensitive polymer composition
JPS6042425A (en) * 1983-08-17 1985-03-06 Toray Ind Inc Actinic ray-sensitive polymer composition
US5106720A (en) * 1987-07-21 1992-04-21 Hoechst Celanese Corporation Base developable negative acting photoresists
JPH01172454A (en) * 1987-12-28 1989-07-07 Sumitomo Bakelite Co Ltd Radiation-sensitive composition
JPH0336861A (en) 1989-07-03 1991-02-18 Nec Corp Incoming call restriction system
JP2949813B2 (en) * 1989-09-19 1999-09-20 東レ株式会社 Actinic radiation sensitive polymer composition
EP0430221B1 (en) 1989-11-30 1997-04-16 Sumitomo Bakelite Company Limited Photosensitive resin composition
US5122436A (en) * 1990-04-26 1992-06-16 Eastman Kodak Company Curable composition
US5399460A (en) * 1991-12-04 1995-03-21 E. I. Du Pont De Nemours And Company Negative photoresists containing aminoacrylate salts
JP3084585B2 (en) * 1991-12-09 2000-09-04 チッソ株式会社 Polyimide photosensitive cover coating agent
US5472823A (en) * 1992-01-20 1995-12-05 Hitachi Chemical Co., Ltd. Photosensitive resin composition
DE4217688A1 (en) * 1992-05-29 1993-12-02 Basf Lacke & Farben Mixture cross-linking by the action of radiation and its use for the production of high-temperature-resistant relief structures
EP0580108B1 (en) 1992-07-22 1997-03-12 Asahi Kasei Kogyo Kabushiki Kaisha A photosensitive polyimide composition
EP0624826B1 (en) 1993-05-14 1997-07-16 OCG Microelectronic Materials Inc. Method of forming relief patterns by i-line light irradiation
US5811218A (en) * 1993-07-28 1998-09-22 Hitachi Chemical Company, Ltd. Photoinitiator compositions including amino acids, coumarin and titanocene and photosensitive materials using the same
JP3687988B2 (en) * 1993-09-03 2005-08-24 日立化成工業株式会社 Photosensitive resin composition for i-line stepper
US5399655A (en) * 1993-10-29 1995-03-21 E. I. Du Pont De Nemours And Company Positive-working photodefinable polyimide precursors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203055A1 (en) * 2003-09-30 2007-08-30 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
CN113166411A (en) * 2018-11-28 2021-07-23 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film

Also Published As

Publication number Publication date
KR950009363A (en) 1995-04-21
KR0161542B1 (en) 1999-01-15
TW340913B (en) 1998-09-21
DE69414787T2 (en) 1999-07-22
US7153631B2 (en) 2006-12-26
TWI221945B (en) 2004-10-11
US5856059A (en) 1999-01-05
EP0642057A1 (en) 1995-03-08
JP3687988B2 (en) 2005-08-24
US20040106066A1 (en) 2004-06-03
JPH07120921A (en) 1995-05-12
US6194126B1 (en) 2001-02-27
EP0642057B1 (en) 1998-11-25
DE69414787D1 (en) 1999-01-07

Similar Documents

Publication Publication Date Title
KR100737206B1 (en) Photosensitive Resin Composition, Patterning Method, and Electronic Components
EP0738745B1 (en) Polyimide precursor, polyimide and their use
US6194126B1 (en) Pattern-forming process using photosensitive resin composition
EP0940724B1 (en) Use of a solution for developing a photosensitive polyimide precursor, and method of patterning
JP2001125266A (en) Photosensitive resin composition, method for producing pattern and electronic parts
JPH11125909A (en) Photosensitive resin composition, its cured body and semiconductor device
JP2003209104A (en) Semiconductor device and its material
JP3168909B2 (en) Photosensitive resin composition, method for producing polyimide pattern, and method for producing semiconductor element
JPH11271973A (en) Photosensitive resin composition and semiconductor device using same
JPH11241022A (en) Photosensitive polyimide precursor composition and semiconductor element using this
JP2002040658A (en) Photosensitive resin composition, semiconductor device using the same and electronic component
JP4568971B2 (en) Polyimide and its precursor, photosensitive resin composition, pattern manufacturing method and electronic component
JPH11237740A (en) Photosensitive resin composition and its manufacture, pattern forming method and semiconductor device
JPH11282160A (en) Photosensitive polyimide composition and pattern forming method and semiconductor device using it
JP3722155B2 (en) Photosensitive resin composition
JP3675368B2 (en) Relief pattern, buffer coating film for semiconductor, and method for producing interlayer insulating film of multilayer wiring board
JPH10326011A (en) Photosensitive resin composition, production of polyimide pattern and production of semiconductor element
JPH10301279A (en) Photosensitive resin composition, production method of polyimide pattern and production method of semiconductor element
JPH11231531A (en) Photosensitive resin composition manufacture of pattern and semiconductor device
JP2000313743A (en) Polyimide precursor, production of polyimide, photosensitive resin composition, production of pattern and electronic part
JPH11231533A (en) Photosensitive resin composition, manufacture of pattern and semiconductor device
JP2000219740A (en) Polyimide precursor, photosensitive resin composition, production of relief pattern, and electronic part
JPH11231532A (en) Photosensitive resin composition, manufacture of pattern and semiconductor device
JPH11282159A (en) Photosensitive resin composition and pattern forming method and semiconductor device using it
JPH11231529A (en) Photosensitive resin composition, manufacture of pattern and semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION