US20010024395A1 - Sense amplifier circuit for use in a semiconductor memory device - Google Patents

Sense amplifier circuit for use in a semiconductor memory device Download PDF

Info

Publication number
US20010024395A1
US20010024395A1 US09/814,414 US81441401A US2001024395A1 US 20010024395 A1 US20010024395 A1 US 20010024395A1 US 81441401 A US81441401 A US 81441401A US 2001024395 A1 US2001024395 A1 US 2001024395A1
Authority
US
United States
Prior art keywords
sense amplifier
differential
output
voltage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/814,414
Other versions
US6424577B2 (en
Inventor
Jae-Yoon Sim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mosaid Technologies Inc
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIM, JAE-YOON
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of US20010024395A1 publication Critical patent/US20010024395A1/en
Application granted granted Critical
Publication of US6424577B2 publication Critical patent/US6424577B2/en
Assigned to MOSAID TECHNOLOGIES INCORPORATED reassignment MOSAID TECHNOLOGIES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAMSUNG ELECTRONICS CO., LTD.
Assigned to ROYAL BANK OF CANADA reassignment ROYAL BANK OF CANADA U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) - SHORT FORM Assignors: 658276 N.B. LTD., 658868 N.B. INC., MOSAID TECHNOLOGIES INCORPORATED
Assigned to CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. reassignment CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MOSAID TECHNOLOGIES INCORPORATED
Assigned to CONVERSANT IP N.B. 868 INC., CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CONVERSANT IP N.B. 276 INC. reassignment CONVERSANT IP N.B. 868 INC. RELEASE OF SECURITY INTEREST Assignors: ROYAL BANK OF CANADA
Assigned to CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. reassignment CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. CHANGE OF ADDRESS Assignors: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.
Assigned to ROYAL BANK OF CANADA, AS LENDER, CPPIB CREDIT INVESTMENTS INC., AS LENDER reassignment ROYAL BANK OF CANADA, AS LENDER U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) Assignors: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.
Assigned to CPPIB CREDIT INVESTMENTS, INC. reassignment CPPIB CREDIT INVESTMENTS, INC. AMENDED AND RESTATED U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) Assignors: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.
Assigned to CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. reassignment CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS) Assignors: ROYAL BANK OF CANADA, AS LENDER
Assigned to CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. reassignment CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CPPIB CREDIT INVESTMENTS INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/067Single-ended amplifiers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/08Control thereof

Abstract

An input/output sense amplifier circuit of a semiconductor memory device is disclosed which comprises a current sense amplifier, a voltage sense amplifier and a latch circuit. The latch circuit includes a first differential amplifier for receiving the differential signals from the voltage sense amplifier; a second differential amplifier for receiving the differential signals from the voltage sense amplifier; and a gain varying circuit coupled between output terminals of the first and second differential amplifiers and setting a voltage gain of each of the first and second differential amplifiers that varies in response to the latch signal. By this configuration, a time normally required to be provided to the latch signal is obviated, thus reducing lead time of the memory device.

Description

  • This application claims priority upon Korean Patent Application No. 2000-14297, filed on Mar. 21, 2000, the contents of which are herein incorporated by reference in their entirety. [0001]
  • FIELD OF THE INVENTION
  • The present invention is related to a semiconductor memory device, and, more particular, an input/output sense amplifier circuit that is used in a dynamic random access memory (hereinafter, referred to as “DRAM”) device. [0002]
  • BACKGROUND OF THE INVENTION
  • A semiconductor memory device, particularly a DRAM device, includes an array of memory cells arranged in a matrix of plural rows and plural columns and circuits for accessing memory cells and transferring data read out from the memory cells to the exterior. As is well known, a transfer path connecting a memory cell to an external region includes a pair of bit lines BLn and BLnB associated with a memory cell MC, a pair of input/output lines IOi and IOiB corresponding to the bit line of the pair, and a pair of data input/output lines DIOj and DIOjB corresponding to the input/output lines of the pair, all of which are illustrated in FIG. 1. [0003]
  • In a concrete way, the input/output line pair IOi and IOiB transfers cell data loaded on the bit line pair to an input/[0004] output multiplexer 12 through transistors T1 and T2 (or a column pass gate circuit), which are selected by a column selection line CSL. To the input/output multiplexer 12 (although not shown in the figure) are connected plural input/output line pairs corresponding to the pair of data input/output lines DIOj and DIOjB. That is, one input/output multiplexer 12 connects one of plural pairs of input/output lines with the pair of data input/output lines DIOj and DIOjB, which transfer cell data through the input/output multiplexer 12 to a data input/output sense amplifier circuit 20. Since the size of a bit line sense amplifier 24 is small and input/output line loading and data input/output line loading are very large, an input/output sense amplifier circuit 20 is used to amplify a signal again at an end of the data input/output line pair DIOj and DIOjB.
  • Generally, an amplifier, which is used for an amplification of input/output signals in a memory device, is classified into a current sense type and a voltage sense type. Considering an operating characteristic, an amplifier of the voltage sense type (hereinafter, referred to as “a voltage sense amplifier”) has slower response speed than an amplifier of the current sense type (referred to as “a current sense amplifier”). In other words, since the voltage sense amplifier amplifies a signal so as to have a large voltage swing, it takes much time for a signal transition between states. On the other hand, since the current sense amplifier amplifies a signal so as to have a small voltage swing, it takes a short time for a signal transition between states as compared with the voltage sense amplifier. [0005]
  • Continuing to refer to FIG. 1, the input/output [0006] sense amplifier circuit 20 consists of a current sense amplifier 14, a voltage sense amplifier 16 and a latch circuit 18. The current sense amplifier 14 having a rapid operation speed amplifies data signals (or differential signals of different levels) on the data input/output lines DIOj and DIOjB, and the voltage sense amplifier 16 again amplifies the data signals CSA and CSAB from the current sense amplifier 14. The latch circuit 18 converts voltage levels of data signals DIF and DIFB from the voltage sense amplifier into CMOS levels, and transfers data signals DOUT and DOUTB of the CMOS levels to an output buffer circuit 22. FIG. 2 is a detailed circuit diagram of the input/output sense amplifier circuit 20 and the output buffer circuit 22.
  • Referring to FIG. 2, the [0007] current sense amplifier 14 and the voltage sense amplifier 16 are activated when a signal “IOSAE” is at a logic high level. The current sense amplifier 14 consists of two PMOS transistors MP1 and MP2 and three NMOS transistors MN1, MN2 and MN3 connected as illustrated in FIG. 2. Current sense amplifier 14 senses and amplifies signals on the data input/output lines DIOj and DIOjB. The voltage sense amplifier 16 consists of two differential amplifiers, each of which comprises two PMOS transistors and three NMOS transistors connected as illustrated in the figure. The voltage sense amplifier 16 receives data signals CSA and CSAB from the current sense amplifier 14, and amplifies voltage levels of the received data signals CSA and CSAB to output data signals DIF and DIFB having amplified voltage levels. The latch circuit 18 converts the voltage levels of the data signals DIF and DIFB into CMOS levels, using four PMOS transistors MP7, MP8, MP9 and MP10 and three NMOS transistors MN9, MN10 and MN11 connected as illustrated in the figure.
  • In operation, if the signal IOSAE transits from a logic low level to a logic high level, the [0008] current sense amplifier 14 and the voltage sense amplifier 16 of the input/output sense amplifier circuit 20 are simultaneously activated. Data signals transferred to the data input/output lines DIOj and DIOjB are sensed and amplified by the current sense amplifier 14, and the data signal CSA and CSAB thus amplified are transferred to the voltage sense amplifier 16. The voltage sense amplifier 16 amplifies the data signals CSA and CSAB from the current sense amplifier 14. Among data signals DIF and DIFB amplified by the voltage sense amplifier 16, one having a logic high level has a voltage level of about 1.5V. The latch circuit 18 is inactivated when a signal LAT is at a logic low level. At this time, output terminals DOUT and DOUTB thereof are precharged with the same voltage VDD through the PMOS transistors MP9 and MP10. The latch circuit 18 is activated at a logic high level of the signal LAT to latch output signals DIF and DIFB of the voltage sense amplifier 16. At this time, among the output signals DOUT and DOUTB of the latch circuit, one having a logic high level has a CMOS level, i.e. a power supply voltage VDD level.
  • In the conventional input/output [0009] sense amplifier circuit 20, as the signals DOUT and DOUTB from the latch circuit 18 are outputted relatively rapidly, read time of the DRAM device is reduced. That is, the read time (or an access time from column address) tAA thereof is shortened. However, in the case of establishing a low-to-high transition point of time too rapidly, previously outputted data signals (i.e. output signals of the voltage sense amplifier that are outdated) are supplied as input signals of the latch circuit 18. This will be referred to as an invalid sensing operation. As illustrated in FIG. 2, the cross-coupled PMOS transistors MP7 and MP8 of the latch circuit 18 continue to maintain a latched value.
  • In a case where invalid data are applied to the [0010] latch circuit 18, the cross-coupled PMOS transistors MP7 and MP8 latch the invalid data. Since the latched invalid data have to be flipped into currently inputted valid data, much time is taken to output the valid data. In order to secure a stable operation of the latch circuit 18, therefore, there is given a predetermined time margin (refer to FIG. 4, Tmargin) at a low-to-high transition point of time of the signal LAT applied to the latch circuit 18. It means that the read time tAA of the DRAM device is limited by the low-to-high transition point of time (or an activation point of time) of the signal LAT.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the invention to provide a semiconductor memory device being capable of reducing read time. [0011]
  • It is another object of the invention to provide an input/output sense amplifier circuit of a semiconductor memory device with a latch circuit, the amplifier circuit having a variable voltage gain. This and other objects, advantages and features of the present invention are provided by a dynamic random access memory device, which comprises at least one pair of bit lines; a pair of input/output (I/O) lines corresponding to the bit lines of the pair; and an I/O sense amplifier circuit coupled to the I/O lines of the pair. The I/O sense amplifier circuit comprises a current sense amplifier for sensing a current differential between the input/output lines to output differential signals; a voltage sense amplifier for amplifying voltages of the differential signals from the current sense amplifier; and a latch circuit for latching the differential signals from the voltage sense amplifier in response to a latch signal, wherein the latch circuit includes a first differential amplifier for receiving the differential signals from the voltage sense amplifier; a second differential amplifier for receiving the differential signals from the voltage sense amplifier; and gain control means coupled between output terminals of the first and second differential amplifiers, the gain control means setting a voltage gain of each of the first and second differential amplifiers that varies in response to the latch signal. [0012]
  • In one embodiment, the gain control means comprises a first resistive element having one end coupled to the output terminal of the first differential amplifier; a second resistive element having one end coupled to the output terminal of the second differential amplifier; and a switch transistor coupled between the other ends of the first and second resistive elements, the switch transistor being switched on and off according to a logic level of the latch signal.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete appreciation of the present invention, and many of the attendant advantages thereof, will become readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein: [0014]
  • FIG. 1 is a block diagram showing a circuit construction according to a data output path of a conventional dynamic random access memory device; [0015]
  • FIG. 2 is a detailed circuit diagram of an input/output sense amplifier illustrated in FIG. 1; [0016]
  • FIG. 3 is a preferred embodiment of an input/output sense amplifier circuit according to the present invention; and [0017]
  • FIG. 4 is a timing diagram for describing an operation of an input/output sense amplifier circuit according to the present invention.[0018]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The preferred embodiment of the invention will be more fully described with reference to the attached drawings. A preferred embodiment of an input/output sense amplifier circuit according to the present invention is illustrated in FIG. 3 together with an output buffer. In FIG. 3, constituent elements that have identical to those in FIG. 2 are designated by the same reference numerals, and similar elements are similarly designated by primed, but otherwise identical, reference designators. [0019]
  • The input/output [0020] sense amplifier circuit 20′ according to the present invention is connected to data input/output lines DIOj and DIOjB, and includes a current sense amplifier 14′, a voltage sense amplifier 16′ and a latch circuit 18′. The current sense amplifier 14′ and the voltage sense amplifier 16′ according to the present invention perform the same function as those in FIG. 2, and a functional description thereof is thus omitted.
  • The [0021] latch circuit 18′ according to the present invention comprises two differential amplifiers DF1 and DF2, each of which consists of two PMOS transistors and three NMOS transistors connected as illustrated in the figure. Each of the differential amplifiers DF1 and DF2 receives signals DIF and DIFB from the voltage sense amplifier 16′ at a previous stage as its input signals, and has its output terminals for outputting corresponding output signals DOUT and DOUTB. The latch circuit 18′ of the present invention further comprises two resistors R1 and R2 and a PMOS transistor MP24, which form a gain-varying circuit. One end of the resistor R1 is connected to an output terminal DOUT of the differential amplifier DF1, and one end of the resistor R2 is connected to an output terminal DOUTB of the differential amplifier DF2. A source-drain channel of the PMOS transistor MP24 is formed between the other ends of the resistors R1 and R2, and its gate is connected to receive a latch enable signal LAT.
  • The resistors R[0022] 1 and R2 and the PMOS transistor MP24 set the a voltage gain of each differential amplifier DF1 and DF2 varied according to the logic level of the signal LAT. That is, when the signal LAT is at a logic low level, the PMOS transistor MP24 is turned on, thus the output terminals DOUT and DOUTB of the latch circuit 18′ are electrically connected through the resistors R1 and R2 and the PMOS transistor MP24. An output resistance of each differential amplifier DF1 and DF2 becomes small, so that the voltage gain of each differential amplifier DF1 and DF2 is reduced. For example, the voltage gain of each differential amplifier is “1”.
  • On the other hand, when the signal LAT is at a logic high level, the PMOS transistor MP[0023] 24 is turned off, thus the output terminals DOUT and DOUTB of the latch circuit 18′ are not connected electrically to each other. Since the output resistance of each differential amplifier DF1 and DF2 is increased as compared with a previous state (a connection state of the output terminals), the voltage gain of each differential amplifier DF1 and DF2 is also increased. As a result, the voltage gain of each differential amplifier DF1 and DF2 is capable of being changed according to a turn-off/turn-on state of the PMOS transistor MP24.
  • Referring to FIG. 4, a timing diagram for describing an operation of the input/output sense amplifier circuit according to the present invention is illustrated. Below, an operation of the input/output sense amplifier circuit according to the present invention will be described more fully with reference to the accompanying drawings. [0024]
  • When a read operation commences, a word line WLm is selected. Data stored in a memory cell MC, which is connected to the selected word line, is transferred to a bit line BLn/BLnB. A pair of bit lines BLn and BLnB associated with the selected memory cell are connected to corresponding input/output lines IOi and IOiB through transistors T[0025] 1 and T2, which are selected by a column selection line CSL. The pair of input/output lines is connected to corresponding data input/output lines DIOj and DIOjB through an input/output multiplexer 12. As illustrated in FIG. 4, the current sense amplifier 14′, the voltage sense amplifier 16′ and the latch circuit 18′ of the circuit 20′ are activated at a logic high level of the signal IOSAE. Data signals transferred to the data input/output lines DIOj and DIOjB are sensed and amplified by the current sense amplifier 14′, and the sensed and amplified data signals CSA and CSAB are sent to the voltage sense amplifier 16′. The voltage sense amplifier 16′ again amplifies the data signals CSA and CSAB provided from the current sense amplifier 14′.
  • When the signal LAT is at a logic low level, the output terminals DOUT and DOUTB of the [0026] latch circuit 18′ are electrically connected through the resistors R1 and R2 and the PMOS transistor MP24. Thus, the differential amplifiers DF1 and DF2 in the latch circuit 18′ have a lower voltage gain. Therefore, the latch circuit 18′ outputs the signals DOUT and DOUTB according to logic levels input signals DIF and DIFB, whether valid or invalid. In other words, the latch circuit 18′ outputs its output signals DOUT and DOUTB directly proportional to voltage levels of its input signals DIF and DIFB. At this time, since the voltage gain of each of the differential amplifiers DF1 and DF2 is lower, the output signals DOUT and DOUTB do not have a CMOS level. When the signal LAT has a low-to-high transition, the output terminals DOUT and DOUTB of the latch circuit 18′ are not connected to each other. Consequently, each of the differential amplifiers DF1 and DF2 operates as an amplifier having a higher voltage gain, thus the voltage levels of the input signals DIF and DIFB are converted to the CMOS level.
  • In a case where such an invalid sensing operation as described above is carried out (or, in a case where the signal LAT is varied too rapidly, whereby previously outputted data signals are applied as input signals of the [0027] latch circuit 18′), the output signals DOUT and DOUTB of the latch circuit 18′ may be outputted, momentarily, as invalid data. In the latch circuit 18′ according to the present invention, however, since the cross-coupled PMOS transistors having a characteristic of maintaining previous data are removed, no time is needed for changing invalid data to current valid data. As a result, no time margin Tmargin of the signal LAT is needed for securing a stable operation (as is required of the latch circuit 18 in FIG. 1). Thus, with the present invention a read time tAA of the DRAM device is shortened.
  • The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements. [0028]

Claims (4)

What is claimed is:
1. A semiconductor memory device comprising at least one pair of bit lines; a pair of input/output (I/O) lines corresponding to the bit lines of the pair; and an I/O sense amplifier circuit coupled to the I/O lines of the pair, wherein the I/O sense amplifier circuit comprises:
a current sense amplifier for sensing a current differential between the input/output lines to output differential signals;
a voltage sense amplifier for amplifying voltages of the differential signals outputted from the current sense amplifier; and
a latch circuit for latching the differential signals from the voltage sense amplifier in response to a latch signal, wherein the latch circuit includes a first differential amplifier for receiving the differential signals from the voltage sense amplifier; a second differential amplifier for receiving the differential signals from the voltage sense amplifier; and gain control means coupled between output terminals of the first and second differential amplifiers, the gain control means setting a voltage gain of each of the first and second differential amplifiers that varies in response to the latch signal.
2. The semiconductor memory device according to
claim 1
, wherein the gain control means comprises:
a first resistive element having one end coupled to the output terminal of the first differential amplifier;
a second resistive element having one end coupled to the output terminal of the second differential amplifier; and
a switch transistor coupled between the other ends of the first and second resistive elements, the switch transistor being switched on and off according to a logic level of the latch signal.
3. The semiconductor memory device according to
claim 2
, wherein the switch transistor is a PMOS transistor.
4. The semiconductor memory device according to
claim 3
, wherein a voltage gain of each of the first and second differential amplifiers at a logic low level of the latch signal is less than that at a logic high level of the latch signal.
US09/814,414 2000-03-21 2001-03-21 Sense amplifier circuit for use in a semiconductor memory device Expired - Lifetime US6424577B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR00-14297 2000-03-21
KR1020000014297A KR100343290B1 (en) 2000-03-21 2000-03-21 Input/output sense amplifier circuit for use in a semiconductor memory device
KR2000-14297 2000-03-21

Publications (2)

Publication Number Publication Date
US20010024395A1 true US20010024395A1 (en) 2001-09-27
US6424577B2 US6424577B2 (en) 2002-07-23

Family

ID=19657146

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/814,414 Expired - Lifetime US6424577B2 (en) 2000-03-21 2001-03-21 Sense amplifier circuit for use in a semiconductor memory device

Country Status (3)

Country Link
US (1) US6424577B2 (en)
KR (1) KR100343290B1 (en)
DE (1) DE10113714B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210078A1 (en) * 2002-05-08 2003-11-13 University Of Southern California Current source evaluation sense-amplifier
US20080048727A1 (en) * 2006-08-25 2008-02-28 Etron Technology, Inc. Sense amplifier-based latch
DE102004013055B4 (en) * 2003-03-15 2008-12-04 Samsung Electronics Co., Ltd., Suwon Semiconductor memory module with Datenleitungsabtastverstärker
US8213250B2 (en) 2010-05-28 2012-07-03 Hynix Semiconductor Inc. Integrated circuit and semiconductor memory device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382734B1 (en) * 2001-02-26 2003-05-09 삼성전자주식회사 Input-output line sense amplifier having small current consumption and small direct current
US6934197B2 (en) * 2003-10-10 2005-08-23 Infineon Technologies Ag Method and circuit configuration for digitizing a signal in an input buffer of a DRAM device
KR100558571B1 (en) * 2004-03-03 2006-03-13 삼성전자주식회사 Current sense amplifier circuit in semiconductor memory device
KR100824779B1 (en) * 2007-01-11 2008-04-24 삼성전자주식회사 Data output path of a semiconductor memory device and method of outputting data
KR100826497B1 (en) * 2007-01-22 2008-05-02 삼성전자주식회사 Input/output sense amplifier of circuit semiconductor memory device for reducing power consumption
KR101311726B1 (en) * 2007-07-06 2013-09-26 삼성전자주식회사 Sense amplifier, semiconductor memory device having the same, and method of amplifying a signal
JP5068615B2 (en) * 2007-09-21 2012-11-07 ルネサスエレクトロニクス株式会社 Semiconductor device
KR101519039B1 (en) * 2008-11-27 2015-05-11 삼성전자주식회사 Output circuit semiconductor memory device having the same and memory system having the semiconductor memory device
EP2428961A1 (en) * 2010-09-13 2012-03-14 Imec Method for improving writability of SRAM memory
US9196329B1 (en) * 2012-11-29 2015-11-24 Marvell Israel (M.I.S.L) Ltd. Combinatorial flip flop with off-path scan multiplexer
FR3044460B1 (en) 2015-12-01 2018-03-30 Stmicroelectronics (Rousset) Sas PLAYBACK AMPLIFIER FOR MEMORY, ESPECIALLY EEPROM MEMORY

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994534B2 (en) * 1993-09-09 1999-12-27 富士通株式会社 Semiconductor storage device
JP3161254B2 (en) * 1994-11-25 2001-04-25 株式会社日立製作所 Synchronous memory device
JPH08255487A (en) * 1995-03-17 1996-10-01 Fujitsu Ltd Semiconductor storage device
KR0167235B1 (en) * 1995-03-28 1999-02-01 문정환 Data transferring apparatus for memory
US6037807A (en) * 1998-05-18 2000-03-14 Integrated Device Technology, Inc. Synchronous sense amplifier with temperature and voltage compensated translator
KR100322539B1 (en) * 1999-07-10 2002-03-18 윤종용 Sense amplifying apparatus of semiconductor integrated circuit
US6058059A (en) * 1999-08-30 2000-05-02 United Microelectronics Corp. Sense/output circuit for a semiconductor memory device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210078A1 (en) * 2002-05-08 2003-11-13 University Of Southern California Current source evaluation sense-amplifier
US7023243B2 (en) 2002-05-08 2006-04-04 University Of Southern California Current source evaluation sense-amplifier
DE102004013055B4 (en) * 2003-03-15 2008-12-04 Samsung Electronics Co., Ltd., Suwon Semiconductor memory module with Datenleitungsabtastverstärker
US20080048727A1 (en) * 2006-08-25 2008-02-28 Etron Technology, Inc. Sense amplifier-based latch
US8213250B2 (en) 2010-05-28 2012-07-03 Hynix Semiconductor Inc. Integrated circuit and semiconductor memory device

Also Published As

Publication number Publication date
DE10113714B4 (en) 2006-04-13
KR100343290B1 (en) 2002-07-15
DE10113714A1 (en) 2001-10-04
KR20010092224A (en) 2001-10-24
US6424577B2 (en) 2002-07-23

Similar Documents

Publication Publication Date Title
US8144526B2 (en) Method to improve the write speed for memory products
US6424577B2 (en) Sense amplifier circuit for use in a semiconductor memory device
US10332571B2 (en) Memory device including memory cell for generating reference voltage
US5321658A (en) Semiconductor memory device being coupled by auxiliary power lines to a main power line
EP0383078B1 (en) A bicmos static memory with improved performance stability
US6104655A (en) Semiconductor storage device
US6396310B2 (en) Current sense amplifiers enabling amplification of bit line voltages provided by bit line sense amplifiers
US5341331A (en) Data transmission circuit having common input/output lines
KR0129790B1 (en) Amplifier circuit and semiconductor memory device employing the same
US6914836B2 (en) Sense amplifier circuits using a single bit line input
US5438287A (en) High speed differential current sense amplifier with positive feedback
US6466501B2 (en) Semiconductor memory device having sense amplifier and method for driving sense amplifier
US5715204A (en) Sense amplifier with hysteresis
US6721218B2 (en) Semiconductor memory device and data read method thereof
US6879533B2 (en) Integrated circuit memory devices including active load circuits and related methods
KR100259577B1 (en) Semiconductor memory
KR950005171B1 (en) Current mirror amplifier and driving method
US5754488A (en) Apparatus and method for controlling a bit line sense amplifier having offset compensation
US6243314B1 (en) Apparatus for sensing a current direction of an input signal and amplifying the sensed input signal in semiconductor memory device
US6490211B2 (en) Random access memory device
US6552943B1 (en) Sense amplifier for dynamic random access memory (“DRAM”) devices having enhanced read and write speed
KR100190366B1 (en) Semiconductor memory device and impressed voltage method of the same
KR100262100B1 (en) Current sensing differential amplifier
KR970071795A (en) Semiconductor memory device having a single data line
US6108258A (en) Sense amplifier for high-speed integrated circuit memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIM, JAE-YOON;REEL/FRAME:011639/0751

Effective date: 20010317

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: MOSAID TECHNOLOGIES INCORPORATED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMSUNG ELECTRONICS CO., LTD.;REEL/FRAME:025423/0186

Effective date: 20101026

AS Assignment

Owner name: ROYAL BANK OF CANADA, CANADA

Free format text: U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) - SHORT FORM;ASSIGNORS:658276 N.B. LTD.;658868 N.B. INC.;MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:027512/0196

Effective date: 20111223

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: CHANGE OF NAME;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:032439/0638

Effective date: 20140101

AS Assignment

Owner name: CONVERSANT IP N.B. 276 INC., CANADA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344

Effective date: 20140611

Owner name: CONVERSANT IP N.B. 868 INC., CANADA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344

Effective date: 20140611

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344

Effective date: 20140611

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CANADA

Free format text: CHANGE OF ADDRESS;ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033678/0096

Effective date: 20140820

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: CHANGE OF ADDRESS;ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033678/0096

Effective date: 20140820

AS Assignment

Owner name: CPPIB CREDIT INVESTMENTS INC., AS LENDER, CANADA

Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033706/0367

Effective date: 20140611

Owner name: ROYAL BANK OF CANADA, AS LENDER, CANADA

Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033706/0367

Effective date: 20140611

AS Assignment

Owner name: CPPIB CREDIT INVESTMENTS, INC., CANADA

Free format text: AMENDED AND RESTATED U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:046900/0136

Effective date: 20180731

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CANADA

Free format text: RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:ROYAL BANK OF CANADA, AS LENDER;REEL/FRAME:047645/0424

Effective date: 20180731

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:ROYAL BANK OF CANADA, AS LENDER;REEL/FRAME:047645/0424

Effective date: 20180731

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CANADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CPPIB CREDIT INVESTMENTS INC.;REEL/FRAME:054371/0684

Effective date: 20201028