US20010016116A1 - Image-tremble-correcting system for optical instrument - Google Patents

Image-tremble-correcting system for optical instrument Download PDF

Info

Publication number
US20010016116A1
US20010016116A1 US09/785,185 US78518501A US2001016116A1 US 20010016116 A1 US20010016116 A1 US 20010016116A1 US 78518501 A US78518501 A US 78518501A US 2001016116 A1 US2001016116 A1 US 2001016116A1
Authority
US
United States
Prior art keywords
tremble
axis
optical
coordinate system
rectangular coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/785,185
Other versions
US6456790B2 (en
Inventor
Takamitsu Sasaki
Yukio Uenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Assigned to ASAHI KOGAKU KOGYO KABUSHIKI KAISHA reassignment ASAHI KOGAKU KOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SASAKI, TAKAMITSU, UENAKA, YUKIO
Publication of US20010016116A1 publication Critical patent/US20010016116A1/en
Application granted granted Critical
Publication of US6456790B2 publication Critical patent/US6456790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/005Blur detection

Definitions

  • This invention relates to an image-tremble-correcting system for an optical instrument having an image-focussing lens system, such as a still camera, a video camera, a telescope, a pair of binoculars or the like, to correct a tremble of a focussed image caused by an oscillation of the optical instrument due to, for example, a hand tremble.
  • an image-focussing lens system such as a still camera, a video camera, a telescope, a pair of binoculars or the like
  • the image-tremble-correcting system comprises a movable image-tremble-correcting lens system assembled in the photographing lens system, a tremble sensor system that detects an amount of tremble of the camera, and therefore a focussed image, caused by an oscillation of the camera due to, for example, a hand tremble, and a driving system that moves the movable image-tremble-correcting lens system to thereby neutralize the tremble of the focussed image.
  • SLR single lens reflex
  • the SLR camera is often panned widely in vertical and/or horizontal directions to frame the image to be performed.
  • the image-tremble-correcting-lens system may easily reach a limit position due to the wide movement of the SLR camera in the vertical and/or horizontal directions, resulting in an awkward motion of the image as observed through the viewfinder system.
  • the awkward motion of the image gives a photographer an uncomfortable feeling.
  • optical instruments such as a video camera, a telescope, a pair of binoculars or the like.
  • an object of the present invention is to provide an image-tremble-correcting system for an optical instrument, which is constituted such that vertical and horizontal limitations of movement of an image-tremble-correcting-lens system can be widened without increasing the mechanical bulkiness of a photographing lens system.
  • an image-tremble-correcting system for an optical instrument, having an optical focussing system for producing a focussed image, to correct a tremble of the focussed image caused by an oscillation of the optical instrument.
  • the image-tremble-correcting system comprises a movable optical tremble-correction system assembled in the optical focussing system of the optical instrument, and an X-Y rectangular coordinate system which is defined on a geometrical plane perpendicular to an optical axis of the optical focussing system.
  • An origin of the X-Y rectangular coordinate system coincides with the optical axis of the optical focussing system, and the X- and Y-axes thereof define an angle of 45° with a horizontal axis and a vertical axis defined on the geometrical plane when the optical instrument is positioned at a usual attitude.
  • the image-tremble-correcting system further comprises a first position-detecting system that detects a position of the movable optical tremble-correction system along the X-axis of the X-Y rectangular coordinate system, a second position-detecting system that detects a position of the movable optical tremble-correction system along the Y-axis of the X-Y rectangular coordinate system, a first driving system that moves the movable optical tremble-correction system along the X-axis of the X-Y rectangular coordinate system, a second driving system that moves the movable optical tremble-correction system along the Y-axis of the X-Y rectangular coordinate system, a tremble-sensor system that detects an amount of tremble of the focussed image with respect to the X-Y rectangular coordinate system, and a controller that controls the first and second driving system to move the movable optical tremble-correction system along the X- and Y-axes of
  • the movable optical tremble-correction system is movable along the X-axis and the Y-axis of the X-Y rectangular coordinate system to the same extent, such that the movement of the movable optical tremble-correction system is restricted in a square area.
  • the image-tremble-correcting system may further comprise a first limit-position-determination system that determines whether the position detected by the first position-detecting system is a first limit position along the X-axis of the X-Y rectangular coordinate system, a first correction-limit-determination system that determines whether an amount of tremble of the focussed image along the X-axis of the X-Y rectangular coordinate system exceeds the first limit position, when it is determined by the first limit-position-determination system that the position detected by the first position-detecting system is the first limit position along the X-axis of the X-Y rectangular coordinate system, a second limit-position-determination system that determines whether the position detected by the second position-detecting system is a second limit position along the Y-axis of the X-Y rectangular coordinate system, and a second correction-limit-determination system that determines whether an amount of tremble of the focussed image along the Y-axis of the X-Y rectangular coordinate system exceeds the second limit
  • the controller ceases controlling the first driving system when it is determined by the first correction-limit-determination system that the amount of tremble of the focussed image along the X-axis of the X-Y rectangular coordinate system exceeds the first limit position.
  • the controller ceases controlling the second driving system when it is determined by the second correction-limit-determination system that the amount of tremble of the focussed image along the Y-axis of the X-Y rectangular coordinate system exceeds the second limit position.
  • the tremble-sensor system may include a first angular speed sensor that detects a first angular speed of the optical instrument around the X-axis of the X-Y rectangular coordinate system, and a second angular speed sensor that detects a second angular speed of the optical instrument around the Y-axis of the X-Y rectangular coordinate system.
  • the controlling of the respective first and second driving systems by the controller is performed on the basis of the first and second angular speed detected by the first and second angular speed sensors.
  • the respective first and second driving systems comprise a first electromagnetic driving system and a second electromagnetic driving system.
  • both a direction and a magnitude of an electric current, flowing through the first electromagnetic driving system is controlled by the controller on the basis of the position of the movable optical tremble-correction system, detected by the first position-detecting system, and the first angular speed detected by the first angular speed sensor, thereby determining both a direction and an acceleration of the movement of the movable optical tremble-correction system along the X-axis of the X-Y rectangular coordinate system.
  • both a direction and a magnitude of an electric current, flowing through the second electromagnetic driving system is controlled by the controller on the basis of the position of the movable optical tremble-correction system, detected by the second position-detecting system, and the second angular speed detected by the second angular speed sensor, thereby determining both a direction and an acceleration of the movement of the movable optical tremble-correction system along the Y-axis of the X-Y rectangular coordinate system.
  • the optical instrument may comprise a single lens reflex camera having a photographing optical system as the optical focussing system.
  • the movable optical tremble-correction system, the first and second position-detecting systems, and the first and second driving systems are assembled as an image-tremble-correcting unit in the photographing optical system.
  • FIG. 1 is a schematic longitudinal sectional view showing a part of a single lens reflex (SLR) type camera, in which an image-tremble-correcting system according to the present invention is embodied;
  • SLR single lens reflex
  • FIG. 2 is a view showing an X-Y rectangular coordinate system defined on a geometrical plane perpendicular to an optical axis of a photographing lens system of the SLR camera such that an image-tremble-correcting lens system is movable along the X- and Y-axes thereof, the X- and Y-axes of the X-Y coordinate system defining an angle of 45° with a horizontal axis and a vertical axis, which are defined on the geometrical plane when the SLR camera is held by hand at a usual photographing attitude;
  • FIG. 3 is a perspective view showing a positional relationship between an image-tremble-correcting unit and a frame of photographic film;
  • FIG. 4 is an exploded view showing the image-tremble-correcting unit
  • FIG. 5 is a front view showing an assembly of an annular plate body and a movable plate frame of the image-tremble-correcting unit
  • FIG. 6 is a front view showing the movable plate frame of the image-tremble-correcting unit
  • FIG. 7 is a block diagram of the SRL camera partially illustrated in FIG. 1;
  • FIG. 8 is a flowchart of a part of an image-tremble-correcting routine
  • FIG. 9 is a flowchart of another part of the image-tremble-correcting routine.
  • FIG. 10 is a flowchart of the remainder of the image-tremble-correcting routine.
  • FIG. 1 partially and schematically shows a lens barrel of a single lens reflex (SLR) type camera, in which an image-tremble-correcting system according to the present invention is embodied.
  • a camera body of the camera is indicated by reference 1
  • the lens barrel is indicated by reference 9 .
  • the lens barrel 9 contains a photographing optical system, generally indicated by reference 2 , and the photographing optical system 2 includes a first group of lenses L 1 , a second group of lenses L 2 , and a third group of lenses L 3 .
  • the first and third groups of lenses L 1 and L 3 form a photographing lens system having an optical axis O.
  • the second group of lenses L 2 serves as an image-tremble-correcting lens system, which is movable along a geometrical plane perpendicular to the optical axis O of the photographing lens system (L 1 and L 3 ).
  • an X-Y rectangular coordinate system is defined on the aforesaid geometrical plane such that the origin thereof coincides with the optical axis O of the photographing lens system (L 1 and L 3 ), and the image-tremble-correcting lens system (L 2 ) is movable along the X-axis and the Y-axis of the X-Y rectangular coordinate system.
  • the X-Y rectangular coordinate system is set such that the X- and Y-axes thereof define an angle of 45° with a horizontal axis HA and a vertical axis VA, which are defined on the aforesaid geometrical plane when the camera is held by hand at a usual photographing attitude such that a central lengthwise axis of a rectangular frame of photographic film, which is positioned at an image plane defined by the photographing lens system (L 1 and L 3 ), is horizontally oriented.
  • an amount of movement of the image-tremble-correcting lens system (L 2 ) along the X-axis of the X-Y rectangular coordinate system is represented by an X coordinate “a”
  • an amount of movement of the image-tremble-correcting lens system (L 2 ) along the Y-axis of the X-Y rectangular coordinate system is represented by a Y coordinate “b”.
  • each absolute value of the X and Y coordinates “a” and “b” is mechanically limited to a maximum value “r”, and thus the movement of the image-tremble-correcting lens system (L 2 ) is restricted in a square area SA with four sides having a length of “2r”, as shown in FIG. 2.
  • a maximum range R in which the image-tremble-correcting lens system (L 2 ) can be moved along each of the horizontal axis HA and the vertical axis VA, is defined by the following formula:
  • the image-tremble-correcting lens system (L 2 ) is integrally and securely held in a barrel frame 14 , and is assembled in an image-tremble-correcting unit 10 .
  • the image-tremble-correcting unit 10 includes an annular plate body 11 having a circular opening 11 a formed therein, and the annular plate body 11 is immovably supported by the lens barrel 9 .
  • an inner ring element 9 b is integrally protruded from an inner surface of the lens barrel 9 , and the annular plate body 11 is securely attached to the inner ring element 9 b by screws represented by 9 a .
  • the annular plate body 11 is integrally formed with two spacer block elements 11 1 and 11 2 which are diametrically arranged at the circumference of the annular plate body 11 .
  • the image-tremble-correcting unit 10 also includes a generally annular yoke plate 12 having a circular opening 12 a formed therein, and the annular yoke plate 12 is securely attached to the spacer block elements 11 1 and 11 2 by screws 13 .
  • the circular openings 11 a and 12 a are coaxially aligned with each other, and have a central axis which coincides with the optical axis O of the photographing lens system (L 1 and L 3 ).
  • the image-tremble-correcting unit 10 further includes a movable plate frame 15 having a circular opening 15 a formed therein, and the movable plate frame 15 securely supports the barrel frame 14 holding the image-tremble-correcting lens system (L 2 ).
  • the barrel frame 14 is integrally formed with an annular flange 14 a (FIG. 1), and the annular flange 14 a of the barrel frame 14 is fixed to an annular rim of the circular opening 15 a of the movable plate frame 15 , with the barrel frame 14 passing through the circular opening 15 a , as best shown in FIG. 4.
  • the movable plate frame 15 is movably received in a space between the annular plate body 11 and the annular yoke plate 12 , such that the movable plate frame 15 , and therefore the lens system (L 2 ), can be moved along the X- and Y-axes of the X-Y coordinate system, as explained in detail hereinafter.
  • reference F indicates a rectangular frame of photographic film which is positioned at the image plane defined by the photographing lens system (L 1 and L 3 ).
  • the X-Y coordinate system is projected onto the photographic film frame F, as shown in FIG. 3, the X- and Y-axes thereof form an angle of 45° with a central lengthwise axis CLA of the photographic film frame F.
  • the horizontal and vertical axes HA and VA are projected onto the photographic film frame F provided that the camera is held by hand at the usual photographing attitude, the horizontal axis HA coincides with the central lengthwise axis CLA of the photographic film frame F.
  • an L-shaped movable member 24 is arranged between the annular plate body 11 and the movable plate frame 15 , and has two arms 24 a and 24 b which form a right angle.
  • the arm 24 a is provided with a pair of ring-like guide rollers 25 rotatably attached to a side face directed toward the movable plate frame 15
  • the arm 24 b is provided with a pair of ring-like guide rollers 26 rotatably attached to a side face directed toward the annular plate body 11 .
  • a pair of elongated guide slots 15 f is formed in the movable plate frame 15 , and the elongated guide slots 15 f are aligned with each other along the X-axis of the X-Y coordinate system.
  • a pair of elongated guide slots 11 d is formed in the annular plate body 11 , as shown in FIG. 4, and the elongated guide slots 11 d are aligned with each other along the Y-axis of the X-Y coordinate system.
  • an L-shaped plate element 20 is securely attached to an inner wall of the annular plate body 11 by three screws 21 , and has two arm sections 20 a and 20 b which form a right angle.
  • the arm section 20 a extends along the Y-axis of the X-Y coordinate system
  • the arm section 20 b extends along the X-axis of the X-Y coordinate system.
  • a first pair of elongated permanent magnets 22 a is fixed on the arm section 20 a to extend along the Y-axis of the X-Y coordinate system
  • a second pair of elongated permanent magnets 22 b is fixed on the arm section 20 b to extend along the X-axis of the X-Y coordinate system.
  • the movable plate frame 15 is provided with a first electromagnetic coil 16 a and a second electromagnetic coil 16 b securely supported thereby, and the respective first and second electromagnetic coils 16 a and 16 b are aligned with the first and second pairs of elongated permanent magnets 22 a and 22 b along the optical axis O of the photographing lens system (L 1 and L 3 ).
  • the first electromagnetic coil 16 a is associated with the first pair of permanent magnets 22 a to form a first driving system that moves the movable plate frame 15 , and therefore the lens system (L 2 ), along the X-axis of the X-Y coordinate system
  • the second electromagnetic coil 16 b is associated with the second pair of permanent magnets 22 b to form a second driving system that moves the movable plate frame 15 , and therefore the lens system (L 2 ), along the Y-axis of the X-Y coordinate system.
  • the first electromagnetic coil 16 a when the first electromagnetic coil 16 a is electrically energized in a magnetic field produced by the first pair of permanent magnets 22 a , it is subjected to a driving force in accordance with Fleming's rule, such that the movable plate frame 15 , and therefore the lens system (L 2 ), is moved along the X-axis of the X-Y coordinate system.
  • the second electromagnetic coil 16 b when the second electromagnetic coil 16 b is electrically energized in a magnetic field produced by the second pair permanent magnets 22 b , it is subjected to a driving force in accordance with Fleming's rule, such that the movable plate frame 15 , and therefore the lens system (L 2 ), is moved along the Y-axis of the X-Y coordinate system.
  • a driving force in accordance with Fleming's rule, such that the movable plate frame 15 , and therefore the lens system (L 2 ), is moved along the Y-axis of the X-Y coordinate system.
  • the direction of the driving force, to which each coil ( 16 a , 16 b ) is subjected depends on the direction in which electric current flows through each coil ( 16 a , 16 b ), and the magnitude of the driving force depends on the amount of electric current flowing through each coil ( 16 a , 16 b ).
  • the movable plate frame 15 has a first infrared LED (light emitting diode) 19 a and a second infrared LED (light emitting diode) 19 b securely attached thereto.
  • the first infrared LED 19 a is arranged on the diametrical opposite side of the first electromagnetic coil 16 a with respect to the circular opening 15 a
  • the second infrared LED 19 b is arranged on the diametrical opposite side of the second electromagnetic coil 16 b with respect to the circular opening 15 a.
  • the annular plate body 11 has a first PSD (position sensitive device) 30 a and a second PSD 30 b securely attached thereto.
  • the first PSD 30 a is arranged on the diametrical opposite side of the first pair of permanent magnets 22 a with respect to the circular opening 11 a
  • the second PSD 30 b is arranged on the diametrical opposite side of the second pair of permanent magnets 22 b with respect to the circular opening 11 a .
  • each of the first and second PSD's 30 a and 30 b is formed as a one-dimensional or linear PSD.
  • the first infrared LED 19 a is associated with the first PSD 30 a to form a first position-detecting system that detects a position of the movable plate frame 15 , and therefore the lens system (L 2 ), along the X-axis of the X-Y coordinate system.
  • the second infrared LED 19 b is associated with the second PSD 30 b to form a second position-detecting system that detects a position of the movable plate frame 15 , and therefore the lens system (L 2 ), along the Y-axis of the X-Y coordinate system.
  • the movable plate frame 15 is formed with a first fine slit (not visible in FIGS. 4, 5 and 6 ) which extends along the Y-axis of the X-Y coordinate system, and infrared light, emitted from the first infrared LED 19 a , is made incident on the first PSD 30 a through the first fine slit.
  • the infrared light emitted from the first infrared LED 19 a is formed into a sheet-like infrared light beam by the first fine slit, and the sheet-like infrared light beam is made incident on the first PSD 30 a .
  • the lens system (L 2 ) along the X-axis of the X-Y coordinate system.
  • the movable plate frame 15 is formed with a second fine slit (not visible in FIGS. 4, 5 and 6 ) which extends along the X-axis of the X-Y coordinate system, and infrared light, emitted from the second infrared LED 19 b , is made incident on the second PSD 30 b through the second fine slit.
  • the infrared light emitted from the second infrared LED 19 b is formed into a sheet-like infrared light beam by the second fine slit, and the sheet-like infrared light beam is made incident on the second PSD 30 b .
  • the variation of the output electric current of the second PSD 30 b it is possible to detect the position of the movable plate frame 15 , and therefore the lens system (L 2 ), along the Y-axis of the X-Y coordinate system.
  • the movable plate frame 15 is provided with first, second and third stopper members 15 1 , 15 2 and 15 3 to restrict the movement of the movable plate frame 15 , and therefore the lens system (L 2 ), along the X- and Y-axes of the X-Y coordinate system.
  • the first stopper member 15 1 is associated with ends of the first and second electromagnetic coils 16 a and 16 b which are adjacent to each other, and the respective second and third stopper members 15 2 and 15 3 are associated with the other ends of the first and second electromagnetic coils 16 a and 16 b which are away from the respective adjacent ends thereof.
  • the first stopper member 15 1 has two rounded end faces 15 c and 15 e
  • the second and third stopper members 15 2 and 15 3 have rounded end faces 15 b and 15 d , respectively.
  • the rounded end faces 15 b and 15 a are opposite to each other along the X-axis of the X-Y coordinate system
  • the rounded end faces 15 d and 15 e are opposite to each other along the Y-axis of the X-Y coordinate system.
  • the annular yoke plate 12 is formed with a first set of edges 12 b and 12 c , opposite to each other along the X-axis of the X-Y coordinate system, and a second set of edges 12 d and 12 e opposite to each other along the Y-axis of the X-Y coordinate system.
  • the rounded end faces 15 d and 15 e are operated in conjunction with the second set of edges 12 d and 12 e , such that the movement of the movable plate frame 1 S, and therefore the lens system (L 2 ), is restricted to a distance value of 2 ⁇ r along the Y-axis of the X-Y coordinate system, as shown in FIG. 2.
  • the movement of the image-tremble-correcting lens system (L 2 ) is restricted to the square area SA shown in FIG. 2.
  • FIG. 7 shows a block diagram of the camera partially illustrated in FIG. 1.
  • a system controller 8 is provided in the camera body 1 , and is constituted as a microcomputer comprising a central processing unit (CPU), a read-only memory (ROM) for storing programs and constants, a random-access memory (RAM) for storing temporary data, and an input/output interface circuit (I/O).
  • CPU central processing unit
  • ROM read-only memory
  • RAM random-access memory
  • I/O input/output interface circuit
  • the image-tremble-correcting unit 10 is electrically connected to the system controller 8 , as shown in FIG. 7.
  • a first flexible printed circuit sheet 50 is led into the movable plate frame 15
  • a second flexible printed circuit sheet 60 is led into the annular plate body 11 .
  • the first and second flexible printed circuit sheets 50 and 60 are extended to an electric connector (not shown), provided in a terminal end of the lens barrel 9 , which is coupled to an electric connector provided in the mount of the camera body 1 when the lens barrel 9 is mounted on the mount of the camera body 1 .
  • a portion of the first flexible printed circuit sheet 50 led into the movable plate frame 15 , branches into first and second sections 51 and 52 .
  • a pair of terminal pins of the first infrared LED 19 a is soldered to a circuit pattern formed on the second section 52
  • a pair of electric lead lines 53 extending from the second electromagnetic coil 16 b
  • a pair of terminal pins of the second infrared LED 19 b is soldered to a circuit pattern formed on the first section 51
  • a pair of electric lead lines 54 extending from the first electromagnetic coil 16 a
  • a portion of the second flexible printed circuit sheet 60 led into the annular plate body 11 , also branches into first and second sections. Terminal pins of the first PSD 30 a are soldered to a circuit pattern formed on the first section, and terminal pins of the second PSD 30 b are soldered to a circuit pattern formed on the second section.
  • a tremble sensor unit for sensing a tremble of the camera is suitably assembled in the lens barrel 9 .
  • the tremble sensor unit is indicated by reference 7 , and includes a first angular speed sensor 7 a for detecting an angular speed around the X-axis of the X-Y coordinate system, and a second angular speed sensor 7 b for detecting an angular speed around the Y-axis of the X-Y coordinate system.
  • the tremble sensor unit 7 is also electrically connected to the system controller 8 , as shown in FIG. 7.
  • each of the first and second angular speed sensors 7 a and 7 b may be formed as an gyro-type angular speed sensor.
  • the camera has a release switch button (R/B) 70 provided at a suitable location on the camera body 1 .
  • the release switch button 70 is associated with both a photometry switch (P-SW) 70 a and a release switch (R-SW) 70 b .
  • P-SW photometry switch
  • R-SW release switch
  • the photometry switch 70 a is associated with a photometry circuit (not shown), including a photometry sensor, operated under control of the system controller 8 .
  • a photometry circuit (not shown), including a photometry sensor, operated under control of the system controller 8 .
  • the photometry circuit is operated to detect a quantity of light, reflected from an image to be photographed.
  • both the tremble sensor unit 7 and the image-tremble-correcting unit 10 are operated to correct a tremble of the image to be photographed, which is caused by an oscillation of the camera due to, for example, a hand tremble.
  • the release switch 70 b is associated with a mirror drive mechanism (not shown) for driving a quick-return mirror and a focal-plane shutter drive mechanism (not shown) for driving a leading shutter curtain and a trailing shutter curtain.
  • a mirror drive mechanism not shown
  • a focal-plane shutter drive mechanism not shown
  • both the mirror drive mechanism and the focal-plane shutter drive mechanism are operated to perform a photographing exposure operation.
  • the operation of both the tremble sensor unit 7 and the image-tremble-correcting unit 10 is continued until the photographing exposure operation is completed.
  • FIGS. 8, 9 and 10 show a flowchart of an image-tremble-correcting routine executed in the system controller 8 .
  • the execution of the routine is started by turning ON the photometry switch 70 a , and execution of the routine comprising steps 802 to 828 is repeated at suitable regular short time intervals of, for example, 1 ms, as long as the photometry switch 70 a is turned ON.
  • a first variable “AVX” and a second variable “AVY” are initialized to “0”.
  • the first variable “AVX” represents a relative angular position of the X-axis of the X-Y coordinate system
  • the second variable “AVY” represents a relative angular position of the Y-axis of the X-Y coordinate system.
  • both the first and second variables “AVX and “AVY” represent a relative angular position of the X-Y coordinate system (i.e. the camera).
  • the first and second variables “AVX and “AVY” are previously defined in the ROM of the system controller 8 .
  • a first angular speed data “ASX” is retrieved from the first angular speed sensor 7 a
  • a second angular speed data “ASY” is retrieved from the second angular speed sensor 7 b .
  • the respective first and second angular speed data “ASX” and “ASY” represent angular speeds around the X- and Y-axes of the X-Y coordinate system, which are caused by an oscillation of the camera due to, for example, a hand tremble.
  • both the first and second angular speed data “ASX” and “ASY” represent a magnitude of the oscillation of the camera, and therefore, the tremble of an image to be photographed.
  • the first and second angular speed data “ASX” and “ASY” are temporary stored in the RAM of the system controller 8 .
  • a first angular displacement data “ ⁇ AX” is calculated from the first angular speed data “ASX” with respect to the X-axis of the X-Y coordinate system
  • a second angular displacement data “ ⁇ AY” is calculated from the second angular speed data “ASY” with respect to the Y-axis of the X-Y coordinate system.
  • Both the calculated results “AVX” and “AVY” represent a relative angular displacement of the X-Y coordinate system (i.e. the camera) in the plane defined by the X- and Y-axes of the X-Y coordinate system, which is measured from the last angular position of the X-Y coordinate system.
  • the first variable “AVX” represents a relative angular position of the X-axis of the X-Y coordinate system with respect to the last angular position of the X-axis thereof
  • the second variable “AVY” represents a relative angular position of the Y-axis of the X-Y coordinate system with respect to the last angular position of the Y-axis thereof.
  • an X-component DX 1 of the angular displacement of the X-axis of the X-Y coordinate system is calculated from the calculated result “AVX”
  • a Y-component DY 1 of the angular displacement of the Y-axis of the X-Y coordinate system is calculated from the calculated result “AVY”.
  • the respective X-component DX 1 and Y-component DY 1 are temporary stored as X-displacement data and Y-displacement data in the RAM of system controller 8 .
  • X-position data DX 2 is retrieved from the first PSD 30 a
  • Y-position data DY 2 is retrieved from the second PDS 30 b .
  • the X-position data and Y-position data are temporarily stored in the RAM of the system controller 8 .
  • a difference ⁇ DX is calculated as follows:
  • step 808 if ⁇ DX ⁇ 0, the control proceeds to step 810 , in which it is determined whether the difference ⁇ DX is negative or positive. If the difference ⁇ DX is positive, i.e. if the lens system (L 2 ) should be moved toward the negative side along the X-axis of the X-Y coordinate system (DX 2 >DX 1 ), the control proceeds to step 811 , in which it is determined whether the X-position data DX 2 is equivalent to the negative limit position ( ⁇ r).
  • the control proceeds from step 811 to step 809 , in which the drive variable DVX is set to “0”, thereby prohibiting the movement of the lens system (L 2 ) along the X-axis of the X-Y coordinate system.
  • step 811 if DX 2 ⁇ r, i.e. if DX 2 > ⁇ r, the control proceeds to step 812 , in which a flag XF is set to “1”. Note, the flag XF indicates a direction in which an electric current should flow through the first electromagnetic coil 16 a .
  • the drive variable DVX is set to an absolute value of the difference ⁇ DX.
  • the first electromagnetic coil 16 a is electrically energized in accordance with the value of the flag XF and the value of the drive variable DVX.
  • the larger the magnitude of the electric current the higher the acceleration of the lens system (L 2 ).
  • step 810 if the difference ⁇ DX is negative, i.e. if the lens system (L 2 ) should be moved toward the positive side along the X-axis of the X-Y coordinate system (DX 2 ⁇ DX 1 ), the control proceeds to step 815 , in which it is determined whether the X-position data DX 2 is equivalent to the positive limit position (+r).
  • the control proceeds from step 815 to step 809 , in which the drive variable DVX is set to “0”, thereby prohibiting the movement of the lens system (L 2 ) along the X-axis of the X-Y coordinate system.
  • step 815 if DX 2 ⁇ +r, i.e. if DX 2 ⁇ +r, the control proceeds to step 816 , in which the flag XF is set to “0”. Then, at step 813 , the drive variable DVX is set to an absolute value of the difference ⁇ DX, and at step 814 , the first electromagnetic coil 16 a is electrically energized in accordance with the value of the flag XF and the value of the drive variable DVX.
  • a difference ⁇ DY is calculated as follows:
  • step 818 if ⁇ DY ⁇ 0, the control proceeds to step 820 , in which it is determined whether the difference ⁇ DY is negative or positive. If the difference ⁇ DY is positive, i.e. if the lens system (L 2 ) should be moved toward the negative side along the Y-axis of the X-Y coordinate system (DY 2 >DY 1 ), the control proceeds to step 821 , in which it is determined whether the Y-position data DY 2 is equivalent to the negative limit position ( ⁇ r).
  • the control proceeds from step 821 to step 819 , in which the drive variable DVY is set to “0”, thereby prohibiting the movement of the lens system (L 2 ) along the Y-axis of the X-Y coordinate system.
  • step 821 if DY 2 ⁇ r, i.e. if DY 2 > ⁇ r, the control proceeds to step 822 , in which a flag YF is set to “1”.
  • the drive variable DVY is set to an absolute value of the difference ⁇ DY.
  • the second electromagnetic coil 16 b is electrically energized in accordance with the value of the flag YF and the value of the drive variable DVY.
  • the larger the magnitude of the electric current the higher the acceleration of the lens system (L 2 ).
  • step 820 if the difference ⁇ DY is negative, i.e. if the lens system (L 2 ) should be moved toward the positive side along the Y-axis of the X-Y coordinate system (DY 2 ⁇ DY 1 ), the control proceeds to step 825 , in which it is determined whether the Y-position data DY 2 is equivalent to the positive limit position (+r).
  • step 819 in which the drive variable DVY is set to “0”, thereby prohibiting the movement of the lens system (L 2 ) along the Y-axis of the X-Y coordinate system.
  • step 825 if DY 2 ⁇ +r, i.e. if DY 2 ⁇ +r, the control proceeds to step 826 , in which the flag YF is set to “0”. Then, at step 823 , the drive variable DVY is set to an absolute value of the difference ⁇ DY, and at step 824 , the second electromagnetic coil 16 b is electrically energized in accordance with the value of the flag YF and the value of the drive variable DVY.
  • step 827 it is determined whether the release switch 70 b has been turned ON, i.e. whether the release switch button 70 has been fully depressed. If the turn-ON of the release switch 70 b is not confirmed, the control proceeds to step 828 , in which it is determined whether the photometry switch 70 a is still turned ON. If the photometry switch 70 a is still turned ON, the control returns to step 802 , and thus a tremble of an image to be photographed is repeatedly corrected as long as the photometry switch 70 a is turned ON.
  • step 827 when it is confirmed that the release switch 70 b is turned ON, the control proceeds to step 829 , in which an photographing operation routine (not shown) is executed.
  • the aforesaid mirror drive mechanism and focal-plane shutter drive mechanism are operated to perform a photographing exposure operation.
  • step 830 it is determined whether the photographing exposure operation has been completed. If the photographing exposure-operation is not completed, the control returns to step 802 , whereby a tremble of an image to be photographed is repeatedly corrected until the photographing exposure operation is completed.
  • step 830 when the completion of the photographing exposure operation is confirmed, the control proceeds to step 831 , in which the drive variables DVX and DVY are set to “0”, thereby prohibiting the electrical energization of the first and second electromagnetic coils 16 a and 16 b . Thereafter, the image-tremble-correction routine ends.
  • step 828 when it is confirmed that the photometry switch 70 a is turned OFF, i.e. when the release switch button 70 is released from the depression without fully depressing the release switch button 70 , the control proceeds from step 828 to step 831 , in which the drive variables DVX and DVY are set to “0”, thereby prohibiting the electrical energization of the first and second electromagnetic coils 16 a and 16 b . Thereafter, the image-tremble-correction routine ends.
  • the X-Y rectangular coordinate system is set such that the X- and Y-axes thereof define the angle of 45° with the horizontal axis HA and the vertical axis VA (FIG. 2), it is possible to widen the vertical and horizontal limitations of the lens system (L 2 ) without increasing the mechanical bulkiness of the lens barrel 9 .
  • the X-Y rectangular coordinate system is defined such that the X- and Y-axes thereof extend horizontally and vertically, the movement of the lens system (L 2 ) is restricted in a square area SA′ as shown in FIG.
  • the image-tremble-correcting system is incorporated in the single lens reflex (SLR) type camera, it should be understood that the present invention may be embodied in another optical instrument, such as a video camera, a telescope, a pair of binoculars or the like.
  • SLR single lens reflex

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Cameras In General (AREA)

Abstract

In an image-tremble-correcting system for an optical instrument, having an optical focussing system for producing a focussed image, to correct a tremble of the focussed image caused by an oscillation of the optical instrument, a movable optical tremble-correction system is assembled in the focussing system of the optical instrument. An X-Y rectangular coordinate system which is defined on a plane perpendicular to the optical axis of the focussing system, the origin of the coordinate system coinciding with the optical axis of the focussing system, the X- and Y-axes thereof defining an angle of 45° with a horizontal axis and a vertical axis defined on the plane when the optical instrument is positioned at a usual attitude. The movable optical tremble-correction system being movable along the X-axis and the Y-axis of the X-Y rectangular coordinate system to the same extent.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to an image-tremble-correcting system for an optical instrument having an image-focussing lens system, such as a still camera, a video camera, a telescope, a pair of binoculars or the like, to correct a tremble of a focussed image caused by an oscillation of the optical instrument due to, for example, a hand tremble. [0002]
  • 2. Description of the Related Art [0003]
  • For example, such an image-tremble-correcting system is frequently incorporated in a photographing lens system of a single lens reflex (SLR) type camera. The image-tremble-correcting system comprises a movable image-tremble-correcting lens system assembled in the photographing lens system, a tremble sensor system that detects an amount of tremble of the camera, and therefore a focussed image, caused by an oscillation of the camera due to, for example, a hand tremble, and a driving system that moves the movable image-tremble-correcting lens system to thereby neutralize the tremble of the focussed image. [0004]
  • Of course, the movement of the image-tremble-correcting-lens system is mechanically limited, and thus it is impossible to correct the tremble of the focussed image beyond the limits of movement of the image-tremble-correcting-lens system. Although it is possible to widen the range through which the image-tremble-correcting-lens system can be moved, widening of the range is impossible without an increase in bulkiness of the photographing lens system. [0005]
  • As is well known, in the SLR camera, an image to be photographed is observed via a viewfinder system through the photographing lens system, and the image-tremble-correcting system is operated when a release switch button is partly depressed, i.e. when a photometry switch is turned ON to perform a photometry measurement. Thus, while the image to be photographed is being observed through the viewfinder in the course of the photometry measurement, image tremble is corrected. [0006]
  • During the photometry measurement, the SLR camera is often panned widely in vertical and/or horizontal directions to frame the image to be performed. At this time, the image-tremble-correcting-lens system may easily reach a limit position due to the wide movement of the SLR camera in the vertical and/or horizontal directions, resulting in an awkward motion of the image as observed through the viewfinder system. Of course, the awkward motion of the image gives a photographer an uncomfortable feeling. [0007]
  • Note, the same is true for other optical instruments, such as a video camera, a telescope, a pair of binoculars or the like. [0008]
  • SUMMARY OF THE INVENTION
  • Therefore, an object of the present invention is to provide an image-tremble-correcting system for an optical instrument, which is constituted such that vertical and horizontal limitations of movement of an image-tremble-correcting-lens system can be widened without increasing the mechanical bulkiness of a photographing lens system. [0009]
  • In accordance with the present invention, there is provided an image-tremble-correcting system for an optical instrument, having an optical focussing system for producing a focussed image, to correct a tremble of the focussed image caused by an oscillation of the optical instrument. The image-tremble-correcting system comprises a movable optical tremble-correction system assembled in the optical focussing system of the optical instrument, and an X-Y rectangular coordinate system which is defined on a geometrical plane perpendicular to an optical axis of the optical focussing system. An origin of the X-Y rectangular coordinate system coincides with the optical axis of the optical focussing system, and the X- and Y-axes thereof define an angle of 45° with a horizontal axis and a vertical axis defined on the geometrical plane when the optical instrument is positioned at a usual attitude. The image-tremble-correcting system further comprises a first position-detecting system that detects a position of the movable optical tremble-correction system along the X-axis of the X-Y rectangular coordinate system, a second position-detecting system that detects a position of the movable optical tremble-correction system along the Y-axis of the X-Y rectangular coordinate system, a first driving system that moves the movable optical tremble-correction system along the X-axis of the X-Y rectangular coordinate system, a second driving system that moves the movable optical tremble-correction system along the Y-axis of the X-Y rectangular coordinate system, a tremble-sensor system that detects an amount of tremble of the focussed image with respect to the X-Y rectangular coordinate system, and a controller that controls the first and second driving system to move the movable optical tremble-correction system along the X- and Y-axes of the X-Y rectangular coordinate system, such that the amount of tremble of the focussed image is neutralized. [0010]
  • Preferably, the movable optical tremble-correction system is movable along the X-axis and the Y-axis of the X-Y rectangular coordinate system to the same extent, such that the movement of the movable optical tremble-correction system is restricted in a square area. [0011]
  • The image-tremble-correcting system may further comprise a first limit-position-determination system that determines whether the position detected by the first position-detecting system is a first limit position along the X-axis of the X-Y rectangular coordinate system, a first correction-limit-determination system that determines whether an amount of tremble of the focussed image along the X-axis of the X-Y rectangular coordinate system exceeds the first limit position, when it is determined by the first limit-position-determination system that the position detected by the first position-detecting system is the first limit position along the X-axis of the X-Y rectangular coordinate system, a second limit-position-determination system that determines whether the position detected by the second position-detecting system is a second limit position along the Y-axis of the X-Y rectangular coordinate system, and a second correction-limit-determination system that determines whether an amount of tremble of the focussed image along the Y-axis of the X-Y rectangular coordinate system exceeds the second limit position, when it is determined by the second limit-position-determination system that the position detected by the second position-detecting system is the second limit position along the Y-axis of the X-Y rectangular coordinate system. [0012]
  • In this case, the controller ceases controlling the first driving system when it is determined by the first correction-limit-determination system that the amount of tremble of the focussed image along the X-axis of the X-Y rectangular coordinate system exceeds the first limit position. Similarly, the controller ceases controlling the second driving system when it is determined by the second correction-limit-determination system that the amount of tremble of the focussed image along the Y-axis of the X-Y rectangular coordinate system exceeds the second limit position. [0013]
  • The tremble-sensor system may include a first angular speed sensor that detects a first angular speed of the optical instrument around the X-axis of the X-Y rectangular coordinate system, and a second angular speed sensor that detects a second angular speed of the optical instrument around the Y-axis of the X-Y rectangular coordinate system. In this case, the controlling of the respective first and second driving systems by the controller is performed on the basis of the first and second angular speed detected by the first and second angular speed sensors. [0014]
  • Preferably, the respective first and second driving systems comprise a first electromagnetic driving system and a second electromagnetic driving system. In this case, both a direction and a magnitude of an electric current, flowing through the first electromagnetic driving system, is controlled by the controller on the basis of the position of the movable optical tremble-correction system, detected by the first position-detecting system, and the first angular speed detected by the first angular speed sensor, thereby determining both a direction and an acceleration of the movement of the movable optical tremble-correction system along the X-axis of the X-Y rectangular coordinate system. Similarly, both a direction and a magnitude of an electric current, flowing through the second electromagnetic driving system, is controlled by the controller on the basis of the position of the movable optical tremble-correction system, detected by the second position-detecting system, and the second angular speed detected by the second angular speed sensor, thereby determining both a direction and an acceleration of the movement of the movable optical tremble-correction system along the Y-axis of the X-Y rectangular coordinate system. [0015]
  • For example, the optical instrument may comprise a single lens reflex camera having a photographing optical system as the optical focussing system. In this case, preferably, the movable optical tremble-correction system, the first and second position-detecting systems, and the first and second driving systems are assembled as an image-tremble-correcting unit in the photographing optical system. [0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The object and other objects of the present invention will be better understood from the following description, with reference to the accompanying drawings, in which: [0017]
  • FIG. 1 is a schematic longitudinal sectional view showing a part of a single lens reflex (SLR) type camera, in which an image-tremble-correcting system according to the present invention is embodied; [0018]
  • FIG. 2 is a view showing an X-Y rectangular coordinate system defined on a geometrical plane perpendicular to an optical axis of a photographing lens system of the SLR camera such that an image-tremble-correcting lens system is movable along the X- and Y-axes thereof, the X- and Y-axes of the X-Y coordinate system defining an angle of 45° with a horizontal axis and a vertical axis, which are defined on the geometrical plane when the SLR camera is held by hand at a usual photographing attitude; [0019]
  • FIG. 3 is a perspective view showing a positional relationship between an image-tremble-correcting unit and a frame of photographic film; [0020]
  • FIG. 4 is an exploded view showing the image-tremble-correcting unit; [0021]
  • FIG. 5 is a front view showing an assembly of an annular plate body and a movable plate frame of the image-tremble-correcting unit; [0022]
  • FIG. 6 is a front view showing the movable plate frame of the image-tremble-correcting unit; [0023]
  • FIG. 7 is a block diagram of the SRL camera partially illustrated in FIG. 1; [0024]
  • FIG. 8 is a flowchart of a part of an image-tremble-correcting routine; [0025]
  • FIG. 9 is a flowchart of another part of the image-tremble-correcting routine; and [0026]
  • FIG. 10 is a flowchart of the remainder of the image-tremble-correcting routine. [0027]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 partially and schematically shows a lens barrel of a single lens reflex (SLR) type camera, in which an image-tremble-correcting system according to the present invention is embodied. In this drawing, a camera body of the camera is indicated by [0028] reference 1, and the lens barrel is indicated by reference 9.
  • The [0029] lens barrel 9 contains a photographing optical system, generally indicated by reference 2, and the photographing optical system 2 includes a first group of lenses L1, a second group of lenses L2, and a third group of lenses L3. The first and third groups of lenses L1 and L3 form a photographing lens system having an optical axis O. The second group of lenses L2 serves as an image-tremble-correcting lens system, which is movable along a geometrical plane perpendicular to the optical axis O of the photographing lens system (L1 and L3). Namely, an X-Y rectangular coordinate system is defined on the aforesaid geometrical plane such that the origin thereof coincides with the optical axis O of the photographing lens system (L1 and L3), and the image-tremble-correcting lens system (L2) is movable along the X-axis and the Y-axis of the X-Y rectangular coordinate system.
  • As shown in FIG. 2, the X-Y rectangular coordinate system is set such that the X- and Y-axes thereof define an angle of 45° with a horizontal axis HA and a vertical axis VA, which are defined on the aforesaid geometrical plane when the camera is held by hand at a usual photographing attitude such that a central lengthwise axis of a rectangular frame of photographic film, which is positioned at an image plane defined by the photographing lens system (L[0030] 1 and L3), is horizontally oriented.
  • During a photographing operation, when an image to be photographed is subjected to a tremble caused by an oscillation of the camera due to, for example, a hand tremble, the image-tremble-correcting lens system (L[0031] 2) is moved along the X- and Y-axes of the X-Y rectangular coordinate system such that the tremble of the image to be photographed is neutralized, whereby the image to be photographed remains still despite the oscillation of the camera.
  • In FIG. 2, an amount of movement of the image-tremble-correcting lens system (L[0032] 2) along the X-axis of the X-Y rectangular coordinate system is represented by an X coordinate “a”, and an amount of movement of the image-tremble-correcting lens system (L2) along the Y-axis of the X-Y rectangular coordinate system is represented by a Y coordinate “b”. In this embodiment, as mentioned hereinafter, each absolute value of the X and Y coordinates “a” and “b” is mechanically limited to a maximum value “r”, and thus the movement of the image-tremble-correcting lens system (L2) is restricted in a square area SA with four sides having a length of “2r”, as shown in FIG. 2.
  • Therefore, when the camera is held by hand at the usual photographing attitude, a maximum range R, in which the image-tremble-correcting lens system (L[0033] 2) can be moved along each of the horizontal axis HA and the vertical axis VA, is defined by the following formula:
  • R=(8r 2)½
  • In order to systematically move the image-tremble lens system (L[0034] 2) along the X- and Y-axes of the X-Y coordinate system, the image-tremble-correcting lens system (L2) is integrally and securely held in a barrel frame 14, and is assembled in an image-tremble-correcting unit 10.
  • As shown in FIGS. 3 and 4, the image-tremble-correcting [0035] unit 10 includes an annular plate body 11 having a circular opening 11 a formed therein, and the annular plate body 11 is immovably supported by the lens barrel 9. Namely, as shown in FIG. 1, an inner ring element 9 b is integrally protruded from an inner surface of the lens barrel 9, and the annular plate body 11 is securely attached to the inner ring element 9 b by screws represented by 9 a. As best shown in FIG. 4, the annular plate body 11 is integrally formed with two spacer block elements 11 1 and 11 2 which are diametrically arranged at the circumference of the annular plate body 11.
  • The image-tremble-correcting [0036] unit 10 also includes a generally annular yoke plate 12 having a circular opening 12 a formed therein, and the annular yoke plate 12 is securely attached to the spacer block elements 11 1 and 11 2 by screws 13. The circular openings 11 a and 12 a are coaxially aligned with each other, and have a central axis which coincides with the optical axis O of the photographing lens system (L1 and L3).
  • The image-tremble-correcting [0037] unit 10 further includes a movable plate frame 15 having a circular opening 15 a formed therein, and the movable plate frame 15 securely supports the barrel frame 14 holding the image-tremble-correcting lens system (L2). The barrel frame 14 is integrally formed with an annular flange 14 a (FIG. 1), and the annular flange 14 a of the barrel frame 14 is fixed to an annular rim of the circular opening 15 a of the movable plate frame 15, with the barrel frame 14 passing through the circular opening 15 a, as best shown in FIG. 4.
  • The [0038] movable plate frame 15 is movably received in a space between the annular plate body 11 and the annular yoke plate 12, such that the movable plate frame 15, and therefore the lens system (L2), can be moved along the X- and Y-axes of the X-Y coordinate system, as explained in detail hereinafter.
  • In FIG. 3, reference F indicates a rectangular frame of photographic film which is positioned at the image plane defined by the photographing lens system (L[0039] 1 and L3). When the X-Y coordinate system is projected onto the photographic film frame F, as shown in FIG. 3, the X- and Y-axes thereof form an angle of 45° with a central lengthwise axis CLA of the photographic film frame F. Thus, when the horizontal and vertical axes HA and VA (FIG. 2) are projected onto the photographic film frame F provided that the camera is held by hand at the usual photographing attitude, the horizontal axis HA coincides with the central lengthwise axis CLA of the photographic film frame F.
  • As shown in FIG. 4, an L-shaped [0040] movable member 24 is arranged between the annular plate body 11 and the movable plate frame 15, and has two arms 24 a and 24 b which form a right angle. The arm 24 a is provided with a pair of ring-like guide rollers 25 rotatably attached to a side face directed toward the movable plate frame 15, and the arm 24 b is provided with a pair of ring-like guide rollers 26 rotatably attached to a side face directed toward the annular plate body 11.
  • On the other hand, as shown in FIGS. 4, 5 and [0041] 6, a pair of elongated guide slots 15 f is formed in the movable plate frame 15, and the elongated guide slots 15 f are aligned with each other along the X-axis of the X-Y coordinate system. Also, a pair of elongated guide slots 11 d is formed in the annular plate body 11, as shown in FIG. 4, and the elongated guide slots 11 d are aligned with each other along the Y-axis of the X-Y coordinate system.
  • When the [0042] parts 11, 12 and 15 are assembled as in FIG. 3, the two respective ring-like guide rollers 25 are slidably received in the elongated guide slots 15 f, as best shown in FIGS. 5 and 6, and the two respective ring-like guide rollers 26 are slidably received in the elongated guide slots 11 d. Thus, the movable plate frame 15 can moved along the X- and Y-axes of the X-Y coordinate system.
  • As shown in FIG. 4, an L-shaped [0043] plate element 20 is securely attached to an inner wall of the annular plate body 11 by three screws 21, and has two arm sections 20 a and 20 b which form a right angle. The arm section 20 a extends along the Y-axis of the X-Y coordinate system, and the arm section 20 b extends along the X-axis of the X-Y coordinate system. A first pair of elongated permanent magnets 22 a is fixed on the arm section 20 a to extend along the Y-axis of the X-Y coordinate system, and a second pair of elongated permanent magnets 22 b is fixed on the arm section 20 b to extend along the X-axis of the X-Y coordinate system.
  • On the other hand, the [0044] movable plate frame 15 is provided with a first electromagnetic coil 16 a and a second electromagnetic coil 16 b securely supported thereby, and the respective first and second electromagnetic coils 16 a and 16 b are aligned with the first and second pairs of elongated permanent magnets 22 a and 22 b along the optical axis O of the photographing lens system (L1 and L3).
  • When the [0045] parts 11, 12 and 15 are assembled as in FIG. 3, the first electromagnetic coil 16 a is associated with the first pair of permanent magnets 22 a to form a first driving system that moves the movable plate frame 15, and therefore the lens system (L2), along the X-axis of the X-Y coordinate system, and the second electromagnetic coil 16 b is associated with the second pair of permanent magnets 22 b to form a second driving system that moves the movable plate frame 15, and therefore the lens system (L2), along the Y-axis of the X-Y coordinate system.
  • In particular, when the first [0046] electromagnetic coil 16 a is electrically energized in a magnetic field produced by the first pair of permanent magnets 22 a, it is subjected to a driving force in accordance with Fleming's rule, such that the movable plate frame 15, and therefore the lens system (L2), is moved along the X-axis of the X-Y coordinate system. Similarly, when the second electromagnetic coil 16 b is electrically energized in a magnetic field produced by the second pair permanent magnets 22 b, it is subjected to a driving force in accordance with Fleming's rule, such that the movable plate frame 15, and therefore the lens system (L2), is moved along the Y-axis of the X-Y coordinate system. Of course, the direction of the driving force, to which each coil (16 a, 16 b) is subjected, depends on the direction in which electric current flows through each coil (16 a, 16 b), and the magnitude of the driving force depends on the amount of electric current flowing through each coil (16 a, 16 b).
  • As shown in FIGS. 4, 5 and [0047] 6, the movable plate frame 15 has a first infrared LED (light emitting diode) 19 a and a second infrared LED (light emitting diode) 19 b securely attached thereto. The first infrared LED 19 a is arranged on the diametrical opposite side of the first electromagnetic coil 16 a with respect to the circular opening 15 a, and the second infrared LED 19 b is arranged on the diametrical opposite side of the second electromagnetic coil 16 b with respect to the circular opening 15 a.
  • On the other hand, as shown in FIG. 4, the [0048] annular plate body 11 has a first PSD (position sensitive device) 30 a and a second PSD 30 b securely attached thereto. The first PSD 30 a is arranged on the diametrical opposite side of the first pair of permanent magnets 22 a with respect to the circular opening 11 a, and the second PSD 30 b is arranged on the diametrical opposite side of the second pair of permanent magnets 22 b with respect to the circular opening 11 a. Note, each of the first and second PSD's 30 a and 30 b is formed as a one-dimensional or linear PSD.
  • When the [0049] parts 11, 12 and 15 are assembled as in FIG. 3, the first infrared LED 19 a is associated with the first PSD 30 a to form a first position-detecting system that detects a position of the movable plate frame 15, and therefore the lens system (L2), along the X-axis of the X-Y coordinate system. Similarly, the second infrared LED 19 b is associated with the second PSD 30 b to form a second position-detecting system that detects a position of the movable plate frame 15, and therefore the lens system (L2), along the Y-axis of the X-Y coordinate system.
  • In particular, the [0050] movable plate frame 15 is formed with a first fine slit (not visible in FIGS. 4, 5 and 6) which extends along the Y-axis of the X-Y coordinate system, and infrared light, emitted from the first infrared LED 19 a, is made incident on the first PSD 30 a through the first fine slit. Namely, the infrared light emitted from the first infrared LED 19 a is formed into a sheet-like infrared light beam by the first fine slit, and the sheet-like infrared light beam is made incident on the first PSD 30 a. An incident position, at which the sheet-like infrared light is made incident on the first PSD 30 a, is shifted in accordance with the movement of the movable plate frame 15, and therefore the lens system (L2), along the X-axis of the X-Y coordinate system, and the output electric current from the first PSD 30 a varies in accordance with the shift of the incident position. Thus, by detecting the variation of the output electric current of the first PSD 30 a, it is possible to detect the position of the movable plate frame 15, and therefore the lens system (L2), along the X-axis of the X-Y coordinate system.
  • Similarly, the [0051] movable plate frame 15 is formed with a second fine slit (not visible in FIGS. 4, 5 and 6) which extends along the X-axis of the X-Y coordinate system, and infrared light, emitted from the second infrared LED 19 b, is made incident on the second PSD 30 b through the second fine slit. Namely, the infrared light emitted from the second infrared LED 19 b is formed into a sheet-like infrared light beam by the second fine slit, and the sheet-like infrared light beam is made incident on the second PSD 30 b. An incident position, at which the sheet-like infrared light is made incident on the second PSD 30 b, is shifted in accordance with the movement of the movable plate frame 15, and therefore the lens system (L2), along the Y-axis of the X-Y coordinate system, and the output electric current from the second PSD 30 b varies in accordance with the shift of the incident position. Thus, by detecting the variation of the output electric current of the second PSD 30 b, it is possible to detect the position of the movable plate frame 15, and therefore the lens system (L2), along the Y-axis of the X-Y coordinate system.
  • As shown in FIGS. 4, 5 and [0052] 6, the movable plate frame 15 is provided with first, second and third stopper members 15 1, 15 2 and 15 3 to restrict the movement of the movable plate frame 15, and therefore the lens system (L2), along the X- and Y-axes of the X-Y coordinate system. In particular, the first stopper member 15 1 is associated with ends of the first and second electromagnetic coils 16 a and 16 b which are adjacent to each other, and the respective second and third stopper members 15 2 and 15 3 are associated with the other ends of the first and second electromagnetic coils 16 a and 16 b which are away from the respective adjacent ends thereof. The first stopper member 15 1 has two rounded end faces 15 c and 15 e, and the second and third stopper members 15 2 and 15 3 have rounded end faces 15 b and 15 d, respectively. The rounded end faces 15 b and 15 a are opposite to each other along the X-axis of the X-Y coordinate system, and the rounded end faces 15 d and 15 e are opposite to each other along the Y-axis of the X-Y coordinate system.
  • On the other hand, as best shown in FIG. 4, the [0053] annular yoke plate 12 is formed with a first set of edges 12 b and 12 c, opposite to each other along the X-axis of the X-Y coordinate system, and a second set of edges 12 d and 12 e opposite to each other along the Y-axis of the X-Y coordinate system.
  • When the [0054] parts 11, 12 and 15 are assembled as in FIG. 3, the rounded end faces 15 b and 15 c are operated in conjunction with the first set of edges 12 b and 12 c, such that the movement of the movable plate frame 15, and therefore the lens system (L2), is restricted to a distance value of 2×r along the X-axis of the X-Y coordinate system, as shown in FIG. 2. Similarly, the rounded end faces 15 d and 15 e are operated in conjunction with the second set of edges 12 d and 12 e, such that the movement of the movable plate frame 1S, and therefore the lens system (L2), is restricted to a distance value of 2×r along the Y-axis of the X-Y coordinate system, as shown in FIG. 2. In short, the movement of the image-tremble-correcting lens system (L2) is restricted to the square area SA shown in FIG. 2.
  • FIG. 7 shows a block diagram of the camera partially illustrated in FIG. 1. As shown in this drawing, a [0055] system controller 8 is provided in the camera body 1, and is constituted as a microcomputer comprising a central processing unit (CPU), a read-only memory (ROM) for storing programs and constants, a random-access memory (RAM) for storing temporary data, and an input/output interface circuit (I/O). Of course, the system controller is used to control the camera as a whole.
  • When the lens barrel [0056] 9 (FIG. 1) is mounted on a mount (not shown) of the camera body 1, the image-tremble-correcting unit 10 is electrically connected to the system controller 8, as shown in FIG. 7. To this end, as shown in FIG. 4, a first flexible printed circuit sheet 50 is led into the movable plate frame 15, and a second flexible printed circuit sheet 60 is led into the annular plate body 11. The first and second flexible printed circuit sheets 50 and 60 are extended to an electric connector (not shown), provided in a terminal end of the lens barrel 9, which is coupled to an electric connector provided in the mount of the camera body 1 when the lens barrel 9 is mounted on the mount of the camera body 1.
  • As best shown in FIG. 5, a portion of the first flexible printed [0057] circuit sheet 50, led into the movable plate frame 15, branches into first and second sections 51 and 52. A pair of terminal pins of the first infrared LED 19 a is soldered to a circuit pattern formed on the second section 52, and a pair of electric lead lines 53, extending from the second electromagnetic coil 16 b, is soldered to another circuit pattern formed on the second section 52. Similarly, a pair of terminal pins of the second infrared LED 19 b is soldered to a circuit pattern formed on the first section 51, and a pair of electric lead lines 54, extending from the first electromagnetic coil 16 a, is soldered to another circuit pattern formed on the first section 51.
  • Although not visible in FIG. 4, a portion of the second flexible printed [0058] circuit sheet 60, led into the annular plate body 11, also branches into first and second sections. Terminal pins of the first PSD 30 a are soldered to a circuit pattern formed on the first section, and terminal pins of the second PSD 30 b are soldered to a circuit pattern formed on the second section.
  • In short, when the [0059] lens barrel 9 is mounted on the mount of the camera body 1, the aforesaid electric connectors are coupled to each other, thereby establishing the electrical connection between the system controller 8 and the image-tremble-correcting unit 10, as shown in FIG. 7.
  • Although not shown in FIG. 1, a tremble sensor unit for sensing a tremble of the camera is suitably assembled in the [0060] lens barrel 9. In FIG. 7, the tremble sensor unit is indicated by reference 7, and includes a first angular speed sensor 7 a for detecting an angular speed around the X-axis of the X-Y coordinate system, and a second angular speed sensor 7 b for detecting an angular speed around the Y-axis of the X-Y coordinate system. When the lens barrel 9 is mounted on the mount of the camera body 1, the tremble sensor unit 7 is also electrically connected to the system controller 8, as shown in FIG. 7. Note, each of the first and second angular speed sensors 7 a and 7 b may be formed as an gyro-type angular speed sensor.
  • As shown in FIG. 7, the camera has a release switch button (R/B) [0061] 70 provided at a suitable location on the camera body 1. As well known, in the single lens reflex (SLR) type camera, the release switch button 70 is associated with both a photometry switch (P-SW) 70 a and a release switch (R-SW) 70 b. When the release switch button 70 is partly depressed, the photometry switch 70 a is turned ON, and, when the release switch button 70 is fully depressed, the release switch 70 b is turned ON.
  • The photometry switch [0062] 70 a is associated with a photometry circuit (not shown), including a photometry sensor, operated under control of the system controller 8. When the photometry switch 70 a is turned ON by partly depressing the release switch button 70, the photometry circuit is operated to detect a quantity of light, reflected from an image to be photographed. Simultaneously, both the tremble sensor unit 7 and the image-tremble-correcting unit 10 are operated to correct a tremble of the image to be photographed, which is caused by an oscillation of the camera due to, for example, a hand tremble.
  • As is well known, in the SRL camera, the [0063] release switch 70 b is associated with a mirror drive mechanism (not shown) for driving a quick-return mirror and a focal-plane shutter drive mechanism (not shown) for driving a leading shutter curtain and a trailing shutter curtain. When the release switch 70 b is turned ON by fully depressing the release switch button 70, both the mirror drive mechanism and the focal-plane shutter drive mechanism are operated to perform a photographing exposure operation. The operation of both the tremble sensor unit 7 and the image-tremble-correcting unit 10 is continued until the photographing exposure operation is completed.
  • FIGS. 8, 9 and [0064] 10 show a flowchart of an image-tremble-correcting routine executed in the system controller 8. Note, the execution of the routine is started by turning ON the photometry switch 70 a, and execution of the routine comprising steps 802 to 828 is repeated at suitable regular short time intervals of, for example, 1 ms, as long as the photometry switch 70 a is turned ON.
  • At [0065] step 801, a first variable “AVX” and a second variable “AVY” are initialized to “0”. The first variable “AVX” represents a relative angular position of the X-axis of the X-Y coordinate system, and the second variable “AVY” represents a relative angular position of the Y-axis of the X-Y coordinate system. Namely, both the first and second variables “AVX and “AVY” represent a relative angular position of the X-Y coordinate system (i.e. the camera). In short, when the photometry switch 70 a is turned ON, the position of the X-Y coordinate system (i.e. the camera) is set as the initial angular position (AVX=0 and AVY=0). Note, the first and second variables “AVX and “AVY” are previously defined in the ROM of the system controller 8.
  • At [0066] step 802, a first angular speed data “ASX” is retrieved from the first angular speed sensor 7 a, and a second angular speed data “ASY” is retrieved from the second angular speed sensor 7 b. The respective first and second angular speed data “ASX” and “ASY” represent angular speeds around the X- and Y-axes of the X-Y coordinate system, which are caused by an oscillation of the camera due to, for example, a hand tremble. Namely, both the first and second angular speed data “ASX” and “ASY” represent a magnitude of the oscillation of the camera, and therefore, the tremble of an image to be photographed. Note, the first and second angular speed data “ASX” and “ASY” are temporary stored in the RAM of the system controller 8.
  • At [0067] step 803, a first angular displacement data “ΔAX” is calculated from the first angular speed data “ASX” with respect to the X-axis of the X-Y coordinate system, and a second angular displacement data “ΔAY” is calculated from the second angular speed data “ASY” with respect to the Y-axis of the X-Y coordinate system. Then, at step 804, the following calculations are performed:
  • AVX→AVX+ΔAX
  • AVY→AVY+ΔAY
  • Both the calculated results “AVX” and “AVY” represent a relative angular displacement of the X-Y coordinate system (i.e. the camera) in the plane defined by the X- and Y-axes of the X-Y coordinate system, which is measured from the last angular position of the X-Y coordinate system. Namely, the first variable “AVX” represents a relative angular position of the X-axis of the X-Y coordinate system with respect to the last angular position of the X-axis thereof, and the second variable “AVY” represents a relative angular position of the Y-axis of the X-Y coordinate system with respect to the last angular position of the Y-axis thereof. Note that, of course, the initially-calculated results “AVX” and “AVY” represent a relative angular position of the X-Y coordinate system with respect to the initial angular position thereof (AVX=0 and AVY=0). [0068]
  • At [0069] step 805, an X-component DX1 of the angular displacement of the X-axis of the X-Y coordinate system is calculated from the calculated result “AVX”, and a Y-component DY1 of the angular displacement of the Y-axis of the X-Y coordinate system is calculated from the calculated result “AVY”. Note, the respective X-component DX1 and Y-component DY1 are temporary stored as X-displacement data and Y-displacement data in the RAM of system controller 8.
  • At [0070] step 806, X-position data DX2 is retrieved from the first PSD 30 a, and Y-position data DY2 is retrieved from the second PDS 30 b. Note, the X-position data and Y-position data are temporarily stored in the RAM of the system controller 8.
  • At step [0071] 807, a difference ΔDX is calculated as follows:
  • ΔDX→DX2−DX1
  • Then, at [0072] step 808, it is determined whether the difference ΔDX is equal to “0”. If ΔDX=0, i.e. if there is substantially no tremble of the image to be photographed along the X-axis of the X-Y coordinate system, the control proceeds to step 809, in which a drive variable DVX is set to “0”. Note, the drive variable DVX is used to determine an magnitude of an electric current flowing through the first electromagnetic coil 16 a. Of course, when the setting of “0” is given to the drive variable DVX, the electric current cannot flow through the first electromagnetic coil 16 a, i.e. the lens system (L2) cannot be moved along the X-axis of the X-Y coordinate system.
  • At [0073] step 808, if ΔDX≠0, the control proceeds to step 810, in which it is determined whether the difference ΔDX is negative or positive. If the difference ΔDX is positive, i.e. if the lens system (L2) should be moved toward the negative side along the X-axis of the X-Y coordinate system (DX2>DX1), the control proceeds to step 811, in which it is determined whether the X-position data DX2 is equivalent to the negative limit position (−r).
  • If ΔDX>0 (step [0074] 810), and if DX2=−r (step 811), this means that the X-displacement data DX1 is smaller than “−r”, i.e. that the X-displacement data DX1 (i.e. the amount of tremble of the image) exceeds the negative limit of correction (−r). Thus, the control proceeds from step 811 to step 809, in which the drive variable DVX is set to “0”, thereby prohibiting the movement of the lens system (L2) along the X-axis of the X-Y coordinate system.
  • At [0075] step 811, if DX2 ≠−r, i.e. if DX2>−r, the control proceeds to step 812, in which a flag XF is set to “1”. Note, the flag XF indicates a direction in which an electric current should flow through the first electromagnetic coil 16 a. Namely, if XF =0, the electric current flows through the first electromagnetic coil 16 a so that the lens system (L2) is moved toward the positive side along the X-axis of the X-Y coordinate system, and if XF 1, the electric current flows through the first electromagnetic coil 16 a so that the lens system (L2) is moved toward the negative side along the X-axis of the X-Y coordinate system.
  • At [0076] step 813, the drive variable DVX is set to an absolute value of the difference ΔDX. Then, at step 814, the first electromagnetic coil 16 a is electrically energized in accordance with the value of the flag XF and the value of the drive variable DVX. In particular, the electric current flows through the first electromagnet coil 16 a in the direction indicated by the flag XF(=1), so that the lens system (L2) is moved toward the negative side along the X-axis of the X-Y coordinate system, and the magnitude of the electric current is determined by the value |ΔDX| of the drive variable DVX. Of course, the larger the magnitude of the electric current, the higher the acceleration of the lens system (L2).
  • At [0077] step 810, if the difference ΔDX is negative, i.e. if the lens system (L2) should be moved toward the positive side along the X-axis of the X-Y coordinate system (DX2<DX1), the control proceeds to step 815, in which it is determined whether the X-position data DX2 is equivalent to the positive limit position (+r).
  • If ΔDX<0 (step [0078] 810), and if DX2=+r (step 815), this means that the X-displacement data DX1 is larger than “+r”, i.e. that the X-displacement data DX1 (i.e. the amount of tremble of the image along the X-axis of the Y-coordinate system) exceeds the positive limit of correction (+r). Thus, the control proceeds from step 815 to step 809, in which the drive variable DVX is set to “0”, thereby prohibiting the movement of the lens system (L2) along the X-axis of the X-Y coordinate system.
  • At [0079] step 815, if DX2≠+r, i.e. if DX2<+r, the control proceeds to step 816, in which the flag XF is set to “0”. Then, at step 813, the drive variable DVX is set to an absolute value of the difference ΔDX, and at step 814, the first electromagnetic coil 16 a is electrically energized in accordance with the value of the flag XF and the value of the drive variable DVX. Namely, the electric current flows through the first electromagnet coil 16 a in the direction indicated by the flag XF(=0), so that the lens system (L2) is moved toward the positive side along the X-axis of the X-Y coordinate system, and the magnitude of the electric current is determined by the value |ΔDX| of the drive variable DVX.
  • At [0080] step 817, a difference ΔDY is calculated as follows:
  • ΔDY→DY2−DY1
  • Then, at [0081] step 818, it is determined whether the difference ΔDY is equal to “0”. If ΔDY=0, i.e. if there is substantially no tremble of the image to be photographed along the Y-axis of the X-Y coordinate system, the control proceeds to step 819, in which a drive variable DVY is set to “0”. Note, the drive variable DVY is used to determine an magnitude of an electric current flowing through the second electromagnetic coil 16 b. Of course, when the setting of “0” is given to the drive variable DVY, the electric current cannot flow through the second electromagnetic coil 16 b, i.e. the lens system (L2) cannot be moved along the Y-axis of the X-Y coordinate system.
  • At [0082] step 818, if ΔDY≠0, the control proceeds to step 820, in which it is determined whether the difference ΔDY is negative or positive. If the difference ΔDY is positive, i.e. if the lens system (L2) should be moved toward the negative side along the Y-axis of the X-Y coordinate system (DY2>DY1), the control proceeds to step 821, in which it is determined whether the Y-position data DY2 is equivalent to the negative limit position (−r).
  • If ΔDY>0 (step [0083] 820), and if DY2=−r (step 821), this means that the Y-displacement data DY1 is smaller than “−r”, i.e. that the Y-displacement data DY1 (i.e. the amount of tremble of the image along the Y-axis of the Y-coordinate system) exceeds the negative limit of correction (−r). Thus, the control proceeds from step 821 to step 819, in which the drive variable DVY is set to “0”, thereby prohibiting the movement of the lens system (L2) along the Y-axis of the X-Y coordinate system.
  • At [0084] step 821, if DY2≠−r, i.e. if DY2>−r, the control proceeds to step 822, in which a flag YF is set to “1”. Note, the flag YF indicates a direction in which an electric current should flow through the second electromagnetic coil 16 b. Namely, if YF=0, the electric current flows through the second electromagnetic coil 16 b so that the lens system (L2) is moved toward the positive side along the Y-axis of the X-Y coordinate system, and if YF=1, the electric current flows through the second electromagnetic coil 16 b so that the lens system (L2) is moved toward the negative side along the Y-axis of the X-Y coordinate system.
  • At step [0085] 823, the drive variable DVY is set to an absolute value of the difference ΔDY. Then, at step 824, the second electromagnetic coil 16 b is electrically energized in accordance with the value of the flag YF and the value of the drive variable DVY. In particular, the electric current flows through the second electromagnet coil 16 b in the direction indicated by the flag YF(=1), so that the lens system (L2) is moved toward the negative side along the Y-axis of the X-Y coordinate system, and the magnitude of the electric current is determined by the value |ΔDY| of the drive variable DVY. Of course, the larger the magnitude of the electric current, the higher the acceleration of the lens system (L2).
  • At [0086] step 820, if the difference ΔDY is negative, i.e. if the lens system (L2) should be moved toward the positive side along the Y-axis of the X-Y coordinate system (DY2<DY1), the control proceeds to step 825, in which it is determined whether the Y-position data DY2 is equivalent to the positive limit position (+r).
  • If ΔDY<0 (step [0087] 820), and if DY2=+r (step 825), this means that the Y-displacement data DY1 is larger than “+r”, i.e. that the Y-displacement data DY1 (i.e. the amount of tremble of the image along the Y-axis of the Y-coordinate system) exceeds the positive limit of correction (+r). Thus, the control proceeds from step 825 to step 819, in which the drive variable DVY is set to “0”, thereby prohibiting the movement of the lens system (L2) along the Y-axis of the X-Y coordinate system.
  • At [0088] step 825, if DY2≠+r, i.e. if DY2<+r, the control proceeds to step 826, in which the flag YF is set to “0”. Then, at step 823, the drive variable DVY is set to an absolute value of the difference ΔDY, and at step 824, the second electromagnetic coil 16 b is electrically energized in accordance with the value of the flag YF and the value of the drive variable DVY. Namely, the electric current flows through the second electromagnet coil 16 b in the direction indicated by the flag YF(=0), so that the lens system (L2) is moved toward the positive side along the Y-axis of the X-Y coordinate system, and the magnitude of the electric current is determined by the value |ΔDY| of the drive variable DVY.
  • At [0089] step 827, it is determined whether the release switch 70 b has been turned ON, i.e. whether the release switch button 70 has been fully depressed. If the turn-ON of the release switch 70 b is not confirmed, the control proceeds to step 828, in which it is determined whether the photometry switch 70 a is still turned ON. If the photometry switch 70 a is still turned ON, the control returns to step 802, and thus a tremble of an image to be photographed is repeatedly corrected as long as the photometry switch 70 a is turned ON.
  • At [0090] step 827, when it is confirmed that the release switch 70 b is turned ON, the control proceeds to step 829, in which an photographing operation routine (not shown) is executed. In the execution of the photographing operation routine, the aforesaid mirror drive mechanism and focal-plane shutter drive mechanism are operated to perform a photographing exposure operation. Then, at step 830, it is determined whether the photographing exposure operation has been completed. If the photographing exposure-operation is not completed, the control returns to step 802, whereby a tremble of an image to be photographed is repeatedly corrected until the photographing exposure operation is completed.
  • At [0091] step 830, when the completion of the photographing exposure operation is confirmed, the control proceeds to step 831, in which the drive variables DVX and DVY are set to “0”, thereby prohibiting the electrical energization of the first and second electromagnetic coils 16 a and 16 b. Thereafter, the image-tremble-correction routine ends.
  • At [0092] step 828, when it is confirmed that the photometry switch 70 a is turned OFF, i.e. when the release switch button 70 is released from the depression without fully depressing the release switch button 70, the control proceeds from step 828 to step 831, in which the drive variables DVX and DVY are set to “0”, thereby prohibiting the electrical energization of the first and second electromagnetic coils 16 a and 16 b. Thereafter, the image-tremble-correction routine ends.
  • As is apparent from the foregoing, according to the present invention, since the X-Y rectangular coordinate system is set such that the X- and Y-axes thereof define the angle of 45° with the horizontal axis HA and the vertical axis VA (FIG. 2), it is possible to widen the vertical and horizontal limitations of the lens system (L[0093] 2) without increasing the mechanical bulkiness of the lens barrel 9. Namely, if the X-Y rectangular coordinate system is defined such that the X- and Y-axes thereof extend horizontally and vertically, the movement of the lens system (L2) is restricted in a square area SA′ as shown in FIG. 2, and thus a maximum range, in which the lens system (L2) can be moved along each of the horizontal axis HA and the vertical axis VA, is limited by a distance of “2r”, which is shorter than the aforesaid distance of R=(8r2)½. In short, according to the present invention, it is possible to widen vertical and horizontal limitations of movement of the lens system (L2) to about 1.4 times in comparison with the case of the square area SA′.
  • In the aforesaid embodiment, although the image-tremble-correcting system is incorporated in the single lens reflex (SLR) type camera, it should be understood that the present invention may be embodied in another optical instrument, such as a video camera, a telescope, a pair of binoculars or the like. [0094]
  • Finally, it will be understood by those skilled in the art that the foregoing description is of a preferred embodiment of the system, and that various changes and modifications may be made to the present invention without departing from the spirit and scope thereof. [0095]
  • The present disclosure relates to subject matters contained in Japanese Patent Applications No. 2000-039320 (filed on Feb. 17, 2000) which is expressly incorporated herein, by reference, in its entirety. [0096]

Claims (6)

1. An image-tremble-correcting system for an optical instrument, having an optical focussing system for producing a focussed image, to correct a tremble of said focussed image caused by an oscillation of said optical instrument, which comprises:
a movable optical tremble-correction system assembled in the optical focussing system of said optical instrument;
an X-Y rectangular coordinate system which is defined on a geometrical plane perpendicular to an optical axis of said optical focussing system, an origin of said X-Y rectangular coordinate system coinciding with the optical axis of said optical focussing system, the X- and Y-axes thereof defining an angle of 45° with a horizontal axis and a vertical axis defined on said geometrical plane when said optical instrument is positioned at a usual attitude;
a first position-detecting system that detects a position of said movable optical tremble-correction system along the X-axis of said X-Y rectangular coordinate system;
a second position-detecting system that detects a position of said movable optical tremble-correction system along the Y-axis of said X-Y rectangular coordinate system;
a first driving system that moves said movable optical tremble-correction system along the X-axis of the X-Y rectangular coordinate system;
a second driving system that moves said movable optical tremble-correction system along the Y-axis of the X-Y rectangular coordinate system;
a tremble-sensor system that detects an amount of tremble of said focussed image with respect to said X-Y rectangular coordinate system; and
a controller that controls said first and second driving system to move said movable optical tremble-correction system along the X- and Y-axes of the X-Y rectangular coordinate system, such that the amount of tremble of said focussed image is neutralized.
2. An image-tremble-correcting system as set forth in
claim 1
, wherein said movable optical tremble-correction system is movable along the X-axis and the Y-axis of said X-Y rectangular coordinate system to a same extent, whereby the movement of the movable optical treble-correction system is restricted in a square area.
3. An image-tremble-correcting system as set forth in
claim 1
, further comprising:
a first limit-position-determination system that determines whether the position detected by said first position-detecting system is a first limit position along the X-axis of said X-Y rectangular coordinate system;
a first correction-limit-determination system that determines whether an amount of the tremble of said focussed image along the X-axis of said X-Y rectangular coordinate system exceeds said first limit position when it is determined by said first limit-position-determination system that the position detected by said first position-detecting system is said first limit position along the X-axis of said X-Y rectangular coordinate system;
a second limit-position-determination system that determines whether the position detected by said second position-detecting system is a second limit position along the Y-axis of said X-Y rectangular coordinate system; and
a second correction-limit-determination system that determines whether an amount of tremble of said focussed image along the Y-axis of said X-Y rectangular coordinate system exceeds said second limit position when it is determined by said second limit-position-determination system that the position detected by said second position-detecting system is said second limit position along the Y-axis of said X-Y rectangular coordinate system,
wherein said controller ceases controlling said first driving system when it is determined by said first correction-limit-determination system that the amount of tremble of said focussed image along the X-axis of said X-Y rectangular coordinate system exceeds said first limit position, and
wherein said controller ceases controlling said second driving system when it is determined by said second correction-limit-determination system that the amount of tremble of said focussed image along the Y-axis of said X-Y rectangular coordinate system exceeds said second limit position.
4. An image-tremble-correcting system as set forth in
claim 1
, wherein said tremble-sensor system includes:
a first angular speed sensor that detects a first angular speed of said optical instrument around the X-axis of said X-Y rectangular coordinate system; and
a second angular speed sensor that detects a second angular speed of said optical instrument around the Y-axis of said X-Y rectangular coordinate system,
the controlling of said respective first and second driving systems by said controller being performed on the basis of said first and second angular speed detected by said first and second angular speed sensors.
5. An image-tremble-correcting system as set forth in
claim 4
, wherein said respective first and second driving systems comprise a first electromagnetic driving system and a second electromagnetic driving system,
both a direction and a magnitude of an electric current, flowing through said first electromagnetic driving system, being controlled by said controller on the basis of the position of said movable optical tremble-correction system, detected by said first position-detecting system, and the first angular speed detected by said first angular speed sensor, thereby determining both a direction and an acceleration of the movement of said movable optical tremble-correction system along the X-axis of said X-Y rectangular coordinate system,
both a direction and a magnitude of an electric current, flowing through said second electromagnetic driving system, being controlled by said controller on the basis of the position of said movable optical tremble-correction system, detected by said second position-detecting system, and the second angular speed detected by said second angular speed sensor, thereby determining both a direction and an acceleration of the movement of said movable optical tremble-correction system along the Y-axis of said X-Y rectangular coordinate system.
6. An image-tremble-correcting system as set forth in
claim 1
, wherein said optical instrument comprises a single lens reflex camera having a photographing optical system as said optical focussing system, and said movable optical tremble-correction system, said first and second position-detecting systems, and said first and second driving systems being assembled as an image-tremble-correcting unit in said photographing optical system.
US09/785,185 2000-02-17 2001-02-20 Image-tremble-correcting system for optical instrument Expired - Fee Related US6456790B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPP2000-039320 2000-02-17
JP2000039320A JP2001228498A (en) 2000-02-17 2000-02-17 Image blur correction device

Publications (2)

Publication Number Publication Date
US20010016116A1 true US20010016116A1 (en) 2001-08-23
US6456790B2 US6456790B2 (en) 2002-09-24

Family

ID=18562902

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/785,185 Expired - Fee Related US6456790B2 (en) 2000-02-17 2001-02-20 Image-tremble-correcting system for optical instrument

Country Status (2)

Country Link
US (1) US6456790B2 (en)
JP (1) JP2001228498A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060285839A1 (en) * 2005-06-20 2006-12-21 Canon Kabushiki Kaisha Optical apparatus having image-blur correction/reduction system
US20080164963A1 (en) * 2005-04-28 2008-07-10 Nhk Spring Co., Ltd. Magnetic Actuator
US20130044212A1 (en) * 2011-08-16 2013-02-21 Pentax Ricoh Imaging Company, Ltd. Imaging device and distance information detecting method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6606457B2 (en) * 2001-06-19 2003-08-12 Pentax Corporation Focused image tremble correcting device
JP2003075881A (en) 2001-08-31 2003-03-12 Pentax Corp Image blurring correcting device
US7742076B2 (en) * 2004-05-25 2010-06-22 Hoya Corporation Image-capturing apparatus and camera-shake compensation mechanism
JP2005345504A (en) * 2004-05-31 2005-12-15 Pentax Corp Image blur correction device
JP4634752B2 (en) * 2004-07-09 2011-02-16 Hoya株式会社 Camera with image blur correction function
JP4483869B2 (en) * 2007-02-01 2010-06-16 ソニー株式会社 Image blur correction device, lens barrel, and imaging device
JP7328006B2 (en) * 2019-05-28 2023-08-16 キヤノン株式会社 optical equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635022A (en) 1992-07-20 1994-02-10 Asahi Optical Co Ltd Correcting lens driving mechanism for image blurring correcting device for camera
JPH0798466A (en) 1993-09-28 1995-04-11 Asahi Optical Co Ltd Image blurring correcting device for camera
JP3360756B2 (en) 1993-09-28 2002-12-24 ペンタックス株式会社 Camera image stabilizer
JP3401301B2 (en) 1993-10-13 2003-04-28 ペンタックス株式会社 Camera image stabilizer
JP2973179B2 (en) 1996-02-27 1999-11-08 旭精密株式会社 Correction lens drive mechanism of camera image stabilizer
US5854947A (en) * 1996-06-18 1998-12-29 Nikon Corporation Vibration reducing apparatus
JP3231687B2 (en) 1997-12-02 2001-11-26 旭光学工業株式会社 Binocular device and monocular device having camera shake correction mechanism
JP3244656B2 (en) 1997-12-02 2002-01-07 旭光学工業株式会社 Binocular device and monocular device having camera shake correction mechanism
JP3272656B2 (en) 1998-01-06 2002-04-08 旭光学工業株式会社 Anti-vibration optical system of observation optical equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164963A1 (en) * 2005-04-28 2008-07-10 Nhk Spring Co., Ltd. Magnetic Actuator
US20060285839A1 (en) * 2005-06-20 2006-12-21 Canon Kabushiki Kaisha Optical apparatus having image-blur correction/reduction system
US7747149B2 (en) * 2005-06-20 2010-06-29 Canon Kabushiki Kaisha Optical apparatus having image-blur correction/reduction system
US20130044212A1 (en) * 2011-08-16 2013-02-21 Pentax Ricoh Imaging Company, Ltd. Imaging device and distance information detecting method
US9094581B2 (en) * 2011-08-16 2015-07-28 Pentax Ricoh Imaging Company, Ltd. Imaging device and distance information detecting method

Also Published As

Publication number Publication date
US6456790B2 (en) 2002-09-24
JP2001228498A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
US5084724A (en) Camera
US7352389B2 (en) Anti-shake apparatus for correcting hand shake effect through first and second drive coil units
US7623151B2 (en) Vibration correcting device, lens barrel, and optical device
US7505217B2 (en) Anti-shake apparatus
US6456790B2 (en) Image-tremble-correcting system for optical instrument
US9285604B2 (en) Blur correction apparatus
US20050169618A1 (en) Position control device, image blur correction device, and optical apparatus
US5805937A (en) Vibration reduction apparatus
US5095198A (en) Image shake compensating device
JP2010091792A (en) Camera body, lens barrel and camera system
US5748995A (en) Vibration reducing apparatus and vibration reducing camera
EP0791844B1 (en) Optical system controlling apparatus
US20180070016A1 (en) Image stabilization apparatus, lens barrel, and imaging apparatus
US5930531A (en) Image shifting apparatus
JPH11271833A (en) Shake correction device and shake correction camera
US20220244486A1 (en) Lens driving module, photographing camera and electronic device
JP4174154B2 (en) Imaging device with anti-vibration function
JP3867363B2 (en) Lens barrel
JP4443885B2 (en) Imaging device
US6308010B1 (en) Wiring structure of an image stabilizer
US5673149A (en) Optical apparatus having a function of preventing image blur or shake and having lens barrels of different diameters
US5659808A (en) Optical apparatus
US6415105B1 (en) Image stabilizer
JPH1056793A (en) Control circuit for linear motor
JP4391783B2 (en) Optical equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASAHI KOGAKU KOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SASAKI, TAKAMITSU;UENAKA, YUKIO;REEL/FRAME:011561/0217

Effective date: 20010209

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100924