JP4174154B2 - Imaging device with anti-vibration function - Google Patents

Imaging device with anti-vibration function Download PDF

Info

Publication number
JP4174154B2
JP4174154B2 JP36584699A JP36584699A JP4174154B2 JP 4174154 B2 JP4174154 B2 JP 4174154B2 JP 36584699 A JP36584699 A JP 36584699A JP 36584699 A JP36584699 A JP 36584699A JP 4174154 B2 JP4174154 B2 JP 4174154B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
displacement
shake
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36584699A
Other languages
Japanese (ja)
Other versions
JP2001066655A (en
Inventor
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP36584699A priority Critical patent/JP4174154B2/en
Publication of JP2001066655A publication Critical patent/JP2001066655A/en
Application granted granted Critical
Publication of JP4174154B2 publication Critical patent/JP4174154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、ビデオカメラやデジタルスチルカメラ等の手振れによる画質劣化を防止する防振機能付き撮影装置に関するものである。
【0002】
【従来の技術】
デジタルスチルカメラ等の撮像装置で撮影する場合、手振れにより撮像装置が振動して画質劣化が生じることを防止するため画面振れの補正装置を付けた撮像装置が、例えば特開平6−46322号公報や特開平9−80538号公報に開示されている。特開平6−46322号公報に示された画面振れの補正装置は、振れ検出手段からの検出信号に基づいて移動手段でCCDを撮影光学系の光軸と直交する平面内に移動し、振れを生じる撮影光軸とCCDの中心を一致させるようにしている。このCCDを移動する移動手段は、図13に示すように、CCDが固定されたCCD固定部材71に光軸と直交する平面で互いに直交する方向に移動する2軸のバー72,73を設け、一方のバー72の軸方向の撮影光学系の光軸の位置合わせはばね74による付勢力と電磁石75への通電により永久磁石76との間で発生する反発力により制御し、他方のバー73の軸方向の撮影光学系の光軸の位置合わせは、ばね74による付勢力と電磁石78への通電により永久磁石79との間で発生する反発力により制御して撮影光軸とCCDの中心を一致させている。
【0003】
特開平9−80538号公報に示された補正装置は、撮影光学系の光軸を変化させるように移動可能な振れ補正光学系と振れ補正光学系の位置を検出する位置検出部を設けている。この位置検出部は、図14に示すように、振れ補正光学系に連結されたスリット部とこのスリット部81と所定間隔を介して配置され、スリット部側に発光する発光部82と、スリット部81を介して発光部82と対向して配置され、スリット部81の透過穴を通過した発光部82からの光を受ける受光部83とを備え、受光部83からの光電流により受光面に入射したスリット光の重心位置を求めることにより振れ補正光学系の位置を検出するようにしている。
【0004】
【発明が解決しようとする課題】
特開平6−46322号公報に示された画面振れの補正装置のようにCCDを変位させて振れ画像を補正することにより、ある程度の振れ補正は可能である。しかしながらCCDの実際の変位量を検知して高精度に制御する手段が明記されていないため、画像振れを数画素内に制御することは困難である。
【0005】
これに対し特開平9−80538号公報に示された位置検出部を特開平6−46322号公報に示された画面振れの補正装置と組み合わせれば高精度な制御が可能である。しかしながら特開平9−80538号公報に示された位置検出部では2次元の位置検出には少なくとも2つ以上の光源が必要である。光源として使用する発光素子は一般に消費電力が大きく、デジタルスチルカメラなどの携帯して使用される撮影装置に位置検出用の2つ以上の光源を設けることは低消費電力化に問題が残る。また、高精度な位置検出には受光素子に高価な位置検出素子が必要でありコストの増大を招く。さらに、この位置検出部は透過型のセンサであることから装置の小型化にはCCDの周辺部に設置する必要があり、また光源からの迷光対策のため構造が複雑なるなど撮影部を小型化しにくいなどの短所がある。
【0006】
この発明はかかる短所を改善し、簡単な構成で小型かつ安価であるとともに低消費電力で高精度な振れ制御を行うことができる防振機能付き撮影装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
この発明に係る防振機能付き撮影装置は、撮影光学系と光電変換手段を有する基板と振れ検出手段と駆動手段と変位量測定手段及び制御手段を有し、撮影光学系は被写体からの光を受光して被写体像を光電変換手段に入射し、基板に取付けられた光電変換手段は撮影光学系を通過した被写体像を受光して画像信号に変換し、振れ検出手段は手振れによる光電変換手段を有する基板のX軸方向とY軸方向の振れ量を検出し、駆動手段は振れ検出手段で検出した振れ量により光電変換手段を有する基板を撮影光学系の光軸に直交する平面内の少なくとも一方向に移動させ、変位量測定手段は反射部と光源と受光手段及び変位量演算手段を有し、反射部は光電変換手段を有する基板の一部に設けられ、光源から照射された光を反射して受光手段に入射し、受光手段は反射部からの反射光を受光する複数の受光素子を有し、変位量演算手段は複数の受光素子からの受光信号により光電変換手段を有する基板のX軸方向とY軸方向の変位量を算出し、制御手段は前記振れ検出手段で検出した振れ量に応じた駆動制御信号により前記駆動手段を駆動して光電変換手段を有する基板を移動し、該光電変換手段を有する基板を移動しているときに、前記変位量演算手段で算出したX軸方向とY軸方向の変位量により前記振れ検出手段で検出した振れ量を補正して手振れを補正することを特徴とする。
【0008】
受光手段を光電変換手段を有する基板の反射部からの反射光の光軸方向に移動する駆動手段を設け、変倍機能による撮影光学系のズーム用光学系の移動に伴い駆動手段により受光手段を移動して反射部と受光手段の相対的な位置関係を変化させると良い。
【0009】
この発明に係る他の防振機能付き撮影装置は、撮影光学系と光電変換手段を有する基板と振れ検出手段と駆動手段と変位量測定手段及び制御手段を有し、撮影光学系は被写体からの光を受光して被写体像を光電変換手段に入射し、基板に取付けられた光電変換手段は撮影光学系を通過した被写体像を受光して画像信号に変換し、振れ検出手段は手振れによる光電変換手段を有する基板のX軸方向とY軸方向の振れ量を検出し、駆動手段は振れ検出手段で検出した振れ量により光電変換手段を有する基板を撮影光学系の光軸に直交する平面内の少なくとも一方向に移動させ、変位量測定手段は反射部と光源と複数の位置検出素子及び変位量演算手段を有し、反射部は光電変換手段を有する基板の一部に設けられ、光源から照射された光を反射し、複数の位置検出素子は反射部からの反射光の一部を受光する位置に点対称に配置され、変位量演算手段は複数の位置検出素子で受光した反射光のエッジの座標を検出し、検出したエッジの座標から反射光の幾何学的形状に基づく特徴点を検出し、検出した特徴点と前回の特徴点とを比較して光電変換手段を有する基板のX軸方向とY軸方向の変位量を算出し、制御手段は前記振れ検出手段で検出した振れ量に応じた駆動制御信号により前記駆動手段を駆動して光電変換手段を有する基板を移動し、該光電変換手段を有する基板を移動しているときに、前記変位量演算手段で算出したX軸方向とY軸方向の変位量により前記振れ検出手段で検出した振れ量を補正して手振れを補正することを特徴とする。
【0010】
上記複数の位置検出素子で検出する反射部からの反射光のビーム形状を円形又は楕円形状にすることが望ましい。
【0011】
また、変位量測定手段の反射部を光電変換手段を有する基板の裏面に設けると良い。
【0012】
さらに、光電変換手段を有する基板を駆動手段及び光電変換手段を有する基板を挟んで駆動手段と反対側に設けられた弾性体で保持すると良い。
【0013】
また、弾性体が設けられた位置に所定高さを有する変位制限部を設けることが望ましい。
【0014】
また、変位量測定手段の変位量演算手段若しくは振れ検出手段にあらかじめ撮影光学系の焦点距離に応じた演算用パラメータを格納し、撮影光学系の変倍機能が動作したときに、変位量演算手段若しくは振れ検出手段は撮影光学系の焦点距離に応じて演算する演算用パラメータを選択して光電変換手段を有する基板の変位量を演算すると良い。
【0016】
【発明の実施の形態】
この発明の撮影装置は撮影光学系と、CCD等からなる光電変換手段を取り付けた基板と、基板をX軸方向とY軸方向に移動する例えば圧電素子からなる駆動手段と、撮影装置のヨー及びピッチ方向の角速度や角加速度を検出する物理量センサと光源と光電変換手段を取り付けた基板の反対側の面に取り付けられた反射部及び受光手段を有する。受光手段は光源から照射され基板の反射部で反射した反射光ビームの光軸中心に点対称になるように、光軸に対して垂直な平面内に配置された受光特性がほぼ同一な例えば4個の受光素子を有する。
【0017】
撮影装置の制御部には装置全体の動作を制御するCPUと振れ検出回路と変位量演算回路と撮像光学系を駆動制御する撮像光学系駆動制御回路及び駆動手段の動作を制御する光電変換手段駆動制御回路を有する。振れ検出回路は物理量センサで検出した撮影装置のヨー及びピッチ方向の角速度信号や角加速度信号から光電変換手段の光電変換面における振れ量を演算する。変位量演算回路は受光手段の各受光素子から出力される受光信号から光電変換手段を有する基板のX軸方向とY軸方向の変位量を演算する。
【0018】
この撮影装置の撮影光学系で撮影を開始すると、手振れによる撮影装置のヨー及びピッチ方向の角速度若しくは角加速度を物理量センサで検出して振れ検出回路に送る。振れ検出回路は物理量センサで検出した撮影装置のヨー及びピッチ方向の角速度信号若しくは角加速度信号を増幅してドリフト成分など不要な信号成分を除去してX軸方向とY軸方向の角度変動量に変換し光電変換手段の光電変換面における振れ量を演算してCPUに送る。CPUは振れ検出回路で演算した光電変換手段の光電変換面における振れ量に応じた駆動制御信号を光電変換手段駆動制御回路に送り、駆動手段を駆動して光電変換手段を有する基板をX軸方向とY軸方向に変位させる。この駆動手段で光電変換手段を有する基板をX軸方向とY軸方向に変位させているとき、光源から光電変換手段を有する基板の光電変換手段を取り付けた面と反対側に設けた反射部に光ビームを照射し、反射部からの反射光を受光手段の各受光素子で受光する。この各受光素子から出力される受光信号により変位量演算回路で光電変換手段を有する基板のX軸方向とY軸方向の変位量を演算してCPUに送る。CPUは駆動手段で光電変換手段を有する基板をX軸方向とY軸方向に変位させているときに求めた基板のX軸方向とY軸方向の変位量を振れ検出回路で検出した光電変換手段の光電変換面におけるX軸方向とY軸方向の振れ量から減算して光電変換手段駆動制御回路に送る駆動制御信号を補正する。光電変換手段駆動制御回路は補正された振れ量を示す駆動制御信号により駆動手段を制御し、光電変換手段を有する基板のX軸方向とY軸方向の変位を調節する。このように撮影中に振れ補正を行い、撮影が終了したら光電変換手段を有する基板を変位させた量に応じて駆動手段を制御して光電変換手段を有する基板を初期位置に戻す。
【0019】
【実施例】
図1はこの発明の一実施例の構成図である。図に示すように、撮影装置は撮影光学系1と、CCD等からなる光電変換手段2を取り付けた基板3と、駆動手段4a,4bと物理量センサ5a,5bと光源6及び受光手段7を有する。光電変換手段2を取り付けた基板3は撮影光学系1の光軸に対して直交するX方向とY方向に揺動自在に設けられ、光電変換手段2を取り付けた面とは反対側に一部が所定の反射特性、すなわち光軸に対して対称な光量分布を有するように反射面の形状と反射率分布が設定されている例えば平面ミラー等からなる反射部8を有する。駆動手段4a,4bは例えば圧電素子からなり、駆動手段4aは光電変換手段2と反射部を有する基板3をX軸方向に変位させ、駆動手段4bは基板3をY軸方向に変位させる。物理量センサ5a,5bは例えば振動ジャイロや加速度センサ対などからなり、撮影装置のヨー及びピッチ方向の角速度や角加速度を検出する。光源6は基板3の反射部8に光ビームを照射する。受光手段7は基板3の反射部8の反射ビームの光軸中心に点対称になるように、光軸に対して垂直な平面内に配置された受光特性がほぼ同一な例えばフォトダイオード等からなる4個の受光素子7a,7b,7c,7dを有し、基板3の反射部8からの反射光を受光する。
【0020】
撮影装置の制御部には、図2のブロック図に示すように、装置全体の動作を制御するCPU11と振れ検出回路12と変位量演算回路13と撮像光学系1を駆動制御する撮像光学系駆動制御回路14及び駆動手段4a,4bの動作を制御する光電変換手段駆動制御回路15を有する。振れ検出回路12は2組の増幅回路16a,16bとフィルタ17a,17bと演算回路18a,18b及び振れ情報演算回路19を有する。増幅回路16a,16bは物理量センサ5a,5bで検出した撮影装置のヨー及びピッチ方向の角速度信号や角加速度信号を増幅する。フィルタ17a,17bは増幅後の角速度信号や角加速度信号からドリフト成分など不要な信号成分を除去する。演算回路18a,18bはドリフト成分など不要な信号成分を除去した角速度信号若しくは角加速度信号をX軸方向とY軸方向の角度変動量に変換する。振れ情報演算回路19はX軸方向とY軸方向の角度変動量と撮影光学系1の焦点距離情報から光電変換手段2の光電変換面における振れ量を演算する。
【0021】
変位量演算回路13は受光手段7の各受光素子7a〜7dに接続された増幅回路20a〜20dと位置演算回路21を有する。増幅回路20a〜20dは受光素子7a〜7dから出力される受光信号を増幅する。位置演算回路21は増幅回路20a〜20dから出力される受光信号から光電変換手段2を有する基板3のX軸方向とY軸方向の変位量を演算する。
【0022】
CPU11は撮影するときに撮像光学系駆動制御回路14に制御信号を送り、撮像光学系駆動制御回路14で撮影光学系1の各種撮影モード等を制御させるとともに撮影開始したときに振れ検出回路12で検出した光電変換手段2の光電変換面における振れ量に応じた駆動制御信号を光電変換手段駆動制御回路15に送る。光電変換手段駆動制御回路15は送られた駆動制御信号により駆動手段4a,4bを駆動して光電変換手段2を有する基板3をX軸方向とY軸方向に変位させる。この光電変換手段駆動制御回路15で駆動手段4a,4bを駆動しているときに、CPU11は変位量演算回路13で測定している光電変換手段2を有する基板3のX軸方向とY軸方向の変位量により光電変換手段駆動制御回路15に送る駆動制御信号をフィードバック制御する。
【0023】
上記のように構成した撮影装置で撮影するとき手振れを補正するときの動作を説明する。
【0024】
CPU11で撮影光学系駆動制御回路14を駆動して撮影光学系1で撮影を開始すると、撮影装置のヨー及びピッチ方向の角速度若しく角加速度を物理量センサ5a,5bで検出して振れ検出回路12に送る。振れ検出回路12の増幅回路16a,16bは物理量センサ5a,5bで検出した撮影装置のヨー及びピッチ方向の角速度信号若しくは角加速度信号を増幅してフィルタ17a,17bに送る。フィルタ17a,17bは送られた角速度信号若しくは角加速度信号からドリフト成分など不要な信号成分を除去して演算回路18a,18bに送る。演算回路18a,18bは送られた角速度信号若しくは角加速度信号をX軸方向とY軸方向の角度変動量に変換して振れ情報演算回路19に送る。振れ情報演算回路19は送られたX軸方向とY軸方向の角度変動量と撮影光学系1の焦点距離情報から光電変換手段2の光電変換面における振れ量を演算してCPU11に送る。CPU11は振れ検出回路12の振れ情報演算回路19で演算した光電変換手段2の光電変換面における振れ量に応じた駆動制御信号を光電変換手段駆動制御回路15に送る。光電変換手段駆動制御回路15は送られた駆動制御信号により駆動手段4a,4bを駆動して光電変換手段2を有する基板3をX軸方向とY軸方向に変位させる。
【0025】
この駆動手段4a,4bで光電変換手段2を有する基板3をX軸方向とY軸方向に変位させているとき、図3(a)に示すように、光源6から基板3の光電変換手段2を取り付けた面と反対側に設けた反射部8に光ビームを照射し、反射部8からの反射光を受光手段の各受光素子7a〜7dで受光する。この反射部8は光軸に対して対称な光量分布を有するように反射面の形状と反射率分布が設定されているから、反射部8から受光素子7a〜7dに入射する反射ビーム22は、図3(b)に示すように、基板3の変位に応じて受光素子7a〜7d上で一定の関係で変化する。この受光素子7a〜7dに入射する反射ビーム22により受光素子7a〜7dから出力される受光信号を変位量演算回路13の増幅回路20a〜20dで増幅して位置演算回路21に送る。位置演算回路21は送られた受光信号から光電変換手段2を有する基板3のX軸方向とY軸方向の変位量を演算して、駆動手段4a,4bで光電変換手段2を有する基板3をX軸方向とY軸方向に変位させているときの基板3のX軸方向とY軸方向の変位量を求める。例えば各受光素子7a〜7dの受光信号により増幅回路20a〜20dから出力する電圧値をVa,Vb,Vc,Vdとすると、基板3のX軸方向の変位量δxは
〔(Va+Vb)−(Vc+Vd)〕/(Va+Vb+Vc+Vd)
に比例し、Y軸方向の変位量δyは
〔(Va+Vd)−(Vb+Vc)〕/(Va+Vb+Vc+Vd)
に比例し、図3(c)に示すようにほぼリニアに変化する。この基板3のX軸方向の変位量δxとY軸方向の変位量δyを位置演算回路21で求めてCPU11に送る。
【0026】
CPU11は、この駆動手段4a,4bで光電変換手段2を有する基板3をX軸方向とY軸方向に変位させているときに求めた基板3のX軸方向とY軸方向の変位量を振れ情報演算回路19で検出した光電変換手段2の光電変換面におけるX軸方向とY軸方向の振れ量から減算して光電変換手段駆動制御回路15に送る駆動制御信号を補正する。光電変換手段駆動制御回路15は補正された振れ量を示す駆動制御信号により駆動手段4a,4bを制御し、光電変換手段2を有する基板3のX軸方向とY軸方向の変位を調節する。このようにして高精度な振れ補正を行うことができる。このように撮影中に振れ補正を行い、撮影が終了したら光電変換手段2を有する基板3を変位させた量に応じて駆動手段4a,4bを制御して光電変換手段2を有する基板3を初期位置に戻す。このようにすることにより振れ補正の動作による撮影光学系1の光軸と光電変換手段2の画像中心とのずれによる画質劣化を低減することもできる。この場合、光電変換手段2を有する基板3の初期位置をあらかじめ記憶しておき、振れ補正による撮影が終了したときに、光電変換手段2を有する基板3をあらかじめ記憶した初期位置に戻しても良い。
【0027】
次ぎに、このように光電変換手段2と反射部8を有する基板3と反射部8からの反射光を受光する受光手段7を一体化した変位量測定機構部30の構成を図4の斜視図を参照して説明する。
【0028】
変位量測定機構部30は、図4に示すように、外枠31と、光電変換手段2と周辺回路を有する基板3と、X軸方向への変位を規定するX軸変位規定基板32と、Y軸方向への変位を規定するY軸変位規定基板33及び受光手段7を有する基板34を有する。光電変換手段2と周辺回路を設置した基板3の裏面には反射部8を構成する平面ミラーが固定され、X軸変位規定基板32に設けられたX軸方向の長穴36に嵌合させるための2個の突起部35を有する。X軸変位規定基板32には光源6からの光と反射部8からの反射光を妨げないための穴37が中央部に設けられ、穴37の上部にX軸方向の長穴36を有し、穴37の側部にY軸変位規定基板33に設けたY軸方向の長穴39に嵌合させるための2個の突起部38を有する。Y軸変位規定基板33の中央部にも光源6からの光と反射部8からの反射光を妨げないための穴40を有し、穴40の側部にY軸方向の長穴39を有する。
【0029】
外枠31のX軸方向の一方の内側面には、光電変換手段2を有する基板3のX軸方向の一方の辺を押える弾性体例えば板ばね41を設け、外枠31の板ばね41を取り付けた後段のY軸方向の一方の面にはX軸変位規定基板32のY軸方向の一辺を押える弾性体例えば板ばね42を設けられている。そして光電変換手段2を有する基板3の板ばね41と接触する辺と反対側の辺にX軸方向の駆動手段4aを取り付け、駆動手段4aと光電変換手段2を有する基板3を板ばね41を介して外枠31に固定し、X軸変位規定基板32の板ばね42と接触する辺と反対側の辺にY軸方向の駆動手段4bを取り付け、光電変換手段2を有する基板3の突起部35にX軸変位規定基板32の長穴36に嵌合させて駆動手段4bとX軸変位規定基板32を板ばね42とX軸変位規定基板32の固定端43とで外枠31に固定する。この外枠31に固定したX軸変位規定基板32の突起部38にY軸変位規定基板33の長穴39を嵌合させ、Y軸変位規定基板33から所定距離を隔てて受光手段7を有する基板34を配置し、Y軸変位規定基板33と受光手段7を有する基板34を外枠31に機械的に固定して、変位量測定機構部30を構成する。
【0030】
このように光電変換手段2を有する基板3とX軸変位規定基板32を駆動手段4a,4bと反対側に設けた板ばね41,42で押圧しながら保持するようにしたから、駆動手段4a,4bを駆動して光電変換手段2を有する基板3を変位させるときに、駆動手段4a,4bの変位に追従して光電変換手段2を有する基板3を精度良く変位させることができる。
【0031】
また、基板3の突起部35と嵌合するX軸変位規定基板32の長穴36やX軸変位規定基板32の突起部38と嵌合するY軸変位規定基板33の長穴39の接触する部位あるいは基板3とX軸変位規定基板32の接触面及びX軸変位規定基板32とY軸変位規定基板33の接触面に所定の摩擦力を発生するように表面を加工することにより、光電変換手段2を有する基板3を駆動手段4a,4bにより変位させるときに生じる振動を抑制することができ、光電変換手段2を有する基板3を高精度に変位させることができる。
【0032】
さらに、図5に示すように、外枠31の板ばね41,42を設けてある面の一部に所定高さを有する変位制限突起部44を設けて光電変換手段2を有する基板3の変位量を制限すると良い。このように変位制限突起部44を設けることにより、撮影装置で撮影するとき大きな手振れが生じて光電変換手段2を有する基板3を大きく変位させた場合に駆動手段4a,4bの圧電素子や板ばね41,42の機械的な破損を防ぐことができ、信頼性の高い振れ補正機構を提供することができる。
【0033】
また、撮影光学系1に変倍機能を有し、撮影光学系1が望遠側に設定されている場合、焦点距離が長くなるため微少な手振れでも光電変換手段2上の変動量は焦点距離に比例して大きくなる。撮影光学系1に変倍機能を有する場合は、変位量演算回路13の振れ情報演算回路19に撮影光学系1の焦点距離に応じて像面での振れ量演算用の演算パラメータを格納しておく。そして変倍機能が動作したときに、ズーム用光学系の配置状態をエンコーダ等で検出し、その焦点距離情報を振れ検出回路12の振れ情報演算回路19に通知するとともに変位量演算回路13の位置演算回路21に通知する。位置演算回路21は送られた焦点距離に応じて変位量を演算する演算パラメータを最適なものに選択して光電変換手段2を有する基板3の変位量を演算する。このようにして光電変換手段2を有する基板3を変位させているときの変位量を最適化することができ、高精度な振れ補正を実現することができる。
【0034】
上記実施例は光電変換手段2と反射部8を有する基板3と受光手段7の間の距離を一定にした場合について説明したが、図6に示すように、受光手段7を有する基板34を平行に移動する駆動手段45を設け、変倍機能による撮影光学系1のズーム用光学系の移動に伴い駆動手段45により受光手段7を有する基板34を移動して反射部8と受光手段7の相対的な位置関係を変化させて、図7に示すように、受光手段7上のビーム径22を反射部8と受光手段7の距離に応じて変化させることにより、光電変換手段2を変位させているときの変位量検出の分解能を変化させることができ、光電変換手段2の変位量を高精度で検出して位置決めすることができる。
【0035】
また、露光条件と焦点距離情報からなる撮影条件からあらかじめ定められた手振れ限界条件を設定しておき、CPU11に振れ検出回路12で検出した手振れ量が送られたときに、CPU11は検出した手振れ量を露光条件と焦点距離情報からなる撮影条件から定められた手振れ限界条件と比較し、この比較結果を撮影装置の操作部に表示し、この表示された比較結果により撮影者が意図的に振れ補正機構をオンオフするための撮影装置の操作部に設けた選択スイッチをオフにしたときの信号により手振れ補正が不必要となった場合や撮像装置の主電源がオフになったり又は撮影装置の電源電圧監視回路からの規定電圧以下の電圧を検出した警告信号により手振れ補正が動作不可能となった場合に、光電変換手段2を有する基板3を機械的に固定すると良い。例えば図8に示すように、永久磁石上46上に弾性体47を介して電磁石48と、電磁石48上に固定され、X軸変位規定基板32と光電変換手段2を有する基板3の穴49,50に嵌合する円錐状の突起部51,52を設け、手振れ補正が不必要となった場合や手振れ補正が動作不可能となった場合に電磁石48への通電を遮断して弾性体47の弾性力で突起部51,52をX軸変位規定基板32と光電変換手段2を有する基板3の穴49,50に嵌合させて光電変換手段2を有する基板3とX軸変位規定基板32を機械的に固定し、手振れ補正が必要なときに電磁石48に通電して突起部51,52をX軸変位規定基板32と光電変換手段2を有する基板3の穴49,50から離し、光電変換手段2を有する基板3とX軸変位規定基板32が変位できるようにする。このようにして光電変換手段2の不必要な変位による画質の劣化や運搬等による機械的な破損を防止することができるとともに不要な動作による電力の消費を防ぐことができる。
【0036】
上記実施例は光電変換手段2を有する基板3の裏面の反射部8として平坦な反射ミラーを設けた場合について説明したが、反射部8に凹,凸などの種々の反射面形状を設けても良い。また、反射部8の反射面の反射率も光学軸から離れるにしたがって高くなるように設定することもできる。さらに、光源6の照射ビームの出射角度を撮影光学系1の焦点距離情報に対応して変化させて受光手段7に入射するビーム状態を変化させることにより変位量演算回路13の変位量の検出分解能を変化させるようにしても良い。また、光電変換手段の揺動のための駆動装置に圧電素子を使用した場合について説明したが、ギヤによる回転−直線運動変換機構を有したステップモータにより機械的に駆動したり、磁石とヨーク及びコイルからなる電磁的アクチュエータにより駆動しても良い。
【0037】
また、上記実施例は光電変換手段2を有する基板3に設けられた反射部8で反射した光ビームを例えばフォトダイオード等からなる受光素子7a〜7dで受光し、受光素子7a〜7dからの受光信号により光電変換手段2を有する基板3の変位量を算出した場合について説明したが、反射部8で反射した光ビームを一次元イメージセンサ等の複数の位置検出素子で受光して光電変換手段2を有する基板3の変位量を算出するようにしても良い。
【0038】
図9は反射部8で反射した光ビームを複数の位置検出素子で受光して光電変換手段2を有する基板3の変位量を算出する実施例の構成図である。図に示すように、光源6は光電変換手段2を有する基板3に設けられた反射部8の光軸上に設けられ、例えばラインセンサからなる4個の位置検出素子61a,61b,61c,61dは基板3と並行な同一平面上の基板3を変位させるX軸方向とY軸方向に光源6を中心に点対称になるように配置してある。
【0039】
撮像装置の制御部の変位量演算回路13aには位置検出素子61a〜61dに接続されたエッジ検出回路62a〜62dと重心位置演算回路63と変動量演算回路64を有する。エッジ検出回路62a〜62dは位置検出素子61a〜61dで受光した反射部8からの反射ビームのエッジの座標を検出する。特徴点演算回路63はエッジ検出回路62a〜62dで検出した反射ビームのエッジの座標から反射ビームの幾何学的形状に基づく特徴点例えば重心の位置を検出する。変動量演算回路64は特徴点演算回路63で検出した特徴点の座標と前回の特徴点の座標を比較し、特徴点の変動量から光電変換手段2を有する基板3の変位量と変位方向を算出する。この特徴点演算回路63で反射部8からの反射ビームの幾何学的形状の特徴点である重心の位置を特定するのに必要な反射ビームを検出する位置検出素子61a〜61dの個数を少なくし、重心位置の演算処理時間を短くするために反射部8を円形又は楕円に形成し、円形又は楕円状の反射ビームが位置検出素子61a〜61dに入射するようにしてある。
【0040】
上記のように構成された変位量演算回路13aで手振れを補正するための変位量を検出するときは、駆動手段4a,4bで光電変換手段2を有する基板3をX軸方向とY軸方向に変位させているとき、光源6から基板3の光電変換手段2を取り付けた面と反対側に設けた反射部8に光ビームを照射し、図11(a)に示すように、各位置検出素子61a〜61dで反射部8からの反射ビーム22の一部を受光する。この反射部8から位置検出素子61a〜61dに入射する反射ビーム22は、図11(b)に示すように、基板3の変位に応じて位置検出素子61a〜61d上で一定の関係で変化する。変位量演算回路13aのエッジ検出回路62a〜62dは位置検出素子61a〜61dから出力される信号から反射ビーム22のエッジの座標を検出して特徴点演算回路63に送る。特徴点演算回路63送られた反射ビーム22のエッジの座標から反射ビーム22の幾何学的形状に基づく特徴点である重心の位置を検出して変動量演算回路64に送る。例えば位置検出素子61a〜61dに入射した反射ビーム22のエッジ部の座標が(X1,0),(0,Y1),(X2,0),(0,Y2)と検出された場合、反射ビーム22の重心位置は下記式で演算される。
(重心位置)=〔(X1+X2)/2,(Y1+Y2)/2〕
【0041】
変動量演算回路64は送られた反射ビーム22の重心の位置座標と前回の重心の位置座標を比較し、反射ビーム22の重心の変動量から光電変換手段2を有する基板3のX軸方向とY軸方向の変位量を算出してCPU11に送る。CPU11は、この駆動手段4a,4bで光電変換手段2を有する基板3をX軸方向とY軸方向に変位させているときに求めた基板3のX軸方向とY軸方向の変位量と振れ情報演算回路19で検出した光電変換手段2の光電変換面におけるX軸方向とY軸方向の振れ量から減算して光電変換手段駆動制御回路15に送る駆動制御信号を補正する。光電変換手段駆動制御回路15は補正された振れ量を示す駆動制御信号により駆動手段4a,4bを制御し、光電変換手段2を有する基板3のX軸方向とY軸方向の変位を調節する。
【0042】
このよう例えばラインセンサからなる4個の位置検出素子61a〜61dで反射部8からの反射ビーム22を受光して光電変換手段2を有する基板3の変位量と変位方向を算出して基板3の振れ量をフィードバック制御するから、小型で安価なラインセンサからなる4個の位置検出素子61a〜61dを使用して基板3の変位量を検出することができるとともに光源6の発光パワーの変動や経時劣化による光量の変動の影響を受けずにより高精度な振れ補正を行うことができる。
【0043】
上記実施例は4個の位置検出素子61a〜61dを使用した場合について説明したが、反射部8からの反射ビーム22を円形にした場合には、円周上の3点の座標が判明すれば反射ビーム22の幾何学的形状を示す方程式が特定できるから、図12(a)に示すように、3個の位置検出素子61a〜61cを使用したり、図12(b)に示すように、X軸又はY軸と平行して設けた2個の位置検出素子61a,61bを使用しても良い。
【0044】
【発明の効果】
この発明は以上説明したように、手振れによる撮影装置の振れ量を検出し、検出した振れ量により光電変換手段を有する基板を変位させているときに、光電変換手段を有する基板の変位量を検出し、検出した変位量により振れ量を補正して光電変換手段を有する基板を変位させるから、高精度な振れ補正を行うことができる。
【0045】
また、受光手段を光電変換手段を有する基板の反射部からの反射光の光軸方向に移動する駆動手段を設け、変倍機能による撮影光学系のズーム用光学系の移動に伴い駆動手段により受光手段を移動して反射部と受光手段の相対的な位置関係を変化させることにより、光電変換手段を有する基板を変位させているときの変位量の分解能を向上させることができ、光電変換手段を高精度に位置決めすることができる。
【0046】
さらに、小型で安価な位置検出素子で反射部からの反射ビームを受光して光電変換手段を有する基板の変位量と変位方向を算出して基板の振れ量をフィードバック制御するから、簡単な構成で基板の変位量を検出することができるとともに光源の発光パワーの変動や経時劣化による光量の変動の影響を受けずにより高精度な振れ補正を行うことができる。
【0047】
この位置検出素子で検出する反射部からの反射光のビーム形状を円形又は楕円形状にすることにより、位置検出素子の数を少なくすることができるとともに、基板の変位量を演算する時間を短縮することができる。
【0048】
また、光電変換手段を有する基板の変位量を、光源から照射された光を光電変換手段を有する基板の一部に設けられた反射部で反射し、その反射光を複数の受光素子を有する受光手段で受光して算出するから、光電変換手段を有する基板の変位量を算出することができる。
【0049】
さらに、反射部を光電変換手段を有する基板の裏面に設けることにより、撮影光学系に影響せずに光電変換手段を有する基板の変位量を算出することができるとともに小型化を図ることができる。
【0050】
また、光電変換手段を有する基板を駆動手段及び光電変換手段を有する基板を挟んで駆動手段と反対側に設けられた弾性体で保持することにより、光電変換手段を有する基板を変位させるとき生じる振動等を抑制して高精度に変位させることができる。
【0051】
さらに、弾性体が設けられた位置に所定高さを有する変位制限部を設けることにより、撮影装置で撮影するとき大きな手振れが生じて光電変換手段を有する基板を大きく変位させた場合に駆動手段や弾性体の機械的な破損を防ぐことができ、信頼性の高い振れ補正機構を提供することができる。
【0052】
また、変位量測定手段の変位量演算手段若しくは振れ検出手段にあらかじめ撮影光学系の焦点距離に応じた演算用パラメータを格納し、撮影光学系の変倍機能が動作したときに、変位量演算手段若しくは振れ検出手段は撮影光学系の焦点距離に応じて演算する演算用パラメータを選択して光電変換手段を有する基板の変位量を演算することにより、光電変換手段を有する基板を変位させているときの変位量を最適化することができ、高精度な振れ補正を実現することができる。
【図面の簡単な説明】
【図1】この発明の実施例の構成図である。
【図2】上記実施例の制御部の構成を示すブロック図である。
【図3】変位量の測定動作を示す説明図である。
【図4】変位量測定機構部の構成を示す分解斜視図である。
【図5】変位量測定機構部の変位制限突起部を示す構成図である。
【図6】第2の実施例の構成図である。
【図7】反射部と受光手段の距離変化によるビーム径の変化特性図である。
【図8】光電変換手段を有する基板の機械的な固定手段を示す構成図である。
【図9】第3の実施例の構成図である。
【図10】第3の実施例の制御部の構成を示すブロック図である。
【図11】変位量の測定動作を示す説明図である。
【図12】位置検出素子の他の配置を示す配置図である。
【図13】従来例の構成を示す斜視図である。
【図14】他の従来例の構成を示す断面図である。
【符号の説明】
1;撮影光学系、2;光電変換手段、3;基板、4;駆動手段、
5;物理量センサ、6;光源、7;受光手段、8;反射部
11;CPU、12;振れ検出回路、13;変位量演算回路、
14;撮像光学系駆動制御回路、15;光電変換手段駆動制御回路、
61;位置検出素子、62;エッジ検出回路、63;特徴点演算回路、
64;変動量演算回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photographing apparatus with an image stabilization function for preventing image quality deterioration due to camera shake such as a video camera or a digital still camera.
[0002]
[Prior art]
When shooting with an imaging device such as a digital still camera, an imaging device with a screen shake correction device to prevent image quality deterioration due to vibration of the imaging device due to camera shake is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-46322 or It is disclosed in JP-A-9-80538. In the screen shake correction apparatus disclosed in Japanese Patent Laid-Open No. 6-46322, the moving means moves the CCD in a plane perpendicular to the optical axis of the photographing optical system based on the detection signal from the shake detecting means, and the shake is corrected. The resulting photographic optical axis is aligned with the center of the CCD. As shown in FIG. 13, the moving means for moving the CCD is provided with two-axis bars 72 and 73 that move in directions orthogonal to each other on a plane orthogonal to the optical axis on a CCD fixing member 71 to which the CCD is fixed. The alignment of the optical axis of the photographic optical system in the axial direction of one bar 72 is controlled by the urging force of the spring 74 and the repulsive force generated between the permanent magnet 76 by energization of the electromagnet 75, and The alignment of the optical axis of the photographic optical system in the axial direction is controlled by the urging force of the spring 74 and the repulsive force generated between the permanent magnet 79 by energization of the electromagnet 78 to match the photographic optical axis and the center of the CCD. I am letting.
[0003]
The correction apparatus disclosed in Japanese Patent Laid-Open No. 9-80538 includes a shake correction optical system that can move so as to change the optical axis of the photographing optical system, and a position detection unit that detects the position of the shake correction optical system. . As shown in FIG. 14, the position detection unit includes a slit unit connected to the shake correction optical system, a light emitting unit 82 that is disposed at a predetermined interval from the slit unit 81, and emits light toward the slit unit. And a light receiving portion 83 that receives light from the light emitting portion 82 that has passed through the transmission hole of the slit portion 81 and is incident on the light receiving surface by a photocurrent from the light receiving portion 83. The position of the shake correction optical system is detected by obtaining the position of the center of gravity of the slit light.
[0004]
[Problems to be solved by the invention]
A certain degree of shake correction is possible by correcting the shake image by displacing the CCD as in the screen shake correction apparatus disclosed in Japanese Patent Laid-Open No. 6-46322. However, since the means for detecting the actual displacement amount of the CCD and controlling it with high accuracy is not specified, it is difficult to control the image blur within several pixels.
[0005]
On the other hand, high-precision control is possible by combining the position detection unit disclosed in Japanese Patent Laid-Open No. 9-80538 with a screen shake correction device disclosed in Japanese Patent Laid-Open No. 6-46322. However, the position detector disclosed in Japanese Patent Laid-Open No. 9-80538 requires at least two light sources for two-dimensional position detection. A light emitting element used as a light source generally consumes a large amount of power. Providing two or more light sources for position detection in a portable photographing device such as a digital still camera has a problem in reducing power consumption. In addition, high-accuracy position detection requires an expensive position detection element for the light receiving element, which causes an increase in cost. Furthermore, since this position detection unit is a transmissive sensor, it is necessary to install it in the periphery of the CCD in order to reduce the size of the device, and the imaging unit has been downsized, such as a complicated structure to prevent stray light from the light source. There are disadvantages such as difficulty.
[0006]
An object of the present invention is to provide an imaging device with an image stabilization function which improves such disadvantages and is small and inexpensive with a simple configuration and which can perform high-precision shake control with low power consumption. .
[0007]
[Means for Solving the Problems]
An imaging apparatus with an image stabilization function according to the present invention includes an imaging optical system, a substrate having photoelectric conversion means, shake detection means, drive means, displacement amount measurement means, and control means, and the imaging optical system emits light from a subject. The light is received and the subject image is incident on the photoelectric conversion means. The photoelectric conversion means attached to the substrate receives the subject image that has passed through the photographing optical system and converts it into an image signal. The shake detection means is based on camera shake. X-axis direction and Y-axis direction of the substrate having the photoelectric conversion means The amount of shake is detected, the drive means moves the substrate having the photoelectric conversion means in at least one direction in a plane orthogonal to the optical axis of the imaging optical system based on the shake amount detected by the shake detection means, and the displacement amount measurement means reflects A light source, a light receiving means, and a displacement amount calculating means, and the reflection part is provided on a part of the substrate having the photoelectric conversion means, reflects the light emitted from the light source and enters the light receiving means, A plurality of light receiving elements for receiving reflected light from the reflecting portion, and the displacement amount calculating means of the substrate having photoelectric conversion means by the light receiving signals from the plurality of light receiving elements; X-axis direction and Y-axis direction The amount of displacement is calculated and the control means When the drive unit is driven by a drive control signal corresponding to the shake amount detected by the shake detection unit to move the substrate having the photoelectric conversion unit, and the substrate having the photoelectric conversion unit is moved, the displacement The shake amount detected by the shake detection means is corrected by the amount of displacement in the X-axis direction and Y-axis direction calculated by the quantity calculation means. It is characterized by correcting camera shake.
[0008]
Drive means for moving the light receiving means in the optical axis direction of the reflected light from the reflecting portion of the substrate having the photoelectric conversion means is provided, and the light receiving means is moved by the drive means in accordance with the movement of the zoom optical system of the photographing optical system by the zooming function. It is preferable to move and change the relative positional relationship between the reflecting portion and the light receiving means.
[0009]
Another imaging device with an image stabilization function according to the present invention includes a substrate having an imaging optical system, a photoelectric conversion unit, a shake detection unit, a driving unit, a displacement amount measuring unit, and a control unit. Light is received and the subject image is incident on the photoelectric conversion means. The photoelectric conversion means attached to the substrate receives the subject image that has passed through the photographing optical system and converts it into an image signal. The shake detection means is based on camera shake. X-axis direction and Y-axis direction of the substrate having the photoelectric conversion means The amount of shake is detected, the drive means moves the substrate having the photoelectric conversion means in at least one direction in a plane orthogonal to the optical axis of the imaging optical system based on the shake amount detected by the shake detection means, and the displacement amount measurement means reflects A light source, a plurality of position detection elements, and a displacement amount calculation means, and the reflection part is provided on a part of the substrate having the photoelectric conversion means, reflects light emitted from the light source, and the plurality of position detection elements Displacement calculation means detects the coordinates of the edge of the reflected light received by a plurality of position detection elements and reflects from the detected edge coordinates. A feature point based on the geometric shape of light is detected, and the detected feature point is compared with the previous feature point of the substrate having photoelectric conversion means. X-axis direction and Y-axis direction The amount of displacement is calculated and the control means When the drive unit is driven by a drive control signal corresponding to the shake amount detected by the shake detection unit to move the substrate having the photoelectric conversion unit, and the substrate having the photoelectric conversion unit is moved, the displacement The shake amount detected by the shake detection means is corrected by the amount of displacement in the X-axis direction and Y-axis direction calculated by the quantity calculation means. It is characterized by correcting camera shake.
[0010]
It is desirable that the beam shape of the reflected light from the reflection portion detected by the plurality of position detection elements is circular or elliptical.
[0011]
Further, it is preferable to provide the reflection part of the displacement amount measuring means on the back surface of the substrate having the photoelectric conversion means.
[0012]
Furthermore, the substrate having the photoelectric conversion means may be held by an elastic body provided on the opposite side of the drive means with the drive means and the substrate having the photoelectric conversion means interposed therebetween.
[0013]
In addition, it is desirable to provide a displacement limiting portion having a predetermined height at a position where the elastic body is provided.
[0014]
In addition, the displacement amount calculating means or the shake detecting means of the displacement amount measuring means stores a calculation parameter corresponding to the focal length of the photographing optical system in advance, and the displacement amount calculating means when the magnification function of the photographing optical system is operated. Alternatively, the shake detection unit may calculate a displacement amount of the substrate having the photoelectric conversion unit by selecting a calculation parameter to be calculated according to the focal length of the photographing optical system.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The photographing apparatus of the present invention includes a photographing optical system, a substrate on which a photoelectric conversion means such as a CCD is mounted, a driving means composed of, for example, a piezoelectric element that moves the substrate in the X-axis direction and the Y-axis direction, a yaw and a photographing device A physical quantity sensor that detects angular velocity and angular acceleration in the pitch direction, and a reflection unit and a light receiving unit that are mounted on the opposite surface of the substrate on which the light source and the photoelectric conversion unit are mounted. The light receiving means are arranged in a plane perpendicular to the optical axis so that the light receiving characteristics are substantially the same, for example 4 so that the light receiving means is point-symmetrical with respect to the optical axis center of the reflected light beam irradiated from the light source and reflected by the reflecting portion of the substrate. It has the light receiving element.
[0017]
The control unit of the photographing apparatus includes a CPU that controls the operation of the entire apparatus, a shake detection circuit, a displacement calculation circuit, an image pickup optical system drive control circuit that drives and controls the image pickup optical system, and a photoelectric conversion means drive that controls the operation of the drive means. It has a control circuit. The shake detection circuit calculates the shake amount on the photoelectric conversion surface of the photoelectric conversion means from the angular velocity signals and angular acceleration signals in the yaw and pitch directions of the photographing apparatus detected by the physical quantity sensor. The displacement amount calculation circuit calculates the displacement amounts in the X-axis direction and the Y-axis direction of the substrate having the photoelectric conversion means from the light reception signals output from the respective light receiving elements of the light receiving means.
[0018]
When photographing is started with the photographing optical system of the photographing apparatus, the angular velocity or angular acceleration in the yaw and pitch directions of the photographing apparatus due to camera shake is detected by a physical quantity sensor and sent to a shake detection circuit. The shake detection circuit amplifies the angular velocity signal or the angular acceleration signal in the yaw and pitch directions of the photographing apparatus detected by the physical quantity sensor to remove unnecessary signal components such as drift components, and to obtain an angular fluctuation amount in the X axis direction and the Y axis direction. The amount of deflection on the photoelectric conversion surface of the photoelectric conversion means is calculated and sent to the CPU. The CPU sends a drive control signal corresponding to the shake amount on the photoelectric conversion surface of the photoelectric conversion means calculated by the shake detection circuit to the photoelectric conversion means drive control circuit, and drives the drive means to move the substrate having the photoelectric conversion means in the X-axis direction. And displaced in the Y-axis direction. When the substrate having the photoelectric conversion means is displaced in the X-axis direction and the Y-axis direction by the driving means, the reflection unit provided on the opposite side of the surface having the photoelectric conversion means attached to the substrate having the photoelectric conversion means from the light source. The light beam is irradiated, and the reflected light from the reflecting portion is received by each light receiving element of the light receiving means. Based on the light reception signals output from the respective light receiving elements, the displacement amount calculation circuit calculates the displacement amounts in the X-axis direction and the Y-axis direction of the substrate having the photoelectric conversion means, and sends it to the CPU. The CPU detects the amount of displacement in the X-axis direction and the Y-axis direction of the substrate obtained when the substrate having the photoelectric conversion means is displaced by the drive means in the X-axis direction and the Y-axis direction, and detects the displacement amount by the shake detection circuit. The drive control signal sent to the photoelectric conversion means drive control circuit is corrected by subtracting the shake amount in the X-axis direction and Y-axis direction on the photoelectric conversion surface. The photoelectric conversion means drive control circuit controls the drive means by a drive control signal indicating the corrected shake amount, and adjusts the displacement in the X-axis direction and the Y-axis direction of the substrate having the photoelectric conversion means. In this way, shake correction is performed during imaging, and when imaging is completed, the driving unit is controlled according to the amount of displacement of the substrate having the photoelectric conversion unit to return the substrate having the photoelectric conversion unit to the initial position.
[0019]
【Example】
FIG. 1 is a block diagram of an embodiment of the present invention. As shown in the figure, the photographing apparatus has a photographing optical system 1, a substrate 3 to which a photoelectric conversion means 2 such as a CCD is attached, driving means 4a and 4b, physical quantity sensors 5a and 5b, a light source 6 and a light receiving means 7. . A substrate 3 to which the photoelectric conversion means 2 is attached is provided so as to be swingable in the X and Y directions orthogonal to the optical axis of the photographing optical system 1 and is partially on the opposite side of the surface to which the photoelectric conversion means 2 is attached. Has a reflecting portion 8 formed of, for example, a plane mirror or the like in which the shape of the reflecting surface and the reflectance distribution are set so as to have a predetermined reflection characteristic, that is, a light amount distribution symmetrical to the optical axis. The driving means 4a and 4b are made of, for example, a piezoelectric element. The driving means 4a displaces the photoelectric conversion means 2 and the substrate 3 having the reflecting portion in the X-axis direction, and the driving means 4b displaces the substrate 3 in the Y-axis direction. The physical quantity sensors 5a and 5b include, for example, a vibration gyroscope, an acceleration sensor pair, and the like, and detect angular velocities and angular accelerations in the yaw and pitch directions of the photographing apparatus. The light source 6 irradiates the reflecting portion 8 of the substrate 3 with a light beam. The light receiving means 7 is composed of, for example, a photodiode or the like having substantially the same light receiving characteristics arranged in a plane perpendicular to the optical axis so as to be symmetric with respect to the optical axis center of the reflected beam of the reflecting portion 8 of the substrate 3. It has four light receiving elements 7a, 7b, 7c and 7d, and receives the reflected light from the reflecting portion 8 of the substrate 3.
[0020]
As shown in the block diagram of FIG. 2, the control unit of the imaging apparatus includes an imaging optical system drive that controls the drive of the CPU 11, the shake detection circuit 12, the displacement amount calculation circuit 13, and the imaging optical system 1. It has a photoelectric conversion means drive control circuit 15 for controlling the operation of the control circuit 14 and the drive means 4a and 4b. The shake detection circuit 12 includes two sets of amplifier circuits 16a and 16b, filters 17a and 17b, calculation circuits 18a and 18b, and a shake information calculation circuit 19. The amplifier circuits 16a and 16b amplify the angular velocity signal and the angular acceleration signal in the yaw and pitch directions of the photographing apparatus detected by the physical quantity sensors 5a and 5b. The filters 17a and 17b remove unnecessary signal components such as drift components from the amplified angular velocity signal and angular acceleration signal. The arithmetic circuits 18a and 18b convert an angular velocity signal or an angular acceleration signal from which unnecessary signal components such as a drift component are removed into angular fluctuation amounts in the X-axis direction and the Y-axis direction. The shake information calculation circuit 19 calculates the shake amount on the photoelectric conversion surface of the photoelectric conversion means 2 from the angle fluctuation amount in the X-axis direction and the Y-axis direction and the focal length information of the photographing optical system 1.
[0021]
The displacement amount calculation circuit 13 has amplification circuits 20 a to 20 d and a position calculation circuit 21 connected to the light receiving elements 7 a to 7 d of the light receiving means 7. The amplifier circuits 20a to 20d amplify the light reception signals output from the light receiving elements 7a to 7d. The position calculation circuit 21 calculates the amount of displacement in the X-axis direction and the Y-axis direction of the substrate 3 having the photoelectric conversion means 2 from the light reception signals output from the amplifier circuits 20a to 20d.
[0022]
The CPU 11 sends a control signal to the imaging optical system drive control circuit 14 at the time of shooting, causes the imaging optical system drive control circuit 14 to control various shooting modes of the shooting optical system 1, and at the start of shooting at the shake detection circuit 12. A drive control signal corresponding to the detected shake amount on the photoelectric conversion surface of the photoelectric conversion means 2 is sent to the photoelectric conversion means drive control circuit 15. The photoelectric conversion means drive control circuit 15 drives the drive means 4a and 4b by the sent drive control signal to displace the substrate 3 having the photoelectric conversion means 2 in the X-axis direction and the Y-axis direction. When the driving means 4a and 4b are driven by the photoelectric conversion means drive control circuit 15, the CPU 11 measures the displacement amount calculation circuit 13 in the X-axis direction and the Y-axis direction of the substrate 3 having the photoelectric conversion means 2. The drive control signal to be sent to the photoelectric conversion means drive control circuit 15 is feedback-controlled by the amount of displacement.
[0023]
An operation for correcting camera shake when shooting with the imaging apparatus configured as described above will be described.
[0024]
When the photographing optical system drive control circuit 14 is driven by the CPU 11 and photographing is started by the photographing optical system 1, angular velocity or angular acceleration in the yaw and pitch directions of the photographing apparatus is detected by the physical quantity sensors 5a and 5b, and the shake detection circuit 12 is detected. Send to. The amplification circuits 16a and 16b of the shake detection circuit 12 amplify the angular velocity signals or angular acceleration signals in the yaw and pitch directions of the photographing apparatus detected by the physical quantity sensors 5a and 5b, and send them to the filters 17a and 17b. The filters 17a and 17b remove unnecessary signal components such as drift components from the transmitted angular velocity signals or angular acceleration signals and send them to the arithmetic circuits 18a and 18b. The arithmetic circuits 18a and 18b convert the angular velocity signal or the angular acceleration signal sent to the angle fluctuation amount in the X-axis direction and the Y-axis direction, and send it to the shake information arithmetic circuit 19. The shake information calculation circuit 19 calculates the shake amount on the photoelectric conversion surface of the photoelectric conversion means 2 from the angle fluctuation amounts in the X-axis direction and Y-axis direction and the focal length information of the photographing optical system 1 and sends them to the CPU 11. The CPU 11 sends a drive control signal corresponding to the shake amount on the photoelectric conversion surface of the photoelectric conversion means 2 calculated by the shake information calculation circuit 19 of the shake detection circuit 12 to the photoelectric conversion means drive control circuit 15. The photoelectric conversion means drive control circuit 15 drives the drive means 4a and 4b by the sent drive control signal to displace the substrate 3 having the photoelectric conversion means 2 in the X-axis direction and the Y-axis direction.
[0025]
When the substrate 3 having the photoelectric conversion means 2 is displaced in the X-axis direction and the Y-axis direction by the driving means 4a and 4b, the photoelectric conversion means 2 of the substrate 3 from the light source 6 as shown in FIG. A light beam is applied to the reflecting portion 8 provided on the side opposite to the surface to which the light is attached, and the reflected light from the reflecting portion 8 is received by the light receiving elements 7a to 7d of the light receiving means. Since the shape of the reflecting surface and the reflectance distribution are set so that the reflecting portion 8 has a light amount distribution symmetrical to the optical axis, the reflected beam 22 incident on the light receiving elements 7a to 7d from the reflecting portion 8 is: As shown in FIG. 3 (b), it changes in a fixed relationship on the light receiving elements 7 a to 7 d according to the displacement of the substrate 3. The received light signals output from the light receiving elements 7 a to 7 d are amplified by the amplification circuits 20 a to 20 d of the displacement amount calculating circuit 13 by the reflected beam 22 incident on the light receiving elements 7 a to 7 d and sent to the position calculating circuit 21. The position calculation circuit 21 calculates the displacement amount in the X-axis direction and the Y-axis direction of the substrate 3 having the photoelectric conversion means 2 from the received light reception signal, and the substrate 3 having the photoelectric conversion means 2 is driven by the driving means 4a and 4b. The displacement amounts of the substrate 3 in the X-axis direction and the Y-axis direction when displaced in the X-axis direction and the Y-axis direction are obtained. For example, when the voltage values output from the amplifier circuits 20a to 20d by the light reception signals of the light receiving elements 7a to 7d are Va, Vb, Vc, and Vd, the displacement amount δx of the substrate 3 in the X-axis direction is
[(Va + Vb) − (Vc + Vd)] / (Va + Vb + Vc + Vd)
The displacement amount δy in the Y-axis direction is proportional to
[(Va + Vd)-(Vb + Vc)] / (Va + Vb + Vc + Vd)
And changes substantially linearly as shown in FIG. The displacement amount δx in the X-axis direction and the displacement amount δy in the Y-axis direction of the substrate 3 are obtained by the position calculation circuit 21 and sent to the CPU 11.
[0026]
The CPU 11 shakes the displacement amounts of the substrate 3 in the X-axis direction and the Y-axis direction obtained when the substrate 3 having the photoelectric conversion unit 2 is displaced in the X-axis direction and the Y-axis direction by the driving units 4a and 4b. The drive control signal sent to the photoelectric conversion means drive control circuit 15 is corrected by subtracting from the shake amounts in the X-axis direction and Y-axis direction on the photoelectric conversion surface of the photoelectric conversion means 2 detected by the information calculation circuit 19. The photoelectric conversion means drive control circuit 15 controls the drive means 4a and 4b by a drive control signal indicating the corrected shake amount, and adjusts the displacement of the substrate 3 having the photoelectric conversion means 2 in the X-axis direction and the Y-axis direction. In this way, highly accurate shake correction can be performed. In this way, shake correction is performed during photographing, and when photographing is completed, the driving means 4a and 4b are controlled in accordance with the amount of displacement of the substrate 3 having the photoelectric conversion means 2 so that the substrate 3 having the photoelectric conversion means 2 is initialized. Return to position. By doing so, it is possible to reduce image quality degradation due to a shift between the optical axis of the photographing optical system 1 and the image center of the photoelectric conversion means 2 due to the shake correction operation. In this case, the initial position of the substrate 3 having the photoelectric conversion means 2 may be stored in advance, and the substrate 3 having the photoelectric conversion means 2 may be returned to the previously stored initial position when shooting by shake correction is completed. .
[0027]
Next, the configuration of the displacement measuring mechanism unit 30 in which the photoelectric conversion unit 2, the substrate 3 having the reflection unit 8 and the light receiving unit 7 for receiving the reflected light from the reflection unit 8 are integrated is shown in the perspective view of FIG. 4. Will be described with reference to FIG.
[0028]
As shown in FIG. 4, the displacement measuring mechanism 30 includes an outer frame 31, a substrate 3 having photoelectric conversion means 2 and a peripheral circuit, an X-axis displacement defining substrate 32 that regulates displacement in the X-axis direction, A substrate 34 having a Y-axis displacement defining substrate 33 and a light receiving means 7 for defining displacement in the Y-axis direction is provided. A flat mirror constituting the reflecting portion 8 is fixed on the back surface of the substrate 3 on which the photoelectric conversion means 2 and the peripheral circuit are installed, and is fitted into an elongated hole 36 in the X-axis direction provided on the X-axis displacement regulating substrate 32. The two projections 35 are provided. The X-axis displacement regulating substrate 32 is provided with a hole 37 in the center for preventing light from the light source 6 and reflected light from the reflecting portion 8, and has an elongated hole 36 in the X-axis direction above the hole 37. In addition, two protrusions 38 are provided on the side of the hole 37 for fitting into a long hole 39 in the Y-axis direction provided on the Y-axis displacement regulating substrate 33. A hole 40 for preventing light from the light source 6 and reflected light from the reflecting portion 8 from being provided at the center of the Y-axis displacement regulating substrate 33 is provided, and a long hole 39 in the Y-axis direction is provided at the side of the hole 40. .
[0029]
On one inner side surface of the outer frame 31 in the X-axis direction, an elastic body such as a leaf spring 41 that presses one side in the X-axis direction of the substrate 3 having the photoelectric conversion means 2 is provided. An elastic body, for example, a leaf spring 42, that presses one side of the X-axis displacement regulating substrate 32 in the Y-axis direction is provided on one surface in the Y-axis direction of the attached rear stage. Then, the driving means 4a in the X-axis direction is attached to the side opposite to the side in contact with the leaf spring 41 of the substrate 3 having the photoelectric conversion means 2, and the leaf spring 41 is attached to the substrate 3 having the driving means 4a and the photoelectric conversion means 2. A driving means 4b in the Y-axis direction is attached to the side opposite to the side in contact with the leaf spring 42 of the X-axis displacement regulating substrate 32, and the protruding portion of the substrate 3 having the photoelectric conversion means 2 35, the driving means 4b and the X-axis displacement defining substrate 32 are fixed to the outer frame 31 by the leaf spring 42 and the fixed end 43 of the X-axis displacement defining substrate 32. . A long hole 39 of the Y-axis displacement defining substrate 33 is fitted into the protrusion 38 of the X-axis displacement defining substrate 32 fixed to the outer frame 31, and the light receiving means 7 is provided at a predetermined distance from the Y-axis displacement defining substrate 33. The substrate 34 is disposed, and the displacement measuring mechanism 30 is configured by mechanically fixing the Y-axis displacement regulating substrate 33 and the substrate 34 having the light receiving means 7 to the outer frame 31.
[0030]
Thus, the substrate 3 having the photoelectric conversion means 2 and the X-axis displacement regulating substrate 32 are held while being pressed by the leaf springs 41 and 42 provided on the opposite side of the drive means 4a and 4b. When the substrate 3 having the photoelectric conversion means 2 is displaced by driving 4b, the substrate 3 having the photoelectric conversion means 2 can be accurately displaced following the displacement of the drive means 4a and 4b.
[0031]
Further, the elongated hole 36 of the X-axis displacement defining substrate 32 that fits with the protruding portion 35 of the substrate 3 and the elongated hole 39 of the Y-axis displacement defining substrate 33 that fits with the protruding portion 38 of the X-axis displacement defining substrate 32 come into contact. The surface or the surface of the substrate 3 and the contact surface of the X-axis displacement regulating substrate 32 and the contact surface of the X-axis displacement regulating substrate 32 and the Y-axis displacement regulating substrate 33 are processed so as to generate a predetermined frictional force. Vibration generated when the substrate 3 having the means 2 is displaced by the driving means 4a and 4b can be suppressed, and the substrate 3 having the photoelectric conversion means 2 can be displaced with high accuracy.
[0032]
Further, as shown in FIG. 5, the displacement of the substrate 3 having the photoelectric conversion means 2 is provided by providing a displacement limiting projection 44 having a predetermined height on a part of the surface of the outer frame 31 where the leaf springs 41 and 42 are provided. Limit the amount. By providing the displacement limiting projection 44 in this way, when a large hand shake occurs when photographing with the photographing device and the substrate 3 having the photoelectric conversion means 2 is largely displaced, the piezoelectric elements and leaf springs of the driving means 4a and 4b It is possible to prevent mechanical breakage of 41 and 42 and provide a highly reliable shake correction mechanism.
[0033]
In addition, when the photographing optical system 1 has a zooming function and the photographing optical system 1 is set to the telephoto side, the focal length becomes long, so that the amount of fluctuation on the photoelectric conversion means 2 becomes the focal length even with a slight camera shake. Increase proportionally. When the photographic optical system 1 has a zooming function, a shake parameter calculation circuit 19 of the displacement amount calculation circuit 13 stores calculation parameters for calculating the shake amount on the image plane according to the focal length of the photographic optical system 1. deep. When the zooming function operates, the arrangement state of the zoom optical system is detected by an encoder or the like, the focal length information is notified to the shake information calculation circuit 19 of the shake detection circuit 12, and the position of the displacement amount calculation circuit 13 is detected. Notify the arithmetic circuit 21. The position calculating circuit 21 calculates the displacement amount of the substrate 3 having the photoelectric conversion means 2 by selecting the optimum calculation parameter for calculating the displacement amount according to the sent focal length. In this way, the amount of displacement when the substrate 3 having the photoelectric conversion means 2 is displaced can be optimized, and highly accurate shake correction can be realized.
[0034]
In the above embodiment, the case where the distance between the photoelectric conversion means 2 and the substrate 3 having the reflecting portion 8 and the light receiving means 7 is made constant has been described. However, as shown in FIG. And the substrate 34 having the light receiving means 7 is moved by the driving means 45 in accordance with the movement of the zoom optical system of the photographing optical system 1 by the zooming function. As shown in FIG. 7, the photoelectric conversion means 2 is displaced by changing the beam diameter 22 on the light receiving means 7 according to the distance between the reflecting portion 8 and the light receiving means 7 as shown in FIG. It is possible to change the resolution of the displacement detection when the sensor is in motion, and to detect and position the displacement of the photoelectric conversion means 2 with high accuracy.
[0035]
In addition, when a camera shake limit condition determined in advance is set from an imaging condition including exposure conditions and focal length information, and the camera shake amount detected by the shake detection circuit 12 is sent to the CPU 11, the CPU 11 detects the camera shake amount detected. Is compared with the camera shake limit conditions determined from the exposure conditions and the shooting conditions consisting of the focal length information, and the comparison result is displayed on the operation unit of the imaging device, and the photographer intentionally corrects the shake based on the displayed comparison results. When camera shake correction is unnecessary due to a signal when the selection switch provided on the operation unit of the photographing apparatus for turning on / off the mechanism is turned off, the main power supply of the imaging apparatus is turned off, or the power supply voltage of the photographing apparatus When camera shake correction becomes impossible due to a warning signal that detects a voltage lower than a specified voltage from the monitoring circuit, the substrate 3 having the photoelectric conversion means 2 is mechanically It may be constant. For example, as shown in FIG. 8, the electromagnet 48 is fixed on the permanent magnet 46 via the elastic body 47, and the hole 49 of the substrate 3 having the X-axis displacement regulating substrate 32 and the photoelectric conversion means 2 is fixed on the electromagnet 48. The conical projections 51 and 52 fitted to 50 are provided, and when the shake correction becomes unnecessary or when the shake correction becomes impossible, the energization to the electromagnet 48 is cut off and the elastic body 47 The protrusions 51 and 52 are fitted into the holes 49 and 50 of the substrate 3 having the X-axis displacement defining substrate 32 and the photoelectric conversion means 2 by elastic force, so that the substrate 3 and the X-axis displacement defining substrate 32 having the photoelectric conversion means 2 are fitted. When mechanically fixed and shake correction is required, the electromagnet 48 is energized to separate the protrusions 51 and 52 from the holes 49 and 50 of the substrate 3 having the X-axis displacement regulating substrate 32 and the photoelectric conversion means 2, and photoelectric conversion is performed. Substrate 3 having means 2 and X-axis displacement regulating substrate 3 But to be able to displacement. In this way, it is possible to prevent image quality deterioration due to unnecessary displacement of the photoelectric conversion means 2 and mechanical breakage due to transportation and the like, and power consumption due to unnecessary operations can be prevented.
[0036]
Although the said Example demonstrated the case where a flat reflective mirror was provided as the reflection part 8 of the back surface of the board | substrate 3 which has the photoelectric conversion means 2, even if various reflection surface shapes, such as a concave and a convex, are provided in the reflection part 8. FIG. good. Further, the reflectance of the reflecting surface of the reflecting portion 8 can also be set to increase as the distance from the optical axis increases. Further, the displacement amount detection circuit 13 detects the displacement amount detection resolution by changing the beam angle incident on the light receiving means 7 by changing the emission angle of the irradiation beam of the light source 6 corresponding to the focal length information of the photographing optical system 1. May be changed. Moreover, although the case where the piezoelectric element was used for the drive device for swinging of the photoelectric conversion means has been described, it is mechanically driven by a step motor having a rotation-linear motion conversion mechanism by a gear, a magnet and a yoke, You may drive by the electromagnetic actuator which consists of a coil.
[0037]
Further, in the above embodiment, the light beam reflected by the reflecting portion 8 provided on the substrate 3 having the photoelectric conversion means 2 is received by the light receiving elements 7a to 7d made of, for example, photodiodes, and received from the light receiving elements 7a to 7d. Although the case where the displacement amount of the substrate 3 having the photoelectric conversion means 2 is calculated based on the signal has been described, the light beam reflected by the reflection unit 8 is received by a plurality of position detection elements such as a one-dimensional image sensor and the photoelectric conversion means 2 is received. The displacement amount of the substrate 3 having the above may be calculated.
[0038]
FIG. 9 is a configuration diagram of an embodiment in which a light beam reflected by the reflecting unit 8 is received by a plurality of position detection elements and a displacement amount of the substrate 3 having the photoelectric conversion means 2 is calculated. As shown in the figure, the light source 6 is provided on the optical axis of the reflecting portion 8 provided on the substrate 3 having the photoelectric conversion means 2, and for example, four position detection elements 61 a, 61 b, 61 c, 61 d composed of line sensors. Are arranged so as to be point-symmetric about the light source 6 in the X-axis direction and the Y-axis direction for displacing the substrate 3 on the same plane parallel to the substrate 3.
[0039]
The displacement amount calculation circuit 13a of the control unit of the imaging apparatus includes edge detection circuits 62a to 62d connected to the position detection elements 61a to 61d, a gravity center position calculation circuit 63, and a variation amount calculation circuit 64. The edge detection circuits 62a to 62d detect the coordinates of the edge of the reflected beam from the reflection unit 8 received by the position detection elements 61a to 61d. The feature point calculation circuit 63 detects, for example, the position of the center of gravity based on the geometric shape of the reflected beam from the coordinates of the edge of the reflected beam detected by the edge detection circuits 62a to 62d. The variation calculation circuit 64 compares the coordinates of the feature points detected by the feature point calculation circuit 63 with the coordinates of the previous feature points, and calculates the displacement amount and displacement direction of the substrate 3 having the photoelectric conversion means 2 from the variation amounts of the feature points. calculate. In this feature point calculation circuit 63, the number of position detection elements 61a to 61d for detecting the reflected beam necessary for specifying the position of the center of gravity, which is a feature point of the geometric shape of the reflected beam from the reflecting portion 8, is reduced. In order to shorten the calculation time of the center of gravity position, the reflecting portion 8 is formed in a circle or an ellipse, and a circular or elliptical reflected beam is incident on the position detection elements 61a to 61d.
[0040]
When detecting the displacement amount for correcting the camera shake with the displacement amount calculation circuit 13a configured as described above, the substrate 3 having the photoelectric conversion means 2 is moved in the X-axis direction and the Y-axis direction by the drive means 4a and 4b. When displaced, a light beam is irradiated from the light source 6 to the reflecting portion 8 provided on the opposite side of the surface on which the photoelectric conversion means 2 of the substrate 3 is attached, and each position detecting element is irradiated as shown in FIG. A part of the reflected beam 22 from the reflecting portion 8 is received by 61a to 61d. The reflected beam 22 incident on the position detection elements 61a to 61d from the reflecting portion 8 changes in a fixed relationship on the position detection elements 61a to 61d according to the displacement of the substrate 3, as shown in FIG. . The edge detection circuits 62a to 62d of the displacement amount calculation circuit 13a detect the coordinates of the edge of the reflected beam 22 from the signals output from the position detection elements 61a to 61d, and send them to the feature point calculation circuit 63. The position of the center of gravity, which is a feature point based on the geometric shape of the reflected beam 22, is detected from the coordinates of the edge of the reflected beam 22 sent to the feature point calculating circuit 63 and sent to the fluctuation amount calculating circuit 64. For example, when the coordinates of the edge portion of the reflected beam 22 incident on the position detection elements 61a to 61d are detected as (X1, 0), (0, Y1), (X2, 0), (0, Y2), the reflected beam The gravity center position of 22 is calculated by the following equation.
(Centroid position) = [(X1 + X2) / 2, (Y1 + Y2) / 2]
[0041]
The fluctuation amount calculation circuit 64 compares the position coordinate of the center of gravity of the transmitted reflected beam 22 with the position coordinate of the previous center of gravity, and calculates the amount of fluctuation of the center of gravity of the reflected beam 22 from the X-axis direction of the substrate 3 having the photoelectric conversion means 2. The amount of displacement in the Y-axis direction is calculated and sent to the CPU 11. The CPU 11 uses the driving means 4a and 4b to shift the substrate 3 having the photoelectric conversion means 2 in the X-axis direction and the Y-axis direction, and the displacement amounts and fluctuations of the substrate 3 in the X-axis direction and the Y-axis direction. The drive control signal sent to the photoelectric conversion means drive control circuit 15 is corrected by subtracting from the shake amounts in the X-axis direction and Y-axis direction on the photoelectric conversion surface of the photoelectric conversion means 2 detected by the information calculation circuit 19. The photoelectric conversion means drive control circuit 15 controls the drive means 4a and 4b by a drive control signal indicating the corrected shake amount, and adjusts the displacement of the substrate 3 having the photoelectric conversion means 2 in the X-axis direction and the Y-axis direction.
[0042]
In this way, for example, the four position detection elements 61a to 61d made of line sensors receive the reflected beam 22 from the reflecting portion 8, and the displacement amount and displacement direction of the substrate 3 having the photoelectric conversion means 2 are calculated to calculate the displacement of the substrate 3. Since the shake amount is feedback-controlled, the displacement amount of the substrate 3 can be detected using the four position detection elements 61a to 61d made of small and inexpensive line sensors, and the light emission power fluctuations and time-lapse can be detected. A more accurate shake correction can be performed without being affected by fluctuations in the amount of light due to deterioration.
[0043]
In the above embodiment, the case where the four position detecting elements 61a to 61d are used has been described. However, if the reflected beam 22 from the reflecting portion 8 is made circular, the coordinates of three points on the circumference can be found. Since an equation indicating the geometric shape of the reflected beam 22 can be specified, three position detection elements 61a to 61c can be used as shown in FIG. 12A, or as shown in FIG. Two position detecting elements 61a and 61b provided in parallel with the X axis or the Y axis may be used.
[0044]
【The invention's effect】
As described above, the present invention detects the shake amount of the photographing apparatus due to camera shake, and detects the displacement amount of the substrate having the photoelectric conversion means when the substrate having the photoelectric conversion means is displaced by the detected shake amount. Since the shake amount is corrected by the detected displacement amount and the substrate having the photoelectric conversion means is displaced, highly accurate shake correction can be performed.
[0045]
In addition, a driving means for moving the light receiving means in the optical axis direction of the reflected light from the reflecting portion of the substrate having the photoelectric conversion means is provided, and light is received by the driving means as the zoom optical system of the photographing optical system is moved by the zooming function. By moving the means and changing the relative positional relationship between the reflecting portion and the light receiving means, the resolution of the displacement amount when the substrate having the photoelectric conversion means is displaced can be improved. Positioning can be performed with high accuracy.
[0046]
Furthermore, the reflected light from the reflector is received by a small and inexpensive position detection element, and the displacement amount and displacement direction of the substrate having the photoelectric conversion means are calculated to feedback control the vibration amount of the substrate. The amount of displacement of the substrate can be detected, and more accurate shake correction can be performed without being affected by fluctuations in the light emission power of the light source and fluctuations in the amount of light due to deterioration over time.
[0047]
By making the beam shape of the reflected light from the reflection portion detected by the position detection element circular or elliptical, the number of position detection elements can be reduced and the time for calculating the displacement amount of the substrate can be shortened. be able to.
[0048]
Further, the amount of displacement of the substrate having the photoelectric conversion means is reflected by a reflection portion provided on a part of the substrate having the photoelectric conversion means, and the reflected light is received by a plurality of light receiving elements. Since the light is received and calculated by the means, the displacement amount of the substrate having the photoelectric conversion means can be calculated.
[0049]
Furthermore, by providing the reflecting portion on the back surface of the substrate having the photoelectric conversion means, the displacement amount of the substrate having the photoelectric conversion means can be calculated without affecting the photographing optical system, and the size can be reduced.
[0050]
Further, vibration generated when the substrate having the photoelectric conversion means is displaced by holding the substrate having the photoelectric conversion means by an elastic body provided on the opposite side of the drive means with the drive means and the substrate having the photoelectric conversion means interposed therebetween. And the like can be suppressed with high accuracy.
[0051]
Further, by providing a displacement limiting portion having a predetermined height at the position where the elastic body is provided, when a large hand shake occurs when photographing with the photographing apparatus and the substrate having the photoelectric conversion means is largely displaced, the driving means or A mechanical breakage of the elastic body can be prevented, and a highly reliable shake correction mechanism can be provided.
[0052]
In addition, the displacement amount calculating means or the shake detecting means of the displacement amount measuring means stores a calculation parameter corresponding to the focal length of the photographing optical system in advance, and the displacement amount calculating means when the magnification function of the photographing optical system is operated. Alternatively, the shake detection unit selects the calculation parameter to be calculated according to the focal length of the photographing optical system and calculates the displacement amount of the substrate having the photoelectric conversion unit, thereby displacing the substrate having the photoelectric conversion unit. The amount of displacement can be optimized, and highly accurate shake correction can be realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention.
FIG. 2 is a block diagram illustrating a configuration of a control unit according to the embodiment.
FIG. 3 is an explanatory diagram showing a displacement measuring operation.
FIG. 4 is an exploded perspective view showing a configuration of a displacement amount measuring mechanism unit.
FIG. 5 is a configuration diagram showing a displacement limiting protrusion of the displacement amount measuring mechanism.
FIG. 6 is a configuration diagram of a second embodiment.
FIG. 7 is a change characteristic diagram of a beam diameter due to a change in the distance between a reflection portion and a light receiving means.
FIG. 8 is a block diagram showing mechanical fixing means for a substrate having photoelectric conversion means.
FIG. 9 is a configuration diagram of a third embodiment.
FIG. 10 is a block diagram illustrating a configuration of a control unit according to a third embodiment.
FIG. 11 is an explanatory diagram illustrating a displacement amount measuring operation.
FIG. 12 is a layout diagram illustrating another layout of the position detection elements.
FIG. 13 is a perspective view showing a configuration of a conventional example.
FIG. 14 is a cross-sectional view showing the configuration of another conventional example.
[Explanation of symbols]
1; photographing optical system, 2; photoelectric conversion means, 3; substrate, 4; drive means,
5; physical quantity sensor, 6; light source, 7; light receiving means, 8;
11; CPU, 12; shake detection circuit, 13; displacement amount calculation circuit,
14; imaging optical system drive control circuit, 15; photoelectric conversion means drive control circuit,
61; position detection element; 62; edge detection circuit; 63; feature point calculation circuit;
64: Fluctuation amount calculation circuit.

Claims (8)

撮影光学系と光電変換手段を有する基板と振れ検出手段と駆動手段と変位量測定手段及び制御手段を有し、
撮影光学系は被写体からの光を受光して被写体像を光電変換手段に入射し、
基板に取付けられた光電変換手段は撮影光学系を通過した被写体像を受光して画像信号に変換し、
振れ検出手段は手振れによる光電変換手段を有する基板のX軸方向とY軸方向の振れ量を検出し、
駆動手段は振れ検出手段で検出した振れ量により光電変換手段を有する基板を撮影光学系の光軸に直交する平面内の少なくとも一方向に移動させ、
変位量測定手段は反射部と光源と受光手段及び変位量演算手段を有し、反射部は光電変換手段を有する基板の一部に設けられ、光源から照射された光を反射して受光手段に入射し、受光手段は反射部からの反射光を受光する複数の受光素子を有し、変位量演算手段は複数の受光素子からの受光信号により光電変換手段を有する基板のX軸方向とY軸方向の変位量を算出し、
制御手段は前記振れ検出手段で検出した振れ量に応じた駆動制御信号により前記駆動手段を駆動して光電変換手段を有する基板を移動し、該光電変換手段を有する基板を移動しているときに、前記変位量演算手段で算出したX軸方向とY軸方向の変位量により前記振れ検出手段で検出した振れ量を補正して手振れを補正することを特徴とする防振機能付き撮影装置。
A substrate having a photographing optical system and photoelectric conversion means, shake detection means, drive means, displacement measurement means and control means;
The photographing optical system receives light from the subject and enters the subject image into the photoelectric conversion means.
The photoelectric conversion means attached to the substrate receives the subject image that has passed through the photographing optical system and converts it into an image signal,
The shake detection means detects the shake amount in the X-axis direction and the Y-axis direction of the substrate having the photoelectric conversion means by hand shake,
The drive means moves the substrate having the photoelectric conversion means in at least one direction within a plane orthogonal to the optical axis of the imaging optical system according to the shake amount detected by the shake detection means,
The displacement measuring means has a reflecting portion, a light source, a light receiving means, and a displacement amount calculating means. The reflecting portion is provided on a part of the substrate having the photoelectric conversion means, and reflects light emitted from the light source to the light receiving means. The incident light receiving means has a plurality of light receiving elements that receive the reflected light from the reflecting portion, and the displacement amount calculating means has an X-axis direction and a Y-axis of the substrate having the photoelectric conversion means by the light reception signals from the plurality of light receiving elements. Calculate the amount of displacement in the direction ,
The control means drives the drive means by a drive control signal corresponding to the shake amount detected by the shake detection means, moves the substrate having the photoelectric conversion means, and moves the substrate having the photoelectric conversion means. An imaging apparatus with an image stabilization function, wherein the shake amount is corrected by correcting the shake amount detected by the shake detection means based on the displacement amounts in the X-axis direction and the Y-axis direction calculated by the displacement amount calculation means .
前記受光手段を光電変換手段を有する基板の反射部からの反射光の光軸方向に移動する駆動手段を設け、変倍機能による撮影光学系のズーム用光学系の移動に伴い駆動手段により受光手段を移動して反射部と受光手段の相対的な位置関係を変化させる請求項1記載の防振機能付き撮影装置。  Drive means for moving the light receiving means in the direction of the optical axis of the reflected light from the reflecting portion of the substrate having photoelectric conversion means is provided, and the light receiving means is driven by the drive means in accordance with the movement of the zoom optical system of the photographing optical system by the zooming function. The photographing apparatus with an image stabilization function according to claim 1, wherein the relative positional relationship between the reflecting portion and the light receiving means is changed by moving the lens. 撮影光学系と光電変換手段を有する基板と振れ検出手段と駆動手段と変位量測定手段及び制御手段を有し、
撮影光学系は被写体からの光を受光して被写体像を光電変換手段に入射し、
基板に取付けられた光電変換手段は撮影光学系を通過した被写体像を受光して画像信号に変換し、
振れ検出手段は手振れによる光電変換手段を有する基板のX軸方向とY軸方向の振れ量を検出し、
駆動手段は振れ検出手段で検出した振れ量により光電変換手段を有する基板を撮影光学系の光軸に直交する平面内の少なくとも一方向に移動させ、
変位量測定手段は反射部と光源と複数の位置検出素子及び変位量演算手段を有し、反射部は光電変換手段を有する基板の一部に設けられ、光源から照射された光を反射し、複数の位置検出素子は反射部からの反射光の一部を受光する位置に点対称に配置され、変位量演算手段は複数の位置検出素子で受光した反射光のエッジの座標を検出し、検出したエッジの座標から反射光の幾何学的形状に基づく特徴点を検出し、検出した特徴点と前回の特徴点とを比較して光電変換手段を有する基板のX軸方向とY軸方向の変位量を算出し、
制御手段は前記振れ検出手段で検出した振れ量に応じた駆動制御信号により前記駆動手段を駆動して光電変換手段を有する基板を移動し、該光電変換手段を有する基板を移動しているときに、前記変位量演算手段で算出したX軸方向とY軸方向の変位量により前記振れ検出手段で検出した振れ量を補正して手振れを補正することを特徴とする防振機能付き撮影装置。
A substrate having a photographing optical system and photoelectric conversion means, shake detection means, drive means, displacement measurement means and control means;
The photographing optical system receives light from the subject and enters the subject image into the photoelectric conversion means.
The photoelectric conversion means attached to the substrate receives the subject image that has passed through the photographing optical system and converts it into an image signal,
The shake detection means detects the shake amount in the X-axis direction and the Y-axis direction of the substrate having the photoelectric conversion means by hand shake,
The drive means moves the substrate having the photoelectric conversion means in at least one direction within a plane orthogonal to the optical axis of the imaging optical system according to the shake amount detected by the shake detection means,
The displacement amount measuring means includes a reflection portion, a light source, a plurality of position detection elements, and a displacement amount calculation means. The plurality of position detection elements are arranged point-symmetrically at a position where a part of the reflected light from the reflecting portion is received, and the displacement amount calculating means detects and detects the coordinates of the edge of the reflected light received by the plurality of position detection elements. The feature point based on the geometric shape of the reflected light is detected from the coordinates of the reflected edge, the detected feature point is compared with the previous feature point, and the displacement in the X-axis direction and the Y-axis direction of the substrate having the photoelectric conversion means Calculate the quantity,
The control means drives the drive means by a drive control signal corresponding to the shake amount detected by the shake detection means, moves the substrate having the photoelectric conversion means, and moves the substrate having the photoelectric conversion means. An imaging apparatus with an image stabilization function, wherein the shake amount is corrected by correcting the shake amount detected by the shake detection means based on the displacement amounts in the X-axis direction and the Y-axis direction calculated by the displacement amount calculation means .
上記反射部で反射する反射光のビーム形状は円形又は楕円形状である請求項3記載の防振機能付き撮影装置。  The imaging device with an image stabilization function according to claim 3, wherein a beam shape of the reflected light reflected by the reflecting portion is circular or elliptical. 前記変位量測定手段の反射部を光電変換手段を有する基板の裏面に設けた請求項1乃至4のいずれかに記載の防振機能付き撮影装置。  The imaging device with an image stabilization function according to any one of claims 1 to 4, wherein a reflection portion of the displacement amount measuring unit is provided on a back surface of a substrate having a photoelectric conversion unit. 前記光電変換手段を有する基板を駆動手段及び光電変換手段を有する基板を挟んで駆動手段と反対側に設けられた弾性体で保持する請求項1乃至5のいずれかに記載の防振機能付き撮影装置。  6. The photographing with an anti-vibration function according to claim 1, wherein the substrate having the photoelectric conversion unit is held by an elastic body provided on a side opposite to the driving unit with the driving unit and the substrate having the photoelectric conversion unit interposed therebetween. apparatus. 前記弾性体が設けられた位置に所定高さを有する変位制限部を設けた請求項6記載の防振機能付き撮影装置。  The imaging device with an image stabilization function according to claim 6, wherein a displacement limiting portion having a predetermined height is provided at a position where the elastic body is provided. 前記変位量測定手段の変位量演算手段若しくは振れ検出手段にあらかじめ撮影光学系の焦点距離に応じた演算用パラメータを格納し、撮影光学系の変倍機能が動作したときに、変位量演算手段若しくは振れ検出手段は撮影光学系の焦点距離に応じて演算する演算用パラメータを選択して光電変換手段を有する基板の変位量を演算する請求項1乃至7のいずれかに記載の防振機能付き撮影装置。  A calculation parameter corresponding to the focal length of the photographing optical system is stored in advance in the displacement calculating means or the shake detecting means of the displacement measuring means, and when the zooming function of the photographing optical system is operated, the displacement calculating means or 8. The photographing with an anti-vibration function according to claim 1, wherein the shake detecting unit calculates a displacement amount of the substrate having the photoelectric conversion unit by selecting a calculation parameter to be calculated according to a focal length of the photographing optical system. apparatus.
JP36584699A 1999-06-23 1999-12-24 Imaging device with anti-vibration function Expired - Fee Related JP4174154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36584699A JP4174154B2 (en) 1999-06-23 1999-12-24 Imaging device with anti-vibration function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-176374 1999-06-23
JP17637499 1999-06-23
JP36584699A JP4174154B2 (en) 1999-06-23 1999-12-24 Imaging device with anti-vibration function

Publications (2)

Publication Number Publication Date
JP2001066655A JP2001066655A (en) 2001-03-16
JP4174154B2 true JP4174154B2 (en) 2008-10-29

Family

ID=26497320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36584699A Expired - Fee Related JP4174154B2 (en) 1999-06-23 1999-12-24 Imaging device with anti-vibration function

Country Status (1)

Country Link
JP (1) JP4174154B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759275B2 (en) * 2004-01-30 2011-08-31 Hoya株式会社 Image blur correction device
JP2006201306A (en) * 2005-01-18 2006-08-03 Pentax Corp Stage device and camera shake correction unit using the stage device
TWI384321B (en) * 2005-01-31 2013-02-01 Hoya Corp An optical image stabilizer and a method of controlling the optical image stabilizer
JP4772335B2 (en) * 2005-01-31 2011-09-14 Hoya株式会社 Optical device and method for controlling camera shake correction device
JP2007043584A (en) 2005-08-04 2007-02-15 Ricoh Co Ltd Image pickup device and control method thereof
JP4755477B2 (en) * 2005-10-07 2011-08-24 株式会社リコー Imaging device with image stabilization function
JP5001014B2 (en) 2006-07-10 2012-08-15 株式会社リコー Imaging apparatus and imaging method
JP4769701B2 (en) * 2006-12-15 2011-09-07 三星電子株式会社 Image blur correction device
JP4718498B2 (en) 2007-01-29 2011-07-06 株式会社リコー Imaging apparatus and imaging method
JP4501085B2 (en) * 2007-10-04 2010-07-14 ソニー株式会社 Optical element module and imaging apparatus
JP5487911B2 (en) 2009-11-27 2014-05-14 株式会社リコー Imaging device
JP5707801B2 (en) * 2010-09-13 2015-04-30 株式会社リコー Imaging apparatus and electronic apparatus

Also Published As

Publication number Publication date
JP2001066655A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP4857021B2 (en) Actuator and lens unit and camera provided with the same
JP4829803B2 (en) Optical image stabilizer and optical apparatus
KR100712085B1 (en) Optical apparatus
JP3728094B2 (en) Image blur correction device, optical device, lens barrel and photographing device
WO2020121541A1 (en) Imaging device
US7483056B2 (en) Image capturing apparatus with blur compensation
JP5689630B2 (en) Optical apparatus for photographing and optical system for photographing
JP4174154B2 (en) Imaging device with anti-vibration function
JP2006119570A (en) Lens device and imaging device
JP2003172961A (en) Camera shake correcting device and photographing device
US20050110873A1 (en) Image pickup apparatus
JP2009008858A (en) Shake correcting device and imaging device
JPH1172815A (en) Lens barrel and blur correcting device
US6415105B1 (en) Image stabilizer
JP2004252037A (en) Optical position detector for image blur correcting device
JPH0943659A (en) Shake correction device
US20230168565A1 (en) Camera actuator and camera device including same
JPH07191359A (en) Image shaking correcting device for optical device
JP2002268107A (en) Optical position detector for shake correcting device and shake correcting interchangeable lens
JP2006042320A (en) Digital camera
JPH02137813A (en) Blurring correcting device
JPH09244086A (en) Camera shake correction device and camera shake correction device with lens barrel
JPH10311994A (en) Shake correction device and position detector
JP5061982B2 (en) Optical device and camera
JP2019203908A (en) Imaging element shifting device and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees