US20010014501A1 - Flash memory structure using sidewall floating gate having one side thereof surrounded by control gate - Google Patents

Flash memory structure using sidewall floating gate having one side thereof surrounded by control gate Download PDF

Info

Publication number
US20010014501A1
US20010014501A1 US09/298,920 US29892098A US2001014501A1 US 20010014501 A1 US20010014501 A1 US 20010014501A1 US 29892098 A US29892098 A US 29892098A US 2001014501 A1 US2001014501 A1 US 2001014501A1
Authority
US
United States
Prior art keywords
sidewall
gate
forming
flash memory
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/298,920
Other versions
US6323086B2 (en
Inventor
Louis L. Hsu
Jack A. Mandelman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US09/298,920 priority Critical patent/US6323086B2/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSU, LOUIS L., MANDELMAN, JACK A.
Priority to JP16743599A priority patent/JP3431860B2/en
Publication of US20010014501A1 publication Critical patent/US20010014501A1/en
Application granted granted Critical
Publication of US6323086B2 publication Critical patent/US6323086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the present invention generally relates to a flash memory and a method of forming a flash memory, and more specifically a method of forming a flash memory cell using an asymmetric control gate with a sidewall floating gate.
  • a flash memory is unique in providing fast compact storage which is both nonvolatile and rewritable.
  • the threshold voltage Vt for conduction of a field effect transistor changes state depending upon the amount of charge stored in a floating gate (FG) part of the FET.
  • the floating gate is a charge storing region which is isolated from a more traditional gate conductor CG (control gate or “wordline”) by a thin dielectric.
  • CG control gate or “wordline”
  • the state of a FG memory cell is determined by applying certain voltages to the source or drain of the FET and observing whether the FET conducts any current.
  • Flash memory cells with a sidewall floating gate occupy a smaller area than those with conventional (layered) floating gates.
  • sidewall gates were formed on one side of the wordline by employing an extra mask.
  • Sidewall spacers were formed on both edges of the wordline, then removed along one of the edges using the extra mask and an etching operation.
  • the conventional approach uses a trim mask to define the floating gate.
  • Another object is to provide a method for forming a flash memory which may utilize phase-shift mask techniques.
  • a method of forming a flash memory includes forming a polysilicon wordline with a first sidewall on a first side, the first sidewall having a predetermined slope; and forming a polysilicon spacer on a second sidewall, that is less sloped (or not sloped at all) than the first sidewall, while the polysilicon on the first sidewall is being removed (e.g., by being isotropically etched away), the polysilicon spacer abuts the polysilicon wordline at only one side.
  • the step of forming the wordline includes using a phase-shift mask.
  • a flash memory which includes a wordline (e.g., control gate) with a slope on a first side and a vertical wall on a second side prior to deposition of polysilicon spacer material.
  • the wordline abuts the floating gate on only one side, and the floating gate is self-isolated from adjacent floating gate devices by being discretely formed along the gate conductor.
  • a flash memory is formed which may or may not include a phase-shift mask, which includes less steps and material, an in which the control gate CG abuts the floating gate (FG) on one side thereof. Additionally, the FG is fabricated to an extremely small size and is self-isolated from adjacent FG devices by the gate conductor.
  • FIGS. 1 - 7 illustrate a method of forming a semiconductor device, such as a flash memory, according to the present invention
  • FIGS. 8 A- 8 C are perspective views showing forming a gate structure with tapered and vertical sidewalls, according to the method of the present invention, with FIG. 8C showing the floating gate spacers formed in the vertical sidewall areas;
  • FIGS. 9A and 9B are a perspective view and a top view, respectively, of a phase-shift mask structure 10 for creating controlled tapered structures
  • FIGS. 10 illustrates a final layout structure of the method of forming a semiconductor device, such as a flash memory, according to the present invention
  • FIG. 11 illustrates a device cross-section of the device shown in FIG. 3.
  • FIG. 12 schematically illustrates a circuit formed by the inventive method of the present invention.
  • FIGS. 1 - 7 there is shown a preferred embodiment of the present invention.
  • the present inventors have discovered a solution to the above-mentioned problems of the conventional methods and structures, which is to make a wordline (or control gate) that has a sloped sidewall on one edge (side) which has a slope which is less than that of a second sidewall.
  • slope is defined as the angle formed by the sidewall with the surface of the underlying substrate upon which the sidewall is formed.
  • a slope which is relatively gradual e.g., 45 degrees
  • a slope which was more extreme e.g., 90 degrees
  • Forming the wordline having a sloped sidewall can be achieved with an appropriate phase shift mask as described below in the first preferred embodiment by using a trim mask for trimming and selectively forming a spacer for the floating gate. Because of the tapered (sloped) sidewall, spacers are formed on only the non-sloped edge of the wordlines.
  • floating gate sidewalls can be selectively formed along the non-sloped edge of the device.
  • a trim mask is used, so that the floating gates are isolated from each other.
  • the alignment of the trim mask is less critical (larger overlay tolerance) than that of the sidewall removal mask used in the conventional methods.
  • a silicon substrate 1 with well and isolation structures is formed which includes an implanted n+diffusion region 2 .
  • the buried n + diffusion region 2 is used for the source connection of the cells. It is noted that, instead of forming the buried interconnect by n + diffusion, p + diffusion also can be employed.
  • the buried interconnect may be formed of a metal line such as tungsten or silicide, as long as low resistivity for the wire results.
  • step 2 after a gate oxide 3 , preferably formed by thermal oxidation and having a thickness within the range of 6.0 nm to 12 nm, is formed over the substrate 1 , and a gate material 4 , preferably formed of polysilicon doped with n + or p + -type dopant, is deposited.
  • a gate oxide 3 preferably formed by thermal oxidation and having a thickness within the range of 6.0 nm to 12 nm
  • a gate material 4 preferably formed of polysilicon doped with n + or p + -type dopant
  • a special lithographic patterning as described in U.S. patent application Ser. No. 09/010,611, filed on Jan. 22, 1998 by the assignee of the present application, IBM Corporation, and entitled “MULTI-PHASE MASK”, incorporated herein by reference, is performed so that after gate reactive ion etching (RIE), one sidewall 4 A of the gate 4 is “vertical” and the other sidewall 4 B of the gate 4 is “tapered”, as shown in FIG. 1.
  • RIE gate reactive ion etching
  • a “vertical” sidewall is defined as the sidewall 4 B being substantially perpendicular to the surface of the substrate 1 upon which the gate 4 is formed.
  • a “tapered” sidewall is defined as the sidewall 4 A having a surface which is other than substantially perpendicular to the surface of the silicon substrate 1 , and more specifically as having a surface forming an angle less than 90 degrees with respect to the surface of the substrate 1 upon which the gate 4 is formed.
  • a preferred angle of taper is within a range of substantially 45 to 65 degrees. This range is preferable since an angle less than 45 degrees is not generally reproducible, whereas an angle greater than 65 degrees may form sidewall spacers.
  • the invention provides a tapered sidewall having a predetermined “slope”.
  • the second sidewall need not be vertical, but instead may simply have a greater slope than that of the tapered sidewall.
  • the slope is defined as the angle formed by the sidewall with the surface of the underlying substrate upon which the sidewall is formed.
  • the slope of the tapered sidewall is less than that of the second sidewall (e.g., which in the exemplary embodiment may be substantially vertical but at the very least has a greater slope (angle) than the tapered sidewall).
  • a nitride cap layer 4 C is shown in FIG. 1 for protecting the gate stack during etching. Therefore, the gate stack will not be etched.
  • step 3 after selectively removing the gate oxide 3 in the exposed area, a layer of thin nitride 5 is deposited in-situ, which will become the gate dielectric for the floating gate.
  • a preferred nitride would be chemical vapor deposition (CVD) nitride having a thickness of preferably substantially within a range of 6-12 nm.
  • the in-situ nitride deposition ensures that there is no native oxide underneath the nitride layer, which would degrade the gate oxide. Specifically, right after the removal of gate oxide 3 , the wafer should remain in an environment where no oxygen is present. Otherwise, a native oxide may be formed, in which case the effective gate oxide thickness is not controlled or is non-uniform.
  • step 4 thermal oxidation is performed so that, at the interface of the nitride 5 and the polysilicon gate 4 and silicon substrate 1 , a thin layer of oxide 6 is grown.
  • the thickness of this oxide 6 is in the range of 2 to 5 nm.
  • the oxidation is performed such that oxygen is diffused through the nitride, with the interface of the nitride/silicon substrate being converted into oxide, so that there will no dangling bond, for reducing interface trap density for better oxide quality.
  • the oxide formed underneath the nitride has a very uniform thickness (e.g., substantially within a range of 2-5 nm).
  • a discrete sidewall floating gate 7 is formed using a spacer process (e.g., a polysilicon deposition followed by RIE, to form a polysilicon spacer).
  • a spacer process e.g., a polysilicon deposition followed by RIE, to form a polysilicon spacer.
  • Floating gates 7 are isolated from one another, after a mask trimming process is completed.
  • a double spacer process may be used. The spacer process and the double spacer process are described below.
  • the first spacer 7 A is formed on top of the nitride/oxide surface. Then, the nitride layer is removed by dry or wet etching, leaving the thin oxide layer, having a thickness, for example, in the range of 2 to 5 nm, as the tunnel oxide layer before forming the second polysilicon spacer 7 B.
  • Some advantages of the double spacer process are that: (1) the tunneling oxide is located away from the gate (e.g., the control gate 4 ) and close to the source area; and (2) the nitride between the control gate 4 and floating gate 7 is protected by the first spacer 7 A during the nitride removal step.
  • step 6 a trim mask or the like is used to form the floating gates where desired, and thereby to isolate the floating gates from each other. Additionally, the source and drain implants S, D, are performed using conventional processing, as shown in FIG. 5 and as well-known in the art.
  • a dielectric 8 and interconnects/vias 9 for forming bitlines 10 are formed by conventional processing.
  • the dielectric may include TEOS, CVD oxide and/or doped glass having a thickness of, for example, substantially within a range of about 100 to 1000 nm.
  • FIG. 8A A three-dimensional diagram of the gate structure with tapered and vertical sidewalls 4 A, 4 B, respectively, is shown in FIG. 8A, and the corresponding cross-sectional view along the X-X′ direction is shown in FIG. 3.
  • the gate oxide 3 is present at the interface of control gate 4 and the silicon substrate 1 .
  • the discrete floating gate spacers are formed preferably as block polysilicon material in the vertical sidewall areas, as shown in FIG. 8B, and then trimmed by a trim mask 14 (shown in FIG. 9B), to leave the desired discrete floating gate in FIG. 8C (e.g., only one spacer is shown for brevity and ease of understanding).
  • Trimming is performed by using an isotropic etch and selectively removing the exposed polysilicon sidewall spacer, and stopping at the substrate.
  • the gate stack is protected during etching by the nitride cap 4 C shown in FIG. 1, for example, and therefore will not be etched.
  • the present invention uses a phase-shift mask technique and preferably a trim mask, to selectively form floating gate sidewalls along the non-sloped (e.g., vertical sidewall) edge of the device.
  • the trim mask is used, so that the floating gates are isolated from each other.
  • the alignment of the trim mask is less critical (larger overlay tolerance) than that of the sidewall removal mask used in the conventional methods.
  • step 6 a trim mask or the like is used to form the floating gates where desired, and thereby to isolate the floating gates from each other.
  • FIGS. 8 A- 8 C show a three-dimensional diagram of the gate structure with tapered and vertical sidewalls.
  • the floating gates are formed in the vertical sidewall areas, as shown, and then, with use of the trim mask, the floating gate material is trimmed to leave the floating gate as shown.
  • FIG. 9A A three-dimensional diagram of the mask structure 10 to create controlled tapered structures is shown in FIG. 9A.
  • the phase shift region 13 of the mask are on the transparent substrate 11 , made of quartz or the like, where tapered shapes are required.
  • the opaque mask 12 made of chrome or the like, without phase shift modifications are regions where vertical sidewalls are required.
  • the location of trim mask 14 is shown in FIG. 9B.
  • FIG. 10 illustrates the discrete floating gates formed on the vertical sidewall of the structure.
  • FIG. 9A a three-dimensional diagram of the mask structure 10 , including a transparent region 11 and an opaque region 12 , to create controlled tapered structures is shown in FIG. 9A.
  • a phase shift region 13 of the mask is on the transparent substrate 11 (e.g., formed of quartz or the like) where tapered shapes are required.
  • the opaque region 12 e.g., mask portion formed of a metal such as chrome or the like
  • FIG. 9B A top view of the mask is shown in FIG. 9B.
  • FIGS. 10, 11 and 12 The final layout structure, device cross-section of the final layout structure, and circuit schematic are shown in FIGS. 10, 11 and 12 , respectively.
  • FIGS. 10 and 12 illustrate two adjacent cells which share a wordline.
  • FIG. 12 illustrates a schematic in which two adjacent flash memory cells are shared by the same wordline WL.
  • the first cell has a first bitline BL 1 and control gate CG 1 and floating gate FG 1 .
  • the second cell has a second bitline BL 2 , control gate CG 2 and a floating gate FG 2 .
  • the sources of the two cells are joined by a source line SL which is used for cell erasure.
  • the pattern density of the flash memory can be significantly improved.
  • the method according to the present invention not only eliminates the tight tolerance of trim masks, but also provides greater flexibility of cell layout, which is suitable for a very high density flash memory integration.
  • the inventive flash memory formed by the method of the invention includes a control gate (the gate conductor) which abuts the floating gate (FG) on one side (e.g., as most clearly shown in FIGS. 8A and 10). Additionally, the FG is fabricated to have an extremely small size, and is self-isolated from adjacent FG devices by the gate conductor. This is advantageous in terms of greater integration and performance reliability.
  • the present invention produces a flash memory in which the floating gates are formed discretely in desired positions on the substantially vertical sidewall (or sidewall having a slope greater than that of the tapered sidewall) on a plurality of sides, and having the advantages described above.
  • the floating gates are isolated from each other by their discrete positioning along the substantially vertical (e.g., relatively steeper) sidewall.
  • a flash memory which includes a floating gate which is a sidewall spacer region of polysilicon formed on a vertical sidewall of the gate conductor/control gate (CG), after the CG is lined with thin layers of nitride and oxide as a gate dielectric.
  • a floating gate which is a sidewall spacer region of polysilicon formed on a vertical sidewall of the gate conductor/control gate (CG), after the CG is lined with thin layers of nitride and oxide as a gate dielectric.
  • FIGS. 9A and 9B show a phase shift mask used to define the gate conductor, leaving a vertical sidewall where the FG will be formed as a discrete polysilicon sidewall spacer, and forming a gate conductor with tapered sidewalls in all other areas.
  • Each of the floating gates FG is suitably spaced from adjacent floating gates FG.
  • the present invention includes a method in which a polysilicon body is provided with sloping (e.g., tapered) sidewalls in certain regions and steep (perpendicular) sidewalls in the remaining regions. Additionally, by using the inventive method a very high density flash memory can be designed and fabricated with less process steps and a low manufacturing cost. Hence, the inventive techniques can significantly improve the pattern density of flash memory.
  • sloping e.g., tapered

Abstract

A flash memory and a method of forming a flash memory, includes forming a polysilicon wordline on a substrate, the wordline having first and second sidewalls, the first sidewall being tapered, with respect to a surface of the substrate, to have a slope angle and the second sidewall having a slope angle greater than the slope angle of the first sidewall. Thereafter, a polysilicon spacer is formed on the second sidewall such that the spacer includes only one side which abuts the second sidewall of the polysilicon wordline.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is related to U.S. patent application Ser. No. ______, entitled “FLASH MEMORY STRUCTURE USING SIDEWALL FLOATING GATE AND METHOD FOR FORMING THE SAME”, filed on ______, to Gambino et al., having IBM Docket No. F19-98-027, assigned to the present assignee, and incorporated herein by reference. [0001]
  • BACKGROUND OF THE INENTION
  • 1. Field of the Invention [0002]
  • The present invention generally relates to a flash memory and a method of forming a flash memory, and more specifically a method of forming a flash memory cell using an asymmetric control gate with a sidewall floating gate. [0003]
  • 2. Description of the Related Art [0004]
  • A flash memory is unique in providing fast compact storage which is both nonvolatile and rewritable. [0005]
  • In a flash memory, the threshold voltage Vt for conduction of a field effect transistor (FET) changes state depending upon the amount of charge stored in a floating gate (FG) part of the FET. The floating gate is a charge storing region which is isolated from a more traditional gate conductor CG (control gate or “wordline”) by a thin dielectric. The states of the Vt change with the amount of charge stored by the FG. [0006]
  • Since the FG directly controls conductivity between source and drain in a channel, the state of a FG memory cell is determined by applying certain voltages to the source or drain of the FET and observing whether the FET conducts any current. [0007]
  • Flash memory cells with a sidewall floating gate occupy a smaller area than those with conventional (layered) floating gates. For example, in U.S. Pat. No. 5,115,288, sidewall gates were formed on one side of the wordline by employing an extra mask. Sidewall spacers were formed on both edges of the wordline, then removed along one of the edges using the extra mask and an etching operation. Thus, the conventional approach uses a trim mask to define the floating gate. [0008]
  • However, this approach is expensive arid requires good control of the overlay for the spacer removal mask. [0009]
  • Other conventional structures also are known. For example, in one structure, polysilicon spacers on both sidewalls are used for the floating gate. One spacer sits on top of the tunnel oxide area for programming, and the other one is called “added on floating gate”. Both spacers are linked by a polysilicon body. However, a large cell size results. [0010]
  • In a second conventional structure, only one polysilicon spacer is used as the floating gate. A mask must be aligned to the top of the control gate, to remove the other floating gate spacer. Hence, the control gate cannot be small, since, otherwise, any misalignment will cause a problem. Therefore, this cell has difficulty in being down-scaled. [0011]
  • In yet another conventional structure, similar to the second conventional structure described above, a mask is needed to remove a sidewall spacer floating gate. Further, this spacer has a re-entrance corner which is very difficult to be completely removed. [0012]
  • Thus, the conventional methods require extra process steps, material and more precise lithographic alignment, thereby resulting in increased manufacturing costs. [0013]
  • SUMMARY OF THE INVENTION
  • In view of the foregoing and other problems of the conventional systems and methods, it is an object of the present invention to provide a method for forming a flash memory structure in which there is no (or at the very least minimal) alignment concern for high density device integration. [0014]
  • Another object is to provide a method for forming a flash memory which may utilize phase-shift mask techniques. [0015]
  • In a first aspect of the present invention, a method of forming a flash memory includes forming a polysilicon wordline with a first sidewall on a first side, the first sidewall having a predetermined slope; and forming a polysilicon spacer on a second sidewall, that is less sloped (or not sloped at all) than the first sidewall, while the polysilicon on the first sidewall is being removed (e.g., by being isotropically etched away), the polysilicon spacer abuts the polysilicon wordline at only one side. The step of forming the wordline includes using a phase-shift mask. [0016]
  • In a second aspect of the present invention, a flash memory is provided which includes a wordline (e.g., control gate) with a slope on a first side and a vertical wall on a second side prior to deposition of polysilicon spacer material. The wordline abuts the floating gate on only one side, and the floating gate is self-isolated from adjacent floating gate devices by being discretely formed along the gate conductor. [0017]
  • With the unique and unobvious aspects and features of the present invention, a flash memory is formed which may or may not include a phase-shift mask, which includes less steps and material, an in which the control gate CG abuts the floating gate (FG) on one side thereof. Additionally, the FG is fabricated to an extremely small size and is self-isolated from adjacent FG devices by the gate conductor. [0018]
  • Further the simple process steps and self-alignment scheme of the present invention result in not only high device packing density but also decreased costs. [0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which: [0020]
  • FIGS. [0021] 1-7 illustrate a method of forming a semiconductor device, such as a flash memory, according to the present invention;
  • FIGS. [0022] 8A-8C are perspective views showing forming a gate structure with tapered and vertical sidewalls, according to the method of the present invention, with FIG. 8C showing the floating gate spacers formed in the vertical sidewall areas;
  • FIGS. 9A and 9B are a perspective view and a top view, respectively, of a phase-[0023] shift mask structure 10 for creating controlled tapered structures;
  • FIGS. [0024] 10 illustrates a final layout structure of the method of forming a semiconductor device, such as a flash memory, according to the present invention;
  • FIG. 11 illustrates a device cross-section of the device shown in FIG. 3; and [0025]
  • FIG. 12 schematically illustrates a circuit formed by the inventive method of the present invention. [0026]
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION
  • Referring now to the drawings, and more particularly to FIGS. [0027] 1-7, there is shown a preferred embodiment of the present invention.
  • Generally, the present inventors have discovered a solution to the above-mentioned problems of the conventional methods and structures, which is to make a wordline (or control gate) that has a sloped sidewall on one edge (side) which has a slope which is less than that of a second sidewall. [0028]
  • For purposes of the present invention, “slope” is defined as the angle formed by the sidewall with the surface of the underlying substrate upon which the sidewall is formed. Thus, a slope which is relatively gradual (e.g., 45 degrees) would be lesser than a slope which was more extreme (e.g., 90 degrees) typically formed by what is referred to as a “vertical sidewall”. [0029]
  • Forming the wordline having a sloped sidewall can be achieved with an appropriate phase shift mask as described below in the first preferred embodiment by using a trim mask for trimming and selectively forming a spacer for the floating gate. Because of the tapered (sloped) sidewall, spacers are formed on only the non-sloped edge of the wordlines. [0030]
  • In the present invention, floating gate sidewalls can be selectively formed along the non-sloped edge of the device. A trim mask is used, so that the floating gates are isolated from each other. However, the alignment of the trim mask is less critical (larger overlay tolerance) than that of the sidewall removal mask used in the conventional methods. [0031]
  • First, referring to FIG. 1, in [0032] step 1, a silicon substrate 1 with well and isolation structures is formed which includes an implanted n+diffusion region 2. The buried n+ diffusion region 2 is used for the source connection of the cells. It is noted that, instead of forming the buried interconnect by n+ diffusion, p+ diffusion also can be employed. Alternatively, the buried interconnect may be formed of a metal line such as tungsten or silicide, as long as low resistivity for the wire results.
  • In step [0033] 2, after a gate oxide 3, preferably formed by thermal oxidation and having a thickness within the range of 6.0 nm to 12 nm, is formed over the substrate 1, and a gate material 4, preferably formed of polysilicon doped with n+ or p+-type dopant, is deposited.
  • A special lithographic patterning, as described in U.S. patent application Ser. No. 09/010,611, filed on Jan. 22, 1998 by the assignee of the present application, IBM Corporation, and entitled “MULTI-PHASE MASK”, incorporated herein by reference, is performed so that after gate reactive ion etching (RIE), one [0034] sidewall 4A of the gate 4 is “vertical” and the other sidewall 4B of the gate 4 is “tapered”, as shown in FIG. 1.
  • For purposes of the present application, a “vertical” sidewall is defined as the [0035] sidewall 4B being substantially perpendicular to the surface of the substrate 1 upon which the gate 4 is formed. A “tapered” sidewall is defined as the sidewall 4A having a surface which is other than substantially perpendicular to the surface of the silicon substrate 1, and more specifically as having a surface forming an angle less than 90 degrees with respect to the surface of the substrate 1 upon which the gate 4 is formed. A preferred angle of taper is within a range of substantially 45 to 65 degrees. This range is preferable since an angle less than 45 degrees is not generally reproducible, whereas an angle greater than 65 degrees may form sidewall spacers.
  • It is noted that, as described above, the invention provides a tapered sidewall having a predetermined “slope”. Further, it is noted that the second sidewall need not be vertical, but instead may simply have a greater slope than that of the tapered sidewall. As described above, the slope is defined as the angle formed by the sidewall with the surface of the underlying substrate upon which the sidewall is formed. Thus, the slope of the tapered sidewall is less than that of the second sidewall (e.g., which in the exemplary embodiment may be substantially vertical but at the very least has a greater slope (angle) than the tapered sidewall). A [0036] nitride cap layer 4C is shown in FIG. 1 for protecting the gate stack during etching. Therefore, the gate stack will not be etched.
  • In [0037] step 3, as shown in FIG. 2, after selectively removing the gate oxide 3 in the exposed area, a layer of thin nitride 5 is deposited in-situ, which will become the gate dielectric for the floating gate. For example, a preferred nitride would be chemical vapor deposition (CVD) nitride having a thickness of preferably substantially within a range of 6-12 nm.
  • The in-situ nitride deposition ensures that there is no native oxide underneath the nitride layer, which would degrade the gate oxide. Specifically, right after the removal of [0038] gate oxide 3, the wafer should remain in an environment where no oxygen is present. Otherwise, a native oxide may be formed, in which case the effective gate oxide thickness is not controlled or is non-uniform.
  • Thereafter, in [0039] step 4, as shown in FIG. 3, thermal oxidation is performed so that, at the interface of the nitride 5 and the polysilicon gate 4 and silicon substrate 1, a thin layer of oxide 6 is grown. Typically, the thickness of this oxide 6 is in the range of 2 to 5 nm.
  • The oxidation is performed such that oxygen is diffused through the nitride, with the interface of the nitride/silicon substrate being converted into oxide, so that there will no dangling bond, for reducing interface trap density for better oxide quality. The oxide formed underneath the nitride has a very uniform thickness (e.g., substantially within a range of 2-5 nm). [0040]
  • Then, in [0041] step 5, as shown in FIG. 4 (and as described in further detail below with regard to FIGS. 8A-8C), a discrete sidewall floating gate 7 is formed using a spacer process (e.g., a polysilicon deposition followed by RIE, to form a polysilicon spacer). Floating gates 7 are isolated from one another, after a mask trimming process is completed. To provide a tunneling region 8 underneath the floating gate 7 (e.g., as shown in the details of FIG. 4), a double spacer process may be used. The spacer process and the double spacer process are described below.
  • That is, the first spacer [0042] 7A is formed on top of the nitride/oxide surface. Then, the nitride layer is removed by dry or wet etching, leaving the thin oxide layer, having a thickness, for example, in the range of 2 to 5 nm, as the tunnel oxide layer before forming the second polysilicon spacer 7B.
  • Some advantages of the double spacer process are that: (1) the tunneling oxide is located away from the gate (e.g., the control gate [0043] 4) and close to the source area; and (2) the nitride between the control gate 4 and floating gate 7 is protected by the first spacer 7A during the nitride removal step.
  • Thereafter, in step [0044] 6 (and as shown in FIGS. 8A-8C), a trim mask or the like is used to form the floating gates where desired, and thereby to isolate the floating gates from each other. Additionally, the source and drain implants S, D, are performed using conventional processing, as shown in FIG. 5 and as well-known in the art.
  • In step [0045] 7, as shown in FIGS. 6 and 7, respectively, a dielectric 8 and interconnects/vias 9 for forming bitlines 10 are formed by conventional processing. The dielectric may include TEOS, CVD oxide and/or doped glass having a thickness of, for example, substantially within a range of about 100 to 1000 nm.
  • A three-dimensional diagram of the gate structure with tapered and [0046] vertical sidewalls 4A, 4B, respectively, is shown in FIG. 8A, and the corresponding cross-sectional view along the X-X′ direction is shown in FIG. 3. The gate oxide 3 is present at the interface of control gate 4 and the silicon substrate 1.
  • The discrete floating gate spacers are formed preferably as block polysilicon material in the vertical sidewall areas, as shown in FIG. 8B, and then trimmed by a trim mask [0047] 14 (shown in FIG. 9B), to leave the desired discrete floating gate in FIG. 8C (e.g., only one spacer is shown for brevity and ease of understanding).
  • Trimming is performed by using an isotropic etch and selectively removing the exposed polysilicon sidewall spacer, and stopping at the substrate. The gate stack is protected during etching by the [0048] nitride cap 4C shown in FIG. 1, for example, and therefore will not be etched.
  • More specifically, the present invention uses a phase-shift mask technique and preferably a trim mask, to selectively form floating gate sidewalls along the non-sloped (e.g., vertical sidewall) edge of the device. The trim mask is used, so that the floating gates are isolated from each other. However, the alignment of the trim mask is less critical (larger overlay tolerance) than that of the sidewall removal mask used in the conventional methods. [0049]
  • In step [0050] 6 and as shown in FIGS. 8A-8C, a trim mask or the like is used to form the floating gates where desired, and thereby to isolate the floating gates from each other.
  • FIGS. [0051] 8A-8C show a three-dimensional diagram of the gate structure with tapered and vertical sidewalls. The floating gates are formed in the vertical sidewall areas, as shown, and then, with use of the trim mask, the floating gate material is trimmed to leave the floating gate as shown.
  • A three-dimensional diagram of the [0052] mask structure 10 to create controlled tapered structures is shown in FIG. 9A. The phase shift region 13 of the mask are on the transparent substrate 11, made of quartz or the like, where tapered shapes are required. The opaque mask 12, made of chrome or the like, without phase shift modifications are regions where vertical sidewalls are required. The location of trim mask 14 is shown in FIG. 9B.
  • FIG. 10 illustrates the discrete floating gates formed on the vertical sidewall of the structure. [0053]
  • Thus, a three-dimensional diagram of the [0054] mask structure 10, including a transparent region 11 and an opaque region 12, to create controlled tapered structures is shown in FIG. 9A. A phase shift region 13 of the mask is on the transparent substrate 11 (e.g., formed of quartz or the like) where tapered shapes are required. The opaque region 12 (e.g., mask portion formed of a metal such as chrome or the like) without phase shift modifications are regions where vertical sidewalls are required. A top view of the mask is shown in FIG. 9B.
  • The details of the lithographic technique for making the sloped sidewalls of the gate conductor line, as shown in FIG. 8A, are known, and, for example, are described in the above-mentioned U.S. patent application Ser. No. 09/010,611, filed on Jan. 22, 1998 by IBM Corporation, and entitled “MULTI-PHASE MASK”, incorporated herein by reference. [0055]
  • The final layout structure, device cross-section of the final layout structure, and circuit schematic are shown in FIGS. 10, 11 and [0056] 12, respectively. FIGS. 10 and 12 illustrate two adjacent cells which share a wordline.
  • FIG. 12 illustrates a schematic in which two adjacent flash memory cells are shared by the same wordline WL. The first cell has a first bitline BL[0057] 1 and control gate CG1 and floating gate FG1. The second cell has a second bitline BL2, control gate CG2 and a floating gate FG2. The sources of the two cells are joined by a source line SL which is used for cell erasure.
  • With the method and structure of the first embodiment of the present invention, the pattern density of the flash memory can be significantly improved. The method according to the present invention not only eliminates the tight tolerance of trim masks, but also provides greater flexibility of cell layout, which is suitable for a very high density flash memory integration. [0058]
  • Further, the inventive flash memory formed by the method of the invention includes a control gate (the gate conductor) which abuts the floating gate (FG) on one side (e.g., as most clearly shown in FIGS. 8A and 10). Additionally, the FG is fabricated to have an extremely small size, and is self-isolated from adjacent FG devices by the gate conductor. This is advantageous in terms of greater integration and performance reliability. [0059]
  • The present invention produces a flash memory in which the floating gates are formed discretely in desired positions on the substantially vertical sidewall (or sidewall having a slope greater than that of the tapered sidewall) on a plurality of sides, and having the advantages described above. The floating gates are isolated from each other by their discrete positioning along the substantially vertical (e.g., relatively steeper) sidewall. [0060]
  • With the unique and unobvious features of the methods of the present invention, a flash memory according to the present invention is shown, which includes a floating gate which is a sidewall spacer region of polysilicon formed on a vertical sidewall of the gate conductor/control gate (CG), after the CG is lined with thin layers of nitride and oxide as a gate dielectric. [0061]
  • As mentioned above, FIGS. 9A and 9B show a phase shift mask used to define the gate conductor, leaving a vertical sidewall where the FG will be formed as a discrete polysilicon sidewall spacer, and forming a gate conductor with tapered sidewalls in all other areas. Each of the floating gates FG is suitably spaced from adjacent floating gates FG. [0062]
  • Thus, the present invention includes a method in which a polysilicon body is provided with sloping (e.g., tapered) sidewalls in certain regions and steep (perpendicular) sidewalls in the remaining regions. Additionally, by using the inventive method a very high density flash memory can be designed and fabricated with less process steps and a low manufacturing cost. Hence, the inventive techniques can significantly improve the pattern density of flash memory. [0063]
  • While the invention has been described in terms of a preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. [0064]

Claims (18)

What is claimed is:
1. A method of forming a flash memory, comprising steps of:
forming a polysilicon wordline on a substrate, said wordline having first and second sidewalls, said first sidewall being tapered, with respect to a surface of said substrate, to have a slope angle and said second sidewall having a slope angle greater than said slope angle of said first sidewall; and
forming a polysilicon spacer on said second sidewall such that only one said of said polysilicon spacer abuts said wordline.
2. The method according to
claim 1
, wherein said step of forming the wordline includes using a phase-shift mask with a trim mask.
3. The method according to
claim 1
, wherein said step of forming the polysilicon spacer includes using a trim mask.
4. The method according to
claim 1
, wherein said second sidewall comprises a substantially vertical sidewall.
5. The method according to
claim 1
, wherein said step of forming the first sidewall with a slope angle comprises forming said slope angle to be substantially within a range of 45 to 65 degrees with respect to a surface of said substrate on which said first sidewall is formed.
6. The method according to
claim 1
, wherein said step of forming the polysilicon spacer includes forming said polysilicon spacer discretely along said second sidewall such that said polysilicon spacer abuts said second sidewall along only one side thereof .
7. A flash memory, comprising:
a substrate;
a wordline formed on said substrate having, on a first side, a first sidewall having a first slope angle with respect to said substrate, and, on a second side, a second sidewall having a second slope angle greater than said first slope angle; and
a spacer being formed on only the second sidewall of the wordline.
8. The flash memory according to
claim 7
, wherein said substrate comprises silicon, further comprising:
at least one floating gate selectively formed on only said second sidewall,
wherein adjacent ones of said at least one floating gate are isolated from each other by a trim mask etch.
9. The flash memory according to
claim 7
, wherein only one side of said at least-one floating gate abuts said second sidewall.
10. A flash memory, comprising:
a gate conductor having first and second sides, said first side having a slope and said second side having a substantially vertical wall prior to deposition of a polysilicon spacer material.
11. The flash memory according to
claim 10
, wherein a floating gate formed of said polysilicon spacer material is formed on said second side of said gate conductor, and wherein the floating gate is isolated from an adjacent floating gate by a trim mask etch.
12. The flash memory according to
claim 11
, wherein a floating gate formed of said polysilicon spacer material is formed on said second side of said gate conductor, to abut said gate conductor only on one side thereof, and
wherein the floating gate is discretely formed from an adjacent floating gate.
13. A method of forming a flash memory having a plurality of cells, comprising steps of:
forming a substrate with well and isolation structures;
forming a gate oxide over said substrate;
depositing a polysilicon gate material on said gate oxide, to form a control gate, said control gate including a substantially vertical first sidewall of the gate and a tapered second sidewall;
selectively removing the gate oxide in an exposed area, and depositing a gate dielectric;
performing a thermal oxidation such that at an interface of said gate dielectric, and the polysilicon gate material and said substrate, such that an oxide layer is grown; and
forming a sidewall floating gate, and forming a tunneling region underneath the floating gate, wherein said sidewall floating gate includes only one side which abuts said control gate.
14. The method according to
claim 13
, further comprising steps of:
performing source and drain implants; and
forming a dielectric and an interconnect for a bitline of said flash memory,
wherein said step of forming a substrate comprises forming a silicon substrate and said step of depositing a gate dielectric comprises depositing a nitride layer,
wherein a mask structure is used to create a tapered structure, the mask structure including phase shift regions which are positioned on the substrate where tapered shapes are required and an opaque mask without phase shift modifications at regions where the vertical sidewall is formed.
15. The method according to
claim 14
, wherein said silicon substrate includes an implanted n+ diffusion region, said n+ diffusion region being for a source connection of cells of said flash memory.
16. The method according to
claim 14
, wherein said silicon substrate includes one of tungsten, silicide and a buried interconnect scheme for a source connection of cells of said flash memory.
17. The method according to
claim 15
, wherein said oxide layer has a thickness within a range of about 2 to 5 nm, and said tapered second sidewall has a slope angle with respect to a surface of said substrate on which said control gate is mounted substantially between about 45 and 65 degrees, and
wherein said step of forming a sidewall floating gate using a spacer process includes depositing a polysilicon material followed by reactive ion etching (RIE) thereof, to form a polysilicon spacer.
18. The method according to
claim 17
, wherein said gate dielectric comprises a nitride layer and said tunneling region is formed by a double spacer process,
the double spacer process comprising forming a first spacer on top of the nitride layer/oxide layer, removing the nitride layer, and leaving said oxide layer as a tunnel oxide layer before forming a second polysilicon spacer,
wherein said double spacer process provides the tunneling oxide located relatively remote from the control gate and relatively adjacent a source area, and the nitride layer between the control gate and the floating gate is protected by the first spacer during the nitride layer removal step.
US09/298,920 1998-06-15 1998-06-15 Flash memory structure using sidewall floating gate having one side thereof surrounded by control gate Expired - Lifetime US6323086B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/298,920 US6323086B2 (en) 1998-06-15 1998-06-15 Flash memory structure using sidewall floating gate having one side thereof surrounded by control gate
JP16743599A JP3431860B2 (en) 1998-06-15 1999-06-14 Method of manufacturing flash memory having sidewall floating gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/298,920 US6323086B2 (en) 1998-06-15 1998-06-15 Flash memory structure using sidewall floating gate having one side thereof surrounded by control gate

Publications (2)

Publication Number Publication Date
US20010014501A1 true US20010014501A1 (en) 2001-08-16
US6323086B2 US6323086B2 (en) 2001-11-27

Family

ID=23152563

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/298,920 Expired - Lifetime US6323086B2 (en) 1998-06-15 1998-06-15 Flash memory structure using sidewall floating gate having one side thereof surrounded by control gate

Country Status (2)

Country Link
US (1) US6323086B2 (en)
JP (1) JP3431860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465837B1 (en) * 2001-10-09 2002-10-15 Silicon-Based Technology Corp. Scaled stack-gate non-volatile semiconductor memory device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659815B1 (en) * 2002-01-12 2006-12-19 대한민국(충북대학교 나노과학기술연구소) Fabrication Method of Programmable Single Electron Device
JP4929300B2 (en) 2009-02-25 2012-05-09 株式会社東芝 Multi-dot flash memory and manufacturing method thereof
JP2017220510A (en) * 2016-06-06 2017-12-14 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method for the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304505A (en) * 1989-03-22 1994-04-19 Emanuel Hazani Process for EEPROM cell structure and architecture with increased capacitance and with programming and erase terminals shared between several cells
JP2503718B2 (en) * 1990-04-13 1996-06-05 ダイキン工業株式会社 Control device
US5068707A (en) * 1990-05-02 1991-11-26 Nec Electronics Inc. DRAM memory cell with tapered capacitor electrodes
US5115288A (en) * 1990-06-28 1992-05-19 National Semiconductor Corporation Split-gate EPROM cell using polysilicon spacers
US5108939A (en) * 1990-10-16 1992-04-28 National Semiconductor Corp. Method of making a non-volatile memory cell utilizing polycrystalline silicon spacer tunnel region
JP3317459B2 (en) * 1993-04-30 2002-08-26 ローム株式会社 Nonvolatile storage element, nonvolatile storage device using the same, method of driving this storage device, and method of manufacturing this storage element
US5538833A (en) * 1994-08-03 1996-07-23 International Business Machines Corporation High resolution phase edge lithography without the need for a trim mask
US6054345A (en) * 1995-11-13 2000-04-25 Siemens Aktiengesellschaft Method for forming deep depletion mode dynamic random access memory (DRAM) cell
US6015991A (en) * 1997-03-12 2000-01-18 International Business Machines Corporation Asymmetrical field effect transistor
US5824584A (en) * 1997-06-16 1998-10-20 Motorola, Inc. Method of making and accessing split gate memory device
US5899706A (en) * 1997-06-30 1999-05-04 Siemens Aktiengesellschaft Method of reducing loading variation during etch processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465837B1 (en) * 2001-10-09 2002-10-15 Silicon-Based Technology Corp. Scaled stack-gate non-volatile semiconductor memory device

Also Published As

Publication number Publication date
US6323086B2 (en) 2001-11-27
JP3431860B2 (en) 2003-07-28
JP2000040756A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
US5495441A (en) Split-gate flash memory cell
US5411905A (en) Method of making trench EEPROM structure on SOI with dual channels
US5459091A (en) Method for fabricating a non-volatile memory device
EP0676811B1 (en) EEPROM cell with isolation transistor and methods for making and operating the same
US6028336A (en) Triple polysilicon flash EEPROM arrays having a separate erase gate for each row of floating gates, and methods of manufacturing such arrays
US5108939A (en) Method of making a non-volatile memory cell utilizing polycrystalline silicon spacer tunnel region
JP3645275B2 (en) High density longitudinal PROM cell structure and method of manufacturing the same
US6222227B1 (en) Memory cell with self-aligned floating gate and separate select gate, and fabrication process
US7015098B2 (en) Methods and structure for an improved floating gate memory cell
US5284785A (en) Diffusionless source/drain conductor electrically-erasable, electrically-programmable read-only memory and methods for making and using the same
US5643814A (en) Method of making an EEPROM with an erase gate
US6057193A (en) Elimination of poly cap for easy poly1 contact for NAND product
KR101135715B1 (en) Pocket implant for complementary bit disturb improvement and charging improvement of sonos memory cell
US6809372B2 (en) Flash memory structure using sidewall floating gate
US5040036A (en) Trench-isolated self-aligned split-gate EEPROM transistor and memory array
US5990515A (en) Trenched gate non-volatile semiconductor device and method with corner doping and sidewall doping
US5414286A (en) Nonvolatile memory, method of fabricating the same, and method of reading information from the same
US6563166B1 (en) Flash cell device
US5703387A (en) Split gate memory cell with vertical floating gate
US5422292A (en) Process for fabricating split gate flash EEPROM memory
US5371704A (en) Nonvolatile memory device with compensation for over-erasing operation
US5793080A (en) Nonvolatile memory device
US6323086B2 (en) Flash memory structure using sidewall floating gate having one side thereof surrounded by control gate
US5777359A (en) Semiconductor flash memory device and fabrication method of same
US20070215931A1 (en) Non-volatile memory cell in a trench having a first portion deeper than a second portion, an array of such memory cells, and method of manufacturing

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HSU, LOUIS L.;MANDELMAN, JACK A.;REEL/FRAME:009923/0989

Effective date: 19980602

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12