US20010012534A1 - Nutrients rich low fat high fiber carrot product - Google Patents

Nutrients rich low fat high fiber carrot product Download PDF

Info

Publication number
US20010012534A1
US20010012534A1 US09/729,356 US72935600A US2001012534A1 US 20010012534 A1 US20010012534 A1 US 20010012534A1 US 72935600 A US72935600 A US 72935600A US 2001012534 A1 US2001012534 A1 US 2001012534A1
Authority
US
United States
Prior art keywords
weight
acid
fiber
juice
carotenoids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/729,356
Other versions
US6361818B2 (en
Inventor
Milind Biyani
Manisha Banavaliker
Geeta Parikh
Sushma Biyani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20010012534A1 publication Critical patent/US20010012534A1/en
Application granted granted Critical
Publication of US6361818B2 publication Critical patent/US6361818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/23Apiaceae or Umbelliferae (Carrot family), e.g. dill, chervil, coriander or cumin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/01Instant products; Powders; Flakes; Granules
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/22Comminuted fibrous parts of plants, e.g. bagasse or pulp
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
    • A23L5/44Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives using carotenoids or xanthophylls
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/51Polysaccharide
    • A23V2250/5116Other non-digestible fibres

Definitions

  • This invention relates to nutrients rich low fat high fiber carrot product. It also relates to a process for the preparation of the carrot product and a formulation comprising the same.
  • Diets rich in fiber and low in fat are in modern times recommended to be medically useful for subnormal mammalian conditions of different etiologies. For instance, they counter the harmful effects of fiber-deficient diets responsible for constipation, diverticulosis or irritable bowel syndrome (IBS). Diets low in fat and rich in fiber reduce cholesterol and triglyceride level, coronary heart disease mortality and overall risk of cancer.
  • a high fiber diet is important in pregnancy, old age and during the convalescence period following a heart attack. High fiber diets help in obesity treatment by decreasing meal-size and giving a sense of fullness and early satiation.
  • Natural products such as vegetables and fruits are invariable sources of fiber.
  • Especially well known high fiber products are those prepared from isapgol (Plantago ovata) or bran from, for example, oat or wheat.
  • Carrots are a unique natural source for providing a diet; fiber product for several reasons.
  • Carrot fiber comprises both soluble fiber and insoluble fiber. This quality is unlike that found in fiber from isapgol and guar-gum (cyamopsis tetragonoloba) which contain mostly soluble fiber and fiber found in bran is mostly insoluble fiber. Soluble fiber is valuable for the management of hypercholesteremia. Insoluble fiber is most likely to benefit patients with atonic motor disorder. Insoluble fiber slows intestinal propulsion and is useful for diarrhoea affected IBS patients, whereas the action of the soluble part of the fiber is variable. The protective effect of insoluble fiber in lessening the risk of colon cancer is attributed to its dilution of colon contents.
  • Carrot fiber contains lignin only in traces and its high in pectin content.
  • the soluble fiber consist principally of a special type of pectin which reduces glucose uptake.
  • the pectin fraction is composed not only of molecules with randomly distributed carboxyl groups but also of at least 50% of pectin molecules in which blocks of free carboxylic groups are available.
  • Carrot fibers are especially effective in binding bile acids and reducing cholesterol levels.
  • Carrot fiber constituents are highly fermentable producing short chain fatty acids known to decrease the rate of synthesis of cholesterol and glucose and to inhibit cancer. Therapeutic effects of carrots on human eyes are also known. Fresh carrots are, however, required to be consumed in very large quantities for therapeutic benefits. There is no standard or set limit of quantity to be consumed for such benefits.
  • U.S. Pat. No. 5,403,612 is concerned with a phosphorylated pectin-containing fiber product which is a low-cost, crude, human-consumable, pectin-containing fiber possessing the gelling effects of fully refined pectin.
  • Fiber obtained from a food such as apples, barley, carrots, corn, grapefruit, oats, oranges, peas, rice, sugarbeet, sugar cane and wheat is treated with a dissociable phosphate reactant followed by removal of excess water from the treated fiber and drying thereof.
  • U.S. Pat. No. 5,354,851 relates to a low-cost, crude, human-consumable, pectic material containing fiber.
  • Fiber obtained from fruits such as apples, lemons, oranges, and grapes, vegetables such as carrots and sugar beets and grasses such as sugar cane is treated with a reactant capable of chemically coupling alkaline earth metal ions to the exposed pectin on fiber.
  • U.S. Pat. No. 5,304,374 describes an edible pulp having enhanced hypocholesterolemic effect.
  • the natural bile acid binding capacity of edible pulp material from fruits such as apples, oranges and grapes, vegetables such as carrots, corn, peas and sugar beets, grains such as barley, oats, rice and wheat and grasses such as sugar cane is enhanced by heating an aqueous slurry of the pulp material to at least 40° C. and/or sequentially reacting the pulp material with a reactant such as sodium hydroxide for activating the pendant groups on the polysaccharide component followed by addition of calcium chloride at a pH of less than about 7.
  • a reactant such as sodium hydroxide for activating the pendant groups on the polysaccharide component followed by addition of calcium chloride at a pH of less than about 7.
  • U.S. Pat. No. 4,956,187 describes iron enriched food products. Pulverised soyabean or carrot or a mixture of the two is hydrolysed with saccharide-decomposing enzyme and an iron compound is added to the hydrolysate followed by inoculation with yeast.
  • the food products contain ion in readily absorbable and adverse reaction-free form and are useful as meal for patients.
  • U.S. Pat. No. 4,789,553 is concerned with chemical sterilisation and prevention of discolouration of low acid heat-sensitive foodstuffs such as low acid heat-sensitive vegetables and cereal grain products such as carrots, zucchini, aspargus, spears, cauliflower, yellow squash, rice, potatoes or cantaloupes by treatment with gluconic acid and its lactones whereby flavour, colour or texture of the foodstuffs is retained.
  • U.S. Pat. No. 4,770,880 relates to a fiber-rich vegetable material capable of absorbing mutapen. Fibers from vegetables are separated, boiled, washed with water and dewatered followed by dehydration involving co-drying the fibers with carrier materials. It gives an ingestible product including fiber-rich vegetable material made from cabbage, radish, bamboo sprout, onion, carrot, pimiento, spinach, soyabean malt, and asparagus.
  • U.S. Pat. No. 4,372,984 is concerned with improvement of consistency of reconstituted instant puree of vegetables.
  • Crude vegetable fibers such as fibers of tubers, cereals or fruits are incorporated in an instant puree, for example a potato, carrot or split pea puree in quantities of at most 10% by dry weight of fibers based on the dry matter content of the puree.
  • Crude fibers are suspended in water, sterilised by steam injection, cooled and dryed.
  • U.S. Pat. No. 3,894,157 describes colour stabilisation in freeze-dried carrots with ascorbic and erythorbic acids.
  • U.S. Pat. No. 2,739,145 is concerned with recovery of carotene, fiber and serum from carrots.
  • Fresh carotene containing material is mechanically pulped with serum from previous lot and coagulated particles are separated out. Fiber is separated from serum by steam.
  • Excess serum may be concentrated by evaporation or used without concentration in various culturing operations as a biotic medium. On evaporation of the carrots serum by pan methods a carrot syrup is obtained.
  • An object of the invention is to provide a nutrients rich low fat high fiber carrot product.
  • Another object of the invention is to provide a nutrients rich low fat high fiber carrot product which is particularly rich in carotenoids and retains natural colour of carrot.
  • Another object of the invention is to provide a process for the preparation of a nutrients rich low fat high fiber carrot product.
  • Another object of the invention is to provide a process for the preparation of a nutrients rich low fat high fiber carrot product which is particularly rich in carotenoids and retains natural colour of carotenoids.
  • Another object of the invention is to provide a formulation of a nutrients rich low fat high fiber carrot product.
  • Another object of the invention is to provide a formulation of a nutrients rich low fat high fiber carrot product which is particularly rich in carotenoids and retains natural colour of carrot.
  • Another object of the invention is to provide a formulation of a nutrients rich low fat high fiber carrot product in the form of chewable granules, tablet powder or diskettes/wafers.
  • nutrients rich low fat, high fiber carrot product comprising 20-50% by weight of fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1-1.0% by weight of fat 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals aid trace elements.
  • the nutrients rich low fat high fiber carrot product comprises 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8% by weight of mineral and trace elements.
  • the vitamins include vitamin B1 vitamin B2, vitamin C and/or niacin and carotenoids include beta-carotene and/or alpha-carotene and minerals and trace element, include iron, zinc, magnesium, potassium, sodium, phosphorus, manganese and/or calcium.
  • a process for the preparation of nutrients rich low fat high fiber carrot product comprising 20-50% by weight fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1-1.0% by weight of fat, 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals and trace elements, the process comprising crushing carrots, pressing the crush to separate pomace from juice, adjusting the pH of the juice to 3.0 to 6.0 with carboxylic acid in an amount of acid equivalent to 0.03 to 3% by weight of the juice, stabilising the juice with carbohydrate in amounts ranging from 1-10% by weight of the juice, separating the supenatent from the residual matter, concentrating the supernatent, blending the concentrate with the previously isolated pomace, drying the blend, pulverising or granulating the blend and sieving the powder or granules.
  • the process comprises preparation of a carrot product comprising 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8% by weight of minerals and trace elements.
  • the carboxylic acid is in solid form or in the form of a saturated aqueous solution preferably in an amount of acid equivalent to 0.02 to 1% by weight of the juice.
  • the carboxylic acid is monocarboxylic acid such as ascorbic acid or dicarboxylic acid such as adipic acid, malic acid, fumaric acid or tartaric acid or carboxylic acid such as citric acid or mixture thereof.
  • a mixture of ascorbic acid with adipic acid or malic acid or fumaric acid or tataric acid and/or citric acid is used to adjust the pH of the juice.
  • the pH of the juice is adjusted to 5.0.
  • the carbohydrate is in solid form or in the form of a saturated aqueous solution in an amount preferably ranging from 5.0 to 8.0% by weight of the juice.
  • the carbohydrate is monosaccharide selected from fructose or dextrose or polysaccharide selected from sucrose or lactose or hexitol selected from mannitol or sorbitol.
  • a mixture of fructose and dextrose or sucrose and lactose and/or mannitol and sorbitol is added to the juice.
  • the supenatent is separated from the residual matter by centrifugation or filtration.
  • the supernatent is concentrated by vacuum distillation at 50 to 60° C.
  • the blend is dried at 50 to 60° C. in a dryer such as tray dryer or rotary dryer under high vacuum.
  • the blend is pulverised in a pulveriser such as multimill or granulated in a granulator such as vertical or horizontal granulator.
  • the powder or granules may be sieved through sieves of mesh sizes ranging from 10 to 10, preferably 20 to 80.
  • a formulation of a nutrients rich low fat, high fiber carrot product comprising 20-50% by weight fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1 - 1.0% by weight of fat, 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals and trace elements mixed with excipients.
  • the formulation of a nutrients rich low fat high fiber carrot product comprises 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble, and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8 % by weight of minerals and trace elements.
  • the formulation may be in the form of chewable granules, powder or diskettes/wafers.
  • excipients are, for example, sucrose, citric acid, orange oil, gum acacia, aspartame or sodium saccharin.
  • the carrot product or formulation of carrot product is standardised such that it contains therapeutically and nutritiously effective and useful optimal amounts of nutrients and fiber. Due to stabilisation with carbohydrates, the product is enriched with carotenoids and its colour is retained. It may be dispensed and consumed conveniently in small doses in healthcare and nutrition applications in the prevention and treatment of constipation irritable bowel syndrome obesity, diabetes high cholesterol, cardiovascular diseases cancer or eye diseases. It thus obviates the necessity of having to consume large quantities of fresh carrots for therapeutic and nutritional effects.
  • composition of the granules per 100 g was as given below: Insoluble Fiber 25 g Soluble Fiber 7 g Total Fiber 32 g Carbohydrates 25 g Fat 0.67 g Proteins 7.5 g Carotenoids 87 mg Vitamin B1 1 mg Vitamin B2 0.02 mg Vitamin C 8 mg Calcium 1.46 g Magnesium 580 mg Iron 2 mg Manganese 1 mg Zinc 1 mg Potassium 2.99 g Sodium 1.79 g Phosphorus 277 mg Total Minerals (Ash value) 8.8 g
  • the granules had natural reddish orange colour of the carrots.
  • the composition of the mules per 100 g was as given below: Insoluble Fiber 20 g Soluble Fiber 13 g Total Fiber 33 g Carbohydrates 21 g Fat 0.7 g Proteins 6.9 g Carotenoids 92 mg Vitamin B1 0.7 mg Vitamin B2 0.03 mg Vitamin C 11 mg Calcium 0.6 g Magnesium 122 mg Iron 14 mg Manganese 0.5 mg Zinc 0.8 mg Potassium 1.1 g Sodium 1.59 g Phosphorus 416 mg Total Minerals (Ash value) 7.4 g
  • the granules had natural orange colour of the carrots.
  • Example 1 The procedure described in Example 1 was followed using citric acid in the place of adipic acid.
  • Example 1 The procedure described in Example 1 was followed using fumaric acid in the place of adipic acid.
  • Example 1 The procedure described in Example 1 was followed using malic acid in the place of adipic acid.
  • Example 1 The procedure described in Example 1 was followed using tartic acid in the place of adipic acid.
  • Example 1 The procedure described in Example 1 was followed using ascorbic acid in the place of adipic acid.
  • Example 1 The procedure described in Example 1 was followed using mannitol in the place of sorbitol.
  • Example 1 The procedure described in Example 1 was followed using sucrose in the place of sorbitol.
  • Example 1 The procedure described in Example 1 was followed using lactose in the place of sorbitol.
  • Example 1 The procedure described in Example 1 was followed using dextrose in the place of sorbitol.
  • composition of the granules of Examples 3 to 11 was found to lie in the range given below per 100 gm of the product; Insoluble Fiber 15-40 g Soluble Fiber 5-10 g Total Fiber 20-50 g Carbohydrates 10-55 g Fat 0.1-1 g Proteins 4-9 mg Carotenoids 20-100 mg Vitamin B1 0.1-2 mg Vitamin B2 0.01-1 mg Vitamin C 2-1000 mg Calcium 0.3-2 g Magnesium 0.1-1 mg Iron 1-25 mg Manganese 0.1-1 g Zinc 0.1-2 mg Potassium 1-4 g Sodium 1-3 g Phosphorus 100-500 mg Total Minerals (Ash value) 5-10 g
  • Example 12 The procedure in Example 12 was followed using 0.2 g aspartame in the place of sucrose.
  • Example 12 The procedure in Example 12 was followed using 0.1 g sodium saccharin in the place of sucrose.
  • Example 1 The granules of Example 1 (60 g) were powdered to 30 mesh and mixed with sucrose powder (38.8 g). The mixture was granulated with gum acacia (0.9 g) and citric acid (0.2 g) water (10 ml) and dried at 50 to 60° C. in a tray drier trader vacuum. Dried granules were flavoured by mixing with orange oil (0.1 g) and compressed into diskettes/wafers.
  • Example 1 The granules of Example 1 (99 g) were pulverised to 100 mesh powder. Aspertame (0.6 g), citric acid (0.3 g ), orange oil (0.09 g) and gum acacia (0.1g) were mixed with 10 times water and sprayed on the powder, mixed and blended for five minutes. The powder is made into suspension in water (100 to 200 ml) for use.
  • One dose of 10 g of the granules of Example 1 followed by a glass of water was daily given to a first group of 8 obese persons (Group I) 15 minutes before each meal for a period of 2 months.
  • one dose of 10 g of Isapgol powder followed by a glass of water was daily given to a second group of 18 obese persons (Group II) 15 minutes before each meal for a period of 2 months.
  • the food served at each meal was the same and its consumption by each group was noted. It was observed that the amount of food consumed by the Group I gradually reduced. It was inferred that leisurely chewing of the granules gave a feeling of satiety and the water gave a feeling of fullness due to swelling of the fibre.
  • the Group I was not able to consume the same quantity of food throughout the period of the experiment. Weight reduction of 2-3 Kg was observed in 15 persons of the Group I. Decreased consumption of food and reduction in weight did not result in weakness or fatigue of the concerned persons. It was inferred that this is due to the presence of nutrients in the granules. In the case of Group II, there was no significant reduction in consumption of food or in weight.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

Nutrients rich low fat, high fiber carrot product comprising 20 - 50% by weight of fiber of which 15 - 40% by weight is insoluble and 5 - 10% by weight is soluble, 0.1 - 1.0% by weight of fat, 10 - 55% by weight of carbohydrates, 0.02 - 1% by weight of carotenoids and vitamins and 5 - 10% by weight of minerals and trace elements. A process for the preparation of the carrot product comprising the step of stabilizing carrot juice with carbohydrate in amounts ranging from 1 - 10% by weight of the juice. A formulation of the carrot product mixed with excipients.

Description

    RELATED APPLICATIONS
  • This is a continuation of PCT application no PCT/IN 00/00007, filed on Jan. 28, 2000. [0001]
  • FIELD OF THE INVENTION
  • This invention relates to nutrients rich low fat high fiber carrot product. It also relates to a process for the preparation of the carrot product and a formulation comprising the same. [0002]
  • BACKGROUND OF THE INVENTION
  • The therapeutic and nutritious effects of diets rich in fruits, and vegetables in general and carrots (Daucus carota) in particular are well known. “Effects of processing on the dietary fiber content of wheat bran, pureed green beans and carrots”. Journal of food Science, 1980, 45, 1533-1534. N. E. Anderson and F. M. Clydesdale. “Fiber-mediated physiological effects of raw and processed carrots in humans”; Br. J Nutr., 1994 72: 579-599; Wisker E., Schweiizer T. F. et al. “Influence of experimental diets on cholesterol and triglyceride levels of rabbit blood serum lipoproteins”; Acta. Physiol. Pol. 1988 39: 202-206; Wehr H., Naruszewicz M. et al. “Dietary Fiber constitutes of selected fruits and vegetables”. J. Am. Diet. Assoc., 1985: 85; 1111-1116; Ross. J. K. et al. “The effect of raw carrot on serum lipids and colon function” Am. J. Clin Nutr., 1979; 32: 1889-92; Robertson J., Brydon W. G. et al. “Colonic response to dietary fiber from carrot, cabbage, apple, bran.” Lancet 1978; 1 (8054): 5-9; Cummings J. H. Branch W. et al. “Carrot pulp chemical composition, colour, and water holding capacity as affected by blanching”. J Food Science, 1994; 59; 1159-1164; B. Bao and K. C. Thang. “Binding of dietary anions to vegetable fiber.” J. Agric. Food Chem. 1989, 37, 133-1347; Peter D. Hoagland. “Cobinding of bile acids to carrot fiber”. J. Agric. Food Chem. 1987, 35, 316-319; Peter D. Hoaland, Philip E. Pfeffer, “Diet as a risk factor for peripheral arterial disease in the general population: The Edibourgh Artery Study”, Am J Clin Nutr, 1993 57; 917-921, Peter T Donnan et al. [0003]
  • Diets rich in fiber and low in fat are in modern times recommended to be medically useful for subnormal mammalian conditions of different etiologies. For instance, they counter the harmful effects of fiber-deficient diets responsible for constipation, diverticulosis or irritable bowel syndrome (IBS). Diets low in fat and rich in fiber reduce cholesterol and triglyceride level, coronary heart disease mortality and overall risk of cancer. A high fiber diet is important in pregnancy, old age and during the convalescence period following a heart attack. High fiber diets help in obesity treatment by decreasing meal-size and giving a sense of fullness and early satiation. Natural products such as vegetables and fruits are invariable sources of fiber. Especially well known high fiber products are those prepared from isapgol (Plantago ovata) or bran from, for example, oat or wheat. [0004]
  • Holistic systems of medicine such as the Ayurvedic system of medicine have for centuries been advocating the synergistic value of dispensing not just pure natural product ingredients but the complete set of nutrients as they are present in the natural source, a concept rapidly gaining new supporters in modem medicine. [0005]
  • Carrots are a unique natural source for providing a diet; fiber product for several reasons. Carrot fiber comprises both soluble fiber and insoluble fiber. This quality is unlike that found in fiber from isapgol and guar-gum (cyamopsis tetragonoloba) which contain mostly soluble fiber and fiber found in bran is mostly insoluble fiber. Soluble fiber is valuable for the management of hypercholesteremia. Insoluble fiber is most likely to benefit patients with atonic motor disorder. Insoluble fiber slows intestinal propulsion and is useful for diarrhoea affected IBS patients, whereas the action of the soluble part of the fiber is variable. The protective effect of insoluble fiber in lessening the risk of colon cancer is attributed to its dilution of colon contents. Carrot fiber contains lignin only in traces and its high in pectin content. The soluble fiber consist principally of a special type of pectin which reduces glucose uptake. The pectin fraction is composed not only of molecules with randomly distributed carboxyl groups but also of at least 50% of pectin molecules in which blocks of free carboxylic groups are available. Carrot fibers are especially effective in binding bile acids and reducing cholesterol levels. Carrot fiber constituents are highly fermentable producing short chain fatty acids known to decrease the rate of synthesis of cholesterol and glucose and to inhibit cancer. Therapeutic effects of carrots on human eyes are also known. Fresh carrots are, however, required to be consumed in very large quantities for therapeutic benefits. There is no standard or set limit of quantity to be consumed for such benefits. [0006]
  • U.S. Pat. No. 5,403,612 is concerned with a phosphorylated pectin-containing fiber product which is a low-cost, crude, human-consumable, pectin-containing fiber possessing the gelling effects of fully refined pectin. Fiber obtained from a food such as apples, barley, carrots, corn, grapefruit, oats, oranges, peas, rice, sugarbeet, sugar cane and wheat is treated with a dissociable phosphate reactant followed by removal of excess water from the treated fiber and drying thereof. [0007]
  • U.S. Pat. No. 5,354,851 relates to a low-cost, crude, human-consumable, pectic material containing fiber. Fiber obtained from fruits such as apples, lemons, oranges, and grapes, vegetables such as carrots and sugar beets and grasses such as sugar cane is treated with a reactant capable of chemically coupling alkaline earth metal ions to the exposed pectin on fiber. [0008]
  • U.S. Pat. No. 5,304,374 describes an edible pulp having enhanced hypocholesterolemic effect. The natural bile acid binding capacity of edible pulp material from fruits such as apples, oranges and grapes, vegetables such as carrots, corn, peas and sugar beets, grains such as barley, oats, rice and wheat and grasses such as sugar cane is enhanced by heating an aqueous slurry of the pulp material to at least 40° C. and/or sequentially reacting the pulp material with a reactant such as sodium hydroxide for activating the pendant groups on the polysaccharide component followed by addition of calcium chloride at a pH of less than about 7. [0009]
  • U.S. Pat. No. 4,956,187 describes iron enriched food products. Pulverised soyabean or carrot or a mixture of the two is hydrolysed with saccharide-decomposing enzyme and an iron compound is added to the hydrolysate followed by inoculation with yeast. The food products contain ion in readily absorbable and adverse reaction-free form and are useful as meal for patients. [0010]
  • U.S. Pat. No. 4,789,553 is concerned with chemical sterilisation and prevention of discolouration of low acid heat-sensitive foodstuffs such as low acid heat-sensitive vegetables and cereal grain products such as carrots, zucchini, aspargus, spears, cauliflower, yellow squash, rice, potatoes or cantaloupes by treatment with gluconic acid and its lactones whereby flavour, colour or texture of the foodstuffs is retained. [0011]
  • U.S. Pat. No. 4,770,880 relates to a fiber-rich vegetable material capable of absorbing mutapen. Fibers from vegetables are separated, boiled, washed with water and dewatered followed by dehydration involving co-drying the fibers with carrier materials. It gives an ingestible product including fiber-rich vegetable material made from cabbage, radish, bamboo sprout, onion, carrot, pimiento, spinach, soyabean malt, and asparagus. [0012]
  • U.S. Pat. No. 4,372,984 is concerned with improvement of consistency of reconstituted instant puree of vegetables. Crude vegetable fibers such as fibers of tubers, cereals or fruits are incorporated in an instant puree, for example a potato, carrot or split pea puree in quantities of at most 10% by dry weight of fibers based on the dry matter content of the puree. Crude fibers are suspended in water, sterilised by steam injection, cooled and dryed. [0013]
  • U.S. Pat. No. 3,894,157 describes colour stabilisation in freeze-dried carrots with ascorbic and erythorbic acids. An aqueous ascorbic or erythorbic acid solution infused throughout decorticated, blanched subdivided carrots just prior to freezing effects reduction of colour loss in freeze-dried carrot during storage. [0014]
  • U.S. Pat. No. 2,739,145 is concerned with recovery of carotene, fiber and serum from carrots. Fresh carotene containing material is mechanically pulped with serum from previous lot and coagulated particles are separated out. Fiber is separated from serum by steam. Excess serum may be concentrated by evaporation or used without concentration in various culturing operations as a biotic medium. On evaporation of the carrots serum by pan methods a carrot syrup is obtained. [0015]
  • One of the inventors namely Dr Biyani had earlier developed a process for manufacture of low fat high fiber carrot granules, in which fat-content of disintegrated carrots is reduced by removing lipoid particles with the help of carboxyic acids and the remaining material is dried below 60° C. to get the fibrous product in granular form [Indian Pat. Application No. 183668]. It has been found that during drying, carotenoids in the product degrade as a result of which carotenoids content in the dehydrated product is very low and it is unstable during storage. [0016]
  • To the best of our knowledge and information to date there is no report of any standardised carrot product containing therapeutically and nutritiously effective and useful optimal amounts of nutrients and fiber content. [0017]
  • OBJECTS AND SUMMARY OF THE INVENTION
  • An object of the invention is to provide a nutrients rich low fat high fiber carrot product. [0018]
  • Another object of the invention is to provide a nutrients rich low fat high fiber carrot product which is particularly rich in carotenoids and retains natural colour of carrot. [0019]
  • Another object of the invention is to provide a process for the preparation of a nutrients rich low fat high fiber carrot product. [0020]
  • Another object of the invention is to provide a process for the preparation of a nutrients rich low fat high fiber carrot product which is particularly rich in carotenoids and retains natural colour of carotenoids. [0021]
  • Another object of the invention is to provide a formulation of a nutrients rich low fat high fiber carrot product. [0022]
  • Another object of the invention is to provide a formulation of a nutrients rich low fat high fiber carrot product which is particularly rich in carotenoids and retains natural colour of carrot. [0023]
  • Another object of the invention is to provide a formulation of a nutrients rich low fat high fiber carrot product in the form of chewable granules, tablet powder or diskettes/wafers. [0024]
  • DETAILED DESCRIPTION OF THE INVENTION
  • According to the invention there is provided nutrients rich low fat, high fiber carrot product comprising 20-50% by weight of fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1-1.0% by weight of fat 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals aid trace elements. [0025]
  • Preferably the nutrients rich low fat high fiber carrot product comprises 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8% by weight of mineral and trace elements. [0026]
  • The vitamins include vitamin B1 vitamin B2, vitamin C and/or niacin and carotenoids include beta-carotene and/or alpha-carotene and minerals and trace element, include iron, zinc, magnesium, potassium, sodium, phosphorus, manganese and/or calcium. [0027]
  • According to the invention there is also provided a process for the preparation of nutrients rich low fat high fiber carrot product comprising 20-50% by weight fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1-1.0% by weight of fat, 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals and trace elements, the process comprising crushing carrots, pressing the crush to separate pomace from juice, adjusting the pH of the juice to 3.0 to 6.0 with carboxylic acid in an amount of acid equivalent to 0.03 to 3% by weight of the juice, stabilising the juice with carbohydrate in amounts ranging from 1-10% by weight of the juice, separating the supenatent from the residual matter, concentrating the supernatent, blending the concentrate with the previously isolated pomace, drying the blend, pulverising or granulating the blend and sieving the powder or granules. [0028]
  • According to an embodiment of the invention the process comprises preparation of a carrot product comprising 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8% by weight of minerals and trace elements. [0029]
  • The carboxylic acid is in solid form or in the form of a saturated aqueous solution preferably in an amount of acid equivalent to 0.02 to 1% by weight of the juice. The carboxylic acid is monocarboxylic acid such as ascorbic acid or dicarboxylic acid such as adipic acid, malic acid, fumaric acid or tartaric acid or carboxylic acid such as citric acid or mixture thereof. Preferably a mixture of ascorbic acid with adipic acid or malic acid or fumaric acid or tataric acid and/or citric acid is used to adjust the pH of the juice. Preferably the pH of the juice is adjusted to 5.0. [0030]
  • The carbohydrate is in solid form or in the form of a saturated aqueous solution in an amount preferably ranging from 5.0 to 8.0% by weight of the juice. The carbohydrate is monosaccharide selected from fructose or dextrose or polysaccharide selected from sucrose or lactose or hexitol selected from mannitol or sorbitol. Preferably a mixture of fructose and dextrose or sucrose and lactose and/or mannitol and sorbitol is added to the juice. [0031]
  • The supenatent is separated from the residual matter by centrifugation or filtration. [0032]
  • The supernatent is concentrated by vacuum distillation at 50 to 60° C. [0033]
  • The blend is dried at 50 to 60° C. in a dryer such as tray dryer or rotary dryer under high vacuum. The blend is pulverised in a pulveriser such as multimill or granulated in a granulator such as vertical or horizontal granulator. The powder or granules may be sieved through sieves of mesh sizes ranging from 10 to 10, preferably 20 to 80. [0034]
  • According to the invention there is also provided a formulation of a nutrients rich low fat, high fiber carrot product comprising 20-50% by weight fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1 - 1.0% by weight of fat, 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals and trace elements mixed with excipients. [0035]
  • Preferably the formulation of a nutrients rich low fat high fiber carrot product comprises 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble, and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8 % by weight of minerals and trace elements. [0036]
  • The formulation may be in the form of chewable granules, powder or diskettes/wafers. [0037]
  • The excipients are, for example, sucrose, citric acid, orange oil, gum acacia, aspartame or sodium saccharin. [0038]
  • According to the invention the carrot product or formulation of carrot product is standardised such that it contains therapeutically and nutritiously effective and useful optimal amounts of nutrients and fiber. Due to stabilisation with carbohydrates, the product is enriched with carotenoids and its colour is retained. It may be dispensed and consumed conveniently in small doses in healthcare and nutrition applications in the prevention and treatment of constipation irritable bowel syndrome obesity, diabetes high cholesterol, cardiovascular diseases cancer or eye diseases. It thus obviates the necessity of having to consume large quantities of fresh carrots for therapeutic and nutritional effects. [0039]
  • The following experimental examples illustrate the invention but do not limit the scope thereof: [0040]
  • EXAMPLE 1
  • Fresh, hard good quality reddish orange coloured carrots (Daucus carota) with a smooth surface were selected and washed thoroughly with water. The washed carrots (1.0 kg) were subjected to crushing in a crusher to provide a crush which was subjected to pressing through a filter press to provide pomace (380 grams) and liquid juice (ca.600 ml). To the liquid juice, 1 g of adipic acid was added with stirring to adjust the pH to 4.0 followed by 10 g of sorbitol and it was subjected to centrifugation to provide a clear liquid extract (580 ml). The liquid extract was concentrated by vacuum distillation at 50-60° C. to get a concentrate (about 100 ml) which was blended with the previously isolated pomace and dried at 50-60° C. in a tray dryer under vacuum. The dried material was passed through a granulator and sieved through 20 mesh to obtain nutrients rich low fat high fiber carrot granules (95 g). The composition of the granules per 100 g was as given below: [0041]
    Insoluble Fiber 25 g
    Soluble Fiber 7 g
    Total Fiber 32 g
    Carbohydrates 25 g
    Fat 0.67 g
    Proteins 7.5 g
    Carotenoids 87 mg
    Vitamin B1 1 mg
    Vitamin B2 0.02 mg
    Vitamin C 8 mg
    Calcium 1.46 g
    Magnesium 580 mg
    Iron 2 mg
    Manganese 1 mg
    Zinc 1 mg
    Potassium 2.99 g
    Sodium 1.79 g
    Phosphorus 277 mg
    Total Minerals (Ash value) 8.8 g
  • The granules had natural reddish orange colour of the carrots. [0042]
  • EXAMPLE 1A
  • In an experiment similar to Example 1 without the addition of sorbitol, the carrot granules obtained were light in colour and had a carotenoids content of 6 mg per 100g. [0043]
  • EXAMPLE 2
  • Fresh, hard, good quality orange coloured carrots (Daucus carota) with a smooth surface were selected and washed thoroughly with water. The washed carrots (1.0 kg) were processed according to the procedure described in Example 1 to obtain 95 g granules. The composition of the mules per 100 g was as given below: [0044]
    Insoluble Fiber 20 g
    Soluble Fiber 13 g
    Total Fiber 33 g
    Carbohydrates 21 g
    Fat 0.7 g
    Proteins 6.9 g
    Carotenoids 92 mg
    Vitamin B1 0.7 mg
    Vitamin B2 0.03 mg
    Vitamin C 11 mg
    Calcium 0.6 g
    Magnesium 122 mg
    Iron 14 mg
    Manganese 0.5 mg
    Zinc 0.8 mg
    Potassium 1.1 g
    Sodium 1.59 g
    Phosphorus 416 mg
    Total Minerals (Ash value) 7.4 g
  • The granules had natural orange colour of the carrots. [0045]
  • EXAMPLE 2A
  • In an experiment similar to Example 2 without the addition of sorbitol, the carrot granules obtained were light in colour and had a carotenoids content of 7 mg per 100 g. [0046]
  • EXAMPLE 3
  • The procedure described in Example 1 was followed using citric acid in the place of adipic acid. [0047]
  • EXAMPLE 4
  • The procedure described in Example 1 was followed using fumaric acid in the place of adipic acid. [0048]
  • EXAMPLE 5
  • The procedure described in Example 1 was followed using malic acid in the place of adipic acid. [0049]
  • EXAMPLE 6
  • The procedure described in Example 1 was followed using tartic acid in the place of adipic acid. [0050]
  • EXAMPLE 7
  • The procedure described in Example 1 was followed using ascorbic acid in the place of adipic acid. [0051]
  • EXAMPLE 8
  • The procedure described in Example 1 was followed using mannitol in the place of sorbitol. [0052]
  • EXAMPLE 9
  • The procedure described in Example 1 was followed using sucrose in the place of sorbitol. [0053]
  • EXAMPLE 10
  • The procedure described in Example 1 was followed using lactose in the place of sorbitol. [0054]
  • EXAMPLE 11
  • The procedure described in Example 1 was followed using dextrose in the place of sorbitol. [0055]
  • The composition of the granules of Examples 3 to 11 was found to lie in the range given below per 100 gm of the product; [0056]
    Insoluble Fiber 15-40 g
    Soluble Fiber 5-10 g
    Total Fiber 20-50 g
    Carbohydrates 10-55 g
    Fat 0.1-1 g
    Proteins 4-9 mg
    Carotenoids 20-100 mg
    Vitamin B1 0.1-2 mg
    Vitamin B2 0.01-1 mg
    Vitamin C 2-1000 mg
    Calcium 0.3-2 g
    Magnesium 0.1-1 mg
    Iron 1-25 mg
    Manganese 0.1-1 g
    Zinc 0.1-2 mg
    Potassium 1-4 g
    Sodium 1-3 g
    Phosphorus 100-500 mg
    Total Minerals (Ash value) 5-10 g
  • The granules of Examples 3 to 11 had natural reddish orange colour of the carrots. [0057]
  • EXAMPLE 11A
  • In Experiments similar to Examples 3 to 11 without the addition of dextrose, lactose, mannitol, sorbitol or sucrose, the carrot granules were light in colour and had a carotenoids content of 1 to 8 mg per 100 g [0058]
  • EXAMPLE 12
  • Sucrose (29.7 g) and citric acid (0.2 g) were dissolved in equal amount of water and sprayed on the carrot granules of Example 1 (70 g). The granules were dried at 50 to 60° C. in a tray drier under vacuum and cooled to ambient temperate. Orange oil (0.09 g) and gum acacia (0.01 g) were suspended in 1 ml of water and sprayed on the granules and blended for five minutes to obtain chewable granules. [0059]
  • EXAMPLE 13
  • The procedure in Example 12 was followed using 0.2 g aspartame in the place of sucrose. [0060]
  • EXAMPLE 14
  • The procedure in Example 12 was followed using 0.1 g sodium saccharin in the place of sucrose. [0061]
  • EXAMPLE 15
  • The granules of Example 1 (60 g) were powdered to 30 mesh and mixed with sucrose powder (38.8 g). The mixture was granulated with gum acacia (0.9 g) and citric acid (0.2 g) water (10 ml) and dried at 50 to 60° C. in a tray drier trader vacuum. Dried granules were flavoured by mixing with orange oil (0.1 g) and compressed into diskettes/wafers. [0062]
  • EXAMPLE 16
  • The granules of Example 1 (99 g) were pulverised to 100 mesh powder. Aspertame (0.6 g), citric acid (0.3 g ), orange oil (0.09 g) and gum acacia (0.1g) were mixed with 10 times water and sprayed on the powder, mixed and blended for five minutes. The powder is made into suspension in water (100 to 200 ml) for use. [0063]
  • EXAMPLE 17
  • One dose of 10 gm of the granules of Example 1 followed by a glass of water was daily given to a first group of 12 persons after meal for a period of 1 month. Similarly one dose of 10 gms of granules of Example 1A was daily given to a second group of 12 persons after meal for a period of 1 month. After 1 month 8 persons out of 12 in the first group reported reduction in sensitivity of eyes to bright sunlight, whereas none in the second group reported any such benefit. [0064]
  • EXAMPLE 18
  • One dose of 10 g of the granules of Example 1 followed by a glass of water was daily given to a first group of 8 obese persons (Group I) 15 minutes before each meal for a period of 2 months. Similarly one dose of 10 g of Isapgol powder followed by a glass of water was daily given to a second group of 18 obese persons (Group II) 15 minutes before each meal for a period of 2 months. The food served at each meal was the same and its consumption by each group was noted. It was observed that the amount of food consumed by the Group I gradually reduced. It was inferred that leisurely chewing of the granules gave a feeling of satiety and the water gave a feeling of fullness due to swelling of the fibre. As a result, the Group I was not able to consume the same quantity of food throughout the period of the experiment. Weight reduction of 2-3 Kg was observed in 15 persons of the Group I. Decreased consumption of food and reduction in weight did not result in weakness or fatigue of the concerned persons. It was inferred that this is due to the presence of nutrients in the granules. In the case of Group II, there was no significant reduction in consumption of food or in weight. [0065]

Claims (18)

1. Nutrients rich low fat, high fiber carrot product comprising 20-50% by weight of fiber of which 15-40% by weight is insoluble and 5-50% by weight is soluble, 0.1-1.0% by weight of fat, 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals and trace elements.
2. Nutrients rich low fat high fiber carrot product as claimed in
claim 1
which comprises 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble and 5 to 10%. by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8% by weight of minerals and trace elements.
3. Nutrients rich low fat high fiber carrot product as claimed in
claim 1
, in which the vitamins are vitamin B1, vitamin B2, vitamin C and/or niacin and carotenoids are beta-carotene and/or alpha-carotene and minerals and trace elements are iron, zinc, magnesium, potassium, sodium, phosphorus, manganese and/or calcium.
4. A process for the preparation of nutrients rich low fat high fiber carrot product comprising 20-50% by weight fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1-1.0% by weight of fat, 10-55% by weight of carbohydrate, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals and trace elements, the process comprising crushing carrots, pressing the crush to separate pomace from juice, adjusting the pH of the juice to 3.0 to 6.0 with carboxylic acid in an amount of acid equivalent to 0.03 to 3% by weight of the juice, stabilising the juice with carbohydrate in amounts ranging from 1-10% by weight of the juice, separating the supernatent from the residual matters concentrating the supenatent, blending the concentrate with the previously isolated pomace, drying the blend, pulverising or granulating the blend and sieving the powder or granules.
5. A process as claimed in
claim 4
, which comprises preparation of a carrot product comprising 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamins and 6 to 8% by weight of minerals and trace elements.
6. A process as claimed in
claim 4
, wherein the carboxyic acid is in solid form or in the form of a saturated aqueous solution in an amount of acid equivalent to 0.2 to 1% by weight of the juice.
7. A process as claimed in
claim 4
, wherein the pH of the juice is adjusted to 5.0.
8. A process as claimed in
claim 4
wherein the carboxylic acid is monocarboxylic acid such as ascorbic acid, dicarboxylic acid such adipic acid, malic acid, fumaric acid or tartaric acid or tricarboxylic acid such as citric acid.
9. A process as claimed in
claim 4
, wherein the carboxylic acid is a mixture of ascorbic acid with adipic acid or malic acid or fumaric acid or tartaric acid and/or citric acid.
10. A process as claimed in
claim 4
, wherein the carbohydrate is in solid form or in the form of a saturated aqueous solution in an amount ranging from 5.0 to 8.0 by weight of the juice.
11. A process as claimed in
claim 4
, wherein the carbohydrate is monosaccharide such as fructose or dextose, polysaccharide such as sucrose or lactose or hexitol such as mannitol or sorbitol.
12. A process as claimed in
claim 4
, wherein the carbohydrate is a mixture of fructose and dextrose or sucrose and lactose and/or mannitol and sorbitol.
13. A process as claimed in
claim 4
, wherein the supernatent is separated from the residual matter by centrifugation or filtration.
14. A process as claimed in
claim 4
, wherein the supernatent is concentrated by vacuum distillation at 50 to 60° C.
15. A process as claimed in
claim 4
, wherein the blend is dried at 50 to 60° C. under high vacuum.
16. A formulation of a nutrients rich low fat high fiber carrot product comprising 20-50% by weight fiber of which 15-40% by weight is insoluble and 5-10% by weight is soluble, 0.1-1.0% by weight of fat, 10-55% by weight of carbohydrates, 0.02-1% by weight of carotenoids and vitamins and 5-10% by weight of minerals and trace elements mixed with excipients.
17. A formulation of nutrients rich low fat high fiber carrot product as claimed in
claim 16
comprising 25 to 45% by weight of fiber of which 20 to 35% by weight is insoluble and 5 to 10% by weight is soluble, 0.3 to 0.7% by weight of fat, 20 to 40% by weight of carbohydrates, 0.1 to 0.5% by weight of carotenoids and vitamin and 6 to 8% by weight of minerals and trace elements.
18. A formulation as claimed in claim 16 which is in the form of chewable granules, powder or diskettes/wafers.
US09/729,356 1999-01-29 2000-12-05 Nutrient rich, low fat, high fiber, carrot product, and process of making Expired - Fee Related US6361818B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN71BO1999 IN186667B (en) 1999-01-29 1999-01-29
IN71/BOM/99 1999-01-29
PCT/IN2000/000007 WO2000044235A2 (en) 1999-01-29 2000-01-28 Nutrients rich low fat high fiber carrot product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2000/000007 Continuation WO2000044235A2 (en) 1999-01-29 2000-01-28 Nutrients rich low fat high fiber carrot product

Publications (2)

Publication Number Publication Date
US20010012534A1 true US20010012534A1 (en) 2001-08-09
US6361818B2 US6361818B2 (en) 2002-03-26

Family

ID=11077319

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/729,356 Expired - Fee Related US6361818B2 (en) 1999-01-29 2000-12-05 Nutrient rich, low fat, high fiber, carrot product, and process of making

Country Status (5)

Country Link
US (1) US6361818B2 (en)
AU (1) AU4429000A (en)
GB (1) GB2362799B (en)
IN (2) IN186667B (en)
WO (1) WO2000044235A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645546B2 (en) * 2001-06-22 2003-11-11 Wm. Bolthouse Farms, Inc. Process and apparatus for producing fiber product with high water-binding capacity and food product made therefrom
US20040266727A1 (en) * 2003-06-25 2004-12-30 Brandon Steve F. Nutritional supplement having a unique soluble and insoluble fiber blend and method of making the same
US20080233238A1 (en) * 2007-02-08 2008-09-25 Grimmway Enterprises, Inc. Supercritical co2 carrot feedstock extraction
US20090123597A1 (en) * 2006-11-07 2009-05-14 The Procter & Gamble Company Fiber containing compositions and methods of making and using same
WO2011008095A1 (en) 2009-07-17 2011-01-20 Koninklijke Coöperatie Cosun U.A. Carbohydrate-enriched plant pulp composition
WO2012120236A1 (en) 2011-03-08 2012-09-13 Lab Attitude Nutraceutical composition for limiting the absorption of dietary lipids and for inducing weight loss, comprising, as active agent, at least one extract of carrot
FR2972607A1 (en) * 2011-03-15 2012-09-21 Lab Attitude Dietary supplement, useful e.g. to induce weight loss, comprises microgranules designed to swell in the stomach, where the microgranules comprise soluble dietary fiber and insoluble dietary fiber
CZ304076B6 (en) * 2008-10-17 2013-10-02 Výzkumný ústav potravinárský Praha, v.v.i. Fresh carrot juice without active Dau c1 allergen
WO2017075078A1 (en) * 2015-10-26 2017-05-04 Brandeis University Fruit or vegetable pomace composition and use as blood glucose modulator and anti-diabetic agent
CN111031804A (en) * 2017-06-27 2020-04-17 杜邦营养美国公司 Plant-derived coloring modifier

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP291598A0 (en) * 1998-04-14 1998-05-07 Allrad 3 Pty Ltd Food supplement
ATE423216T1 (en) * 2002-10-23 2009-03-15 Daiichi Pure Chemicals Co Ltd NEW FRUCTOSYLPEPTIDOXIDASE AND THEIR USE
CN101868253A (en) 2007-11-21 2010-10-20 宝洁公司 Preparations, methods and kits useful for treatment of cough
US8158183B2 (en) * 2008-12-15 2012-04-17 Pepsico, Inc. Unsaturated acids for fading protection of colors derived from natural sources used in beverage products
US20110091618A1 (en) * 2009-10-16 2011-04-21 Frito-Lay North America, Inc. Method for preventing oxidation and off flavors in high carotenoid foods
US10334870B2 (en) 2010-10-07 2019-07-02 Tropicana Products, Inc. Processing of whole fruits and vegetables, processing of side-stream ingredients of fruits and vegetables, and use of the processed fruits and vegetables in beverage and food products
US20130344180A1 (en) * 2012-06-26 2013-12-26 Yl Holdings, Inc. Weight loss and satiation composition
EP2956017B1 (en) 2013-02-15 2020-01-22 Pepsico, Inc. Preparation and incorporation of co-products into beverages to enhance nutrition and sensory attributes

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596662A (en) * 1950-04-17 1952-05-13 Petronella H Dux Method of preparing an edible product
US2739145A (en) 1952-01-07 1956-03-20 Harold M Barnett Method for recovering carotene, fiber, and serum from vegetable material
US3894157A (en) 1973-06-04 1975-07-08 Gen Foods Corp Color stabilization in freeze-dried carrots with ascorbic and erythorbic acids
CH626785A5 (en) 1978-02-06 1981-12-15 Nestle Sa
AU532414B2 (en) * 1979-07-11 1983-09-29 Byron Agricultural Company Pty Ltd Dehydration of vegetables
JPS6140764A (en) 1984-07-31 1986-02-27 Tatsuo Emura Vegetable fiber food composed mainly of asparagus fiber having mutagen adsorptivity
US4789553A (en) 1985-09-23 1988-12-06 American National Can Company Method of thermally processing low-acid foodstuffs in hermetically sealed containers and the containers having the foodstuffs therein
EP0399040B1 (en) 1986-04-19 1992-10-07 Terumo Kabushiki Kaisha Process for producing iron-rich foods
JPH01281056A (en) * 1988-05-06 1989-11-13 Gold Pack Kk Production of carrot ketchup
US5304374A (en) 1989-10-30 1994-04-19 Humanetics Corporation Process for enhancing the hypocholesterolemic effect of edible pulp and the product obtained thereby
FR2665825B1 (en) * 1990-08-17 1992-10-30 Ard Sa PROCESS FOR PRODUCING FOOD FIBERS FROM CARROTS AND FIBERS OBTAINED BY THIS PROCESS.
US5403612A (en) 1993-03-31 1995-04-04 Humanetics Corporation Process for producing a phosphorylated pectin-containing fiber product
US5354851A (en) 1993-03-31 1994-10-11 Humanetics Corporation Process for producing crude pectin through ion exchange
JPH0923859A (en) * 1995-07-14 1997-01-28 Toyo Seikan Kaisha Ltd Food fiber-containing drink and its production
JPH10281056A (en) * 1997-02-03 1998-10-20 Yukihiko Karasawa High pressure pump
US6231866B1 (en) * 1998-04-30 2001-05-15 Douglas G. Mann Infused vegetable, fruit, herb, and/or seed fiber product and dietary supplements containing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645546B2 (en) * 2001-06-22 2003-11-11 Wm. Bolthouse Farms, Inc. Process and apparatus for producing fiber product with high water-binding capacity and food product made therefrom
US20040266727A1 (en) * 2003-06-25 2004-12-30 Brandon Steve F. Nutritional supplement having a unique soluble and insoluble fiber blend and method of making the same
US20090123597A1 (en) * 2006-11-07 2009-05-14 The Procter & Gamble Company Fiber containing compositions and methods of making and using same
US11779042B2 (en) 2006-11-07 2023-10-10 The Procter & Gamble Company Fiber containing compositions and methods of making and using same
US8779009B2 (en) 2006-11-07 2014-07-15 The Procter & Gamble Company Fiber containing compositions and methods of making and using same
US20080233238A1 (en) * 2007-02-08 2008-09-25 Grimmway Enterprises, Inc. Supercritical co2 carrot feedstock extraction
CZ304076B6 (en) * 2008-10-17 2013-10-02 Výzkumný ústav potravinárský Praha, v.v.i. Fresh carrot juice without active Dau c1 allergen
WO2011008095A1 (en) 2009-07-17 2011-01-20 Koninklijke Coöperatie Cosun U.A. Carbohydrate-enriched plant pulp composition
FR2972330A1 (en) * 2011-03-08 2012-09-14 Lab Attitude NUTRACEUTICAL COMPOSITION FOR LIMITING THE ABSORPTION OF FOOD LIPIDS AND FOR INDUCING WEIGHT LOSS COMPRISING AS ACTIVE AGENT AT LEAST ONE CARROT EXTRACT.
WO2012120236A1 (en) 2011-03-08 2012-09-13 Lab Attitude Nutraceutical composition for limiting the absorption of dietary lipids and for inducing weight loss, comprising, as active agent, at least one extract of carrot
FR2972607A1 (en) * 2011-03-15 2012-09-21 Lab Attitude Dietary supplement, useful e.g. to induce weight loss, comprises microgranules designed to swell in the stomach, where the microgranules comprise soluble dietary fiber and insoluble dietary fiber
WO2017075078A1 (en) * 2015-10-26 2017-05-04 Brandeis University Fruit or vegetable pomace composition and use as blood glucose modulator and anti-diabetic agent
US10596213B2 (en) 2015-10-26 2020-03-24 Brandeis University Fruit or vegetable pomace composition and use as blood glucose modulator and anti-diabetic agent
US11464820B2 (en) 2015-10-26 2022-10-11 Brandeis University Fruit or vegetable pomace composition and use as blood glucose modulator and anti-diabetic agent
CN111031804A (en) * 2017-06-27 2020-04-17 杜邦营养美国公司 Plant-derived coloring modifier
EP3644754A4 (en) * 2017-06-27 2021-03-17 DuPont Nutrition USA, Inc. Plant-derived colouring texturants

Also Published As

Publication number Publication date
IN186667B (en) 2001-10-20
WO2000044235A2 (en) 2000-08-03
IN187210B (en) 2002-03-02
US6361818B2 (en) 2002-03-26
GB2362799A (en) 2001-12-05
WO2000044235A3 (en) 2001-03-29
GB2362799B (en) 2002-07-10
AU4429000A (en) 2000-08-18
GB0118062D0 (en) 2001-09-19

Similar Documents

Publication Publication Date Title
US6361818B2 (en) Nutrient rich, low fat, high fiber, carrot product, and process of making
EP0485030B1 (en) Fruit juice plus citrus fiber from pulp
CN101341949B (en) Various grains chewing slice and preparation method thereof
US11134708B2 (en) Nutritional recombination rice and preparation method thereof
US20120183646A1 (en) Carbohydrate-enriched plant pulp composition
JPH04505555A (en) Sugar composition containing soluble fiber
Ting Nutrients and nutrition of citrus fruits
Kumari Mushrooms as source of dietary fiber and its medicinal value: A review article
RU2676799C1 (en) Composition for preparation of nutritional bar
US5487894A (en) Composition of dehydrated powdered mung bean sprout and plant fiber for use as dietary supplement in healthcare
US20140335123A1 (en) Food Composition and Uses for Diabetes
Ambuja et al. Review on “dietary fiber incorporated dairy foods: a healthy trend”
KR101212706B1 (en) Production method of anti-obesity beverage using seaweed extracts
US20230255245A1 (en) Vegetable fibre hydroysate and its use in human and animal diet
EP1905313B1 (en) Vegetable and/or fruit beverage composition
Kołodziejczyk et al. Characterisation of the chemical composition of scab-resistant apple pomaces
RU2634905C1 (en) Composition for preparation of fruit and berry bar
US4581241A (en) Process for producing an enhanced citrus flavor
CN109430838A (en) A kind of intestinal canal regulating coarse cereals medicinal granules of powder and its processing method
RU2818578C2 (en) Method of preparing dishes for balanced daily diet
WO2023195538A1 (en) Potato syrup powder formed from powder or granules of sweet potato syrup, supernatant thereof, or both
KR940009483B1 (en) Process for making pumpkin tea
CN117137083A (en) Quinoa meal replacement powder and preparation method thereof
MERR College of Agricultural and Environmental Sciences, School of Food Technology, Nutrition and Bio-engineering Department of Food Technology and Nutrition
Borbi Development and quality evaluation of a ready-to-eat banana composite food for older infants and young children

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100326