US20010010989A1 - Wettable soft polyolefin fibers and fabrics - Google Patents

Wettable soft polyolefin fibers and fabrics Download PDF

Info

Publication number
US20010010989A1
US20010010989A1 US09/817,735 US81773501A US2001010989A1 US 20010010989 A1 US20010010989 A1 US 20010010989A1 US 81773501 A US81773501 A US 81773501A US 2001010989 A1 US2001010989 A1 US 2001010989A1
Authority
US
United States
Prior art keywords
fibers
fabrics
filaments
ether
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/817,735
Inventor
Valeria Erdos
Carlos Viramontes
Rocio Guajardo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avintiv Specialty Materials Inc
Original Assignee
Polymer Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymer Group Inc filed Critical Polymer Group Inc
Priority to US09/817,735 priority Critical patent/US20010010989A1/en
Publication of US20010010989A1 publication Critical patent/US20010010989A1/en
Assigned to CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATERAL AGENT reassignment CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC, POLY-BOND, INC., POLYMER GROUP, INC.
Assigned to WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT reassignment WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC., POLY-BOND, INC., POLYMER GROUP, INC.
Assigned to FNA ACQUISITION, INC., FIBERTECH GROUP, INC., PNA CORPORATION, PRISTINE BRANDS CORPORATION, POLY-BOND INC., DOMINION TEXTILE (USA) INC., FABPRO ORIENTED POLYMERS, INC., PGI EUROPE, INC., FABRENE CORP., LORETEX CORPORATION, FNA POLYMER CORP., CHICOPEE, INC., BONLAM (S.C.), INC., FABRENE GROUP L.L.C., TECHNETICS GROUP, INC., FIBERGOL CORPORATION, POLYLONIX SEPARATION TECHNOLOGIES, INC., PGI POLYMER, INC., POLYMER GROUP, INC. reassignment FNA ACQUISITION, INC. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT
Assigned to FABPRO ORIENTED POLYMERS, INC., FIBERTECH GROUP, INC., TECHNETICS GROUP, INC., LORETEX CORPORATION, POLYMER GROUP, INC., PGI POLYMER, INC., POLYLONIX SEPARATION TECHNOLOGIES, INC., CHICOPEE, INC., PGI EUROPE, INC., BONLAM (S.C.), INC., FIBERGOL CORPORATION, PRISTINE BRANDS CORPORATION, FNA ACQUISITION, INC., FNA POLYMER CORP., POLY-BOND INC., FABRENE GROUP L.L.C., PNA CORPORATION, FABRENE CORP., DOMINION TEXTILE (USA) INC. reassignment FABPRO ORIENTED POLYMERS, INC. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • B32B2555/02Diapers or napkins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2352Coating or impregnation functions to soften the feel of or improve the "hand" of the fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2484Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2484Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting
    • Y10T442/2492Polyether group containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • Y10T442/678Olefin polymer or copolymer sheet or film [e.g., polypropylene, polyethylene, ethylene-butylene copolymer, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/68Melt-blown nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric

Definitions

  • This invention relates to a melt-extrudable thermoplastic polyolefin-based composition which when extruded into films, fibers, nonwoven fabrics or composites, results in a material or nonwoven fabric which exhibits durable wettability.
  • Polyolefins are used in large quantities to make nonwoven fabrics and films.
  • Polyolefin nonwoven fabrics such as carded webs, spunbond, meltblown or composites thereof, are preferred as components in sanitary articles, such as single use diapers, feminine hygiene products and incontinence care products.
  • the recognized benefits of polyolefin based, especially polypropylene, fabrics include the relatively low raw material cost, ease of manufacturing, desirable strength to basis weight ratio and softness.
  • Sanitary articles generally contain an absorbent core component of materials capable of absorbing several times their weight in liquids.
  • the article includes at least one outer covering or lining which contacts the user's skin on one side of the core and the an exterior layer contacting the environment on the other side of the core.
  • Softness and liquid permeability are required of fabrics used for the inner linings.
  • the liquid permeability should take the form of allowing liquid to pass through the fabric and into the inner absorbent core, while not actually absorbing fluids in the process.
  • An additional desired feature is for the inner lining, i.e. the cover sheet for the absorbent core, to remain fluid permeable even after extended wear and repeated insults of fluid, such as routinely occurs with infant diapers in situ.
  • Another highly desired, but difficult to provide, feature of inner lining fabrics is that they resist having liquids collected in the absorbent core bleed back through to the user's skin when pressure is applied—such as an infant sitting in a wet diaper.
  • Nonwoven fabrics and composites made of cellulosic materials pass and absorb liquids even after repeated insults, but they do not routinely resist the flow back of the retained fluids under pressure.
  • Thermoplastic fibers such as polyesters and polyolefins have already been described as being preferred for these end uses for economic, aesthetic and strength reasons.
  • polypropylene is, by its nature, hydrophobic.
  • the fabric When spun into fibers or filaments which are used to form a fabric, the resulting fabric is also hydrophobic or non-wettable.
  • the fabric must be specially treated or altered in some way to render the fabric wettable, that is, able to allow the passage or transfer of fluids, if the fabric is to be suitable for use as an inner lining fabric for a sanitary article.
  • wettability denotes a change in surface tension that permits a layer of water to form on the surface of a solid, such as a fiber, for the purpose of facilitating the movement of the liquid flow past or through the wettable material.
  • thermoplastics are altered by exposure to heat and careful monitoring of the heating process is required to ensure that fabric properties are not adversely affected.
  • surfactants are not strongly chemically bonded to the fiber or filament surfaces, such topical treatments are not durable. They tend to wash off during repeated fluid insults or rub off during use.
  • corona discharge treatments have been used to alter the electrochemical potential of the surfaces of fibers or filaments.
  • the effect is to render surfaces more reactive with the result that hydrophobic surfaces become more wettable.
  • these electrical potential changes are also not permanent, being particularly subject to environmental effects, such as storage in moist environments.
  • Another approach is the incorporation of chemical agents in the thermoplastic polymer before it is extruded into fibers, filaments or nonwoven fabrics.
  • Agents such as siloxanes, have been proposed for this purpose.
  • the object is to impart a durable change in the wettability of the fibers or filaments.
  • the performance model theory states that the melt additives become dispersed in the molten polymer and are bound in the matrix when the polymer cools during fiber or filament quenching. Over time, or due to the effects of further processing, the additive rises to the surface of the fibers or filaments, a phenomenon called blooming, imparting durable wettability.
  • Fatty acid esters have been used as fabric softener compounds, such as described in U.S. Pat. No. 5,593,614.
  • the melt addition of a di-fatty ester to polyolefins is described in U.S. Pat. No. 5,439,734 to Kimberly-Clark.
  • the melt addition of this di-acid ester was described as imparting wettability durable up to three fluid insults.
  • PEG esters Polyethylene glycols esters
  • PEG esters have been recognized as useful in the preparation of hydrogels and wettable membranes, directed towards wound care, as described in U.S. Pat. Nos. 5,700,286 and 5,698,074.
  • PEG esters have also been used to topically treat hydrophobic fibers, as described in U.S. Pat. No. 4,073,993.
  • a melt additive to a thermoplastic polyolefin such as polypropylene is provided in which the additive is a polyethylene oleiyl ether having the formula:
  • x is an integer from 1-15
  • the wettable fabrics produced from the fibers or filaments of this invention are particularly useful, for example, as the skin contacting inner lining fabric of sanitary articles, particularly single use diapers, feminine hygiene products or incontinence care products.
  • the fabrics produced may also have utility in wet and dry wipes, filter media, battery separators and the like.
  • This invention is applicable to processes in which a thermoplastic polymer, especially a polyolefin such as polyethylene or polypropylene, is melted and extruded to form fibers or filaments.
  • a thermoplastic polymer especially a polyolefin such as polyethylene or polypropylene
  • the fibers or filaments are formed by extrusion of the molten polymer through small orifices.
  • the fibers or filaments thus formed are then drawn or elongated to induce molecular orientation and affect crystallinity, resulting in a reduction in diameter and an improvement in physical properties.
  • nonwoven processes such as spunbonding and meltblowing the fibers or filaments are directly deposited onto a foraminous surface, such as a moving flat conveyor and are at least partially consolidated by any of a variety of means including, but not limited to, thermal, mechanical or chemical methods of bonding.
  • a foraminous surface such as a moving flat conveyor
  • processes or the fabrics from processes to produce composite fabrics which possess certain desirable characteristics Examples of this are combining spunbond and meltblown to produce a laminate fabric that is best know as SMS, meant to represent two outer layers of spunbond fabric and an inner layer of meltblown fabric.
  • SMS spunbond and meltblown to produce a laminate fabric that is best know as SMS, meant to represent two outer layers of spunbond fabric and an inner layer of meltblown fabric.
  • either or both of these processes may be combined in any arrangement with a staple fiber carding process or bonded fabrics resulting from a nonwoven staple fiber carding process.
  • the layers are generally at least partially consolidated by one of the means listed above.
  • the invention is also applicable to melt extrude
  • Spunbond filament sizes most useful for wettable fabrics of the anticipated type are 1.0-3.2 denier.
  • Meltblown fibers typically have a fiber diameter of less than 15 microns and most typically for the anticipated applications are fiber diameters less than 5 microns, ranging down to the submicron level.
  • Webs in a composite construction may be processed in a wide variety of basis weights.
  • thermoplastic polypropylene fibers which are typically extruded at temperatures in the range of 210°-240° C., are inherently hydrophobic in that they are essentially non-porous and consist of continuous molecular chains incapable of attracting or binding to water molecules.
  • untreated polypropylene fabrics even while having an open pore structure, tend to resist the flow of liquids such as water or urine through the fabric, or from one surface to the other.
  • a PEG ether specifically a PEG oleiyl ether is incorporated into a thermoplastic polyolefin, such as polypropylene, in the melt and is extruded with the polyolefin into the form of fibers and filaments which are then quenched, attenuated and formed into fabrics, either in a subsequent or concomitant processing step.
  • a thermoplastic polyolefin such as polypropylene
  • x is an integer from 1-15
  • the PEG oleiyl ether is characterized by IR bands at 3436 cm ⁇ 1 (glycol ether) and near 1123 cm ⁇ 1 (ether linkage).
  • the PEG ether may be compounded with the polymer pellets which are to be melt extruded.
  • the compound may be preformulated or compounded into a low MFR polypropylene which may also contain a small amount of an inorganic powder, such as talc, and an antioxidant.
  • the total amount of PEG ether added is 2 to 15% on a weight by neat polypropylene weight basis. For many applications, the most preferred range is from about 3 to about 7 percent by weight. Addition levels below the indicated minimum level do not produce the desired degree of wettability in the fibers, filaments or fabrics. Addition levels above the indicated maximums do not provide significant additional performance benefits.
  • One suitable ether compound, identified by the designation Techmer S-215834E25, is available from Techmer PM.
  • Nonwoven fabrics made from internally treated polypropylene exhibit properties which are greatly superior to other internal additives or topical treatments known in the prior art.
  • the PEG ether compound is observed by Transmission Electron photomicrographs to be distributed throughout the fiber cross section, while showing a tendency to migrate toward the surface skin of the fibers or filaments. This results in the observed improved wettability of naturally hydrophobic fibers, filaments or fabrics, and also contributes to the durability of that modification, such that the fibers, filaments and fabrics do not lose their wettability upon aging or handling. Further, the improved wettability is stable to repeated fluid insults, up to seven times, without a loss of performance, even over extended time periods. Finally, there is an unexpected aesthetic benefit as the fabrics produced from the fibers or filaments of this invention are considerably softer than untreated fabrics. This feature can be measured as a significant change in the coefficient of static or dynamic friction.
  • melt additive of the present invention may be employed where fabric softness and drape are the most important or controlling criteria.
  • nonwoven fabrics In connection with nonwoven fabrics, it will be appreciated by those skilled in the art that many of the properties of nonwoven fabrics are influenced by factors not directly relevant to the present invention. These factors include, for example, basis weight, fiber diameter, degree of and type of bonding of the fibers and the synergistic effects and influence of composite structures, such as the already described SMS structures.
  • improvements in wetback properties can be improved by the use of two or more layers of fabric bonded together.
  • Examples include two spunbond layers or an SMS fabric in which the meltblown layer is devoid of the PEG ether.

Abstract

A wettable fiber or filament comprises a melt additive to a thermoplastic polyolefin such as polypropylene. The melt additive is a polyethylene oleiyl ether having the formula:
R—O—{—CH2—CH2—O}x—CH2—CH2—O—H
where x is an integer from 1-15, and
R═CH3—(CH2)7—CH═CH—(CH)8
When the foregoing ether is added to a melt of polypropylene at levels of 2-15% by weight prior to the extrusion of the fibers or filaments, and the fibers or filaments are formed into fabrics, the fibers, filaments, or fabrics will exhibit permanent wettability, as well as excellent drape and softness. Such fabrics are useful, for example, as the skin contacting inner lining fabric of sanitary articles such as diapers, feminine hygiene products and the like.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to a melt-extrudable thermoplastic polyolefin-based composition which when extruded into films, fibers, nonwoven fabrics or composites, results in a material or nonwoven fabric which exhibits durable wettability. [0001]
  • Polyolefins, especially polypropylene, are used in large quantities to make nonwoven fabrics and films. Polyolefin nonwoven fabrics, such as carded webs, spunbond, meltblown or composites thereof, are preferred as components in sanitary articles, such as single use diapers, feminine hygiene products and incontinence care products. The recognized benefits of polyolefin based, especially polypropylene, fabrics include the relatively low raw material cost, ease of manufacturing, desirable strength to basis weight ratio and softness. [0002]
  • Sanitary articles generally contain an absorbent core component of materials capable of absorbing several times their weight in liquids. Usually the article includes at least one outer covering or lining which contacts the user's skin on one side of the core and the an exterior layer contacting the environment on the other side of the core. Softness and liquid permeability are required of fabrics used for the inner linings. The liquid permeability should take the form of allowing liquid to pass through the fabric and into the inner absorbent core, while not actually absorbing fluids in the process. An additional desired feature is for the inner lining, i.e. the cover sheet for the absorbent core, to remain fluid permeable even after extended wear and repeated insults of fluid, such as routinely occurs with infant diapers in situ. Another highly desired, but difficult to provide, feature of inner lining fabrics is that they resist having liquids collected in the absorbent core bleed back through to the user's skin when pressure is applied—such as an infant sitting in a wet diaper. [0003]
  • Nonwoven fabrics and composites made of cellulosic materials pass and absorb liquids even after repeated insults, but they do not routinely resist the flow back of the retained fluids under pressure. Thermoplastic fibers, such as polyesters and polyolefins have already been described as being preferred for these end uses for economic, aesthetic and strength reasons. However, polypropylene is, by its nature, hydrophobic. When spun into fibers or filaments which are used to form a fabric, the resulting fabric is also hydrophobic or non-wettable. Thus, the fabric must be specially treated or altered in some way to render the fabric wettable, that is, able to allow the passage or transfer of fluids, if the fabric is to be suitable for use as an inner lining fabric for a sanitary article. [0004]
  • For purposes of clarification, it should be noted that absorption indicates that the material actually swells with added water. In contrast, wettability, such as used herein, denotes a change in surface tension that permits a layer of water to form on the surface of a solid, such as a fiber, for the purpose of facilitating the movement of the liquid flow past or through the wettable material. [0005]
  • It is known in the industry that certain surfactants, such as Triton X-100 from Rohm and Haas, can be applied as an aqueous solution or suspension to the surface of hydrophobic fibers, filaments or nonwoven fabrics with the resulting effect of rendering the fibers, filaments or fabrics wettable, although not absorbent. These topical treatments can be applied by any means familiar to one skilled in the art, such as foaming, spraying, dip-and-squeeze or gravure roll. In almost every case, some sort of heating step is required to remove residual water or solvents used to prepare the surfactant solution or suspension. This step adds significantly to the manufacturing costs and complexity. Further, thermoplastics are altered by exposure to heat and careful monitoring of the heating process is required to ensure that fabric properties are not adversely affected. Further, the surfactants are not strongly chemically bonded to the fiber or filament surfaces, such topical treatments are not durable. They tend to wash off during repeated fluid insults or rub off during use. [0006]
  • In an effort to correct this deficiency, corona discharge treatments have been used to alter the electrochemical potential of the surfaces of fibers or filaments. The effect is to render surfaces more reactive with the result that hydrophobic surfaces become more wettable. However, these electrical potential changes are also not permanent, being particularly subject to environmental effects, such as storage in moist environments. [0007]
  • An additional advancement is the use of surface chemical treatments where the surfactants are covalently bonded to the polymer. [0008]
  • Another approach is the incorporation of chemical agents in the thermoplastic polymer before it is extruded into fibers, filaments or nonwoven fabrics. Agents, such as siloxanes, have been proposed for this purpose. Here, the object is to impart a durable change in the wettability of the fibers or filaments. The performance model theory states that the melt additives become dispersed in the molten polymer and are bound in the matrix when the polymer cools during fiber or filament quenching. Over time, or due to the effects of further processing, the additive rises to the surface of the fibers or filaments, a phenomenon called blooming, imparting durable wettability. [0009]
  • Fatty acid esters have been used as fabric softener compounds, such as described in U.S. Pat. No. 5,593,614. The melt addition of a di-fatty ester to polyolefins is described in U.S. Pat. No. 5,439,734 to Kimberly-Clark. The melt addition of this di-acid ester was described as imparting wettability durable up to three fluid insults. [0010]
  • Polyethylene glycols esters (PEG esters) have been recognized as useful in the preparation of hydrogels and wettable membranes, directed towards wound care, as described in U.S. Pat. Nos. 5,700,286 and 5,698,074. PEG esters have also been used to topically treat hydrophobic fibers, as described in U.S. Pat. No. 4,073,993. [0011]
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, a melt additive to a thermoplastic polyolefin such as polypropylene is provided in which the additive is a polyethylene oleiyl ether having the formula:[0012]
  • R—O—{—CH2—CH2—O}X—CH2—CH2—O—H
  • where:[0013]
  • [0014]
  • x is an integer from 1-15, and[0015]
  • R═CH3—(—CH2)7—CH═CH—(—CH)8.
  • When the foregoing ether is added to a melt of polypropylene at levels of two to fifteen percent by weight prior to the extrusion of the fibers or filaments, and the fibers or filaments are formed into fabrics, the fibers, filaments or fabrics will exhibit permanent wettability, as well as an unanticipated improvement in softness and drape. It has been demonstrated by Transmission Electron Microscopy that the PEG oleiyl ether is distributed throughout the cross-section of the fibers or filaments with a concentration at the surface skin of the formed fibers or filaments. [0016]
  • The wettable fabrics produced from the fibers or filaments of this invention are particularly useful, for example, as the skin contacting inner lining fabric of sanitary articles, particularly single use diapers, feminine hygiene products or incontinence care products. The fabrics produced may also have utility in wet and dry wipes, filter media, battery separators and the like. [0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention is applicable to processes in which a thermoplastic polymer, especially a polyolefin such as polyethylene or polypropylene, is melted and extruded to form fibers or filaments. In accordance with known technology such as continuous filament spinning for yarn or staple fiber, and nonwoven processes such as spunbond production and meltblown production, the fibers or filaments are formed by extrusion of the molten polymer through small orifices. In general, the fibers or filaments thus formed are then drawn or elongated to induce molecular orientation and affect crystallinity, resulting in a reduction in diameter and an improvement in physical properties. In nonwoven processes such as spunbonding and meltblowing the fibers or filaments are directly deposited onto a foraminous surface, such as a moving flat conveyor and are at least partially consolidated by any of a variety of means including, but not limited to, thermal, mechanical or chemical methods of bonding. It is known to those skilled in the art to combine processes or the fabrics from processes to produce composite fabrics which possess certain desirable characteristics. Examples of this are combining spunbond and meltblown to produce a laminate fabric that is best know as SMS, meant to represent two outer layers of spunbond fabric and an inner layer of meltblown fabric. Additionally either or both of these processes may be combined in any arrangement with a staple fiber carding process or bonded fabrics resulting from a nonwoven staple fiber carding process. In such described laminate fabrics, the layers are generally at least partially consolidated by one of the means listed above. The invention is also applicable to melt extruded bicomponent fibers, wherein one of the components is a polyolefin. [0018]
  • Spunbond filament sizes most useful for wettable fabrics of the anticipated type are 1.0-3.2 denier. Meltblown fibers typically have a fiber diameter of less than 15 microns and most typically for the anticipated applications are fiber diameters less than 5 microns, ranging down to the submicron level. Webs in a composite construction may be processed in a wide variety of basis weights. [0019]
  • As described, thermoplastic polypropylene fibers, which are typically extruded at temperatures in the range of 210°-240° C., are inherently hydrophobic in that they are essentially non-porous and consist of continuous molecular chains incapable of attracting or binding to water molecules. As a result, untreated polypropylene fabrics, even while having an open pore structure, tend to resist the flow of liquids such as water or urine through the fabric, or from one surface to the other. [0020]
  • In accordance with the present invention, a PEG ether, specifically a PEG oleiyl ether is incorporated into a thermoplastic polyolefin, such as polypropylene, in the melt and is extruded with the polyolefin into the form of fibers and filaments which are then quenched, attenuated and formed into fabrics, either in a subsequent or concomitant processing step. The general formula for the preferred compound is:[0021]
  • R—O—{—CH2—CH2—O}X—CH2—CH2—O—H
  • where:[0022]
  • [0023]
  • x is an integer from 1-15, and[0024]
  • R═CH3—(—CH2)7—CH═CH—(—CH)8.
  • The PEG oleiyl ether is characterized by IR bands at 3436 cm[0025] −1 (glycol ether) and near 1123 cm−1 (ether linkage).
  • The PEG ether may be compounded with the polymer pellets which are to be melt extruded. To improve the processing, the compound may be preformulated or compounded into a low MFR polypropylene which may also contain a small amount of an inorganic powder, such as talc, and an antioxidant. The total amount of PEG ether added is 2 to 15% on a weight by neat polypropylene weight basis. For many applications, the most preferred range is from about 3 to about 7 percent by weight. Addition levels below the indicated minimum level do not produce the desired degree of wettability in the fibers, filaments or fabrics. Addition levels above the indicated maximums do not provide significant additional performance benefits. One suitable ether compound, identified by the designation Techmer S-215834E25, is available from Techmer PM. [0026]
  • Nonwoven fabrics made from internally treated polypropylene exhibit properties which are greatly superior to other internal additives or topical treatments known in the prior art. The PEG ether compound is observed by Transmission Electron photomicrographs to be distributed throughout the fiber cross section, while showing a tendency to migrate toward the surface skin of the fibers or filaments. This results in the observed improved wettability of naturally hydrophobic fibers, filaments or fabrics, and also contributes to the durability of that modification, such that the fibers, filaments and fabrics do not lose their wettability upon aging or handling. Further, the improved wettability is stable to repeated fluid insults, up to seven times, without a loss of performance, even over extended time periods. Finally, there is an unexpected aesthetic benefit as the fabrics produced from the fibers or filaments of this invention are considerably softer than untreated fabrics. This feature can be measured as a significant change in the coefficient of static or dynamic friction. [0027]
  • While the present invention has been described especially in connection with nonwoven polyolefin fabrics, particularly polypropylene fabrics, it will be apparent to those skilled in the art that the internally treated fibers or filaments may also be formed into threads or yarns for weaving or knitting in conventional textile processes. [0028]
  • Also, irrespective of the desired property of wettability, the melt additive of the present invention may be employed where fabric softness and drape are the most important or controlling criteria. [0029]
  • In connection with nonwoven fabrics, it will be appreciated by those skilled in the art that many of the properties of nonwoven fabrics are influenced by factors not directly relevant to the present invention. These factors include, for example, basis weight, fiber diameter, degree of and type of bonding of the fibers and the synergistic effects and influence of composite structures, such as the already described SMS structures. [0030]
  • It will also be appreciate by those skilled in the art that the performance benefits associated with the practice of this invention are not limited to single component fibers. Polyolefin bicomponent fibers, particularly side-by-side or sheath-core fibers of polypropylene and polyethylene would be expected to demonstrate the same practical benefits as single component fibers of either type. It would be particularly efficacious to include the melt additive only in the polyethylene component as that softer polymer could be expected to promote more efficient blooming of the PEG ether to the surface of that component of the fiber or filament. [0031]
  • In addition, it is often desirable to impart wettability and softness to melt extruded polyolefin films. Such films, in perforated form, are widely used as cover sheets for sanitary articles. [0032]
  • In one preferred embodiment for cover stock for sanitary articles, improvements in wetback properties can be improved by the use of two or more layers of fabric bonded together. Examples include two spunbond layers or an SMS fabric in which the meltblown layer is devoid of the PEG ether. [0033]

Claims (5)

1. A soft, durably wettable nonwoven fabric, said fabric comprising bonded fibers or filaments of a thermoplastic polyolefin, said fibers or filaments comprising a melt additive polyethylene glycol oleiyl ether in an amount from about 2 to 15 percent by weight and about 98 to 85 percent of the thermoplastic polyolefin, said ether providing softness and surface wettability to said fabric.
2. A nonwoven fabric of
claim 1
where the thermoplastic polyolefin is polypropylene.
3. A nonwoven fabric of
claim 1
where the thermoplastic polyolefin is polyethylene.
4. A nonwoven fabric of
claim 1
comprised of bicomponent fibers comprising a polyolefin component, and wherein the polyethylene glycol oleiyl ether is an additive in the polyolefin component.
5. A fabric of
claim 1
wherein said polyethylene glycol oleiyl ether is present in the amount from about 3 to about 7 percent.
US09/817,735 1999-02-19 2001-03-26 Wettable soft polyolefin fibers and fabrics Abandoned US20010010989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/817,735 US20010010989A1 (en) 1999-02-19 2001-03-26 Wettable soft polyolefin fibers and fabrics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/253,327 US6239047B1 (en) 1999-02-19 1999-02-19 Wettable soft polyolefin fibers and fabric
US09/817,735 US20010010989A1 (en) 1999-02-19 2001-03-26 Wettable soft polyolefin fibers and fabrics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/253,327 Division US6239047B1 (en) 1999-02-19 1999-02-19 Wettable soft polyolefin fibers and fabric

Publications (1)

Publication Number Publication Date
US20010010989A1 true US20010010989A1 (en) 2001-08-02

Family

ID=22959816

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/253,327 Expired - Lifetime US6239047B1 (en) 1999-02-19 1999-02-19 Wettable soft polyolefin fibers and fabric
US09/817,735 Abandoned US20010010989A1 (en) 1999-02-19 2001-03-26 Wettable soft polyolefin fibers and fabrics
US09/817,677 Abandoned US20010010990A1 (en) 1999-02-19 2001-03-26 Wettable soft polyolefin fibers and fabrics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/253,327 Expired - Lifetime US6239047B1 (en) 1999-02-19 1999-02-19 Wettable soft polyolefin fibers and fabric

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/817,677 Abandoned US20010010990A1 (en) 1999-02-19 2001-03-26 Wettable soft polyolefin fibers and fabrics

Country Status (3)

Country Link
US (3) US6239047B1 (en)
AU (1) AU3598900A (en)
WO (1) WO2000048833A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076524A1 (en) * 2000-04-07 2001-10-18 The Procter & Gamble Company Textured, microapertured webs and absorbent articles using such webs
DK1152027T3 (en) * 2000-05-04 2004-11-15 Ciba Sc Holding Ag Polyolefin film compositions with permanent anti-fog properties
US8207070B2 (en) 2000-11-22 2012-06-26 Techmer Pm, Llc Wettable polyolefin fibers and fabrics
US6657009B2 (en) 2000-12-29 2003-12-02 Kimberly-Clark Worldwide, Inc. Hot-melt adhesive having improved bonding strength
US20020123538A1 (en) * 2000-12-29 2002-09-05 Peiguang Zhou Hot-melt adhesive based on blend of amorphous and crystalline polymers for multilayer bonding
US6774069B2 (en) 2000-12-29 2004-08-10 Kimberly-Clark Worldwide, Inc. Hot-melt adhesive for non-woven elastic composite bonding
EP1385699A4 (en) * 2001-04-12 2006-10-18 Polymer Group Inc Nonwoven fabric laminate having enhanced barrier properties
MXPA04001100A (en) * 2001-08-07 2004-05-20 Polymer Group Inc Thermoplastic constructs with improved softness.
WO2004103673A2 (en) * 2003-05-22 2004-12-02 Btg International Limited Process for fabricating polymeric articles
US20050130533A1 (en) * 2003-09-16 2005-06-16 Francois Lapierre Woven product exhibiting durable arc flash protection and the articles thereof
US7955710B2 (en) * 2003-12-22 2011-06-07 Kimberly-Clark Worldwide, Inc. Ultrasonic bonding of dissimilar materials
US20050136224A1 (en) * 2003-12-22 2005-06-23 Kimberly-Clark Worldwide, Inc. Ultrasonic bonding and embossing of an absorbent product
US20050133145A1 (en) * 2003-12-22 2005-06-23 Kimberly-Clark Worldwide, Inc. Laminated absorbent product with ultrasonic bond
US20050245158A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Multicomponent fibers and nonwoven fabrics and surge management layers containing multicomponent fibers
NL1028692C2 (en) * 2005-04-04 2006-10-09 Pagter & Partners Int Bv Water-filling holder for flowers.
ES2399286T3 (en) * 2006-08-01 2013-03-27 Tenacta Group S.P.A. Device adapted to release a hair substance
CN104364438A (en) * 2012-06-14 2015-02-18 巴斯夫公司 Treated non-woven fabric comprising functional additive and a method of preparing a treated non-woven fabric
JP6545881B1 (en) * 2018-05-28 2019-07-17 竹本油脂株式会社 Additive for polyolefin resin, polyolefin resin composition, polyolefin synthetic fiber nonwoven fabric, and method of producing polyolefin synthetic fiber nonwoven fabric

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1453447A (en) 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
US4073993A (en) 1975-03-20 1978-02-14 Standard Oil Company (Indiana) Hydrophilic finishing process for hydrophobic fibers
US5696191A (en) 1989-09-18 1997-12-09 Kimberly-Clark Worldwide, Inc. Surface-segregatable compositions and nonwoven webs prepared therefrom
US5160789A (en) 1989-12-28 1992-11-03 The Procter & Gamble Co. Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
US5063272A (en) 1990-10-16 1991-11-05 Kimberly-Clark Corporation Polymeric web compositions for use in absorbent articles
US5149333A (en) 1990-10-16 1992-09-22 Kimberly-Clark Corporation Polymeric web compositions for use in absorbent articles
US5145727A (en) 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
US5149576A (en) 1990-11-26 1992-09-22 Kimberly-Clark Corporation Multilayer nonwoven laminiferous structure
CA2065120C (en) 1992-04-03 1997-08-05 Roger Boulanger Method and apparatus for manufacturing a non-woven fabric marked with a print
ZA936280B (en) 1992-09-16 1995-05-26 Colgate Palmolive Co Fabric softening composition based on higher fatty acid ester and dispersant for such ester
US5439734A (en) 1993-10-13 1995-08-08 Kimberly-Clark Corporation Nonwoven fabrics having durable wettability
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
MX9602398A (en) 1995-06-23 1997-02-28 Kimberly Clark Co Modified polymeric material having improved wettability.
US5698207A (en) 1995-07-26 1997-12-16 International Laboratory Technology Corp. Burn treatment composition
EP0789049A1 (en) * 1996-02-09 1997-08-13 Ciba SC Holding AG Antistatically equipped polymers

Also Published As

Publication number Publication date
AU3598900A (en) 2000-09-04
US20010010990A1 (en) 2001-08-02
WO2000048833A1 (en) 2000-08-24
US6239047B1 (en) 2001-05-29

Similar Documents

Publication Publication Date Title
US6239047B1 (en) Wettable soft polyolefin fibers and fabric
CA2116608C (en) Nonwoven fabrics having durable wettability
DE60012526T2 (en) HYDROPHILIC POLYPROPYLENE FIBERS WITH ANTIMICROBIAL EFFECT
US6258455B1 (en) Antimicrobial ultra-microfiber cloth
KR0157435B1 (en) Monwoven wipe having improved grease release
JP2002088633A (en) Multilayered nonwoven fabric and use thereof
WO2005111299A1 (en) Nonwoven fabrics comprising strata with differing levels or combinations of additives and process of making the same
WO1993016670A1 (en) A surface covering material for an absorptive product
WO2005111284A1 (en) Multicomponent fibers and nonwoven fabrics and surge management layers containing multicomponent fibers
DE69827751T2 (en) Durable hydrophilic coating for textiles
KR101684906B1 (en) Polyolefine staple, nonwoven fabric for hygiene article and manufacturing method thereof
KR100477954B1 (en) Laminated spanbond non-woven fabric having high rewet efficiency and manufacturing method thereof
EP1126065B1 (en) Single-layered double side abrasive web and method of manufacture
US20050090173A1 (en) Nonwoven materials comprising low density fibers and absorbent articles comprising such fibers
WO2024070435A1 (en) Fiber, fiber molded body and fiber product
EP3385432A1 (en) Nonwoven cellulose fiber fabric with extremely low heavy metal content
KR102433347B1 (en) Hydrophilic spunbond nonwoven fabric having an excellent shift stability and manufacturing method thereof
KR20070017164A (en) Nonwoven fabrics comprising strata with differing levels or combinations of additives and process of making the same
JP2856949B2 (en) Hydrophilic fiber
EP4271726A1 (en) Hydrophobic cellulosic fiber
JPH02234915A (en) Polyester fiber having excellent water absorptivity and hand
KR100873850B1 (en) Spunbond nonwoven fabric with excellent reflow prevention

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNORS:CHICOPEE, INC.;FIBERTECH GROUP, INC;POLY-BOND, INC.;AND OTHERS;REEL/FRAME:015732/0080

Effective date: 20040805

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERA

Free format text: SECURITY AGREEMENT;ASSIGNORS:CHICOPEE, INC.;FIBERTECH GROUP, INC.;POLY-BOND, INC.;AND OTHERS;REEL/FRAME:015778/0311

Effective date: 20040805

AS Assignment

Owner name: POLY-BOND INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FNA ACQUISITION, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FNA POLYMER CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABRENE GROUP L.L.C., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PGI EUROPE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: CHICOPEE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PNA CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FIBERGOL CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: DOMINION TEXTILE (USA) INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: DOMINION TEXTILE (USA) INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: BONLAM (S.C.), INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FNA POLYMER CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: LORETEX CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERTECH GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: CHICOPEE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: TECHNETICS GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PGI POLYMER, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABRENE CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABRENE CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FNA ACQUISITION, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERTECH GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: TECHNETICS GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABRENE GROUP L.L.C., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FIBERGOL CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: LORETEX CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PGI POLYMER, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLYLONIX SEPARATION TECHNOLOGIES, INC., SOUTH CAR

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PRISTINE BRANDS CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: POLY-BOND INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PGI EUROPE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PRISTINE BRANDS CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PNA CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABPRO ORIENTED POLYMERS, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABPRO ORIENTED POLYMERS, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: BONLAM (S.C.), INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLYLONIX SEPARATION TECHNOLOGIES, INC., SOUTH CAR

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122