US20010010181A1 - Method and system for producing steel having low nitrogen content - Google Patents

Method and system for producing steel having low nitrogen content Download PDF

Info

Publication number
US20010010181A1
US20010010181A1 US09/817,941 US81794101A US2001010181A1 US 20010010181 A1 US20010010181 A1 US 20010010181A1 US 81794101 A US81794101 A US 81794101A US 2001010181 A1 US2001010181 A1 US 2001010181A1
Authority
US
United States
Prior art keywords
molten metal
flux
denitrogenizing
introducing
silicates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/817,941
Inventor
Peter Zasowski
Rama Bommaraju
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/817,941 priority Critical patent/US20010010181A1/en
Publication of US20010010181A1 publication Critical patent/US20010010181A1/en
Assigned to SMS DEMAG, INC. reassignment SMS DEMAG, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AG INDUSTRIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt

Definitions

  • This invention relates in general to the field of metallurgical processing, and more specifically to processes for adding materials, such as fluxes, into molten metal such as liquid steel.
  • nitrogen is generally considered to be an unwanted element in steel.
  • Nitrogen enters into liquid steel from the air and from contaminants, such as oil, that may find their way into the raw and recycled material from which steel is made.
  • the nitrogen changes the mechanical properties of steel, making it harder and less ductile. It can also chemically combine with aluminum, or other elements, to form inclusions, affecting the quality of the product.
  • Combined compounds can also migrate to grain boundaries in the steel's microstructure, weakening the steel at elevated temperatures, giving rise to inter-granular cracks.
  • Nitrogen levels are particularly a problem in steel that is produced by the so-called “mini-mills,” which generally use electric arc furnaces to melt the steel and that also tend to use a relatively high level of metal scrap as source material. It is not uncommon to see steels that are produced at such facilities as having a nitrogen content that is within the range of about 60 parts per million (ppm) to about 120 ppm. Steels that are made in mills having a basic oxygen furnace, on the other hand, have a nitrogen content that is commonly within the range of about 30 ppm to about 50 ppm. Some specialty applications, such as for the automotive body, however, require nitrogen levels that are as low as 20 ppm.
  • the top ladle slag denitrogenizing treatment would require skimming of carried over furnace slag from the ladle and introduction of a synthetic denitrogenizing ladle flux of a specific composition on top of liquid steel. Adding of such flux to the ladle already containing other slag would not be desired and effective due to the dilution effect by the other slag. Effects of nitrogen removal by doing so would be questionable due to variability of composition of diluted ladle slag.
  • the skimming operations which are not uncommon in some practices such as special desulfurization processes, are very time consuming and not energy efficient. Temperature loss of steel in the ladle not covered with slag can amount to 100-150 degrees F depending on the type of operation. Addition of solid slag fluxing mix requires extended heating to melt and bring the mix into solution. This requires a great deal of time and energy, both of which are expensive factors in the overall cost of production.
  • a method of introducing a denitrogenizing flux to an amount of molten metal includes, according to a first aspect of the invention steps of: (a) encasing the denitrogenizing flux with an outer layer of a metallic material of equal of lower melting point in comparison to the liquid metal; and (b) introducing the flux so encased into the molten metal, whereby the outer layer will melt, thereby introducing the flux into the molten metal.
  • an article for introducing a denitrogenizing flux to an amount of molten metal includes an outer layer of a metallic material that has a melting point that is beneath the anticipated temperature of the amount of molten metal; and a denitrogenizing flux that is encased within the molten metal, whereby the outer layer will melt after the article has been introduced into the molten metal for a predetermined period of time, thereby permitting introduction of the denitrogenizing flux into the molten metal at a depth below the top surface of the molten metal.
  • a method of denitrogenizing an amount of molten metal includes steps of: (a) providing an amount of molten metal; and (b) introducing a denitrogenizing flux into the molten metal in such a way that the flux becomes exposed to the molten metal at a location that is at a depth that is substantially below the top surface of the molten metal, thereby promoting more efficient mixing of the flux into the molten metal.
  • a method of introducing a denitrogenizing flux to an amount of molten metal includes, according to a fourth aspect of the invention, steps of: (a) supplying an amount of denitrogenizing flux into a lance assembly of the type that includes a nozzle that is constructed and arranged to be immersed in molten metal; and (b) using the lance assembly to introduce the flux into the molten metal.
  • FIG. 1 is a schematic depiction of a conventional wire feed machine, which is shown in operation according to the invention
  • FIG. 2 is a cross-sectional view taken along lines 2 - 2 in FIG. 1;
  • FIG. 3 is a schematic depiction of a system constructed according to an alternative embodiment of the invention.
  • FIG. 4 is a schematic control diagram.
  • an improved system 10 for producing steel that has a low nitrogen content includes a source 12 of a wire vector 14 that is constructed and arranged to introduce a denitrogenizing flux into molten metal such as steel.
  • System 10 utilizes a conventional wire feed machine of the type that includes feeding structure 16 for feeding the wire vector into a guide chute 18 at a controlled velocity so as to cause the wire vector 14 to penetrate into the molten steel 22 at a predetermined speed and direction.
  • Wire vector 14 further includes an inner body of a powdered denitrogenizing flux material 26 , which includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al).
  • the most preferred flux materials are CaO—BaO—TiO 2 —(Al 2 O 3 ), CaO—TiO 2 (Al 2 O 3 ) and Calcium-Boron oxide bearing fluxes.
  • any other flux that is capable of achieving the desired denitrogenization could be substituted.
  • a process according to one embodiment of the invention involves encasing the denitrogenizing flux 26 with the outer layer of metallic material 24 and introducing the flux 26 so encased into the molten metal 22 , whereby the outer layer will melt, thereby introducing the flux into the molten metal.
  • a system 30 for introducing a denitrogenizing flux 20 to an amount of molten metal 32 that is constructed according to a preferred embodiment of the invention includes a container 34 , such as a ladle, for holding an amount of molten metal 32 such as liquefied steel.
  • System 30 further includes a lance assembly 36 that is preferably inclusive of a container or hopper 38 of a supply of denitrogenizing flux 40 , and a lance 42 for introducing the flux 40 into the molten metal 32 .
  • the flux material 40 is a powdered denitrogenizing flux material which includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al).
  • the most preferred flux materials are CaO—BaO—TiO 2 —(Al 2 O 3 ), CaO—TiO 2 —(Al 2 O 3 ) and Calcium-Boron oxide bearing fluxes.
  • any other flux that is capable of achieving the desired denitrogenization could be substituted.
  • a second end of the lance 42 terminates in a nozzle 48 , which during operation of the system 30 is immersed in the molten metal 32 .
  • the portion of the lance 42 that is expected to be immersed in the molten metal 32 during operation is encased in a protective refractory sleeve 54 , as is shown in FIG. 3.
  • a conveyor 50 that is powered by a motor 52 is positioned to supply flux material from the hopper 38 into the lance 42 at a location that is between the valve 46 and the nozzle 48 .
  • System 30 includes a control system having a CPU 56 that controls operation of the motor 52 and the valve 56 .
  • system 30 is operated to introduce the denitrogenizing flux 40 into the molten metal 32 by CPU 56 instructing motor 52 to cause conveyor 50 to move flux into the lance 42 , and by opening valve 46 , thus causing the flux 40 to become entrained in the flow of inert gas that is provided by the pressure source 44 .
  • the flux is then injected into the molten metal 32 at a preselected depth and velocity that is chosen to promote fast, efficient mixing of the flux 40 with the molten metal 32 .
  • the invention adds denitrogenizing flux in a manner that is less time consuming and less wasteful of energy than methods of flux addition and mixing that are in conventional use.

Abstract

A method of introducing a denitrogenizing flux material into a container of molten metal includes steps of providing a wire-like vector that has an inner core of flux material and an outer layer that is used to contain the inner core, and using a wire feed machine to introduce the wire-like vector into a container of molten metal. In comparison with conventional top slag removal techniques, this process permits the material from which the inner core is made to be injected into the container of molten metal at a speed and direction that promotes a controlled mixing of the flux material and the molten metal.

Description

  • This is a continuation-in-part of Ser. No. 08/866,173, filed May 30, 1997 and a continuation-in-part of Ser. No. 08/979,771, filed Nov. 26, 1997, the disclosures of which are hereby incorporated by reference as if fully set forth herein. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • This invention relates in general to the field of metallurgical processing, and more specifically to processes for adding materials, such as fluxes, into molten metal such as liquid steel. [0003]
  • 2. Description of the Prior Art [0004]
  • In the production of metals such as steel, it is sometimes desirable to remove unwanted trace elements from the liquid metal by reacting one or more flux materials with the liquid metal. [0005]
  • For example, nitrogen is generally considered to be an unwanted element in steel. Nitrogen enters into liquid steel from the air and from contaminants, such as oil, that may find their way into the raw and recycled material from which steel is made. The nitrogen changes the mechanical properties of steel, making it harder and less ductile. It can also chemically combine with aluminum, or other elements, to form inclusions, affecting the quality of the product. Combined compounds can also migrate to grain boundaries in the steel's microstructure, weakening the steel at elevated temperatures, giving rise to inter-granular cracks. [0006]
  • Nitrogen levels are particularly a problem in steel that is produced by the so-called “mini-mills,” which generally use electric arc furnaces to melt the steel and that also tend to use a relatively high level of metal scrap as source material. It is not uncommon to see steels that are produced at such facilities as having a nitrogen content that is within the range of about 60 parts per million (ppm) to about 120 ppm. Steels that are made in mills having a basic oxygen furnace, on the other hand, have a nitrogen content that is commonly within the range of about 30 ppm to about 50 ppm. Some specialty applications, such as for the automotive body, however, require nitrogen levels that are as low as 20 ppm. Some facilities use vacuum degassing equipment, which essentially exposes the liquid steel to near vacuum conditions to decarburize the steel. Some degree of nitrogen removal may be achieved as a by-product of this process. Unfortunately, this process is expensive and is not able to extract nitrogen that has already chemically combined with other elements, such as aluminum. [0007]
  • More recently, it has been proposed to use fluxes to remove nitrogen from molten steel by adding a synthetic ladle slag of appropriate composition to the top surface of the molten steel within a ladle. The top slag process, which is also in common practice for desulfurizing steel, involves heating the steel within the ladle for an extended period of time and to circulate the steel, thereby exposing all the molten metal over time to the liquid metal-slag reaction interface. While denitrogenization with top ladle slag is promising in the sense that it permits reduction of nitrogen to levels otherwise not achievable by other processes, it has several practical limitations and consequently it is not in wide practice at this point. The top ladle slag denitrogenizing treatment would require skimming of carried over furnace slag from the ladle and introduction of a synthetic denitrogenizing ladle flux of a specific composition on top of liquid steel. Adding of such flux to the ladle already containing other slag would not be desired and effective due to the dilution effect by the other slag. Effects of nitrogen removal by doing so would be questionable due to variability of composition of diluted ladle slag. The skimming operations, which are not uncommon in some practices such as special desulfurization processes, are very time consuming and not energy efficient. Temperature loss of steel in the ladle not covered with slag can amount to 100-150 degrees F depending on the type of operation. Addition of solid slag fluxing mix requires extended heating to melt and bring the mix into solution. This requires a great deal of time and energy, both of which are expensive factors in the overall cost of production. [0008]
  • Denitrogenization using fluxes is being explored in several universities on experimental scale. The removal of nitrogen from steel appears to take place both in acidic and basic fluxes. The nitride capacity of fluxes has a V-shaped dependency on the optical basicity. The nitride capacity is high at low optical basicity; as the optical basicity is increased it reaches a minimum and starts to increase later. This behavior is explained by Sommerville et. al. to be related to the structural effects; the nitrogen which substitutes for oxygens in the network shows an inverse relationship with basicity whereas that replacing “free” oxygens is directly related to basicity. While the knowledge of denitrogenization with fluxes is improving, the techniques used in these studies are on a laboratory scale and have employed the top slag method. As discussed above this technique has several practical limitations for routine technical uses. [0009]
  • Articles addressing flux denitrogenization, the details of which are incorporated into this document as if set forth fully herein, are as follows: [0010] Studies on Slags for Nitrogen Removal from Steel, J. P. Ferreira et al., [75th Steelmaking Conference, Iron &Steel Society, Apr. 5-8, 1992, Toronto, Ontario, Canada—Abstracts], pp. 216-217; Studies of Nitrogen in Steel in a Plasma Induction Reactor with a BaO—TiO 2 Slag, L. B. McFeaters et al., [75th Steelmaking Conference, Iron &Steel Society, Apr. 5-8, 1992, Toronto, Ontario, Canada—Abstracts], pp. 218-219; and The Behavior of Nitrogen During Plasma-Enhanced Refining, M. Takahashi et al., [75th Steelmaking Conference, Iron Steel Society, Apr. 5-8, 1992, Toronto, Ontario, Canada—Abstracts], pp. 220-221; and Synthetic Slags for Nitrogen Removal, J. P. Ferreira, I. D. Sommerville, and a. Mclean, [Iron and Steelmaker, May 1992], pp. 43-49; and The use and Misuse of Capacities in Slags, I. D. Sommerville, A. Mclean and Y. D. Young [Proceedings International Conference on Molten Slags, Fluxes and Salts, 1997 Conference], pp. 375-383; and Solubility of Nitrogen in Cao—Sio 2 —CaF 2 Slag Systems, H. S. Song, D. S. Kim, D. J. Min and P. C. Rhee [Proceedings International Conference on Molten Slags, Fluxes and Salts, 1997 Conference], pp. 583-587; and Nitride Capacities in Slags, H. Suito, K. Tomioka, and J. Tanabe, [Proceedings of 4th International Conference on Molten Slags and Fluxes, 1992, Sendai], pp. 161-166.
  • A need exists for an improved system and process for introducing a denitrogenizing flux to a quantity of molten metal, such as steel, in a manner that is less time consuming and less wasteful of energy than methods of flux addition and mixing that are in conventional use. [0011]
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the invention to provide an improved system and process for introducing a denitrogenizing flux to a quantity of molten metal, such as steel, in a manner that is less time consuming and less wasteful of energy than methods of flux addition and mixing that are in conventional use. In order to achieve the above and other objects of the invention, a method of introducing a denitrogenizing flux to an amount of molten metal, includes, according to a first aspect of the invention steps of: (a) encasing the denitrogenizing flux with an outer layer of a metallic material of equal of lower melting point in comparison to the liquid metal; and (b) introducing the flux so encased into the molten metal, whereby the outer layer will melt, thereby introducing the flux into the molten metal. [0012]
  • According to a second aspect of the invention, an article for introducing a denitrogenizing flux to an amount of molten metal includes an outer layer of a metallic material that has a melting point that is beneath the anticipated temperature of the amount of molten metal; and a denitrogenizing flux that is encased within the molten metal, whereby the outer layer will melt after the article has been introduced into the molten metal for a predetermined period of time, thereby permitting introduction of the denitrogenizing flux into the molten metal at a depth below the top surface of the molten metal. According to a third aspect of the invention, a method of denitrogenizing an amount of molten metal includes steps of: (a) providing an amount of molten metal; and (b) introducing a denitrogenizing flux into the molten metal in such a way that the flux becomes exposed to the molten metal at a location that is at a depth that is substantially below the top surface of the molten metal, thereby promoting more efficient mixing of the flux into the molten metal. [0013]
  • A method of introducing a denitrogenizing flux to an amount of molten metal, includes, according to a fourth aspect of the invention, steps of: (a) supplying an amount of denitrogenizing flux into a lance assembly of the type that includes a nozzle that is constructed and arranged to be immersed in molten metal; and (b) using the lance assembly to introduce the flux into the molten metal. [0014]
  • These and various other advantages and features of novelty which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention. [0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic depiction of a conventional wire feed machine, which is shown in operation according to the invention; [0016]
  • FIG. 2 is a cross-sectional view taken along lines [0017] 2-2 in FIG. 1;
  • FIG. 3 is a schematic depiction of a system constructed according to an alternative embodiment of the invention; and [0018]
  • FIG. 4 is a schematic control diagram. [0019]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, and referring in particular to FIG. 1, an improved [0020] system 10 for producing steel that has a low nitrogen content includes a source 12 of a wire vector 14 that is constructed and arranged to introduce a denitrogenizing flux into molten metal such as steel. System 10 utilizes a conventional wire feed machine of the type that includes feeding structure 16 for feeding the wire vector into a guide chute 18 at a controlled velocity so as to cause the wire vector 14 to penetrate into the molten steel 22 at a predetermined speed and direction.
  • As may be seen in FIG. 2, the [0021] wire vector 14 includes an outer layer 24 of a material, such as steel, that has a melting point that is at or beneath the temperature of the molten metal 22. Preferably, the outer layer 24 is fabricated from steel a material with equal or lower melting point than the liquid melt, preferably the outer layer can be made of steel or aluminum. Outer layer 24 thus encases the nonmetallic substance in an elongated, tube-like hollow cladding of metallic material that is designed to melt after being introduced into the molten metal 22.
  • [0022] Wire vector 14 further includes an inner body of a powdered denitrogenizing flux material 26, which includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al). The most preferred flux materials are CaO—BaO—TiO2—(Al2O3), CaO—TiO2(Al2O3) and Calcium-Boron oxide bearing fluxes. Alternatively, any other flux that is capable of achieving the desired denitrogenization could be substituted.
  • A process according to one embodiment of the invention involves encasing the [0023] denitrogenizing flux 26 with the outer layer of metallic material 24 and introducing the flux 26 so encased into the molten metal 22, whereby the outer layer will melt, thereby introducing the flux into the molten metal.
  • Another embodiment of the invention is depicted in FIGS. 3 and 4. Referring in particular to FIG. 3, a [0024] system 30 for introducing a denitrogenizing flux 20 to an amount of molten metal 32 that is constructed according to a preferred embodiment of the invention includes a container 34, such as a ladle, for holding an amount of molten metal 32 such as liquefied steel. System 30 further includes a lance assembly 36 that is preferably inclusive of a container or hopper 38 of a supply of denitrogenizing flux 40, and a lance 42 for introducing the flux 40 into the molten metal 32.
  • Preferably, the [0025] flux material 40 is a powdered denitrogenizing flux material which includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al). The most preferred flux materials are CaO—BaO—TiO2—(Al2O3), CaO—TiO2—(Al2O3) and Calcium-Boron oxide bearing fluxes. Alternatively, any other flux that is capable of achieving the desired denitrogenization could be substituted.
  • A [0026] pressure source 44 of an inert gas, preferably argon, is communicated with a first end of the lance 42, and a control valve 46 is interposed between the pressure source 44 and the lance 42 in order to control the flow of the inert gas through the lance 42. A second end of the lance 42 terminates in a nozzle 48, which during operation of the system 30 is immersed in the molten metal 32. The portion of the lance 42 that is expected to be immersed in the molten metal 32 during operation is encased in a protective refractory sleeve 54, as is shown in FIG. 3.
  • A [0027] conveyor 50 that is powered by a motor 52 is positioned to supply flux material from the hopper 38 into the lance 42 at a location that is between the valve 46 and the nozzle 48. As may be seen in FIG. 4, System 30 includes a control system having a CPU 56 that controls operation of the motor 52 and the valve 56.
  • In operation, [0028] system 30 is operated to introduce the denitrogenizing flux 40 into the molten metal 32 by CPU 56 instructing motor 52 to cause conveyor 50 to move flux into the lance 42, and by opening valve 46, thus causing the flux 40 to become entrained in the flow of inert gas that is provided by the pressure source 44. The flux is then injected into the molten metal 32 at a preselected depth and velocity that is chosen to promote fast, efficient mixing of the flux 40 with the molten metal 32. Accordingly, the invention adds denitrogenizing flux in a manner that is less time consuming and less wasteful of energy than methods of flux addition and mixing that are in conventional use.
  • It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. [0029]

Claims (11)

What is claimed is:
1. A method of introducing a denitrogenizing flux to an amount of molten metal, comprising steps of:
(a) encasing the denitrogenizing flux with an outer layer of a metallic material that has a melting point that is beneath the temperature of the amount of molten metal; and
(b) introducing the flux so encased into the molten metal, whereby the outer layer will melt, thereby introducing the flux into the molten metal.
2. A method according to
claim 1
, wherein step (a) is performed by encasing the flux in an elongated, tube-like hollow cladding of metallic material, thereby forming a wire-like vector.
3. A method according to
claim 2
, wherein step (b) is performed by introducing the wire-like vector into the molten metal by using a conventional wire feeding machine.
4. A method according to
claim 1
, wherein said denitrogenizing flux includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al).
5. An article for introducing a denitrogenizing flux to an amount of molten metal, comprising:
an outer layer of a metallic material that has a melting point that is beneath the anticipated temperature of the amount of molten metal; and
a denitrogenizing flux that is encased within the molten metal, whereby the outer layer will melt after the article has been introduced into the molten metal for a predetermined period of time, thereby permitting introduction of the denitrogenizing flux into the molten metal at a depth below the top surface of the molten metal.
6. An article according to
claim 5
, wherein said outer layer encases the nonmetallic substance in an elongated, tube-like hollow cladding of metallic material, thereby forming a wire-like vector.
7. An article according to
claim 5
, wherein said denitrogenizing flux includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al).
8. A method of denitrogenizing an amount of molten metal, comprising steps of:
(a) providing an amount of molten metal; and
(b) introducing a denitrogenizing flux into the molten metal in such a way that the flux becomes exposed to the molten metal at a location that is at a depth that is substantially below the top surface of the molten metal, thereby promoting more efficient mixing of the flux into the molten metal.
9. A method according to
claim 8
, wherein said denitrogenizing flux includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al).
10. A method of introducing a denitrogenizing flux to an amount of molten metal, comprising steps of:
(a) supplying an amount of denitrogenizing flux into a lance assembly of the type that includes a nozzle that is constructed and arranged to be immersed in molten metal; and
(b) using the lance assembly to introduce the flux into the molten metal.
11. A method according to
claim 10
, wherein said denitrogenizing flux includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium (Ca), Silicon (Si), Magnesium (Mg), Boron (B), Titanium (Ti), Barium (Ba) and Aluminum (Al).
US09/817,941 1997-05-30 2001-03-27 Method and system for producing steel having low nitrogen content Abandoned US20010010181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/817,941 US20010010181A1 (en) 1997-05-30 2001-03-27 Method and system for producing steel having low nitrogen content

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US86617397A 1997-05-30 1997-05-30
US97977197A 1997-11-26 1997-11-26
US27203199A 1999-03-18 1999-03-18
US09/817,941 US20010010181A1 (en) 1997-05-30 2001-03-27 Method and system for producing steel having low nitrogen content

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US27203199A Continuation 1997-05-30 1999-03-18

Publications (1)

Publication Number Publication Date
US20010010181A1 true US20010010181A1 (en) 2001-08-02

Family

ID=27402435

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/817,941 Abandoned US20010010181A1 (en) 1997-05-30 2001-03-27 Method and system for producing steel having low nitrogen content

Country Status (1)

Country Link
US (1) US20010010181A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050078843A1 (en) * 2003-02-05 2005-04-14 Natan Bauman Hearing aid system
WO2005078142A1 (en) * 2004-02-11 2005-08-25 Tata Steel Limited A cored wire injection process ih steel melts
US20060124208A1 (en) * 2004-12-14 2006-06-15 Coe C L Method for making strain aging resistant steel
US20070074599A1 (en) * 2003-11-06 2007-04-05 Djamschid Amirzadeh-Asl Method for the introduction of inorganic solid bodies into hot liquid melts
US20110192255A1 (en) * 2008-10-09 2011-08-11 National Institute Of Advanced Industrial Science And Technology Composition for collecting metal component
US8623113B2 (en) 2010-03-31 2014-01-07 National Institute Of Advanced Industrial Science And Technology Metal component collection agent and method for collecting metal component
CN107099642A (en) * 2017-04-27 2017-08-29 攀钢集团研究院有限公司 Immersion feeds silk braid pipe, wire feeder and feeds silk method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050078843A1 (en) * 2003-02-05 2005-04-14 Natan Bauman Hearing aid system
US20070074599A1 (en) * 2003-11-06 2007-04-05 Djamschid Amirzadeh-Asl Method for the introduction of inorganic solid bodies into hot liquid melts
US7682418B2 (en) 2004-02-11 2010-03-23 Tata Steel Limited Cored wire injection process in steel melts
WO2005078142A1 (en) * 2004-02-11 2005-08-25 Tata Steel Limited A cored wire injection process ih steel melts
US20080105086A1 (en) * 2004-02-11 2008-05-08 Tata Steel Limited Cored Wire Injection Process in Steel Melts
US7717976B2 (en) 2004-12-14 2010-05-18 L&P Property Management Company Method for making strain aging resistant steel
US20060124208A1 (en) * 2004-12-14 2006-06-15 Coe C L Method for making strain aging resistant steel
US20100193080A1 (en) * 2004-12-14 2010-08-05 L&P Property Management Company Method for Making Strain Aging Resistant Steel
US8419870B2 (en) 2004-12-14 2013-04-16 L&P Property Management Company Method for making strain aging resistant steel
US20110192255A1 (en) * 2008-10-09 2011-08-11 National Institute Of Advanced Industrial Science And Technology Composition for collecting metal component
US8979974B2 (en) 2008-10-09 2015-03-17 National Institute Of Advanced Industrial Science And Technology Composition for collecting metal component
US8623113B2 (en) 2010-03-31 2014-01-07 National Institute Of Advanced Industrial Science And Technology Metal component collection agent and method for collecting metal component
CN107099642A (en) * 2017-04-27 2017-08-29 攀钢集团研究院有限公司 Immersion feeds silk braid pipe, wire feeder and feeds silk method

Similar Documents

Publication Publication Date Title
US20010010181A1 (en) Method and system for producing steel having low nitrogen content
KR950013823B1 (en) Method of making steel
JP2006206957A (en) Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy
JPS61250107A (en) Method and apparatus for producing steel from sponge iron
AU743299B2 (en) Method and article for introducing denitrogenizing flux into molten metal
US20130167688A1 (en) Method of making low carbon steel using ferrous oxide and mineral carbonates
US4795491A (en) Premelted synthetic slag for ladle desulfurizing molten steel
JP4894325B2 (en) Hot metal dephosphorization method
JPH10130714A (en) Production of steel for wire rod excellent in wire drawability and cleanliness
EP0073274B1 (en) Method of preliminary desiliconization of molten iron by injecting gaseous oxygen
AU3704602A (en) Method and article for introducing denitrogenizing flux into molten metal
US4726033A (en) Process to improve electric arc furnace steelmaking by bottom gas injection
MXPA99011035A (en) Method and article for introducing denitrogenizing flux into molten metal
JPH07207316A (en) Wire for desulfurization of molten iron having high desulfurization efficiency
JP2000345224A (en) Method for desulfurizing molten iron
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
KR100336855B1 (en) Flux wire for use in the manufacture of high purity aluminum deoxidized steel
JP3680385B2 (en) Demanganese process for hot metal
JP5387045B2 (en) Manufacturing method of bearing steel
JP4561135B2 (en) Refractory-coated immersion lance and hot metal treatment apparatus including the same
SU1027227A1 (en) Method for making steel
CN1665942B (en) Metallurgical treatment method on a metal bath
KR970004985B1 (en) Method of denitrification and dephosphorization
JP4197396B2 (en) Blowing process management method
KR20050037076A (en) Method for manufacturing steel with low sulfur

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMS DEMAG, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AG INDUSTRIES, INC.;REEL/FRAME:013467/0600

Effective date: 20020731

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION