AU743299B2 - Method and article for introducing denitrogenizing flux into molten metal - Google Patents
Method and article for introducing denitrogenizing flux into molten metal Download PDFInfo
- Publication number
- AU743299B2 AU743299B2 AU77239/98A AU7723998A AU743299B2 AU 743299 B2 AU743299 B2 AU 743299B2 AU 77239/98 A AU77239/98 A AU 77239/98A AU 7723998 A AU7723998 A AU 7723998A AU 743299 B2 AU743299 B2 AU 743299B2
- Authority
- AU
- Australia
- Prior art keywords
- molten metal
- flux
- denitrogenizing
- introducing
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000004907 flux Effects 0.000 title claims description 66
- 229910052751 metal Inorganic materials 0.000 title claims description 52
- 239000002184 metal Substances 0.000 title claims description 52
- 238000000034 method Methods 0.000 title claims description 29
- 239000007769 metal material Substances 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 150000004760 silicates Chemical class 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 5
- -1 Boron Titanium Barium Chemical compound 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 3
- ULSFLOAZQDMJLA-UHFFFAOYSA-N [Ca].[B]=O Chemical compound [Ca].[B]=O ULSFLOAZQDMJLA-UHFFFAOYSA-N 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 3
- 238000005253 cladding Methods 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 2
- LAZOHFXCELVBBV-UHFFFAOYSA-N [Mg].[Ca].[Si] Chemical compound [Mg].[Ca].[Si] LAZOHFXCELVBBV-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052810 boron oxide Inorganic materials 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims 1
- 150000002222 fluorine compounds Chemical class 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 38
- 229910000831 Steel Inorganic materials 0.000 description 36
- 239000010959 steel Substances 0.000 description 36
- 239000002893 slag Substances 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 19
- 239000000463 material Substances 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000004673 fluoride salts Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- OSMSIOKMMFKNIL-UHFFFAOYSA-N calcium;silicon Chemical compound [Ca]=[Si] OSMSIOKMMFKNIL-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/076—Use of slags or fluxes as treating agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/04—Removing impurities other than carbon, phosphorus or sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0056—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/0025—Charging or loading melting furnaces with material in the solid state
- F27D3/0026—Introducing additives into the melt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/18—Charging particulate material using a fluid carrier
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Furnace Charging Or Discharging (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
-WO 98/54369 PCT/US98/1 1528 METHOD AND ARTICLE FOR INTRODUCING DENITROGENIZING FLUX INTO MOLTEN METAL BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates in general to the field of metallurgical processing, and more specifically to processes for adding materials, such as fluxes, into molten metal such as liquid steel.
2. Description of the Prior Art In the production of metals such as steel, it is sometimes desirable to remove unwanted trace elements from the liquid metal by reacting one or more flux materials with the liquid metal.
For example, nitrogen is generally considered to be an unwanted element in steel.
Nitrogen enters into liquid steel from the air and from contaminants, such as oil, that may find their way into the raw-and recycled material from which steel is made. The nitrogen changes the mechanical properties of steel, making it harder and less ductile. It can also chemically combine with aluminum, or other elements, to form inclusions, affecting the quality of the product. Combined compounds can also migrate to grain boundaries in the steel's microstructure, weakening the steel at elevated temperatures, giving rise to inter-granular cracks.
Nitrogen levels are particularly a problem in steel that is produced by the so-called "mini-mills," which generally use electric arc furnaces to melt the steel and that also tend to use a relatively high level of metal scrap as source material; It is not uncommon to see steels that are produced at such facilities as having a nitrogen content that is within the range of about 60 parts per million (ppm) to about 120 ppm. Steels that are made in mills having a basic oxygen furnace, on the other hand, have a nitrogen content that is commonly within the range of about 30 ppm to about 50 ppm. Some specialty applications, such as for the automotive body, however, require nitrogen levels that are as low as 20 ppm. Some facilities WO 98/54369 PCT/US98/11528 use vacuum degassing equipment, which essentially exposes the liquid steel to near vacuum conditions to decarburize the steel. Some degree of nitrogen removal may be achieved as a by-product of this process. Unfortunately, this process is expensive and is not able to extract nitrogen that has already chemically combined with other elements, such as aluminum.
More recently, it has been proposed to use fluxes to remove nitrogen from molten steel by adding a synthetic ladle slag of appropriate composition to the top surface of the molten steel within a ladle. The top slag process, which is also in common practice for desulfurizing steel, involves heating the steel within the ladle for an extended period of time and to circulate the steel, thereby exposing all the molten metal over time to the liquid metal-slag reaction interface. While denitrogenization with top ladle slag is promising in the sense that it permits reduction of nitrogen to levels otherwise not achievable by other processes, it has several practical limitations and consequently it is not in wide practice at this point. The top ladle slag denitrogenizing treatment would require skimming of carried over furnace slag from the ladle and introduction of a synthetic denitrogenizing ladle flux of a specific composition on top of liquid steel. Adding of such flux to the ladle already containing other slag would not be desired and effective due to the dilution effect by the other slag. Effects of nitrogen removal by doing so would be questionable due to variability of composition of diluted ladle slag. The skimming operations, which are not uncommon in some practices such as special desulfurization processes, are very time consuming and not energy efficient. Temperature loss of steel in the ladle not covered with slag can amount to 100-150 degrees F depending on the type of operation. Addition of solid slag fluxing mix requires extended heating to melt and bring the mix into solution. This requires a great deal of time and energy, both of which are expensive factors in the overall cost of production.
Denitrogenization using fluxes is being explored in several universities on experimental scale. The removal of nitrogen from steel appears to take place both in acidic and basic fluxes.
The nitride capacity of fluxes has a V-shaped dependency on the optical basicity. The nitride capacity is high at low optical basicity; as the optical basicity is increased it reaches a minimum and starts to increase later. This behavior is explained by Sommerville et.al. to be related to the structural effects; the nitrogen which substitutes for oxygens in the network shows an inverse -relationship with basicity whereas that replacing "free" oxygens is directly related to basicity.
While the knowledge of denitrogenization with fluxes is improving, the techniques used in 2 -WO 98/54369 PCT/US98/11528 these studies are on a laboratory scale and have employed the top slag method. As discussed above this technique has several practical limitations for routine technical uses.
Articles addressing flux denitrogenization, the details of which are incorporated into this document as if set forth fully herein, are as follows: Studies on Slags for Nitrogen Removal from Steel, J.P. Ferreira et al., [75th Steelmaking Conference, Iron &Steel Society, April 5-8, 1992, Toronto, Ontario, Canada Abstracts], pp. 216-217; Studies ofNitrogen in Steel in a Plasma Induction Reactor with a BaO-TiO, Slag, L.B. McFeaters et al., Steelmaking Conference, Iron &Steel Society, April 5-8, 1992, Toronto, Ontario, Canada Abstracts], pp. 218-219; and The Behavior of Nitrogen During Plasma-Enhanced Refining, M. Takahashi et al., [75th Steelmaking Conference, Iron Steel Society, April 5-8, 1992, Toronto, Ontario, Canada Abstracts], pp. 220-221; and Synthetic Slags for Nitrogen Removal, J.P. Ferreira, I.D. Sommerville, and a. Mclean, Iron and Steelmaker, May 1992], pp. 43-49; and The use andMisuse of Capacities in Slags, I.D. Sommerville, A. Mclean and Y.D. Young [Proceedings International Conference on Molten Slags, Fluxes and Salts, 1997 Conference], pp. 375-383; and Solubility of Nitrogen in Cao-Sior-CaF 2 Slag Systems, H.S.
Song, D.S. Kim, D.J. Min and P.C. Rhee [Proceedings International Conference on Molten Slags, Fluxes and Salts, 1997 Conference], pp. 583-587; and Nitride Capacities in Slags, H. Suito, K. Tomioka, and J. Tanabe, [Proceedings of 4th International Conference on Molten Slags and Fluxes, 1992, Sendai], pp. 161-166.
A need exists for an improved system and process for introducing a denitrogenizing flux to a quantity of molten metal, such as steel, in a manner that is less time consuming and less wasteful of energy than methods of flux addition and mixing that are in conventional use.
SUMMARY OF THE INVENTION Accordingly, it is an object of the invention to provide an improved system and process for introducing a denitrogenizing flux to a quantity of molten metal, such as steel, in a manner that is less time consuming and less wasteful of energy than methods of flux addition and mixing that are in conventional use. In order to achieve the above and other objects of the invention, a method of introducing a denitrogenizing flux to an amount of molten metal, includes, according to a first aspect of the invention steps of: encasing the denitrogenizing -WO 98/54369 PCT/US98/11528 flux with an outer layer of a metallic material of equal of lower melting point in comparison to the liquid metal; and introducing the flux so encased into the molten metal, whereby the outer layer will melt, thereby introducing the flux into the molten metal.
According to a second aspect of the invention, an article for introducing a denitrogenizing flux to an amount of molten metal includes an outer layer of a metallic material that has a melting point that is beneath the anticipated temperature of the amount of molten metal; and a denitrogenizing flux that is encased within the molten metal, whereby the outer layer will melt after the article has been introduced into the molten metal for a predetermined period of time, thereby permitting introduction of the denitrogenizing flux into the molten metal at a depth below the top surface of the molten metal.
According to a third aspect of the invention, a method of denitrogenizing an amount of molten metal includes steps of providing an amount of molten metal; and introducing a denitrogenizing flux into the molten metal in such a way that the flux becomes exposed to the molten metal at a location that is at a depth that is substantially below the top surface of the molten metal, thereby promoting more efficient mixing of the flux into the molten metal.
A method of introducing a denitrogenizing flux to an amount of molten metal, includes, according to a fourth aspect of the invention, steps of: supplying an amount of denitrogenizing flux into a lance assembly of the type that includes a nozzle that is constructed and arranged to be immersed in molten metal; and using the lance assembly to introduce the flux into the molten metal.
These and various other advantages and features of novelty which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.
BRIEF DESCRIPTION OF THIE DRAWINGS FIGURE 1 is a schematic depiction of a conventional wire feed machine, which is shown in operation according to the invention; FIGURE 2 is a cross-sectional view taken along lines 2-2 in FIGURE 1; -WO 98/54369 PCT/US98/11528 FIGURE 3 is a schematic depiction of a system constructed according to an alternative embodiment of the invention; and FIGURE 4 is a schematic control diagram.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, and referring in particular to FIGURE 1, an improved system 10 for producing steel that has a low nitrogen content includes a source 12 of a wire vector 14 that is constructed and arranged to introduce a denitrogenizing flux into molten metal such as steel. System 10 utilizes a conventional wire feed machine of the type that includes feeding structure 16 for feeding the wire vector into a guide chute 18 at a controlled velocity so as to cause the wire vector 14 to penetrate into the molten steel 22 at a predetermined speed and direction.
As may be seen in FIGURE 2, the wire vector 14 includes an outer layer 24 of a material, such as steel, that has a melting point that is at or beneath the temperature of the molten metal 22. Preferably, the outer layer 24 is fabricated from steel a material with equal or lower melting point than the liquid melt, preferably the outer layer can be made of steel or aluminum. Outer layer 24 thus encases the nonmetallic substance in an elongated, tube-like hollow cladding of metallic material that is designed to melt after being introduced into the molten metal 22.
Wire vector 14 further includes an inner body of a powdered denitrogenizing flux material 26, which includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium Silicon Magnesium Boron Titanium Barium (Ba) and Aluminum The most preferred flux materials are CaO-Ba0-TiO 2
-(AI
2 0 3 CaO-TiO 2
-(A
2 0 3 and Calcium Boron oxide bearing fluxes. Alternatively, any other flux that is capable of achieving the desired denitrogenization could be substituted.
A process according to one embodiment of the invention involves encasing the denitrogenizing flux 26 with the outer layer of metallic material 24 and introducing the flux 26 -WO 98/54369 PCT/US98/1 1528 so encased into the molten metal 22, whereby the outer layer will melt, thereby introducing the flux into the molten metal.
Another embodiment of the invention is depicted in FIGURES 3 and 4. Referring in particular to FIGURE 3, a system 30 for introducing a denitrogenizing flux 20 to an amount of molten metal 32 that is constructed according to a preferred embodiment of the invention includes a container 34, such as a ladle, for holding an amount of molten metal 32 such as liquefied steel. System 30 further includes a lance assembly 36 that is preferably inclusive of a container or hopper 38 of a supply of denitrogenizing flux 40, and a lance 42 for introducing the flux 40 into the molten metal 32.
Preferably, the flux material 40 is a powdered denitrogenizing flux material which includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium Silicon (Si), Magnesium Boron Titanium Barium (Ba) and Aluminum The most preferred flux materials are CaO-BaO-TiO 2 -(A1 2 0 3 CaO-TiO 2
-(A
2 0 3 and Calcium Boron oxide bearing fluxes. Alternatively, any other flux that is capable of achieving the desired denitrogenization could be substituted.
A pressure source 44 of an inert gas, preferably argon, is communicated with a first end of the lance 42, and a control valve 46 is interposed between the pressure source 44 and the lance 42 in order to control the flow of the inert gas through the lance 42. A second end of the lance 42 terminates in a nozzle 48, which during operation of the system 30 is immersed in the molten metal 32. The portion of the lance 42 that is expected to be immersed in the molten metal 32 during operation is encased in a protective refractory sleeve 54, as is shown in FIGURE 3.
A conveyor 50 that is powered by a motor 52 is positioned to supply flux material from the hopper 38 into the lance 42 at a location that is between the valve 46 and the nozzle 48. As may be seen in FIGURE 4, System 30 includes a control system having a CPU 56 that controls operation of the motor 52 and the valve 56.
In operation, system 30 is operated to introduce the denitrogenizing flux 40 into the molten metal 32 by CPU 56 instructing motor 52 to cause conveyor 50 to move flux into the lance 42, and by opening valve 46, thus causing the flux 40 to become entrained inthe flow of AVO 98/54369 PCTIUS98/11528 inert gas that is provided by the pressure source 44. The flux is then injected into the molten metal 32 at a preselected depth and velocity that is chosen to promote fast, efficient mixing of the flux 40 with the molten metal 32. Accordingly, the invention adds denitrogenizing flux in a manner that is less time consuming and less wasteful of energy than methods of flux addition and mixing that are in conventional use.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Claims (6)
1. A method of denitrogenizing an amount of molten metal, comprising steps of: providing an amount of molten metal; and introducing a denitrogenizing flux into the molten metal in such a way that the flux becomes exposed to the molten metal at a location that is at a depth that is substantially below the top surface of the molten metal, thereby promoting more efficient mixing of the flux into the molten metal.
2. A method according to claim 1, wherein said denitrogenizing flux includes calcium oxide (CaO) and at least one compound selected from the group consisting of oxides, silicates, carbonates of alkali and alkaline earth S" metals and oxides, fluorides, silicates and carbonates of metals selected from the group consisting of Calcium Silicon Magnesium (Mg), Boron Titanium Barium (Ba) and Aluminium (Al).
3. A method according to claim 1 further comprising the step of: encasing the denitrogenizing flux with an outer layer of a metallic material that has a melting point that is beneath the temperature of the amount of molten metal.
4. A method according to claim 3, wherein step is performed by encasing the flux in an elongated, tube-like hollow cladding of metallic material, thereby forming a wire-like vector. 19/11/2001 9 A method according to claim 4, wherein step is performed by introducing the wire-like vector into the molten metal by using a conventional wire feeding machine.
6. A method according to claim 1, wherein the denitrogenizing flux is encased in an outer layer of a metallic material that has a melting point that is beneath the temperature of the amount of molten metal. S7. A method according to claim 6, wherein said outer layer encases the denitrogenizing flux in an elongated, tube-like hollow cladding of said *i metallic material, thereby forming a wire-like vector.
8. A method according to claim 1, wherein the denitrogenizing flux comprises a compound selected from the group consisting of TiO 2 BaO and Boron oxide. A method according to claim 1, wherein the denitrogenizing flux comprises a compound selected from CaO-BaO-TiO 2 -AI 2 0 3 CaO-TiO 2 -Ai 2 0 3 and Calcium-Boron oxide. Dated this 29th day of October 2001 AG Industries, Inc Patent Attorneys for the Applicant PETER MAXWELL ASSOCIATES 19/11/2001
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86617397A | 1997-05-30 | 1997-05-30 | |
US08/866173 | 1997-05-30 | ||
US97977197A | 1997-11-26 | 1997-11-26 | |
US08/979771 | 1997-11-26 | ||
PCT/US1998/011528 WO1998054369A1 (en) | 1997-05-30 | 1998-05-29 | Method and article for introducing denitrogenizing flux into molten metal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU37046/02A Division AU3704602A (en) | 1997-05-30 | 2002-04-24 | Method and article for introducing denitrogenizing flux into molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
AU7723998A AU7723998A (en) | 1998-12-30 |
AU743299B2 true AU743299B2 (en) | 2002-01-24 |
Family
ID=27127935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU77239/98A Ceased AU743299B2 (en) | 1997-05-30 | 1998-05-29 | Method and article for introducing denitrogenizing flux into molten metal |
Country Status (11)
Country | Link |
---|---|
JP (1) | JP2002501578A (en) |
KR (1) | KR20010013178A (en) |
CN (1) | CN1084793C (en) |
AU (1) | AU743299B2 (en) |
BR (1) | BR9809184A (en) |
CA (1) | CA2292591A1 (en) |
DE (1) | DE19882438T1 (en) |
ES (1) | ES2168934B1 (en) |
FI (1) | FI19992549A (en) |
GB (1) | GB2340132A (en) |
WO (1) | WO1998054369A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2422618A (en) * | 2005-01-28 | 2006-08-02 | Injection Alloys Ltd | Molten metal refining wire |
WO2009028924A1 (en) * | 2007-08-29 | 2009-03-05 | Jack Victor Nyrup Aguilar | Ionising compound serving as an electric arc stabiliser |
KR101017482B1 (en) * | 2008-09-29 | 2011-02-25 | 현대제철 주식회사 | Refining method of boron-addes molten steel for thin slab |
CN102277467A (en) * | 2010-06-09 | 2011-12-14 | 鞍钢股份有限公司 | Method for denitrifying molten steel in converter tapping process |
CN115418441B (en) * | 2022-08-24 | 2024-02-06 | 武汉尚圆融信新型材料有限公司 | Efficient denitrification agent and denitrification method for converter tapping process |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34418A (en) * | 1862-02-18 | Improvement in vegetable and root cutters | ||
US4211553A (en) * | 1977-06-21 | 1980-07-08 | Outokumpu Oy | Method of refining of melts by means of a pulverous solid material and/or a gas |
US4999053A (en) * | 1985-04-26 | 1991-03-12 | Mitsui Engineering And Ship Building Co., Ltd. | Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US734418A (en) * | 1903-03-30 | 1903-07-21 | John Mcardle | Plow. |
USRE34418E (en) * | 1982-11-23 | 1993-10-26 | Injectall Limited | Apparatus and method for introducing substances into liquid metal |
US4831742A (en) * | 1986-10-15 | 1989-05-23 | Struble James E | Contour and outline transducer gage assembly |
US4832742A (en) * | 1988-05-12 | 1989-05-23 | Metal Research Corporation | Flexible refining-agent clad wire for refining molten iron group metal |
-
1998
- 1998-05-29 WO PCT/US1998/011528 patent/WO1998054369A1/en not_active Application Discontinuation
- 1998-05-29 AU AU77239/98A patent/AU743299B2/en not_active Ceased
- 1998-05-29 CA CA002292591A patent/CA2292591A1/en not_active Abandoned
- 1998-05-29 JP JP50105999A patent/JP2002501578A/en active Pending
- 1998-05-29 KR KR19997011163A patent/KR20010013178A/en not_active Application Discontinuation
- 1998-05-29 BR BR9809184-0A patent/BR9809184A/en not_active Application Discontinuation
- 1998-05-29 CN CN98805650A patent/CN1084793C/en not_active Expired - Fee Related
- 1998-05-29 DE DE19882438T patent/DE19882438T1/en not_active Withdrawn
- 1998-12-03 ES ES009950067A patent/ES2168934B1/en not_active Expired - Lifetime
-
1999
- 1999-11-26 GB GB9927865A patent/GB2340132A/en not_active Withdrawn
- 1999-11-29 FI FI992549A patent/FI19992549A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34418A (en) * | 1862-02-18 | Improvement in vegetable and root cutters | ||
US4211553A (en) * | 1977-06-21 | 1980-07-08 | Outokumpu Oy | Method of refining of melts by means of a pulverous solid material and/or a gas |
US4999053A (en) * | 1985-04-26 | 1991-03-12 | Mitsui Engineering And Ship Building Co., Ltd. | Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen |
Also Published As
Publication number | Publication date |
---|---|
CN1258321A (en) | 2000-06-28 |
WO1998054369A1 (en) | 1998-12-03 |
DE19882438T1 (en) | 2000-06-21 |
FI19992549A (en) | 1999-11-29 |
ES2168934A1 (en) | 2002-06-16 |
GB2340132A (en) | 2000-02-16 |
AU7723998A (en) | 1998-12-30 |
CA2292591A1 (en) | 1998-12-03 |
ES2168934B1 (en) | 2003-11-01 |
GB9927865D0 (en) | 2000-01-26 |
CN1084793C (en) | 2002-05-15 |
KR20010013178A (en) | 2001-02-26 |
JP2002501578A (en) | 2002-01-15 |
BR9809184A (en) | 2000-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4518422A (en) | Process and apparatus for refining steel in a metallurgical vessel | |
US20010010181A1 (en) | Method and system for producing steel having low nitrogen content | |
KR950013823B1 (en) | Method of making steel | |
AU743299B2 (en) | Method and article for introducing denitrogenizing flux into molten metal | |
JP2006206957A (en) | Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy | |
US20130167688A1 (en) | Method of making low carbon steel using ferrous oxide and mineral carbonates | |
JPS61250107A (en) | Method and apparatus for producing steel from sponge iron | |
Fuhr et al. | Application of slag tracers to investigate source of non-metallic inclusions | |
US4773929A (en) | Method of and device for the simultaneous heating and refining of a metal bath | |
US4795491A (en) | Premelted synthetic slag for ladle desulfurizing molten steel | |
US4853034A (en) | Method of ladle desulfurizing molten steel | |
US20140190312A1 (en) | Method and apparatus for dephosphorising liquid hot metal such as liquid blast furnace iron | |
AU3704602A (en) | Method and article for introducing denitrogenizing flux into molten metal | |
EP0073274B1 (en) | Method of preliminary desiliconization of molten iron by injecting gaseous oxygen | |
JP3365129B2 (en) | Manufacturing method of low sulfur steel | |
MXPA99011035A (en) | Method and article for introducing denitrogenizing flux into molten metal | |
US4726033A (en) | Process to improve electric arc furnace steelmaking by bottom gas injection | |
JPH07207316A (en) | Wire for desulfurization of molten iron having high desulfurization efficiency | |
JP2000345224A (en) | Method for desulfurizing molten iron | |
JP4561135B2 (en) | Refractory-coated immersion lance and hot metal treatment apparatus including the same | |
JP3680385B2 (en) | Demanganese process for hot metal | |
JP3670098B2 (en) | Hot metal dephosphorization method | |
CA2643252A1 (en) | Method of making steel | |
SU1027227A1 (en) | Method for making steel | |
SU821501A1 (en) | Method of steel production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |