US20010009257A1 - Attenuation element and fuel container with attenuation element - Google Patents

Attenuation element and fuel container with attenuation element Download PDF

Info

Publication number
US20010009257A1
US20010009257A1 US09/770,908 US77090801A US2001009257A1 US 20010009257 A1 US20010009257 A1 US 20010009257A1 US 77090801 A US77090801 A US 77090801A US 2001009257 A1 US2001009257 A1 US 2001009257A1
Authority
US
United States
Prior art keywords
dampener
elements
tank
assembly according
adjoining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/770,908
Inventor
Wolfgang Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesma Motoren und Getriebetechnik GmbH
Original Assignee
Tesma Motoren und Getriebetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesma Motoren und Getriebetechnik GmbH filed Critical Tesma Motoren und Getriebetechnik GmbH
Assigned to TESMA MOTOREN UND GETRIEBETECHNIK GMBH reassignment TESMA MOTOREN UND GETRIEBETECHNIK GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAUER, WOLFGANG
Publication of US20010009257A1 publication Critical patent/US20010009257A1/en
Priority to US10/194,141 priority Critical patent/US6786350B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/22Tank vehicles
    • B60P3/2205Constructional features
    • B60P3/2235Anti-slosh arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/077Fuel tanks with means modifying or controlling distribution or motion of fuel, e.g. to prevent noise, surge, splash or fuel starvation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/0344Arrangements or special measures related to fuel tanks or fuel handling comprising baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03453Arrangements or special measures related to fuel tanks or fuel handling for fixing or mounting parts of the fuel tank together
    • B60K2015/03467Arrangements or special measures related to fuel tanks or fuel handling for fixing or mounting parts of the fuel tank together by clip or snap fit fittings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86187Plural tanks or compartments connected for serial flow
    • Y10T137/86212Plural compartments formed by baffles

Definitions

  • This invention relates to a dampener element that is permeable to fluid flow.
  • this invention relates to a dampener permeable to fluid flow placed in a fluid tank of a motor vehicle.
  • baffle elements are particularly located at the interior walls of the fuel tank and are intended to cause a reduction of the energy of the impinging fuel waves and thereby reduce impact noise.
  • One embodiment of the baffle element consists of a corrugated plastic sheet molded with numerous slits which, when expanded, form meshes that serve as voids to entrap air. The entrapped air effectively dissipates the energy of the waves, so that the impact force of the fuel contacting the tank walls is dramatically decreased, thus suppressing the noise level.
  • the baffle is formed from a bent sheet with one side having a large number of plastic needles, similar to a brush, with the needles facing the fuel flow.
  • a baffle consisting of a sheet made from a large number of synthetic resin or plastic fibers that are mixed and entangled with one another, forming numerous energy dissipating voids.
  • a further variation of a dampener element is known from U.S. Pat. No. 4,844,278.
  • the interior walls of the fuel tank are equipped with a three-dimensional structured plastic insert whose structure forms small calming chambers.
  • the wave fronts of the sloshing fuel impact the fuel-free regions of the tank insert and are dissolved by the calming chambers into a plurality of wave sections over a large area.
  • Guide fins are further provided to divert the wave fronts and improve the dampening effect by increasing the length of the flow paths.
  • An object of the present invention is to provide dampener elements which largely prevent potential waves of liquid fuel from forming, have a simple and robust design, can be manufactured cost-effectively, and can be accommodated simply, while not restricting the filling capacity of the fuel tank.
  • a further object is to provide a fuel tank equipped with said dampener elements that has a very low noise level.
  • a dampener assembly including a dampener element that has the form of a lattice, mesh, or similar network.
  • the dampener assembly is meant to be attached with a horizontal orientation inside a fluid tank of a motor vehicle, such as a fuel tank or the like.
  • the dampener assembly is attached adjacent a bottom portion of the tank.
  • a dampener assembly according to this invention that has been placed inside a liquid fuel tank is particularly effective in preventing the creation and propagation of large-volume waves, particularly during acceleration or deceleration of the vehicle, as well as, in the case of a depleting fuel volume, which can create sloshing noises at the interior walls of the fuel tank.
  • this dampening can be attributed to the lattice or mesh design. Further, this design is very simple and can be produced easily. Since the dampener is located relatively close to the bottom of the fuel tank, the filling quantity of the tank is not restricted, unlike some prior art approaches.
  • the motion-restricting device which is located near the bottom of the fuel tank, causes an obstruction during the origin of the wave and a quick dampening of possible fuel movement, even when the level of the fuel is higher.
  • the dampener element is preferably formed of a material that provides dimensional stability.
  • the dampener element includes a plurality of adjoining base elements.
  • the base elements include connection bars that converge at junction points.
  • each base element forms a polygon.
  • the dampener element can be formed from plastic, in particularly by injection molding.
  • the base elements each have the same shape. Still more preferably, each base element is square shaped. Such a consistently designed dampener assembly is able to effectively dampen fluid movement in the tank in all possible directions.
  • dampener assembly is subject to frequent loading and unloading of fluid forces, it is preferable for durability reasons that the dampener assembly be resilient.
  • the dampener assembly is designed having an elastic deformation limit greater than the fluid forces to which it is subjected.
  • a preferred embodiment of a dampener assembly having a resilient structure includes a dampener element having connection bars that are joined by junction points that are hollow, such as a such as a ring, sleeve or the like.
  • the dampener assembly can be attached in a simple and durable manner inside the fuel tank by having at least one of the junction points include a hollow sleeve that is adapted to slide about and into locking engagement with a stud that extends from an interior portion of the fluid tank.
  • This locking function can be facilitated in a simple, practical and durable manner, for example, by providing a locking wedge on one of the sleeve and the stud, and a corresponding locking groove on the other of the sleeve and stud.
  • the dampening effect of the dampener assembly may be improved by attaching and stacking two or more dampener elements on top of each other.
  • junction points of each of the dampener elements may be designed as connector sockets, which connect the dampener elements together.
  • FIG. 1 shows a top view of a dampener assembly according to this invention.
  • FIG. 2 shows a partial section along line II-II shown in FIG. 1, and
  • FIG. 3 is a sectional view similar to FIG. 2 of an alternative embodiment of a dampener assembly according to this invention.
  • a dampener assembly according to this invention is shown generally at 10 in FIG. 1.
  • the dampener assembly includes a dampener element 1 having a lattice, mesh or like network structure.
  • the dampener element 1 includes a plurality of adjoining base elements 2 .
  • Each base element 2 includes connection bars or shafts 4 having opposite ends that terminate at junction or connection points 3 .
  • Adjoining base elements 2 are connected to each other by respective connection bars 4 , which extend from a common connection point 3 .
  • the base elements 2 are illustrated in FIG. 1 as having four connection bars 4 that are substantially straight members of substantially equal length so as to form adjoining squares.
  • the base elements 2 may include any number and any shape of connection bars provided that the base elements 2 form a closed cellular structure.
  • the base elements 2 include three or more substantially straight connection bars 4 so as to form a polygon.
  • the base elements 2 may include two or more curvilinear connection bars (not shown) so as to form a closed figure that is either planar or non-planar.
  • connection bars 4 preferably have circular or elliptical cross-sections.
  • connection bars 4 may have cross-sections of any suitable shape including rectangular, triangular, irregular and the like.
  • the junction points 3 have an annular design with an aperture formed in a central portion.
  • the height of the junction points 3 is preferably greater than the cross-sectional height of the connection bars 4 . It should be appreciated that while the height of the junction points 3 is shown in FIG. 2 to be approximately twice the height of the connection bars 4 , the height of the connection joints 3 may be equal to, greater than, or less than the height of the connection bars 4 .
  • one or more the junction points 3 of dampener element 1 are intended to attach the dampener element I to a bottom wall Sa of a fluid tank 5 for a motor vehicle (not shown), such as a fuel tank.
  • These junction points or tank connectors are indicated generally at 13 in FIG. 2.
  • the number of tank connectors 13 that are required to reliably attach the dampener element 1 to the inside the tank 5 for a given application is predetermined.
  • the tank connectors 13 form rings or sleeves 13 a that have a greater axial dimension than the axial dimension of the rings formed by the junction points 3 previously discussed that are not attached directly to the tank 5 .
  • an annular locking wedge 13 b extends from an inner surface or wall of each sleeve 13 a, the purpose of which is made clear below.
  • the bottom wall 5 a of the tank 5 has attachment studs or bolts 6 that protrude into the interior of the tank 5 .
  • Each attachment stud 6 has a locking groove 6 a formed in an outer surface of the stud 6 .
  • the location of the attachment studs 6 on the bottom wall 5 a of the tank 5 corresponds to the location of tank connectors 13 of the dampener element 1 .
  • Attachment of dampener element 1 to the tank 5 is accomplished by pushing each of the tank connectors 13 onto the corresponding attachment stud 6 so that the locking wedges 13 b are disposed in the corresponding locking grooves 6 a.
  • the locking wedges 13 b protrude slightly upwards inside the sleeves 13 a, as shown in FIG.
  • Interlocking between the tank connectors 13 and the studs 6 may be achieved by a suitable alternative manner, such as by forming locking wedges (not shown) on the stud 6 and complementary locking grooves (not shown) in the sleeves 13 .
  • a dampener element similar in construction to the dampener element 1 may be attached to a stud similar to the stud 6 by a tank connector similar to the tank connector 13 .
  • one or more tank connectors may extend from predetermined connection bars between corresponding junction points toward the bottom of a tank.
  • the modified tank connectors include only the portion of the sleeve 13 that extends below the connection bars 4 of the dampener element 1 , that is, the modified tank connectors are only open at one end.
  • the stud 6 is modified so as not to extend through the dampener element, rather the modified stud would necessarily terminate at or below the lowest point of the corresponding connection bar.
  • dampener assembly 10 ′ is similar to the dampener assembly 10 except that the dampener assembly 10 ′ includes a plurality of dampener elements 1 ′ attached to each other in a stacked arrangement rather than including a single dampener element 1 as with the dampener assembly 10 .
  • two or more dampener elements 1 ′ are attached to the tank 5 by means of attachment studs 6 ′ that extend from the tank bottom wall 5 and are longer than the studs 6 shown in FIG. 2.
  • the attachment of two dampener elements 1 ′ by means of studs 6 ′ occurs in a simple manner in that both dampener elements 1 ′ are equipped with tank connectors 13 in corresponding areas.
  • Each of the tank connectors 13 of the dampener elements 1 ′ are formed as sleeves 13 a equipped with locking wedges 13 b.
  • Attachment studs 6 ′ are equipped with locking grooves 6 ′ a in at least two areas.
  • a separate lengthening of attachment studs 6 may occur, for example by screwing or plugging together studs with an appropriate design.
  • the positions of the locking wedges 13 b and of the locking grooves 6 ′ a are such that sleeve 13 a of the upper dampener element 1 ′ preferably sits on or engages the sleeve 13 a of the corresponding lower adjoining dampener element 1 ′.
  • Adjoining dampener elements 1 ′ may be connected to each other by modifying predetermined corresponding junction points 3 of the adjoining dampener elements 1 ′ in the form of interconnecting connection sockets 23 .
  • Each connection socket 23 has the form of a two-stage sleeve 23 .
  • each connection socket 23 has a hollow-sleeve-shaped base 23 a and a sleeve-shaped connector 23 b extending from the base 23 a.
  • the connector 23 b of a dampener element 1 ′ positioned beneath an adjoining dampener element 1 ′ is disposed or received in the corresponding base 23 a of the adjoining dampener element 1 ′.
  • the inner diameter of the base 23 a may be greater than the outer diameter of the connector 23 b such that the connection sockets 23 function in a manner to assist in aligning adjoining dampener elements 1 ′ when connecting adjoining dampener elements 1 ′.
  • the inner diameter of the base 23 a may be approximately equal to or slightly less than the outer diameter of the connector 23 b such that the connection sockets 23 not only operate as locators but also assist in maintaining the attachment between adjoining dampener elements 1 ′ by providing a press-fit attachment between corresponding connection sockets 23 .
  • the connection sockets 23 may be outfitted with locking wedges and locking grooves similar to the locking wedges 13 b and the locking grooves 6 a associated with the sleeves 13 and the studs 6 , respectively, for providing a locking connection between adjoining dampener elements 1 ′. It should be appreciated that by providing a press-fit or locking connection between adjoining dampener elements 1 ′, the stud 6 shown in FIG. 2 may be used in place of the stud 6 ′ shown in FIG. 3. More than two layers of dampener elements 1 ′ can be stacked on top of each other inside the tank 5 by means of longer attachment studs and/or by corresponding connector sockets 23 .
  • the lattice or mesh structure of the dampener elements 1 , 1 ′ need not be limited to the shapes as illustrated.
  • the shape of base elements 2 may be a triangular shape or a shape with more than four corners, such as a regular or irregular hexagon.
  • the chosen polygons for the dampener element do not all have to be the same size or have the same shape.
  • a lattice or network with a completely irregular design may be utilized. Neither is it necessary for the connection bars 4 to be straight; they can also have a bow shape or other type of curvature.
  • the outer contour of the lattice or network may also be designed to adjust to the contours of the tank.
  • a dampener element may be designed as a simple lattice or mesh consisting of connection bars without specially designed junction points.
  • the dampener element may be attached above the floor of the tank by means of clips. Clips can also be used to plug together several layers of such simply designed meshes.
  • dampener assemblies 10 , 10 ′ cover a large surface area of the fluid surface of a given tank 5 , as well as, be generally parallel to the fluid surface level. Depending on the design of the tank, it may be desirable that the dampener assembly 10 , 10 ′ be attached in different areas or parts of the tank.
  • dampener elements 1 , 1 ′ of varying sizes may be located inside the tank 5 .
  • the dampener elements 1 , 1 ′ can be manufactured simply and cost-effectively from a fuel-resistant and elastic material, such as high-density polyethylene or a similar plastic, in particular by injection molding.

Abstract

A fuel tank for motor vehicles is constructed so that the generation of noise in the fuel tank due to sloshing fuel is minimized. For this purpose, a dampener element, which is permeable to the flow of liquid fuel, is attached to the interior of the tank. According to the invention, the dampening element has a dimensionally stable lattice or similar network structure. This dampener element is attached near the bottom wall of the fuel tank and has a generally horizontal orientation.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to a dampener element that is permeable to fluid flow. In particular, this invention relates to a dampener permeable to fluid flow placed in a fluid tank of a motor vehicle. [0001]
  • Sloshing noises that originate inside a fluid tank of a motor vehicle, such as a fuel tank, can be perceived as annoying. These noises are due to the movement of liquid fuel during driving. Dampener or baffle elements used to prevent or reduce sloshing noises in the fuel tank are known in various designs. From German patent specification DE 196 50 415 C2, it is known to locate inside a fuel tank dampener elements that float on the fuel surface. These dampener elements have a freely floating element whose surface is equipped with a material, for instance knitted fabric that has open pores. Several such elements may be freely floating in the fuel tank, and are not necessarily connected to each other. These dampener elements obstruct waves and currents in the tank and act directly as noise dampeners. [0002]
  • Different embodiments of plate-shaped and tubular baffle elements are known from German patent specification DE 39 05 611 C2 and its foreign equivalent, U.S. Pat. No. 4,974,743. Baffle elements are particularly located at the interior walls of the fuel tank and are intended to cause a reduction of the energy of the impinging fuel waves and thereby reduce impact noise. One embodiment of the baffle element consists of a corrugated plastic sheet molded with numerous slits which, when expanded, form meshes that serve as voids to entrap air. The entrapped air effectively dissipates the energy of the waves, so that the impact force of the fuel contacting the tank walls is dramatically decreased, thus suppressing the noise level. In another embodiment, the baffle is formed from a bent sheet with one side having a large number of plastic needles, similar to a brush, with the needles facing the fuel flow. Yet another embodiment in this specification discloses a baffle consisting of a sheet made from a large number of synthetic resin or plastic fibers that are mixed and entangled with one another, forming numerous energy dissipating voids. [0003]
  • A further variation of a dampener element is known from U.S. Pat. No. 4,844,278. In this disclosure, the interior walls of the fuel tank are equipped with a three-dimensional structured plastic insert whose structure forms small calming chambers. The wave fronts of the sloshing fuel impact the fuel-free regions of the tank insert and are dissolved by the calming chambers into a plurality of wave sections over a large area. Guide fins are further provided to divert the wave fronts and improve the dampening effect by increasing the length of the flow paths. [0004]
  • Furthermore, it is also known that, when the fuel level in the tank drops, not only does the amplitude of the waves causing the sloshing noise increase, but the resonance volume in the fuel tank also increases, which causes the sloshing noise to become particularly loud. Baffles which are attached as impact elements at interior walls would have to cover nearly the entire fuel tank surface in order to be effective everywhere. This approach is cumbersome, work-intensive and expensive. Floating dampener elements, as known from the afore-mentioned DE 196 50 416 C2, have a less complicated design and can be accommodated in fuel tanks with varying shapes if necessary. However, they also require a relatively large amount of space to be effective, which unnecessarily restricts the filling capacity of the fuel tank. [0005]
  • An object of the present invention is to provide dampener elements which largely prevent potential waves of liquid fuel from forming, have a simple and robust design, can be manufactured cost-effectively, and can be accommodated simply, while not restricting the filling capacity of the fuel tank. A further object is to provide a fuel tank equipped with said dampener elements that has a very low noise level. [0006]
  • Other objects and advantages of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings. [0007]
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided a dampener assembly including a dampener element that has the form of a lattice, mesh, or similar network. The dampener assembly is meant to be attached with a horizontal orientation inside a fluid tank of a motor vehicle, such as a fuel tank or the like. Preferably the dampener assembly is attached adjacent a bottom portion of the tank. [0008]
  • A dampener assembly according to this invention that has been placed inside a liquid fuel tank is particularly effective in preventing the creation and propagation of large-volume waves, particularly during acceleration or deceleration of the vehicle, as well as, in the case of a depleting fuel volume, which can create sloshing noises at the interior walls of the fuel tank. In particular, this dampening can be attributed to the lattice or mesh design. Further, this design is very simple and can be produced easily. Since the dampener is located relatively close to the bottom of the fuel tank, the filling quantity of the tank is not restricted, unlike some prior art approaches. Since waves in liquids are not a superficial occurrence but reach deep into the liquid, the motion-restricting device, which is located near the bottom of the fuel tank, causes an obstruction during the origin of the wave and a quick dampening of possible fuel movement, even when the level of the fuel is higher. [0009]
  • The dampener element is preferably formed of a material that provides dimensional stability. The dampener element includes a plurality of adjoining base elements. The base elements include connection bars that converge at junction points. Preferably, each base element forms a polygon. The dampener element can be formed from plastic, in particularly by injection molding. [0010]
  • In a preferred embodiment, the base elements each have the same shape. Still more preferably, each base element is square shaped. Such a consistently designed dampener assembly is able to effectively dampen fluid movement in the tank in all possible directions. [0011]
  • Because the dampener assembly is subject to frequent loading and unloading of fluid forces, it is preferable for durability reasons that the dampener assembly be resilient. In particular, it is desirable that the dampener assembly is designed having an elastic deformation limit greater than the fluid forces to which it is subjected. A preferred embodiment of a dampener assembly having a resilient structure includes a dampener element having connection bars that are joined by junction points that are hollow, such as a such as a ring, sleeve or the like. [0012]
  • In a preferred embodiment, the dampener assembly can be attached in a simple and durable manner inside the fuel tank by having at least one of the junction points include a hollow sleeve that is adapted to slide about and into locking engagement with a stud that extends from an interior portion of the fluid tank. [0013]
  • This locking function can be facilitated in a simple, practical and durable manner, for example, by providing a locking wedge on one of the sleeve and the stud, and a corresponding locking groove on the other of the sleeve and stud. [0014]
  • The dampening effect of the dampener assembly may be improved by attaching and stacking two or more dampener elements on top of each other. To increase the stability of the stacked dampener elements, junction points of each of the dampener elements may be designed as connector sockets, which connect the dampener elements together. [0015]
  • It should be appreciated that other methods of attaching the dampener assembly inside a fluid tank, as well as, other methods of attaching multiple dampener elements together may be considered. A simple alternative uses clips to connect the dampener elements to each other or to a fluid tank. [0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a top view of a dampener assembly according to this invention. [0017]
  • FIG. 2 shows a partial section along line II-II shown in FIG. 1, and [0018]
  • FIG. 3 is a sectional view similar to FIG. 2 of an alternative embodiment of a dampener assembly according to this invention. [0019]
  • DETAILED DESCRIPTION OF THE INVENTION
  • A dampener assembly according to this invention is shown generally at [0020] 10 in FIG. 1. The dampener assembly includes a dampener element 1 having a lattice, mesh or like network structure. The dampener element 1 includes a plurality of adjoining base elements 2. Each base element 2 includes connection bars or shafts 4 having opposite ends that terminate at junction or connection points 3. Adjoining base elements 2 are connected to each other by respective connection bars 4, which extend from a common connection point 3. The base elements 2 are illustrated in FIG. 1 as having four connection bars 4 that are substantially straight members of substantially equal length so as to form adjoining squares. Alternatively, the base elements 2 may include any number and any shape of connection bars provided that the base elements 2 form a closed cellular structure.
  • Preferably, the [0021] base elements 2 include three or more substantially straight connection bars 4 so as to form a polygon. Alternatively, the base elements 2 may include two or more curvilinear connection bars (not shown) so as to form a closed figure that is either planar or non-planar.
  • The connection bars [0022] 4 preferably have circular or elliptical cross-sections. Alternatively, the connection bars 4 may have cross-sections of any suitable shape including rectangular, triangular, irregular and the like.
  • The junction points [0023] 3 have an annular design with an aperture formed in a central portion. The height of the junction points 3 is preferably greater than the cross-sectional height of the connection bars 4. It should be appreciated that while the height of the junction points 3 is shown in FIG. 2 to be approximately twice the height of the connection bars 4, the height of the connection joints 3 may be equal to, greater than, or less than the height of the connection bars 4.
  • Preferably, one or more the [0024] junction points 3 of dampener element 1 are intended to attach the dampener element I to a bottom wall Sa of a fluid tank 5 for a motor vehicle (not shown), such as a fuel tank. These junction points or tank connectors are indicated generally at 13 in FIG. 2. The number of tank connectors 13 that are required to reliably attach the dampener element 1 to the inside the tank 5 for a given application is predetermined. The tank connectors 13 form rings or sleeves 13 a that have a greater axial dimension than the axial dimension of the rings formed by the junction points 3 previously discussed that are not attached directly to the tank 5. Preferably, an annular locking wedge 13 b extends from an inner surface or wall of each sleeve 13 a, the purpose of which is made clear below.
  • The [0025] bottom wall 5 a of the tank 5 has attachment studs or bolts 6 that protrude into the interior of the tank 5. Each attachment stud 6 has a locking groove 6 a formed in an outer surface of the stud 6. The location of the attachment studs 6 on the bottom wall 5 a of the tank 5 corresponds to the location of tank connectors 13 of the dampener element 1. Attachment of dampener element 1 to the tank 5 is accomplished by pushing each of the tank connectors 13 onto the corresponding attachment stud 6 so that the locking wedges 13 b are disposed in the corresponding locking grooves 6 a. Preferably, the locking wedges 13 b protrude slightly upwards inside the sleeves 13 a, as shown in FIG. 2, so that elastic deformation of locking wedges 13 b takes place when the tank connectors 13 are properly positioned about the attachment studs 6. Interlocking between the tank connectors 13 and the studs 6 may be achieved by a suitable alternative manner, such as by forming locking wedges (not shown) on the stud 6 and complementary locking grooves (not shown) in the sleeves 13.
  • It should be appreciated that a dampener element (not shown) similar in construction to the [0026] dampener element 1 may be attached to a stud similar to the stud 6 by a tank connector similar to the tank connector 13. Specifically, one or more tank connectors may extend from predetermined connection bars between corresponding junction points toward the bottom of a tank. In this arrangement, the modified tank connectors include only the portion of the sleeve 13 that extends below the connection bars 4 of the dampener element 1, that is, the modified tank connectors are only open at one end. Also, in this arrangement the stud 6 is modified so as not to extend through the dampener element, rather the modified stud would necessarily terminate at or below the lowest point of the corresponding connection bar.
  • Referring to FIG. 3, an alternative embodiment of a dampener assembly according to this invention is shown generally at [0027] 10′. The dampener assembly 10′ is similar to the dampener assembly 10 except that the dampener assembly 10′ includes a plurality of dampener elements 1′ attached to each other in a stacked arrangement rather than including a single dampener element 1 as with the dampener assembly 10.
  • As shown in FIG. 3, two or [0028] more dampener elements 1′ are attached to the tank 5 by means of attachment studs 6′ that extend from the tank bottom wall 5 and are longer than the studs 6 shown in FIG. 2. The attachment of two dampener elements 1′ by means of studs 6′ occurs in a simple manner in that both dampener elements 1′ are equipped with tank connectors 13 in corresponding areas. Each of the tank connectors 13 of the dampener elements 1′ are formed as sleeves 13 a equipped with locking wedges 13 b. Attachment studs 6′ are equipped with locking grooves 6a in at least two areas. Alternatively, a separate lengthening of attachment studs 6 may occur, for example by screwing or plugging together studs with an appropriate design. As FIG. 3 shows, the positions of the locking wedges 13 b and of the locking grooves 6a are such that sleeve 13 a of the upper dampener element 1′ preferably sits on or engages the sleeve 13 a of the corresponding lower adjoining dampener element 1′.
  • Adjoining [0029] dampener elements 1′ may be connected to each other by modifying predetermined corresponding junction points 3 of the adjoining dampener elements 1′ in the form of interconnecting connection sockets 23. Each connection socket 23 has the form of a two-stage sleeve 23. Specifically, each connection socket 23 has a hollow-sleeve-shaped base 23 a and a sleeve-shaped connector 23 b extending from the base 23 a. The connector 23 b of a dampener element 1′ positioned beneath an adjoining dampener element 1′ is disposed or received in the corresponding base 23 a of the adjoining dampener element 1′. The lower end of the base 23 a of the dampener element 1′ located above the corresponding adjoining dampener element 1′ rest on the upper end or shoulder of the corresponding base 23 a so as to ensure that base elements 2 of the adjoining dampener elements 1′ are properly spaced. The inner diameter of the base 23 a may be greater than the outer diameter of the connector 23 b such that the connection sockets 23 function in a manner to assist in aligning adjoining dampener elements 1′ when connecting adjoining dampener elements 1′. Alternatively, the inner diameter of the base 23 a may be approximately equal to or slightly less than the outer diameter of the connector 23 b such that the connection sockets 23 not only operate as locators but also assist in maintaining the attachment between adjoining dampener elements 1′ by providing a press-fit attachment between corresponding connection sockets 23. Alternatively, the connection sockets 23 may be outfitted with locking wedges and locking grooves similar to the locking wedges 13 b and the locking grooves 6 a associated with the sleeves 13 and the studs 6, respectively, for providing a locking connection between adjoining dampener elements 1′. It should be appreciated that by providing a press-fit or locking connection between adjoining dampener elements 1′, the stud 6 shown in FIG. 2 may be used in place of the stud 6′ shown in FIG. 3. More than two layers of dampener elements 1′ can be stacked on top of each other inside the tank 5 by means of longer attachment studs and/or by corresponding connector sockets 23.
  • As discussed above, the lattice or mesh structure of the [0030] dampener elements 1, 1′ need not be limited to the shapes as illustrated. The shape of base elements 2 may be a triangular shape or a shape with more than four corners, such as a regular or irregular hexagon. Furthermore, the chosen polygons for the dampener element do not all have to be the same size or have the same shape. A lattice or network with a completely irregular design may be utilized. Neither is it necessary for the connection bars 4 to be straight; they can also have a bow shape or other type of curvature. The outer contour of the lattice or network may also be designed to adjust to the contours of the tank.
  • In a further embodiment, a dampener element may be designed as a simple lattice or mesh consisting of connection bars without specially designed junction points. In this case, the dampener element may be attached above the floor of the tank by means of clips. Clips can also be used to plug together several layers of such simply designed meshes. [0031]
  • Furthermore, it is preferable that [0032] dampener assemblies 10, 10′ cover a large surface area of the fluid surface of a given tank 5, as well as, be generally parallel to the fluid surface level. Depending on the design of the tank, it may be desirable that the dampener assembly 10, 10′ be attached in different areas or parts of the tank.
  • Additionally, [0033] several dampener elements 1, 1′ of varying sizes may be located inside the tank 5.
  • The [0034] dampener elements 1, 1′ can be manufactured simply and cost-effectively from a fuel-resistant and elastic material, such as high-density polyethylene or a similar plastic, in particular by injection molding.

Claims (24)

I claim:
1. A dampener assembly for placement in a fluid tank of a motor vehicle, said dampener assembly comprising:
a dampener element including a plurality of adjoining base elements, each said base element including at least two connection bars having opposite ends with each said end extending from a junction point such that each said base element forms a closed structure that is permeable to fluid flow.
2. A dampener assembly according to
claim 2
, wherein at least one of said plurality of base elements forms a polygon.
3. A dampener assembly according to
claim 3
, wherein at least one of said plurality of base elements forms a four-sided polygon.
4. A dampener assembly according to
claim 2
, wherein a plurality said junction points have an annular shape with a central aperture.
5. A dampener assembly according to
claim 2
, including a tank connector supported by said dampener element, said tank connector being adapted for fastening said dampener element to the tank.
6. A dampener assembly according to
claim 5
, wherein said tank connector has a sleeve adapted to receive a stud extending from the tank.
7. A dampener assembly according to
claim 6
, wherein said tank connector is adapted to interlock with the stud.
8. A dampener assembly according to
claim 7
wherein said sleeve includes a locking wedge extending from an inner surface of said sleeve and adapted for being disposed in a locking groove formed in the stud.
9. A dampener assembly according to
claim 5
, wherein said tank connector defines one of said junction points.
10. A dampener assembly according to
claim 1
including two or more of said dampener elements, each of said dampener elements adjoining another of said dampener elements in a stacked relationship.
11. A dampener assembly according to
claim 10
, wherein each of said dampener elements includes a connection socket, said connection sockets of adjoining said dampener elements interfacing with each other so as to align said adjoining dampener elements.
12. A dampener assembly according to
claim 10
, wherein each of said dampener elements includes a connection socket, said connection sockets of adjoining said dampener elements interconnecting each other so as to attach said adjoining dampener elements together.
13. A dampener assembly according to
claim 1
, wherein said dampener element is formed from a fuel-resistant and elastic material.
14. A dampener assembly according to
claim 13
, wherein said dampener element is formed from a high-density polyethylene.
15. A fluid tank assembly for a motor vehicle, comprising:
a tank having an inner surface defining a cavity for receiving a liquid substance; and
a dampener element disposed within said tank and attached to a bottom portion of said inner surface, said dampener element having a lattice structure permeable to fluid flow and oriented generally parallel to a liquid surface defined by the liquid substance.
16. A fluid tank assembly according to
claim 15
, wherein said dampener element includes a plurality of adjoining base elements, each said base element including at least two connection bars having opposite ends with each said end extending from a junction point such that each said base element forms a closed structure that is permeable to fluid flow.
17. A fluid tank assembly according to
claim 16
, wherein at least one of said plurality of base elements forms a polygon.
18. A fluid tank assembly according to
claim 16
, wherein a plurality of said junction points have an annular shape with a central aperture.
19. A fluid tank assembly according to
claim 16
including a stud extending from said inner surface and a tank connector having a sleeve supported by said dampener element and fastened to said stud whereby said dampener element is attached to said tank.
20. A fluid tank according to
claim 19
wherein one of said sleeve and said stud includes a locking wedge extending therefrom and the other of said sleeve and said stud includes a locking groove formed thereon complementary to said locking wedge, said locking wedge being disposed in said locking groove so as to interlock said sleeve and said stud.
21. A fluid tank assembly according to
claim 19
, wherein said tank connector defines one of said junction points.
22. A fluid tank assembly according to
claim 15
including two or more of said dampener elements, each of said dampener elements adjoining another of said dampener elements in a stacked relationship.
23. A fluid tank according to
claim 22
, wherein each of said dampener elements includes a connection socket, said connection sockets of adjoining said dampener elements interfacing with each other so as to align said adjoining dampener elements.
24. A fluid tank according to
claim 23
, wherein each of said dampener elements includes a connection socket, said connection sockets of adjoining said dampener elements interconnecting each other so as to attach said adjoining dampener elements together.
US09/770,908 2000-01-26 2001-01-26 Attenuation element and fuel container with attenuation element Abandoned US20010009257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/194,141 US6786350B2 (en) 2000-01-26 2002-07-12 Fuel container with attentuation element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM48/2000 2000-01-26
AT0004800U AT4237U1 (en) 2000-01-26 2000-01-26 DAMPING ELEMENT AND FUEL TANK WITH AT LEAST ONE DAMPING ELEMENT

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/194,141 Division US6786350B2 (en) 2000-01-26 2002-07-12 Fuel container with attentuation element

Publications (1)

Publication Number Publication Date
US20010009257A1 true US20010009257A1 (en) 2001-07-26

Family

ID=3480133

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/770,908 Abandoned US20010009257A1 (en) 2000-01-26 2001-01-26 Attenuation element and fuel container with attenuation element
US10/194,141 Expired - Fee Related US6786350B2 (en) 2000-01-26 2002-07-12 Fuel container with attentuation element

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/194,141 Expired - Fee Related US6786350B2 (en) 2000-01-26 2002-07-12 Fuel container with attentuation element

Country Status (4)

Country Link
US (2) US20010009257A1 (en)
AT (1) AT4237U1 (en)
CA (1) CA2332276A1 (en)
DE (1) DE10101740A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078705A1 (en) * 2007-09-21 2009-03-26 Ramsay Thomas N Floating Absorber Assembly for Reduced Fuel Slosh Noise
EP1714820A3 (en) * 2005-04-21 2011-08-17 Nifco Inc. Noise suppressing device and installation structure of same
US20120227237A1 (en) * 2011-03-09 2012-09-13 Yachiyo Industry Co., Ltd. Structure and method for clamping built-in component in hollow container
US9358878B2 (en) 2012-05-04 2016-06-07 TransNav Inc. Fluid energy reducing device
FR3061090A1 (en) * 2016-12-27 2018-06-29 Renault S.A.S ANTI-CLAPPING DEVICE OF A FUEL TANK OF A MOTOR VEHICLE
WO2019124839A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Pressure tank
US10562392B2 (en) 2017-09-14 2020-02-18 Ford Global Technologies, Llc Fuel tank baffle including vertical and horizontal surfaces for reduction of fuel slosh noise
CN113844353A (en) * 2021-09-03 2021-12-28 山东希格斯新能源有限责任公司 Movable type retreating lead-acid battery energy storage power station
US11396420B2 (en) 2019-08-09 2022-07-26 Roger Hayes Tank for transporting liquids
US11548381B2 (en) 2021-05-03 2023-01-10 Ford Global Technologies, Llc Vehicle fuel-storage tank with anti-slosh elements
US20230068961A1 (en) * 2020-02-21 2023-03-02 Yachiyo Industry Co., Ltd. Fuel tank

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810683B2 (en) * 2003-02-11 2004-11-02 General Motors Corporation Thermostatic expansion valve exit flow silencer device
KR100867807B1 (en) * 2006-11-13 2008-11-10 현대자동차주식회사 Baffle for automotive fuel tank
DE102007057180B4 (en) * 2007-11-26 2009-07-30 Kaefer Isoliertechnik Gmbh & Co. Kg Device for stabilizing liquids in a container
US9321347B2 (en) * 2010-06-14 2016-04-26 Ford Global Technologies, Llc Compliance structure for a distensible fuel tank
US8578906B2 (en) 2011-07-13 2013-11-12 Ford Global Technologies, Llc Oil system for an engine
US9327596B2 (en) 2013-01-14 2016-05-03 Ford Global Technologies, Llc Fuel tank wave catcher

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508578A (en) 1968-06-03 1970-04-28 David G Stephens Flexible ring slosh damping baffle
US3746178A (en) 1971-11-09 1973-07-17 Recycled Plastic Prod Corp Modular knockdown wine rack
US5054635A (en) * 1986-10-31 1991-10-08 Alcoa/Tre, Inc. Rapid assembly and load distribution system for nestable container sections
DE3641356C1 (en) * 1986-12-03 1988-07-07 Daimler Benz Ag Fuel tanks for vehicles
US4758196A (en) 1987-03-27 1988-07-19 Wang Tsung Hsien Block unit for making three-dimensional blocks composed of geometric points, lines and planes
US5711107A (en) 1995-05-31 1998-01-27 Louisiana; Gary L. Structural support system for plants
DE19650415C2 (en) * 1996-12-05 1999-01-07 Gerd Dr Ing Ehrhardt Soundproofed fuel tank
US5904606A (en) 1997-02-05 1999-05-18 Connector Set Limited Partnership Panel for toy construction system
WO1999061773A2 (en) * 1998-04-08 1999-12-02 Lockheed Martin Corporation Anti-slosh liquid propellant tank for launch vehicles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1714820A3 (en) * 2005-04-21 2011-08-17 Nifco Inc. Noise suppressing device and installation structure of same
US20090078705A1 (en) * 2007-09-21 2009-03-26 Ramsay Thomas N Floating Absorber Assembly for Reduced Fuel Slosh Noise
US8235241B2 (en) * 2007-09-21 2012-08-07 Honda Motor Co., Ltd. Floating absorber assembly for reduced fuel slosh noise
US20120227237A1 (en) * 2011-03-09 2012-09-13 Yachiyo Industry Co., Ltd. Structure and method for clamping built-in component in hollow container
US9266285B2 (en) * 2011-03-09 2016-02-23 Yachiyo Industry Co., Ltd. Structure and method for clamping built-in component in hollow container
US9358878B2 (en) 2012-05-04 2016-06-07 TransNav Inc. Fluid energy reducing device
FR3061090A1 (en) * 2016-12-27 2018-06-29 Renault S.A.S ANTI-CLAPPING DEVICE OF A FUEL TANK OF A MOTOR VEHICLE
US10562392B2 (en) 2017-09-14 2020-02-18 Ford Global Technologies, Llc Fuel tank baffle including vertical and horizontal surfaces for reduction of fuel slosh noise
WO2019124839A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Pressure tank
US11396420B2 (en) 2019-08-09 2022-07-26 Roger Hayes Tank for transporting liquids
US20230068961A1 (en) * 2020-02-21 2023-03-02 Yachiyo Industry Co., Ltd. Fuel tank
US11691502B2 (en) * 2020-02-21 2023-07-04 Yachiyo Industry Co., Ltd. Fuel tank having built-in component with pillars
US11548381B2 (en) 2021-05-03 2023-01-10 Ford Global Technologies, Llc Vehicle fuel-storage tank with anti-slosh elements
CN113844353A (en) * 2021-09-03 2021-12-28 山东希格斯新能源有限责任公司 Movable type retreating lead-acid battery energy storage power station

Also Published As

Publication number Publication date
CA2332276A1 (en) 2001-07-26
US20030038136A1 (en) 2003-02-27
DE10101740A1 (en) 2001-09-27
US6786350B2 (en) 2004-09-07
AT4237U1 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US6786350B2 (en) Fuel container with attentuation element
US8235241B2 (en) Floating absorber assembly for reduced fuel slosh noise
US6241198B1 (en) Holding element for pipes and the like
US6499500B2 (en) Motor vehicle fuel tank
JP5977832B2 (en) Working fluid container
US20050215191A1 (en) Air intake duct
WO2010001994A1 (en) Cushion clip
KR101714002B1 (en) Fuel tank support
EP3526069B1 (en) A system for the reduction of slosh noises in a fuel tank
KR101050331B1 (en) toilet
US7445082B2 (en) Noise suppressing device and installation structure of same
CN101314350B (en) Interior parts for a vehicle
CN105934605A (en) Elastic stopper member and vibration-damping device
KR20040066183A (en) Motor vehicle feul tank
AU638478B2 (en) Shock absorbing fender for vessels
US5988087A (en) Pontoon for boats
JP2006007957A (en) Vibration-proof support structure of fuel tank for vehicle
KR200418381Y1 (en) assembly type safety fence
US20050029173A1 (en) Strainer device for fuel tank
US6926264B1 (en) Air spring upper retainer
CN218876889U (en) Fuel storage tank for vehicle
US9174559B2 (en) Headrest
KR200477769Y1 (en) Hanger for exhaust assembly of automobile
KR102395682B1 (en) floating pier for preventing roll
CA2611218A1 (en) Bracketless windshield washer tank mounting

Legal Events

Date Code Title Description
AS Assignment

Owner name: TESMA MOTOREN UND GETRIEBETECHNIK GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAUER, WOLFGANG;REEL/FRAME:011794/0785

Effective date: 20010122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION