US20010005981A1 - Removing hydrogen sulfide from a gaseous mixture using iron hydroxide bonded to calcined diatomite - Google Patents
Removing hydrogen sulfide from a gaseous mixture using iron hydroxide bonded to calcined diatomite Download PDFInfo
- Publication number
- US20010005981A1 US20010005981A1 US09/777,840 US77784001A US2001005981A1 US 20010005981 A1 US20010005981 A1 US 20010005981A1 US 77784001 A US77784001 A US 77784001A US 2001005981 A1 US2001005981 A1 US 2001005981A1
- Authority
- US
- United States
- Prior art keywords
- filtering media
- hydrogen sulfide
- gas stream
- filtering
- media
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 229910000037 hydrogen sulfide Inorganic materials 0.000 title claims abstract description 83
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000008246 gaseous mixture Substances 0.000 title abstract description 7
- 235000014413 iron hydroxide Nutrition 0.000 title description 11
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical group [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 title description 10
- 238000001914 filtration Methods 0.000 claims abstract description 166
- 239000007789 gas Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 52
- 238000001179 sorption measurement Methods 0.000 claims abstract description 22
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical group [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910001447 ferric ion Inorganic materials 0.000 claims abstract description 21
- 239000012080 ambient air Substances 0.000 claims abstract description 6
- 238000007664 blowing Methods 0.000 claims abstract description 6
- 238000011065 in-situ storage Methods 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 22
- 239000003570 air Substances 0.000 claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 150000003568 thioethers Chemical class 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 2
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims 2
- 230000001186 cumulative effect Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000008929 regeneration Effects 0.000 abstract description 14
- 238000011069 regeneration method Methods 0.000 abstract description 14
- 238000012360 testing method Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000005864 Sulphur Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- KAEAMHPPLLJBKF-UHFFFAOYSA-N iron(3+) sulfide Chemical compound [S-2].[S-2].[S-2].[Fe+3].[Fe+3] KAEAMHPPLLJBKF-UHFFFAOYSA-N 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002920 hazardous waste Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- FLTRNWIFKITPIO-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe] FLTRNWIFKITPIO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/14—Diatomaceous earth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
- B01J20/0229—Compounds of Fe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28095—Shape or type of pores, voids, channels, ducts
- B01J20/28097—Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3092—Packing of a container, e.g. packing a cartridge or column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
- B01J20/3217—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3433—Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/345—Regenerating or reactivating using a particular desorbing compound or mixture
- B01J20/3458—Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/58—Use in a single column
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/103—Arsenic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
Definitions
- the present invention relates to the removal of hydrogen sulfide (H 2 S) from various gases, and more particularly it relates to the removal of hydrogen sulfide from a gaseous mixture using a filtering media containing iron hydroxide intimately bonded to calcined diatomite.
- H 2 S hydrogen sulfide
- Hydrogen sulfide can be present in various air streams and is often found in gas streams associated with petroleum storage and transfer facilities, anaerobic digesters, sewage treatment plants and pulp and paper mills. In many cases, the hydrogen sulfide has to be removed because of its toxicity, corrosive properties, and unpleasant odour.
- the present invention provides for an effective process for removing hydrogen sulfide from a gas stream.
- the process according to the present invention uses a filtering media which has a large single-pass adsorption performance, which is renewable several times and which has a considerable lifetime adsorption capacity.
- a process for removing hydrogen sulfide from a gas stream wherein the gas stream is passed through a filtering media consisting essentially of calcined diatomite and between 5% and 30% by weight of ferric ions bonded to the calcined diatomite.
- This process is particularly efficient due to the fact that the removal of hydrogen sulfide from the gas stream is effected with a single pass adsorption performance of up to 45 mg of H 2 S per gram of filtering media.
- Other advantages include the fact that the process has the ability to remove H 2 S from a gaseous mixture, from a concentration of 30,000 ppm down to non-detectable levels of less than 0.2 ppm in a single pass. Further, the lifetime adsorption capacity of the filtering media is about one half or more of the weight of the filtering media.
- a process for removing hydrogen sulfide from a gas stream comprising the steps of passing the gas stream through a filtering media consisting essentially of calcined diatomite, and between 5% and 30% by weight of ferric ions bonded by chemisorption bonds to the calcined diatomite.
- the process further includes the steps of renewing the filtering media several times when the filtering media is saturated with sulfides by blowing ambient air through the filtering media.
- the regeneration of the filtering media can be accomplished while maintaining an average hydrogen sulfide adsorption performance thereof of about 32 mg of hydrogen sulfide per gram of filtering media per cycle. Because the filtering media is non-flammable, there is no risk of combustion due to the heat generated during the regeneration process.
- a process for removing hydrogen sulfide from a gas stream comprising the step of passing the gas stream through a filtering media consisting essentially of calcined diatomite having particles ranging in sizes between about 30 mesh and about 60 mesh, and between 5% and 30% by weight of ferric ions bonded by chemisorption bonds to the calcined diatomite.
- the process is particularly advantageous for filtering moist gases, due to the fact that the filtering media remains porous when wet. The efficiency of the process increases with the adsorption of a certain amount of moisture in the filtering media.
- Still another feature of the process according to the present invention is that it is susceptible of a low cost of material, installation and operation, and accordingly is then susceptible of low price of sale to the industry, thereby making such H 2 S filtering process economically available to the public.
- the filtering media used in the process according to preferred embodiment was the subject of an earlier patent application, Ser. No. 09/407,708, filed in Sep. 28, 1999, in which it is described as a filtering media for removing arsenic from ground water.
- the filtering media is known under the trademark MEDIA G2® and is available from ADI International Inc., a corporation having its principal place of business in Fredericton, New Brunswick, Canada.
- ADI International Inc. a corporation having its principal place of business in Fredericton, New Brunswick, Canada.
- the initial purpose of the filtering media was for use as a water filter, it was discovered that the same filtering media has advantageous properties in removing hydrogen sulfide from a gas stream.
- the filtering media contains iron hydroxide Fe(OH) 3 intimately bonded to calcined diatomite.
- the ferric ions content in the filtering media is between about 5% and about 30% by weight.
- the preferred calcined diatomite material has particles ranging in sizes from about 30 mesh to about 60 mesh. This size and type of diatomite particles has been found to be advantageous for use in filtering arsenic from water as well as for use in gas filtering columns, particularly for allowing intimate contact between the gas and the ferric ions bonded to the diatomite particles.
- the calcined diatomite particles do not offer substantial resistance to the flow of a gas passing through it and do not expand in contact with a moist gas.
- the calcined type of diatomite is believed to be an important element also contributing to the performance of filtering media in removing hydrogen sulfide from sulfurous gases.
- Calcined diatomite particles have multiform shapes and a greater porosity than ordinary diatomite particles.
- the heat treatment applied to the diatomite particles during the calcination process increases the porosity of the particles by breaking their surfaces and forming pores, cracks, crevices, cavities, hollows and protrusions. These pores, cracks, crevices, cavities, hollows and protrusions offer additional surfaces on each particle to adsorb and to retain ferric ions.
- the calcined diatomite is impregnated with ferric ions in a liquid form, such as a ferric chloride solution.
- the solution entrains the ferric ions over the entire surface of the calcined diatomite particles and deep inside the pores, cracks, crevices and cavities of the particles.
- the ferric chloride is converted into iron hydroxide in-situ within the diatomite particles, using sodium hydroxide for example, to better bond the ferric ions over and into the entire structure of each diatomite particle.
- the diatomite material has negative charges and attracts the positively charged ferric ions, thereby contributing to the formation of strong ionic impregnation bonds between the diatomite material and the ferric ions.
- the sodium hydroxide is added slowly to bring the pH of the slurry to a final value of at least about 9, ensuring a complete and unhasty conversion of the ferric chloride to iron hydroxide.
- This manufacturing process is advantageous for yielding a ferric ion content, in the form of iron hydroxide, of between about 5% and about 30% by weight of the media.
- irregular clusters of ferric ions are formed and become entrapped or otherwise interlocked inside the pores, cracks, crevices and cavities of the calcined diatomite particles, and therefore become strongly bonded to the calcined diatomite particles.
- the bond described above is believed to be a chemisorption bond produced by an impregnation-oxidation process which is characterized by its irreversible chemical forces. It is also believed that these chemisorption bonds between the ferric ions and the calcined diatomite particles contribute greatly to the abilities of the filtering media to retain its ferric ions such that it is renewable several times after being saturated with sulfides. Also it was found that when the filtering media is saturated with water or subjected to a flow of water through it, the iron component is not released from the filtering media. This finding supports the fact that iron hydroxide is intimately bonded to the calcined diatomite particles.
- testing of the filtering media was carried out to determine its optimum performance in removing hydrogen sulfide from a sulphurous gas.
- a first series of tests to determine adsorption capacities comparative results were obtained from similar tests carried on a variant of the filtering media, hereinafter referred to as the variant media, wherein the calcined diatomite was replaced by vermiculite.
- the filtering media and the variant media are generally or jointly referred to as the media sample or both media samples.
- Both media samples were subjected to testing in dry and moist conditions. Dry columns were filled with media samples that were not rinsed or pre-moistened. All the fines were present in the media samples. Moist columns were prepared in three different ways: 1) washing the media samples with water until all the fines were removed; 2) soaking the media samples in water overnight and placing them in the columns with minimal removals of the fines, and 3) placing the media samples into the columns and then pouring water down through them. In all three cases, the moist columns were allowed to drain out all excess water for at least one day before testing began.
- the results of the tests were as follows.
- the adsorption performance of the column containing the washed filtering media according to the preferred embodiment was approximately 30 mg of H 2 S per gram of filtering media before it was considered saturated.
- the filtering media which had been soaked but not rinsed of fines had an adsorption performance of 45 mg of H 2 S per gram of filtering media.
- the dry filtering media adsorbed about 40 mg of H 2 S per gram of filtering media.
- the variant media was able to adsorb almost 70 mg of H 2 S per gram of variant media.
- Regeneration of the filtering media was accomplished by the oxidation of the FeS produced during H 2 S removal.
- FeS was oxidized by simply blowing ambient air through the column to form different species of iron hydroxide, elemental sulphur and water. The regeneration process reconverts the iron hydroxide to its original bond to the diatomite material such that the filtering media is usable again to remove H 2 S from a sulfurous gas stream.
- Ferric sulfide is grey to brownish black in colour and agglomerates into lumps, rods or granular powder during the filtration process.
- the filtering media gradually turns black, beginning at the bottom of the column, and indicates that H 2 S removal is taking place.
- the formation of lumps and fine clay-like gray powder can also be noticed.
- test columns were transparent.
- a colour change was also noted.
- the filtering media was seen to change from completely black to almost its original orange colour. After regeneration, the filtering media may have a lighter shade of orange, possibly due to the elemental sulphur, being yellow, produced in the filtering media.
- black specs may remain in the filtering media. These black specs indicate that total regeneration has not been attained.
- the testing of the filtering media has indicated that the adsorption performance of the dry filtering media was similar to that of the pre-moistened filtering media, being 40 mg of H 2 S and 45 mg of H 2 S per gram of filtering media respectively.
- the performance of the dry filtering media has been shown to increase to a same level as for the moist filtering media, after it had adsorbed moisture from the gas stream passing through it. It is believed that the slight difference in initial performance is compensated for by the advantages in eliminating the need for pre-moistening the filtering media.
- the testing of the filtering media and the variant media also indicated that although the variant media had the ability to absorb more H 2 S in a first run, it is not renewable and therefore, the adsorption capacity of the filtering media according to the preferred embodiment exceeds that of the variant media in only two cycles.
- One cycle is referred to as a saturation of the filtering media with sulfides and the regeneration of the filtering media.
- a second part of the testing program was focussed on the mechanical characteristics of the filtering process, and more particularly it was focussed on finding an optimum empty bed contact time (EBCT).
- the EBCT is defined as the residence time of the gas inside the filtering column.
- the 60 second column adsorbed 45 mg of H 2 S per gram of filtering media during its first cycle, gradually declining to an average 32 mg of H 2 S per gram of filtering media per cycle and a total removal of 560 mg of H 2 S per gram of filtering media in 18 cycles.
- Testing on the 60 second EBCT column was stopped when the removal was only 26 mg of H 2 S per gram of filtering media for the last two cycles.
- Average outlet H 2 S concentration prior to saturation was about 30 ppm, with several readings as low as 0.2 ppm.
- the 90 second EBCT had similar results, averaging 30 mg of H 2 S removed per gram of filtering media, and a total removal of 326 mg of H 2 S per gram of filtering media in 11 cycles. Although this column did not remove as much H 2 S per cycle, it has achieved a lower effluent concentration of H 2 S, averaging 23 ppm.
- the 300 second EBCT column did not work as well as the other two columns. Its adsorption performance was only 20 mg/g per cycle, and it removed 115 mg/g in 6 cycles. Average outlet H 2 S concentration was 40 ppm.
- Linear velocity is the speed at which the gas flows vertically through the filtering column.
- Two columns were set up to operate at 1 ft/min and 3 ft/min respectively, with a common EBCT of 60 seconds. The results shown below are compared to the 60 second EBCT column mentioned before, which was operating at 5 ft/min.
- the 3 ft/min column yielded an average removal rate of 18 mg/g per cycle.
- the filtering column was tested through 6 cycles and adsorbed 110 mg/g in total.
- the 1 ft/min column averaged only 17 mg/g per cycle.
- the column was tested through 6 cycles, and removed 100 mg/g in total.
- the results show that the 1 ft/min and the 3 ft/min velocities are not as effective as the 5 ft/min test which gave an average 32 mg of H 2 S removal per gram of filtering media per cycle, and a total lifetime removal capacity of 560 mg of H 2 S per gram of filtering media, in 18 cycles.
- the amount of hydrogen sulfide exiting the filter in the regeneration air is less than 0.02% of the hydrogen sulfide which was originally adsorbed by the filtering media. For environmental reasons, it is therefore recommended to pass the purging air exiting a filtering column being regenerated into a second filtering column before releasing the purging air into the atmosphere.
- this second filtering column may be an adjacent filtering column in a bank of filtering columns or a secondary filtering column provided for this purpose.
- the regeneration of the filtering media can be effected automatically on a continuing basis. It is also believed that the filtering media can be made new again by separating the sulphur particles from it, by washing, sifting or otherwise.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
- This is a continuation-in-part of U.S. patent application Ser. No. 09/407,708 filed on Sep. 28, 1999, which was a continuation-in-part of U.S. patent application Ser. No. 08/909,819, filed on Aug. 12, 1997.
- The present invention relates to the removal of hydrogen sulfide (H2S) from various gases, and more particularly it relates to the removal of hydrogen sulfide from a gaseous mixture using a filtering media containing iron hydroxide intimately bonded to calcined diatomite.
- Hydrogen sulfide can be present in various air streams and is often found in gas streams associated with petroleum storage and transfer facilities, anaerobic digesters, sewage treatment plants and pulp and paper mills. In many cases, the hydrogen sulfide has to be removed because of its toxicity, corrosive properties, and unpleasant odour.
- Several methods are known and have been used in the past for removing hydrogen sulfide from a gas stream. Perhaps the most popular method is one which consists in passing the gaseous mixture through an iron sponge bed. The iron sponge bed is a type of filter which comprises essentially iron salts adsorbed on a wood chip support media. Also, there are known processes in which a sulfurous gas is passed through a bed of iron oxide particles. These processes and various others are described in U.S. Patents which can be found in particular in the U.S. Classification 423/231 entitled: Removing Hydrogen Sulfide from a Gaseous Mixture Utilizing Iron Oxide or Hydroxide.
- Problems associated with the prior art processes are numerous and include the facts that some media are self igniting when exposed to air and therefore are not renewable. Because of their weak sulfur retention, some of these non-renewable media must be treated as hazardous waste. Other known filtering media have a relatively low H2S adsorption capacity or a low H2S adsorption performance in a single pass process. Another drawback of some commercial H2S filtering systems is that the filtering media must be disposed of after a single use.
- As such, it will be appreciated that there continues to be a need for a filtering process in which the filtering media is capable of removing hydrogen sulfide from a gaseous mixture with a high single pass performance. Further, it is believed that there continues to be a need for a filtering process wherein the filtering media is easily renewable and does not generate any hazardous waste when disposed of after multiple reuses.
- The present invention provides for an effective process for removing hydrogen sulfide from a gas stream. Essentially, the process according to the present invention uses a filtering media which has a large single-pass adsorption performance, which is renewable several times and which has a considerable lifetime adsorption capacity.
- In a first aspect of the present invention, there is provided a process for removing hydrogen sulfide from a gas stream wherein the gas stream is passed through a filtering media consisting essentially of calcined diatomite and between 5% and 30% by weight of ferric ions bonded to the calcined diatomite.
- This process is particularly efficient due to the fact that the removal of hydrogen sulfide from the gas stream is effected with a single pass adsorption performance of up to 45 mg of H2S per gram of filtering media. Other advantages include the fact that the process has the ability to remove H2S from a gaseous mixture, from a concentration of 30,000 ppm down to non-detectable levels of less than 0.2 ppm in a single pass. Further, the lifetime adsorption capacity of the filtering media is about one half or more of the weight of the filtering media.
- In another aspect of the present invention, there is provided a process for removing hydrogen sulfide from a gas stream, comprising the steps of passing the gas stream through a filtering media consisting essentially of calcined diatomite, and between 5% and 30% by weight of ferric ions bonded by chemisorption bonds to the calcined diatomite. The process further includes the steps of renewing the filtering media several times when the filtering media is saturated with sulfides by blowing ambient air through the filtering media. The regeneration of the filtering media can be accomplished while maintaining an average hydrogen sulfide adsorption performance thereof of about 32 mg of hydrogen sulfide per gram of filtering media per cycle. Because the filtering media is non-flammable, there is no risk of combustion due to the heat generated during the regeneration process.
- In yet another aspect of the present invention, there is provided a process for removing hydrogen sulfide from a gas stream, comprising the step of passing the gas stream through a filtering media consisting essentially of calcined diatomite having particles ranging in sizes between about 30 mesh and about 60 mesh, and between 5% and 30% by weight of ferric ions bonded by chemisorption bonds to the calcined diatomite. The process is particularly advantageous for filtering moist gases, due to the fact that the filtering media remains porous when wet. The efficiency of the process increases with the adsorption of a certain amount of moisture in the filtering media.
- Still another feature of the process according to the present invention is that it is susceptible of a low cost of material, installation and operation, and accordingly is then susceptible of low price of sale to the industry, thereby making such H2S filtering process economically available to the public.
- Other advantages and novel features of the invention will become apparent from the following detailed description.
- While this invention is susceptible of embodiments in many various forms, there will be described in details herein a specific embodiment, with the understanding that the present disclosure is to be considered as an example of the principles of the invention and is not intended to limit the invention to the embodiment described.
- The filtering media used in the process according to preferred embodiment was the subject of an earlier patent application, Ser. No. 09/407,708, filed in Sep. 28, 1999, in which it is described as a filtering media for removing arsenic from ground water. The filtering media is known under the trademark MEDIA G2® and is available from ADI International Inc., a corporation having its principal place of business in Fredericton, New Brunswick, Canada. Although the initial purpose of the filtering media was for use as a water filter, it was discovered that the same filtering media has advantageous properties in removing hydrogen sulfide from a gas stream.
- The filtering media contains iron hydroxide Fe(OH)3 intimately bonded to calcined diatomite. The ferric ions content in the filtering media is between about 5% and about 30% by weight. The preferred calcined diatomite material has particles ranging in sizes from about 30 mesh to about 60 mesh. This size and type of diatomite particles has been found to be advantageous for use in filtering arsenic from water as well as for use in gas filtering columns, particularly for allowing intimate contact between the gas and the ferric ions bonded to the diatomite particles. The calcined diatomite particles do not offer substantial resistance to the flow of a gas passing through it and do not expand in contact with a moist gas.
- The calcined type of diatomite is believed to be an important element also contributing to the performance of filtering media in removing hydrogen sulfide from sulfurous gases. Calcined diatomite particles have multiform shapes and a greater porosity than ordinary diatomite particles. The heat treatment applied to the diatomite particles during the calcination process, increases the porosity of the particles by breaking their surfaces and forming pores, cracks, crevices, cavities, hollows and protrusions. These pores, cracks, crevices, cavities, hollows and protrusions offer additional surfaces on each particle to adsorb and to retain ferric ions.
- During the manufacturing of the filtering media, the calcined diatomite is impregnated with ferric ions in a liquid form, such as a ferric chloride solution. The solution entrains the ferric ions over the entire surface of the calcined diatomite particles and deep inside the pores, cracks, crevices and cavities of the particles. Then, the ferric chloride is converted into iron hydroxide in-situ within the diatomite particles, using sodium hydroxide for example, to better bond the ferric ions over and into the entire structure of each diatomite particle. The diatomite material has negative charges and attracts the positively charged ferric ions, thereby contributing to the formation of strong ionic impregnation bonds between the diatomite material and the ferric ions.
- During the manufacturing process, the sodium hydroxide is added slowly to bring the pH of the slurry to a final value of at least about 9, ensuring a complete and unhasty conversion of the ferric chloride to iron hydroxide. This manufacturing process is advantageous for yielding a ferric ion content, in the form of iron hydroxide, of between about 5% and about 30% by weight of the media. During this manufacturing process, it is believed that irregular clusters of ferric ions are formed and become entrapped or otherwise interlocked inside the pores, cracks, crevices and cavities of the calcined diatomite particles, and therefore become strongly bonded to the calcined diatomite particles. The bond described above is believed to be a chemisorption bond produced by an impregnation-oxidation process which is characterized by its irreversible chemical forces. It is also believed that these chemisorption bonds between the ferric ions and the calcined diatomite particles contribute greatly to the abilities of the filtering media to retain its ferric ions such that it is renewable several times after being saturated with sulfides. Also it was found that when the filtering media is saturated with water or subjected to a flow of water through it, the iron component is not released from the filtering media. This finding supports the fact that iron hydroxide is intimately bonded to the calcined diatomite particles.
- Other advantages of using the filtering media for removing H2S from a gas stream include the fact that it has a pH of about 10-11, which favourably affect the reaction of H2S with the ferric ions in the filtering media.
- Testing of the filtering media was carried out to determine its optimum performance in removing hydrogen sulfide from a sulphurous gas. In a first series of tests to determine adsorption capacities, comparative results were obtained from similar tests carried on a variant of the filtering media, hereinafter referred to as the variant media, wherein the calcined diatomite was replaced by vermiculite. The filtering media and the variant media are generally or jointly referred to as the media sample or both media samples.
- Both media samples were subjected to testing in dry and moist conditions. Dry columns were filled with media samples that were not rinsed or pre-moistened. All the fines were present in the media samples. Moist columns were prepared in three different ways: 1) washing the media samples with water until all the fines were removed; 2) soaking the media samples in water overnight and placing them in the columns with minimal removals of the fines, and 3) placing the media samples into the columns and then pouring water down through them. In all three cases, the moist columns were allowed to drain out all excess water for at least one day before testing began.
- All columns were fed a gas stream from an anaerobic digester, containing approximately 30,000 ppm of H2S. The outlet H2S concentration was measured several times per day, using gas testing tubes known under the trade name DRAEGERT®, and having a minimum readable value of 0.2 ppm. Saturation of the media samples was determined when H2S concentration in the treated gas exceeded 500 ppm.
- The results of the tests were as follows. The adsorption performance of the column containing the washed filtering media according to the preferred embodiment was approximately 30 mg of H2S per gram of filtering media before it was considered saturated. The filtering media which had been soaked but not rinsed of fines had an adsorption performance of 45 mg of H2S per gram of filtering media. The dry filtering media adsorbed about 40 mg of H2S per gram of filtering media. The variant media was able to adsorb almost 70 mg of H2S per gram of variant media.
- It is believed that during the filtration process, the media samples adsorb H2S and form ferric sulfide by the oxidation of H2S and the dissociation of the iron hydroxide species present in the media samples.
- Regeneration of the filtering media was accomplished by the oxidation of the FeS produced during H2S removal. FeS was oxidized by simply blowing ambient air through the column to form different species of iron hydroxide, elemental sulphur and water. The regeneration process reconverts the iron hydroxide to its original bond to the diatomite material such that the filtering media is usable again to remove H2S from a sulfurous gas stream.
- Ferric sulfide is grey to brownish black in colour and agglomerates into lumps, rods or granular powder during the filtration process. As a sulfurous gas is passed upward through the filtering media, the filtering media gradually turns black, beginning at the bottom of the column, and indicates that H2S removal is taking place. During the process, the formation of lumps and fine clay-like gray powder can also be noticed.
- Some of the test columns were transparent. During regeneration of the filtering media, a colour change was also noted. The filtering media was seen to change from completely black to almost its original orange colour. After regeneration, the filtering media may have a lighter shade of orange, possibly due to the elemental sulphur, being yellow, produced in the filtering media. In some cases, black specs may remain in the filtering media. These black specs indicate that total regeneration has not been attained.
- Attempts to regenerate the variant media were unsuccessful. Blowing air through the column did not return the variant media to its original colour. Also, it was found that as this variant media becomes wet, it expands to such a degree that the filter column becomes completely plugged, and the flow of gas there through becomes almost impossible.
- The testing of the filtering media has indicated that the adsorption performance of the dry filtering media was similar to that of the pre-moistened filtering media, being 40 mg of H2S and 45 mg of H2S per gram of filtering media respectively. The performance of the dry filtering media has been shown to increase to a same level as for the moist filtering media, after it had adsorbed moisture from the gas stream passing through it. It is believed that the slight difference in initial performance is compensated for by the advantages in eliminating the need for pre-moistening the filtering media.
- The testing of the filtering media and the variant media also indicated that although the variant media had the ability to absorb more H2S in a first run, it is not renewable and therefore, the adsorption capacity of the filtering media according to the preferred embodiment exceeds that of the variant media in only two cycles. One cycle is referred to as a saturation of the filtering media with sulfides and the regeneration of the filtering media.
- A second part of the testing program was focussed on the mechanical characteristics of the filtering process, and more particularly it was focussed on finding an optimum empty bed contact time (EBCT). The EBCT is defined as the residence time of the gas inside the filtering column.
- Three different columns of one half inch in diameter and five feet tall each were set up to test the effect of EBCT. These three columns were set up to run at 40, 130 and 200 ml/min, yielding EBCT of 300, 90 and 60 seconds, respectively. Again, all columns were fed a gas stream from an anaerobic digester, containing approximately 30,000 ppm of H2S. The filtering media in all three columns were pre-moistened.
- The results indicate that the EBCT of 60 and 90 seconds worked better than the 300 second column. The 60 second column adsorbed 45 mg of H2S per gram of filtering media during its first cycle, gradually declining to an average 32 mg of H2S per gram of filtering media per cycle and a total removal of 560 mg of H2S per gram of filtering media in 18 cycles. Testing on the 60 second EBCT column was stopped when the removal was only 26 mg of H2S per gram of filtering media for the last two cycles. Average outlet H2S concentration prior to saturation was about 30 ppm, with several readings as low as 0.2 ppm.
- The 90 second EBCT had similar results, averaging 30 mg of H2S removed per gram of filtering media, and a total removal of 326 mg of H2S per gram of filtering media in 11 cycles. Although this column did not remove as much H2S per cycle, it has achieved a lower effluent concentration of H2S, averaging 23 ppm.
- The 300 second EBCT column did not work as well as the other two columns. Its adsorption performance was only 20 mg/g per cycle, and it removed 115 mg/g in 6 cycles. Average outlet H2S concentration was 40 ppm.
- Further testing was carried out to measure the effectiveness of the filtering media in removing H2S at different linear velocities. Linear velocity is the speed at which the gas flows vertically through the filtering column. Two columns were set up to operate at 1 ft/min and 3 ft/min respectively, with a common EBCT of 60 seconds. The results shown below are compared to the 60 second EBCT column mentioned before, which was operating at 5 ft/min.
- The 3 ft/min column yielded an average removal rate of 18 mg/g per cycle. The filtering column was tested through6 cycles and adsorbed 110 mg/g in total. The 1 ft/min column averaged only 17 mg/g per cycle. The column was tested through 6 cycles, and removed 100 mg/g in total. The results show that the 1 ft/min and the 3 ft/min velocities are not as effective as the 5 ft/min test which gave an average 32 mg of H2S removal per gram of filtering media per cycle, and a total lifetime removal capacity of 560 mg of H2S per gram of filtering media, in 18 cycles.
- In view of these results, a new column, 10 feet in length was built to find the maximum linear velocity which the filtering media can handle. This column was set up to run at 60 second EBCT with a linear velocity of 10 ft/min, through a filtering media in a dry state. During three cycles, the average adsorption performance was 32 mg of H2S per gram of filtering media. It was observed, however, that during the first cycle, the outlet H2S concentration never went below 50 ppm. During the second and third cycles, it was much lower, averaging less than 5 ppm prior to saturation. This may be explained by the higher flow rate and therefore by a longer time required for wetting the filtering media. However, once properly wetted, performance was found to be excellent.
- In commercial and industrial applications it is recommended to contain the filtering media in a filtering column having a window or sight glass, such that users can develop certain visual skills for evaluating at a glance, the conditions of the filtering media. During the regeneration of the filtering media, it is recommended to pass the purging air exiting one filtering column into another filtering column to capture any hydrogen sulfide that may be released from the filtering column being regenerated. During regeneration of the filtering media, a small amount of the sulphur on the ferric sulfide may be reconverted to hydrogen sulfide gas and stripped off the filtering media by the regeneration air. The amount of hydrogen sulfide exiting the filter in the regeneration air is less than 0.02% of the hydrogen sulfide which was originally adsorbed by the filtering media. For environmental reasons, it is therefore recommended to pass the purging air exiting a filtering column being regenerated into a second filtering column before releasing the purging air into the atmosphere. For convenience, this second filtering column may be an adjacent filtering column in a bank of filtering columns or a secondary filtering column provided for this purpose.
- It will be appreciated that where the application can tolerate the injection of ambient air in the gas stream, the regeneration of the filtering media can be effected automatically on a continuing basis. It is also believed that the filtering media can be made new again by separating the sulphur particles from it, by washing, sifting or otherwise.
- As to additional details related to the manufacturing, installation and use of the filtering media, the same should be apparent from the above description, and accordingly further discussion relative to the manner of making, using and renewing the filtering media would be considered redundant and is not provided.
- While one embodiment of the present invention has been described herein above, it will be appreciated by those skilled in the art that various modifications, alternate compositions, alternate methods and equivalents may be employed without departing from the true spirit and scope of the invention. Therefore, the above description should not be construed as limiting the scope of the invention which is defined by the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/777,840 US6500237B2 (en) | 1997-08-12 | 2001-02-07 | Removing hydrogen sulfide from a gaseous mixture using ferric ions bonded to calcined diatomite |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90981997A | 1997-08-12 | 1997-08-12 | |
US09/407,708 US6200482B1 (en) | 1997-08-12 | 1999-09-28 | Arsenic filtering media |
US09/777,840 US6500237B2 (en) | 1997-08-12 | 2001-02-07 | Removing hydrogen sulfide from a gaseous mixture using ferric ions bonded to calcined diatomite |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/407,708 Continuation-In-Part US6200482B1 (en) | 1997-08-12 | 1999-09-28 | Arsenic filtering media |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010005981A1 true US20010005981A1 (en) | 2001-07-05 |
US6500237B2 US6500237B2 (en) | 2002-12-31 |
Family
ID=46257496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/777,840 Expired - Lifetime US6500237B2 (en) | 1997-08-12 | 2001-02-07 | Removing hydrogen sulfide from a gaseous mixture using ferric ions bonded to calcined diatomite |
Country Status (1)
Country | Link |
---|---|
US (1) | US6500237B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060275193A1 (en) * | 2005-06-01 | 2006-12-07 | Conocophillips Company | Electrochemical process for decomposition of hydrogen sulfide and production of sulfur |
WO2011128073A2 (en) | 2010-04-12 | 2011-10-20 | Durtec Gmbh | Use of granulated natural minerals as gas adsorbents for removing gaseous pollutant components |
EP2525210A1 (en) * | 2011-05-16 | 2012-11-21 | Sick Ag | Device and method for determining a concentration of a measurement component in a gas |
US9023237B2 (en) | 2013-06-19 | 2015-05-05 | New Technology Ventures, Inc. | Highly active nano iron catalyst for the absorption of hydrogen sulfide |
US9458027B2 (en) | 2013-06-19 | 2016-10-04 | New Technology Ventures, Inc. | Sulfided iron (II) compound and method of manufacture |
CN109289525A (en) * | 2018-01-07 | 2019-02-01 | 东营市海嘉化工有限公司 | A kind of FeOOH desulfurizer regeneration method and dedicated screening agitating device |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000357711A (en) * | 1999-06-15 | 2000-12-26 | Sony Corp | Manufacturing jig and manufacturing method of semiconductor device |
US6908497B1 (en) * | 2003-04-23 | 2005-06-21 | The United States Of America As Represented By The Department Of Energy | Solid sorbents for removal of carbon dioxide from gas streams at low temperatures |
CA2433277C (en) * | 2003-06-25 | 2008-02-26 | Clean-Flo Gas Filtration Systems (1987) Ltd. | Gas purification medium for removing sulfides from gaseous streams |
US7744841B2 (en) * | 2005-09-15 | 2010-06-29 | New Technology Ventures, Inc. | Sulfur removal using ferrous carbonate absorbent |
US7931815B2 (en) * | 2005-09-15 | 2011-04-26 | New Technology Ventures, Inc. | Method for reducing oxygen content of fluid streams containing sulfur compounds |
WO2008131034A2 (en) * | 2007-04-16 | 2008-10-30 | Moser Mark A | Hydrogen sulfide scrubber |
CA2740741A1 (en) * | 2008-10-16 | 2010-04-22 | Cornell University | Regenerable removal of sulfur from gaseous or liquid mixtures |
US20100248941A1 (en) * | 2009-03-31 | 2010-09-30 | Intevep, S.A. | Use of iron ore agglomerates for acid gas removal |
US8404031B1 (en) | 2009-10-06 | 2013-03-26 | Michael Callaway | Material and method for the sorption of hydrogen sulfide |
US8759252B1 (en) | 2010-10-06 | 2014-06-24 | Michael D. and Anita Kaye | Material and method for the sorption of hydrogen sulfide |
BR112015011232B1 (en) | 2012-12-19 | 2021-07-06 | Ecolab Usa Inc | compression treatment method for eliminating hydrogen sulfide in a production fluid |
EP2935193B1 (en) | 2012-12-19 | 2018-10-10 | Nalco Company | Scavenging hydrogen sulfide |
AU2013361683B2 (en) | 2012-12-19 | 2018-06-14 | Nalco Company | Functionalized hydrogen sulfide scavengers |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4201751A (en) | 1975-05-06 | 1980-05-06 | Heinz Gresch | Gas purification |
US4089809A (en) | 1976-03-01 | 1978-05-16 | The United States Of America As Represented By The United States Department Of Energy | Regenerable sorbent and method for removing hydrogen sulfide from hot gaseous mixtures |
US4246243A (en) | 1978-11-27 | 1981-01-20 | Irwin Fox | Use of steel plant waste dusts for scavenging hydrogen sulfide |
US4246244A (en) | 1979-05-31 | 1981-01-20 | Gas Sweetener, Inc. | Process for scavenging hydrogen sulfide from hydrocarbon gases |
US4324298A (en) | 1979-05-31 | 1982-04-13 | Ironite Products Company | Method of using a reactive iron oxide drilling mud additive |
US4366131A (en) | 1979-05-31 | 1982-12-28 | Irwin Fox | Highly reactive iron oxide agents and apparatus for hydrogen sulfide scavenging |
US4374106A (en) | 1981-08-20 | 1983-02-15 | Occidental Research Corporation | Process for reducing the hydrogen sulfide content in geothermal steam |
US5320992A (en) | 1989-08-30 | 1994-06-14 | Irwin Fox | Disposable oxide carrier for scavenging hydrogen sulfide |
US5234884A (en) | 1989-11-30 | 1993-08-10 | Takeda Chemical Industries, Ltd. | Adsorbent composition and method of producing same |
US5281445A (en) * | 1990-07-30 | 1994-01-25 | Phillips Petroleum Company | Coating of components of sulfur absorbants |
ZA93401B (en) | 1992-01-27 | 1993-08-24 | Phillips Petroleum Co | Composition useful as sulfur absorption for fluid streams. |
US5858912A (en) | 1997-04-02 | 1999-01-12 | The Sulfatreat Company | Non-aqueous liquids for moistening an oxide-bearing carrier in sulfur sweetening |
US6126911A (en) * | 1992-05-04 | 2000-10-03 | The Sulfatreat Company | Metal oxide product suitable for use in dehydrated gas |
US5632931A (en) | 1992-05-04 | 1997-05-27 | Gas Sweetener Associates, Inc. | Bloated mineral oxide carrier for packed-bed fluid stream chemical processes |
CA2120046C (en) | 1994-01-27 | 1999-09-14 | M-I L.L.C. | Separately removing mercaptans and hydrogen sulfide from gas streams |
US5792438A (en) | 1996-08-20 | 1998-08-11 | The Sulfatreat Company | Process and composition for increasing the reactivity of sulfur scavenging iron oxides |
-
2001
- 2001-02-07 US US09/777,840 patent/US6500237B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060275193A1 (en) * | 2005-06-01 | 2006-12-07 | Conocophillips Company | Electrochemical process for decomposition of hydrogen sulfide and production of sulfur |
US7378068B2 (en) | 2005-06-01 | 2008-05-27 | Conocophillips Company | Electrochemical process for decomposition of hydrogen sulfide and production of sulfur |
WO2011128073A2 (en) | 2010-04-12 | 2011-10-20 | Durtec Gmbh | Use of granulated natural minerals as gas adsorbents for removing gaseous pollutant components |
EP2525210A1 (en) * | 2011-05-16 | 2012-11-21 | Sick Ag | Device and method for determining a concentration of a measurement component in a gas |
US8771597B2 (en) | 2011-05-16 | 2014-07-08 | Sick Ag | Apparatus for the determination of a concentration of a component to be measured in a gas |
US9023237B2 (en) | 2013-06-19 | 2015-05-05 | New Technology Ventures, Inc. | Highly active nano iron catalyst for the absorption of hydrogen sulfide |
US9458027B2 (en) | 2013-06-19 | 2016-10-04 | New Technology Ventures, Inc. | Sulfided iron (II) compound and method of manufacture |
CN109289525A (en) * | 2018-01-07 | 2019-02-01 | 东营市海嘉化工有限公司 | A kind of FeOOH desulfurizer regeneration method and dedicated screening agitating device |
Also Published As
Publication number | Publication date |
---|---|
US6500237B2 (en) | 2002-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6500237B2 (en) | Removing hydrogen sulfide from a gaseous mixture using ferric ions bonded to calcined diatomite | |
US9757709B1 (en) | Method for forming an acid-treated fly ash activated carbon | |
Krishnan et al. | Removal of mercury (II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies | |
US6599429B1 (en) | Water treatment product and method | |
Manna et al. | Removal of arsenic from groundwater using crystalline hydrous ferric oxide (CHFO) | |
Shibi et al. | Adsorption of Co (II) by a carboxylate-functionalized polyacrylamide grafted lignocellulosics | |
US20080135487A1 (en) | Process for reduction of inorganic contaminants from waste streams | |
CN104692579B (en) | A kind of method of metallurgical off-gas acid-making waste water resource utilization advanced treatment | |
Klingspor et al. | Similarities between lime and limestone in wet—dry scrubbing | |
Habeeb et al. | Kinetic, isotherm and equilibrium study of adsorption capacity of hydrogen sulfide-wastewater system using modified eggshells | |
Özer et al. | Study of cadmium adsorption from aqueous solution on activated carbon from sugar beet pulp | |
CN108187451A (en) | A kind of method of nanometer of material molybdenum sulfide wet method removing gaseous elemental mercury | |
CN109647342B (en) | Moisture-proof renewable activated carbon and preparation method thereof | |
CN104525093B (en) | Hg in a kind of removing flue gas0magnetic adsorbent and preparation and application | |
US8246722B2 (en) | Use of iron ore agglomerates for acid gas removal | |
Vassileva et al. | Adsorption of some transition metal ions [Cu (II), Fe (III), Cr (III) and Au (III)] onto lignite-based activated carbons modified by oxidation | |
AU2017248029B2 (en) | Catalyst mixture for the treatment of waste gas | |
Badr et al. | Using agricultural waste as biosorbent for hazardous brilliant green dye removal from aqueous solutions | |
Krishnan et al. | A Preliminary examination of the adsorption characteristics of Pb (II) ions using sulphurised activated carbon prepared from bagasse pith | |
CA2334505C (en) | Removing hydrogen sulfide from a gaseous mixture using iron hydroxide bonded to calcined diatomite | |
Song et al. | Surface modification of coconut-based activated carbon by SDS and its effects on Pb2+ adsorption | |
Barloková et al. | Modified clinoptilolite in the removal of iron and manganese from water | |
Salimi et al. | Removal of H2S and mercaptan from outlet gases of kermanshah refinery using modified adsorbents (bentonite and sludge) | |
CN101219336A (en) | Reproducible microorganism metallic oxide complex adsorbing-desulphurizing agent and production method thereof | |
Kulkarni et al. | Phenol removal from effluent by rice husk carbon: Batch and column studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADI INTERNATIONAL INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WINCHESTER, ERIC L.;MCMULLIN, MICHAEL J.;HUM, JEFFREY K.;REEL/FRAME:013434/0662 Effective date: 20021024 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |
|
AS | Assignment |
Owner name: ADI SYSTEMS NORTH AMERICA INC., CANADA Free format text: CHANGE OF NAME;ASSIGNOR:692518 N.B. INC.;REEL/FRAME:041085/0796 Effective date: 20161202 Owner name: 692518 N.B. INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADI SYSTEMS NORTH AMERICA INC.;REEL/FRAME:041214/0918 Effective date: 20161202 Owner name: ADI SYSTEMS NORTH AMERICA INC., CANADA Free format text: CHANGE OF NAME;ASSIGNOR:ADI SYSTEMS INC.;REEL/FRAME:041215/0037 Effective date: 20161202 |
|
AS | Assignment |
Owner name: ADI SYSTEMS INC., CANADA Free format text: MERGER;ASSIGNOR:ADI INTERNATIONAL INC.;REEL/FRAME:043013/0879 Effective date: 20161202 |
|
AS | Assignment |
Owner name: EVOQUA WATER TECHNOLOGIES CANADA LTD., CANADA Free format text: MERGER;ASSIGNOR:ADI SYSTEMS NORTH AMERICA INC.;REEL/FRAME:047180/0811 Effective date: 20180630 |