US20010003949A1 - Permeation installation - Google Patents

Permeation installation Download PDF

Info

Publication number
US20010003949A1
US20010003949A1 US09/734,213 US73421300A US2001003949A1 US 20010003949 A1 US20010003949 A1 US 20010003949A1 US 73421300 A US73421300 A US 73421300A US 2001003949 A1 US2001003949 A1 US 2001003949A1
Authority
US
United States
Prior art keywords
permeation
gaseous mixture
chamber
wall
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/734,213
Other versions
US6451090B2 (en
Inventor
Christian Monereau
Serge Phelut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Assigned to L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE reassignment L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MONEREAU, CHRISTIAN, PHELUT, SERGE
Publication of US20010003949A1 publication Critical patent/US20010003949A1/en
Assigned to L'AIR LIQUIDE SOCIETE ANONYME A DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE reassignment L'AIR LIQUIDE SOCIETE ANONYME A DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
Application granted granted Critical
Publication of US6451090B2 publication Critical patent/US6451090B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/23Specific membrane protectors, e.g. sleeves or screens

Definitions

  • the present invention relates to permeation installations.
  • the technique or process of permeation permits the separation of a gas from a mixture of gases in gaseous phase with the help of porous walls.
  • This technique consists in applying under a relatively high pressure of the order of several tens of bars, the gaseous mixture in the environment of a bundle of hollow fibers produced from polymer of a particular type. Under the influence of the pressure and because of the nature of the material, the molecules of a gas will be adsorbed selectively by the material constituting the hollow fibers, passing through the pores of these porous fibers and will be recovered by desorption within the channel of very small size existing in these fibers. On the other hand, the gas or gases corresponding to the other molecules will not pass or will very little pass through the porous wall and will remain outside the bundle of hollow porous fibers.
  • a so-called sweeping gas flow of a different composition than the permeate, is introduced within the fibers, from the side opposite that for recovery of the permeate.
  • This injection has for its object to increase the yield by recuperation of the gas preferentially passing through the fibers.
  • FIG. 1 there is schematically shown a permeator. It comprises an external chamber 10 resistant to pressure, within which is mounted a bundle 12 of hollow porous fibers.
  • the gaseous mixture is introduced by the nozzle 14 disposed at the lower end of the chamber 10 .
  • the gas under pressure surrounds the bundle of hollow fibers.
  • the fraction of the gas which passes through the hollow wall penetrates the channels of the fibers and is recovered at one end of these latter in a chamber 16 , the latter being connected to an outlet conduit 18 for the fraction of the gaseous mixture having passed through the wall of the fibers and which will ultimately be called permeate and indicated by the letter P.
  • the fraction of the gaseous mixture which did not pass through the wall of the fibers is recovered, preferably with a tube provided with perforations 20 which extends axially along the bundle of fibers 12 .
  • This fraction of the gaseous mixture leaves the chamber 10 by the nozzle 22 connected to the perforated tube 20 .
  • the fraction of the gaseous mixture that did not pass through the wall of the hollow fibers will ultimately be called non-permeate and indicated by the letter R.
  • the gaseous mixture is introduced via the central tube 22 and the non-permeate is recovered in the chamber 20 .
  • the pressure of the gaseous mixture is relatively high, typically in the order of several tens of bars. It is thus necessary that the external chamber 10 with resistance to pressure have a relatively great wall thickness and the different nozzles such as 18 and 22 passing through this wall must also be made precisely to maintain the resistance to pressure of the chamber 10 .
  • each permeation module be supplied by a predetermined gaseous flow rate, departing from this flow rate gives rise to a very great decrease in the output of the installation.
  • An object of the present invention is to provide a permeation chamber in which several permeator or several permeation modules are disposed one beside the other within a single pressure resistant chamber whose dimension is reduced whilst permitting an overall higher output from this installation.
  • the permeation installation comprises:
  • each module being constituted by at least one permeator formed of hollow fibers with a porous wall and being disposed within an envelope provided with perforations placing in communication the external portion of each module and the common gaseous circuit,
  • [0016] means to recover the fraction of the gaseous mixture that has passed through the wall of said fibers
  • [0017] means to recover the fraction of the gaseous mixture that has not passed through the wall of said fibers.
  • the modules are supplied with substantially equal flow rates for the different modules and with a good distribution of the flows for each module, thereby permitting the optimum operation of each permeation module and accordingly the optimum operation of the unit.
  • the perforated envelopes are disposed at the interface of two gaseous media whose pressures are not very different. These envelopes can therefore have a relatively simple mechanical construction.
  • the perforators are interposed in the supply circuit of the gaseous mixture to the permeation modules.
  • the perforations are interposed in the recovery circuit of the fraction of the gaseous mixture that has not passed through the walls of the fibers of the permeators (non-permeate).
  • each permeation module has a generally cylindrical shape
  • each envelope has a cylindrical shape surrounding said permeation module over all its axial length and said cylindrical envelope is perforated in its lateral portion and is closed at each of its ends by a closed wall.
  • each permeation module has a generally cylindrical shape, each permeation module is surrounded over all its length by an imperforate cylindrical wall and an imperforate plate closes one end of the imperforate cylindrical wall, another end plate having said perforations.
  • the pressure drop created by said perforations is comprised between 10 and 90% of the total pressure drop between the inlet of the installation and the outlet for the fraction of the gaseous mixture that has not passed through the wall of the fibers, and preferably between 15 and 60%.
  • FIG. 1 already described, shows schematically a permeator of the prior art
  • FIG. 1A shows in simplified fashion a permeator that can be used with several permeation modules disposed side by side;
  • FIG. 2 is a simplified view of a first embodiment of a permeation installation according to the invention.
  • FIG. 3 shows in simplified manner a second embodiment of the permeation installation
  • FIG. 4 shows in simplified manner a third embodiment of the permeation installation
  • FIG. 5 shows in simplified manner a fourth embodiment of the permeation installation
  • FIG. 6 shows in vertical cross-section a detailed example of embodiment of the permeation installation according to the embodiments of FIG. 3;
  • FIG. 6A is a cross-sectional view on the line A-A of FIG. 6;
  • FIG. 7 is a fragmentary view of FIG. 6 showing the recovery of the permeate and of the non-permeate in a permeation module.
  • FIG. 7A is a cross-sectional view on the line A-A of FIG. 7.
  • FIG. 2 there will be described a first embodiment of the permeation installation.
  • the pressure resistant chamber 30 provided with its nozzle 32 for the introduction of the gaseous mixture F.
  • two permeators 34 and 36 which could also be permeation modules constituted by several permeators mounted one above the other.
  • Each permeation module 34 , 36 is disposed within an envelope constituted by a cylindrical wall 38 which extends over all the height of the permeation module and which is closed at its ends by two plates 40 and 42 .
  • the sidewall 38 is perforated, with perforations of calibrated diameters, whilst the plates 40 and 42 are imperforate.
  • tubing 44 for the recovery of the non-permeate R and the tubing 46 for recovery of the permeate P recovered within the hollow fibers constituting the permeators 34 , 36 .
  • FIG. 3 shows in a simplified manner a second embodiment of the permeation installation.
  • the latter again comprises the external pressure chamber 30 with its nozzle 32 for introduction of the gaseous mixture to be treated under pressure.
  • the permeators or permeation modules 34 and 36 are disposed in individual envelopes constituted by a cylindrical wall 50 extending over all the height of the permeation module, this wall 50 being imperforate.
  • a first end of the lateral 50 is closed by an imperforate plate 52 , whilst its second end is closed by a plate 54 provided with perforations of calibrated dimensions. The same is true for all the permeators or permeation modules contained within the chamber.
  • the perforated plates 54 divided the entering flow and impose pressure drops which can be adjusted with high precision to obtain for each permeation module a same flow rate corresponding to the optimum operation of the permeation module.
  • the envelopes 50 , 52 , 54 can be made with a relatively less thickness, because the pressure on their two surfaces is substantially the same.
  • the non-permeate R is recovered by the tubes 44 and leaves the chamber 30 by the nozzle 55 .
  • the installation has the same structure as that of FIG. 2. The difference resides in the circulation of the different gas flows.
  • the gaseous mixture F to be treated is introduced into the permeators through the interior tubes 44 , whilst the non-permeate R is recovered through the outlet nozzle 32 of envelope 30 .
  • the perforated envelope ( 38 , 40 , 42 ) is disposed in the flow R of non-permeate leaving the permeators.
  • the installation has the same structure as that of FIG. 3. Only the circulation of the different gas flows is modified.
  • the gaseous mixture F to be treated is introduced into the chamber 30 through the nozzle 55 and the non-permeate R is recovered through the nozzle 32 after having passed through the perforations of the plates 54 .
  • each perforated envelope interposed between the introduction nozzle for the mixture into the chamber and each permeation module, or between each permeator and the recovery nozzle of the non-permeate permits defining very precisely the circulatory flow rate through each permeation module. It will also be understood that this pressure drop can be defined in such a manner as to be very much greater than the pressure drop resulting from the normal circulation of the gaseous mixture within the pressure resistant chamber and at the exterior of the envelope surrounding each permeation module. There can also be a certain number of permeation modules beside each other in a pressure resistant chamber of reduced dimensions. It will also be understood that the pressure on opposite sides of the perforated plates is relatively identical and that the plates can therefore be made of sheet metal of a thickness that is also relatively reduced.
  • the pressure drop created by the perforated envelopes is comprised between 10 and 90% of the total pressure drop between the inlet of the installation and the non-permeate outlet. Preferably, this pressure drop is comprised between 15 and 60%.
  • the total surface of the perforations represents from 0.1 to 3 times the cross-section of the supply nozzle for gaseous mixture (FIGS. 2 and 3) or this same proportion of the cross-section of the outlet nozzle for the non-permeate (FIGS. 4 and 5). Again preferably, these ranges are comprised between 0.5 and 2 times the cross-sectional area of the nozzle.
  • the perforations can also be predetermined by the perforation that their total surface represents relative to the total surface of the perforated envelope. This proportion is preferably below 10% and again preferably below 1%.
  • FIGS. 6 and 7 there will be described in greater detail a preferred embodiment of the permeation installation according to the principle shown in FIG. 3.
  • FIG. 6 there is shown the external pressure resistant chamber 70 of the permeation installation which is constituted by a cylindrical sidewall 72 , by a bolted cover 74 and by a semispherical end cap 76 .
  • Each permeation module is surrounded over all its length by a cylindrical envelope 94 whose upper end is closed by a plate 96 and whose lower end is closed by a lower perforated plate 98 which is connected in sealed fashion to the plate 80 or which is integral with it.
  • the perforations such as 100 in the perforated plates 98 open directly into the supply chamber 81 and thereby permit creating a pressure drop between the introduction nozzle 78 and each permeation module 82 , 86 and 88 .
  • the perforations are preferably disposed on a same circle relative to the longitudinal axis of the permeation modules, thereby permitting providing a homogeneous circulation over all the periphery of the module.
  • FIGS. 7 and 7A The recovery of the permeate P and of the non-permeate R will be better understood with reference to FIGS. 7 and 7A, in which there is shown a portion of a permeation module. More precisely, in FIG. 7, there is shown for example the permeator 90 and the permeator 92 of the permeation module 82 . There is also shown the envelope 94 . At the upper end of the bundle of hollow fibers constituting the permeator 90 , is seen an annular chamber 102 for recovery of the permeate within the hollow fibers. The recovery of the non-permeate is carried out through a perforated tube 104 which is disposed in an axial passage 106 of each permeator.
  • the permeation installations according to the invention can have numerous applications, particularly the purification of hydrogen.
  • the permeate is thus the hydrogen of which it is desired that the purity be above 80% in total moles of permeate, preferably greater than 85%.
  • the installation operates at a temperature comprised between 40 and 120° C.
  • Another installation consists in obtaining a mixture of predetermined composition, of hydrogen and a gas selected from CO, N 2 , Ar, CO 2 and He.
  • the mixture is the non-permeate R.
  • the installation operates at a temperature comprised between 60 and 90° C.

Abstract

The invention relates to a permeation installation comprising:
a single pressure resistant chamber (30),
a plurality of permeation modules (34, 36) disposed within said chamber, each module being constituted b at least one permeator formed of hollow fibers with porous walls and being disposed within an envelope (38) provided with perforations placing in communication the external portion of each module and the common gaseous circuit,
means (32) to supply said installation with the gaseous mixture to be treated,
means (46) to recover the fraction of the gaseous mixture having passed through the wall of said fibers; and
means (44) to recover the fraction of the gaseous mixture that has not passed through the wall of said fibers.

Description

  • The present invention relates to permeation installations. [0001]
  • The technique or process of permeation permits the separation of a gas from a mixture of gases in gaseous phase with the help of porous walls. This technique consists in applying under a relatively high pressure of the order of several tens of bars, the gaseous mixture in the environment of a bundle of hollow fibers produced from polymer of a particular type. Under the influence of the pressure and because of the nature of the material, the molecules of a gas will be adsorbed selectively by the material constituting the hollow fibers, passing through the pores of these porous fibers and will be recovered by desorption within the channel of very small size existing in these fibers. On the other hand, the gas or gases corresponding to the other molecules will not pass or will very little pass through the porous wall and will remain outside the bundle of hollow porous fibers. [0002]
  • In certain embodiments, a so-called sweeping gas flow, of a different composition than the permeate, is introduced within the fibers, from the side opposite that for recovery of the permeate. This injection has for its object to increase the yield by recuperation of the gas preferentially passing through the fibers. [0003]
  • This embodiment somewhat complicates the technique of permeators and is not described in what follows. The invention can also be applied to this type of embodiment. [0004]
  • In the accompanying FIG. 1, there is schematically shown a permeator. It comprises an [0005] external chamber 10 resistant to pressure, within which is mounted a bundle 12 of hollow porous fibers. The gaseous mixture is introduced by the nozzle 14 disposed at the lower end of the chamber 10. The gas under pressure surrounds the bundle of hollow fibers. The fraction of the gas which passes through the hollow wall penetrates the channels of the fibers and is recovered at one end of these latter in a chamber 16, the latter being connected to an outlet conduit 18 for the fraction of the gaseous mixture having passed through the wall of the fibers and which will ultimately be called permeate and indicated by the letter P. On the other hand, the fraction of the gaseous mixture which did not pass through the wall of the fibers is recovered, preferably with a tube provided with perforations 20 which extends axially along the bundle of fibers 12. This fraction of the gaseous mixture leaves the chamber 10 by the nozzle 22 connected to the perforated tube 20. The fraction of the gaseous mixture that did not pass through the wall of the hollow fibers will ultimately be called non-permeate and indicated by the letter R.
  • In another embodiment, the gaseous mixture is introduced via the [0006] central tube 22 and the non-permeate is recovered in the chamber 20.
  • As already indicated, the pressure of the gaseous mixture is relatively high, typically in the order of several tens of bars. It is thus necessary that the [0007] external chamber 10 with resistance to pressure have a relatively great wall thickness and the different nozzles such as 18 and 22 passing through this wall must also be made precisely to maintain the resistance to pressure of the chamber 10.
  • It will be understood that it is thus interesting to have [0008] several permeator 12 within the same pressure resistant chamber 10. This has already been proposed, particularly in U.S. Pat. No. 4,874,405, which discloses a permeation module consisting of several individual permeators disposed one above the other, these permeators being disposed in a same pressure resistant chamber.
  • However, it appears that, for reasons both technical and economical, it is difficult to have more than three permeators one above the other within a same chamber. However, there exists a certain number of situations in which it is desired to be able to process volumes of gaseous mixture with relatively high flow rates which are not compatible with the use of three permeators disposed one above the other. [0009]
  • To solve this problem, it could be envisaged to arrange within a same pressure chamber (shown at [0010] 24 in the accompanying FIG. 1A), several permeations ensembles, such as 26, disposed one beside the others. In FIG. 1A, there is also shown the inlet nozzle 28 for the gaseous mixture to be treated in the pressure chamber 24. However, it is important in such an installation that each permeation module be supplied by a predetermined gaseous flow rate, departing from this flow rate gives rise to a very great decrease in the output of the installation. To solve this problem, there can be envisaged provision of different permeation modules 26 in a pressure resistant chamber 24 of large dimension, such that the flow rates for each permeation module will be substantially the same. It will be understood, however, that such a solution is unacceptable because it leads to a very great increase in the cost of the installation because of the large dimensions of the pressure resistant chamber 24 and hence in particular the increase of the wall thickness of this chamber.
  • An object of the present invention is to provide a permeation chamber in which several permeator or several permeation modules are disposed one beside the other within a single pressure resistant chamber whose dimension is reduced whilst permitting an overall higher output from this installation. [0011]
  • To achieve this object, according to the invention, the permeation installation comprises: [0012]
  • a single pressure resistant chamber, [0013]
  • at least two permeation modules disposed within said chamber, each module being constituted by at least one permeator formed of hollow fibers with a porous wall and being disposed within an envelope provided with perforations placing in communication the external portion of each module and the common gaseous circuit, [0014]
  • means to supply said installation with a gaseous mixture to be processed, [0015]
  • means to recover the fraction of the gaseous mixture that has passed through the wall of said fibers; [0016]
  • means to recover the fraction of the gaseous mixture that has not passed through the wall of said fibers. [0017]
  • It will be understood that, thanks to the interposition of the perforated envelopes constituting pressure drops in the common gaseous circuit, the modules are supplied with substantially equal flow rates for the different modules and with a good distribution of the flows for each module, thereby permitting the optimum operation of each permeation module and accordingly the optimum operation of the unit. It will be moreover understood that the perforated envelopes are disposed at the interface of two gaseous media whose pressures are not very different. These envelopes can therefore have a relatively simple mechanical construction. [0018]
  • According to a first embodiment, the perforators are interposed in the supply circuit of the gaseous mixture to the permeation modules. According to a second embodiment, the perforations are interposed in the recovery circuit of the fraction of the gaseous mixture that has not passed through the walls of the fibers of the permeators (non-permeate). [0019]
  • It will be understood that, in these two cases, the pressure drop which results permits substantially equalizing the gaseous flow rate in all the permeation modules. [0020]
  • According to a first embodiment of the installation, each permeation module has a generally cylindrical shape, each envelope has a cylindrical shape surrounding said permeation module over all its axial length and said cylindrical envelope is perforated in its lateral portion and is closed at each of its ends by a closed wall. [0021]
  • According to a second embodiment of the invention, each permeation module has a generally cylindrical shape, each permeation module is surrounded over all its length by an imperforate cylindrical wall and an imperforate plate closes one end of the imperforate cylindrical wall, another end plate having said perforations. [0022]
  • Preferably, the pressure drop created by said perforations is comprised between 10 and 90% of the total pressure drop between the inlet of the installation and the outlet for the fraction of the gaseous mixture that has not passed through the wall of the fibers, and preferably between 15 and 60%. [0023]
  • Another characteristics and advantages of the invention will become better apparent from a reading of the description which follows, of several embodiments of the invention, given by way of non-limiting example. The description refers to the accompanying figures, in which: [0024]
  • FIG. 1, already described, shows schematically a permeator of the prior art; [0025]
  • FIG. 1A, already described, shows in simplified fashion a permeator that can be used with several permeation modules disposed side by side; [0026]
  • FIG. 2 is a simplified view of a first embodiment of a permeation installation according to the invention; [0027]
  • FIG. 3 shows in simplified manner a second embodiment of the permeation installation; [0028]
  • FIG. 4 shows in simplified manner a third embodiment of the permeation installation; [0029]
  • FIG. 5 shows in simplified manner a fourth embodiment of the permeation installation; [0030]
  • FIG. 6 shows in vertical cross-section a detailed example of embodiment of the permeation installation according to the embodiments of FIG. 3; [0031]
  • FIG. 6A is a cross-sectional view on the line A-A of FIG. 6; [0032]
  • FIG. 7 is a fragmentary view of FIG. 6 showing the recovery of the permeate and of the non-permeate in a permeation module; and [0033]
  • FIG. 7A is a cross-sectional view on the line A-A of FIG. 7. [0034]
  • A permeation installation according to the invention can belong to four different types, on the one hand, according to whether the envelope is perforated in its lateral portion (FIGS. 2 and 4) or at one of its ends (FIGS. 3 and 5) and on the other hand, according to the position of the perforated envelopes relative to the different gas flows, the perforated envelope being interposed within the gaseous mixture to be treated (FIGS. 2 and 3) or in the flow of non-permeate (FIGS. 4 and 5). [0035]
  • Referring first to FIG. 2, there will be described a first embodiment of the permeation installation. In this simplified figure, there is shown the pressure [0036] resistant chamber 30 provided with its nozzle 32 for the introduction of the gaseous mixture F. In each figure, there is also shown two permeators 34 and 36 which could also be permeation modules constituted by several permeators mounted one above the other. Each permeation module 34, 36 is disposed within an envelope constituted by a cylindrical wall 38 which extends over all the height of the permeation module and which is closed at its ends by two plates 40 and 42. The sidewall 38 is perforated, with perforations of calibrated diameters, whilst the plates 40 and 42 are imperforate. In a schematic manner, there is also shown tubing 44 for the recovery of the non-permeate R and the tubing 46 for recovery of the permeate P recovered within the hollow fibers constituting the permeators 34, 36.
  • It will be understood that thanks to the pressure drop resulting from the [0037] perforations 38, the different permeators or permeation modules 34, 36 can be supplied with a same perfectly defined flow rate no matter what the pressure drop of the different paths from the introduction nozzle of the gaseous mixture 32 to the permeators 34, 36. It will also be understood that the pressure within the envelope constituted by the lateral walls 38 and the end plates 40 and 42 is only a little less than the pressure of the gaseous mixture in the chamber 30 within the envelopes 38. These envelopes 38 can thus have a reduced thickness and very much less than the thickness of the external chamber 30.
  • FIG. 3 shows in a simplified manner a second embodiment of the permeation installation. The latter again comprises the [0038] external pressure chamber 30 with its nozzle 32 for introduction of the gaseous mixture to be treated under pressure. There are seen the permeators or permeation modules 34 and 36. These latter are disposed in individual envelopes constituted by a cylindrical wall 50 extending over all the height of the permeation module, this wall 50 being imperforate. A first end of the lateral 50 is closed by an imperforate plate 52, whilst its second end is closed by a plate 54 provided with perforations of calibrated dimensions. The same is true for all the permeators or permeation modules contained within the chamber. It will be understood that, as in the first embodiment, the perforated plates 54 divided the entering flow and impose pressure drops which can be adjusted with high precision to obtain for each permeation module a same flow rate corresponding to the optimum operation of the permeation module. As in the case of the first embodiment, the envelopes 50, 52, 54 can be made with a relatively less thickness, because the pressure on their two surfaces is substantially the same. The non-permeate R is recovered by the tubes 44 and leaves the chamber 30 by the nozzle 55.
  • In the embodiment shown in FIG. 4, the installation has the same structure as that of FIG. 2. The difference resides in the circulation of the different gas flows. The gaseous mixture F to be treated is introduced into the permeators through the [0039] interior tubes 44, whilst the non-permeate R is recovered through the outlet nozzle 32 of envelope 30. The perforated envelope (38, 40, 42) is disposed in the flow R of non-permeate leaving the permeators.
  • According to the embodiment of FIG. 5, the installation has the same structure as that of FIG. 3. Only the circulation of the different gas flows is modified. The gaseous mixture F to be treated is introduced into the [0040] chamber 30 through the nozzle 55 and the non-permeate R is recovered through the nozzle 32 after having passed through the perforations of the plates 54.
  • It follows that the number of permeators or of permeation modules is typically greater than 2, as is shown in simplified manner in FIGS. [0041] 2 to 5. This number can be equal to 3, 5 or 7, which permits optimum filling of the interior of the chamber 30.
  • It will be understood that no matter what the embodiment in question, the pressure drop created by each perforated envelope interposed between the introduction nozzle for the mixture into the chamber and each permeation module, or between each permeator and the recovery nozzle of the non-permeate, permits defining very precisely the circulatory flow rate through each permeation module. It will also be understood that this pressure drop can be defined in such a manner as to be very much greater than the pressure drop resulting from the normal circulation of the gaseous mixture within the pressure resistant chamber and at the exterior of the envelope surrounding each permeation module. There can also be a certain number of permeation modules beside each other in a pressure resistant chamber of reduced dimensions. It will also be understood that the pressure on opposite sides of the perforated plates is relatively identical and that the plates can therefore be made of sheet metal of a thickness that is also relatively reduced. [0042]
  • Preferably, the pressure drop created by the perforated envelopes is comprised between 10 and 90% of the total pressure drop between the inlet of the installation and the non-permeate outlet. Preferably, this pressure drop is comprised between 15 and 60%. [0043]
  • It can also be indicated that, preferably, the total surface of the perforations represents from 0.1 to 3 times the cross-section of the supply nozzle for gaseous mixture (FIGS. 2 and 3) or this same proportion of the cross-section of the outlet nozzle for the non-permeate (FIGS. 4 and 5). Again preferably, these ranges are comprised between 0.5 and 2 times the cross-sectional area of the nozzle. [0044]
  • The perforations can also be predetermined by the perforation that their total surface represents relative to the total surface of the perforated envelope. This proportion is preferably below 10% and again preferably below 1%. [0045]
  • Referring now to FIGS. 6 and 7, there will be described in greater detail a preferred embodiment of the permeation installation according to the principle shown in FIG. 3. [0046]
  • In FIG. 6, there is shown the external pressure [0047] resistant chamber 70 of the permeation installation which is constituted by a cylindrical sidewall 72, by a bolted cover 74 and by a semispherical end cap 76.
  • The bottom [0048] 76 of the pressure chamber is provided with a nozzle 78 for the introduction of the gaseous mixture to be processed. The lower portion of the chamber is separated from the rest of the latter by a plate 80 which thereby defines, at the lower end of the chamber, a single supply chamber 81. In this figure, there are also shown two permeation modules 82 and 84, the cross-sectional view of FIG. 6A showing that the installation in fact comprises a third permeation module 86. Each permeation module comprises three unitary permeators generally indicated at 88, 90 and 92, disposed in series one above the other. Each permeation module is surrounded over all its length by a cylindrical envelope 94 whose upper end is closed by a plate 96 and whose lower end is closed by a lower perforated plate 98 which is connected in sealed fashion to the plate 80 or which is integral with it. Thus, the perforations such as 100 in the perforated plates 98 open directly into the supply chamber 81 and thereby permit creating a pressure drop between the introduction nozzle 78 and each permeation module 82, 86 and 88. As better shown in FIG. 6A, the perforations are preferably disposed on a same circle relative to the longitudinal axis of the permeation modules, thereby permitting providing a homogeneous circulation over all the periphery of the module.
  • The recovery of the permeate P and of the non-permeate R will be better understood with reference to FIGS. 7 and 7A, in which there is shown a portion of a permeation module. More precisely, in FIG. 7, there is shown for example the [0049] permeator 90 and the permeator 92 of the permeation module 82. There is also shown the envelope 94. At the upper end of the bundle of hollow fibers constituting the permeator 90, is seen an annular chamber 102 for recovery of the permeate within the hollow fibers. The recovery of the non-permeate is carried out through a perforated tube 104 which is disposed in an axial passage 106 of each permeator. The perforated tube thus permits recovering the non-permeate which arrives at the upper end 108 of the perforated tube 104 above the plates 96 closing the envelopes 94 surrounding each permeation module. The non-permeate thus arrives in the upper space 110 of the external chamber and redescends into the vertical spaces limited on the one hand by the cylindrical sidewall 72 of the external chamber, and on the other hand by the envelopes 94 of the permeation modules. The non-permeate R is recovered through the outlet nozzle 112 disposed at the lower end of the cylindrical sidewall 72 above the plate 80.
  • It will be understood that thanks to this arrangement, the assembly of the permeation modules is surrounded by a circulation of gas corresponding to the non-permeate which is also located along the external wall of the permeation installation. This circulation permits maintaining a very homogeneous temperature during operation of the modules by preventing any contact between the gas to be treated and the external medium, generally at a substantially lower temperature, thereby to obtain optimum performance. [0050]
  • Returning to FIG. 7, it will be seen that the recovery of the permeate is carried out through an [0051] axial tube 114 introduced into the perforated tube 104. At the level of each chamber 102 for recovery of the permeate, tubing 116 connects the tube 114 to the chambers 102. The upper end of the tube 114 is closed whilst its lower end passes through the bulbous portion 76 of the external envelope to be connected to nozzles 118.
  • The permeation installations according to the invention can have numerous applications, particularly the purification of hydrogen. [0052]
  • The permeate is thus the hydrogen of which it is desired that the purity be above 80% in total moles of permeate, preferably greater than 85%. The installation operates at a temperature comprised between 40 and 120° C. [0053]
  • Another installation consists in obtaining a mixture of predetermined composition, of hydrogen and a gas selected from CO, N[0054] 2, Ar, CO2 and He. In this case, the mixture is the non-permeate R. The installation operates at a temperature comprised between 60 and 90° C.

Claims (15)

1. Permeation installation comprising:
a single pressure resistant chamber,
at least two permeation modules disposed within said chamber, each module being constituted by at least one permeator formed of hollow fibers with porous walls and being disposed within an envelope provided with perforations placing in communication the external portion of each module and the common gaseous circuit,
means to supply said installation with a gaseous mixture to be treated,
means to recover the fraction of the gaseous mixture having passed through the wall of said fibers; and
means to recover the fraction of the gaseous mixture that has not passed through the wall of said fibers.
2. Permeation installation according to
claim 1
, characterized in that said common gaseous circuit is the circuit of gas to be treated.
3. Permeation installation according to
claim 1
, characterized in that said common circuit is that of the fraction of the gaseous mixture that has not passed through the wall of said fibers.
4. Permeation installation according to one of
claims 1
to
3
, characterized in that said perforations create substantially equal pressure drops between said common gaseous circuit and each permeation module.
5. Permeation installation according to one of
claims 1
to
3
, characterized in that the pressure drop created by said perforations is comprised between 10 and 90% of the total pressure drop between the inlet of the installation and the outlet of the fraction of the gaseous mixture that has not passed through the wall of the fibers, and preferably between 15 and 60%.
6. Permeation installation according to one of
claims 1
to
5
, characterized in that each permeation module has a generally cylindrical shape, in that each envelope has a cylindrical shape surrounding said permeation module over all its axial length, and in that said cylindrical envelope is perforated in its lateral portion and is closed at each of its ends by a closed wall.
7. Permeation installation according to one of
claims 1
to
5
, characterized in that each permeation module has a generally cylindrical shape, in that each permeation module is surrounded over all its length by an imperforate cylindrical wall, and in that an imperforate plate closes one end of the imperforate cylindrical wall, another end plate having said perforations.
8. Permeation installation according to one of
claims 1
to
7
, characterized in that each permeation module comprises a plurality of permeation modules of generally cylindrical shape disposed vertically one above the other along their common axis, said permeators being supplied in parallel from said perforated envelope.
9. Permeation installation according to one of claims 5 and 7, characterized in that:
said pressure resistant chamber is substantially cylindrical with a vertical axis,
said gaseous mixture inlet is disposed at the lower end of the pressure resistant chamber, the lower portion of the interior of the pressure chamber being separated by a horizontal partition from the rest of the interior of the chamber to form a chamber into which opens said single inlet for gaseous mixture, said perforated plates being disposed at the lower end of said permeation modules and being connected in a sealed manner to said partition through which said perforations of said perforated plates open into said chamber, and in that each permeation module is surrounded by an imperforate substantially cylindrical wall whose lower end is connected in a sealed manner to one of said perforated plates and whose upper end is closed.
10. Permeation installation according to
claim 9
, characterized in that said means to recover the fraction of the gaseous mixture that has not passed through the walls of said fibers, comprises a plurality of perforated tubes disposed along the axis of each of the permeation modules and extending over all the length of said modules, the lower end of each perforated tube being closed, the upper end of each perforated tube passing through the upper closed end of one of the imperforate substantially cylindrical walls, and an outlet nozzle for said fraction of the gaseous mixture that has not passed through the wall of said fibers, said nozzle being disposed in the single end above the partition limiting said chamber, through which said fraction of the gaseous mixture that has not passed through the wall of the fibers circulates in the space delimited by said single pressure chamber and said imperforate substantially cylindrical walls, from the upper end of said chamber to said output nozzle disposed adjacent the lower end of the chamber.
11. Permeation installation according to one of claims 1 and 2, characterized in that the total surface of the envelopes represents from 0.1 to 3 times the cross-section of the supply nozzle of the installation with gas to be treated, and preferably from 0.5 to 2 times the cross-section of said nozzle.
12. Permeation installation according to one of claims 1 and 3, characterized in that the total surface of the perforations of the envelopes is 0.1 to 3 times the cross-section of the outlet nozzle for the fraction of the gaseous mixture that has not passed through the wall of said fibers, and preferably from 0.5 to 2 times the cross-section of said nozzle.
13. Permeation installation according to one of
claims 1
to
4
, characterized in that the total surface of the permeations of an envelope is below 10% and preferably below 1%, of the total surface of the perforated envelope.
14. A process for production of hydrogen having a purity greater than 80 mole percent, and preferably greater than 85%, comprising introducing a gaseous mixture into an installation according to
claim 1
, the hydrogen being the fraction of the gaseous mixture which passes through the wall of said fibers.
15. A process for producing a final gaseous mixture H2+A, A being selected from the group comprising CO, N2, Ar, CO2 and He, comprising introducing an initial gaseous mixture into an installation according to
claim 1
, said final mixture being the fraction of the initial gaseous mixture that does not pass through the wall of said fibers.
US09/734,213 1999-12-14 2000-12-12 Permeation installation Expired - Fee Related US6451090B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9915755A FR2802115B1 (en) 1999-12-14 1999-12-14 PERMEATION INSTALLATION
FR9915755 1999-12-14

Publications (2)

Publication Number Publication Date
US20010003949A1 true US20010003949A1 (en) 2001-06-21
US6451090B2 US6451090B2 (en) 2002-09-17

Family

ID=9553240

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/734,213 Expired - Fee Related US6451090B2 (en) 1999-12-14 2000-12-12 Permeation installation

Country Status (3)

Country Link
US (1) US6451090B2 (en)
EP (1) EP1108459A1 (en)
FR (1) FR2802115B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252501A1 (en) * 2009-04-02 2010-10-07 Greene William A Quick connect modular water purification system
US20110146491A1 (en) * 2009-12-02 2011-06-23 Aisan Kogyo Kabushiki Kaisha Separation membrane module and fuel vapor processing apparatus equipped with the same
CN114894691A (en) * 2022-04-18 2022-08-12 中国电建集团西北勘测设计研究院有限公司 Test system and method for determining permeability coefficient of homogeneous dam material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211097A1 (en) * 2004-03-26 2005-09-29 Thomas Eckman Apparatus for permeate side sweep of fiber membrane permeators
US7164425B2 (en) * 2004-12-21 2007-01-16 Qlogic Corporation Method and system for high speed network application
US20070245896A1 (en) * 2006-04-25 2007-10-25 Ingersoll-Rand Company Modular nitrogen generator
US8388743B2 (en) * 2008-10-30 2013-03-05 Aisan Kogyo Kabyshiki Kaisha Separation membrane module and fuel vapor processing apparatus incorporating the same
JP5921432B2 (en) * 2010-05-31 2016-05-24 Jxエネルギー株式会社 Hydrogen separation membrane module and hydrogen separation method using the same
US8979983B2 (en) * 2012-12-13 2015-03-17 Hamilton Sundstrand Corporation Air separation module manifold flow structure and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352736A (en) * 1980-12-08 1982-10-05 Toyo Boseki Kabushiki Kaisha Wound flattened hollow fiber assembly having plural spaced core sections
JPS57102202A (en) * 1980-12-18 1982-06-25 Toyobo Co Ltd Fluid separator
US4670145A (en) * 1986-07-08 1987-06-02 E. I. Du Pont De Nemours And Company Multiple bundle fluid separation apparatus
DE8802771U1 (en) * 1988-03-02 1989-07-06 Akzo Patente Gmbh, 5600 Wuppertal, De
US4874405A (en) * 1989-02-14 1989-10-17 W. R. Grace & Co.-Conn. Coupling fluid separation membrane elements
US5071552A (en) * 1990-12-20 1991-12-10 Union Carbide Industrial Gases Technology Corporation Multiple bundle fluid separation apparatus
ATE144725T1 (en) * 1992-05-18 1996-11-15 Minntech Corp HOLLOW FIBER FILTER CARTRIDGE AND METHOD FOR THE PRODUCTION THEREOF
US5536405A (en) * 1994-05-11 1996-07-16 Uop Stacked membrane disk assemblies for fluid separations
US5470469A (en) * 1994-09-16 1995-11-28 E. I. Du Pont De Nemours And Company Hollow fiber cartridge
US5851267A (en) * 1997-01-28 1998-12-22 Uop Llc Seal arrangement for rapid interconnection or axially arranged separation elements

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252501A1 (en) * 2009-04-02 2010-10-07 Greene William A Quick connect modular water purification system
US8333892B2 (en) * 2009-04-02 2012-12-18 Spintek Filtration, Inc. Quick connect modular water purification system
US20110146491A1 (en) * 2009-12-02 2011-06-23 Aisan Kogyo Kabushiki Kaisha Separation membrane module and fuel vapor processing apparatus equipped with the same
US8523982B2 (en) * 2009-12-02 2013-09-03 Aisan Kogyo Kabushiki Kaisha Separation membrane module and fuel vapor processing apparatus equipped with the same
CN114894691A (en) * 2022-04-18 2022-08-12 中国电建集团西北勘测设计研究院有限公司 Test system and method for determining permeability coefficient of homogeneous dam material

Also Published As

Publication number Publication date
EP1108459A1 (en) 2001-06-20
US6451090B2 (en) 2002-09-17
FR2802115A1 (en) 2001-06-15
FR2802115B1 (en) 2002-03-01

Similar Documents

Publication Publication Date Title
JP4014094B2 (en) Hollow fiber membrane gas separation cartridge and gas purification assembly
KR100612057B1 (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
US5137631A (en) Multiple bundle permeator
CA2156518C (en) Boreside feed hollow fiber membrane device
EP2958657B1 (en) Counter-flow gas separation modules and methods
US6451090B2 (en) Permeation installation
US7658788B2 (en) Ion transport membrane module and vessel system with directed internal gas flow
US5169530A (en) Hollow fiber module using fluid flow control baffles
US4220535A (en) Multi-zoned hollow fiber permeator
US5160042A (en) Double ended hollow fiber bundle and fluids separation apparatus
US5071552A (en) Multiple bundle fluid separation apparatus
EP0873779A2 (en) Permselective membrane module
US20050031531A1 (en) Ion transport membrane module and vessel system
JP4652656B2 (en) Membrane module for separation of fluid mixtures
Van der Meer et al. Theoretical optimization of spiral-wound and capillary nanofiltration modules
JP2002543959A (en) Hollow fiber membrane device and assembly method
US4671809A (en) Gas separation module
US5015269A (en) Gas separation
US20140360365A1 (en) Parallel Feed Gas Separation Membrane Element Assembly
US5468283A (en) Hollow fiber membrane modules with transverse gas flow tailored for improved gas separation
US5207906A (en) Membrane separation module
Tanihara et al. Vapor-permeation separation of water-ethanol mixtures by asymmetric polyimide hollow-fiber membrane modules
CA2084380A1 (en) Counter-current flow hollow fiber permeator
US20140050658A1 (en) Solid/heat-transfer gas reactor comprising gas diffusers with reduced risks of blocking
WO2023157861A1 (en) Reactor

Legal Events

Date Code Title Description
AS Assignment

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MONEREAU, CHRISTIAN;PHELUT, SERGE;REEL/FRAME:011370/0959

Effective date: 20001114

AS Assignment

Owner name: L'AIR LIQUIDE SOCIETE ANONYME A DIRECTOIRE ET CONS

Free format text: CHANGE OF NAME;ASSIGNOR:L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE;REEL/FRAME:012667/0104

Effective date: 20020118

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060917