US20010000718A1 - Floating offshore drilling/producing structure - Google Patents

Floating offshore drilling/producing structure Download PDF

Info

Publication number
US20010000718A1
US20010000718A1 US09/735,788 US73578800A US2001000718A1 US 20010000718 A1 US20010000718 A1 US 20010000718A1 US 73578800 A US73578800 A US 73578800A US 2001000718 A1 US2001000718 A1 US 2001000718A1
Authority
US
United States
Prior art keywords
columns
sleeve
plates
riser
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/735,788
Inventor
Robert Blevins
John Halkyard
Edward Horton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/735,788 priority Critical patent/US20010000718A1/en
Publication of US20010000718A1 publication Critical patent/US20010000718A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4413Floating drilling platforms, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels

Definitions

  • the invention is generally related to drilling and producing oil offshore and more particularly to floating structures used in such operations.
  • floating structures are used in areas where deep water results in the cost of a jacket fixed to the sea floor being too expensive to realize a sufficient economic return, even for large oil reserves.
  • Such floating structures have been semi-submersibles, a column stabilized vessel that is moored in place by the use of multiple anchors, single column spar type structures, that are moored in place by multiple anchors, dynamically positioned vessels that use a number of thrusters to hold the vessel in position at the site, and tension leg platforms (TLP's).
  • TLP's tension leg platforms
  • Each structure has advantages and disadvantages.
  • dynamically positioned vessels eliminate the need for anchors and mooring lines, they present a large surface area to waves and currents, which can result in a substantial amount of power required to hold the vessel in position.
  • the large surface area also results in the vessel being subject to heave, pitch, and roll motions in response to wave action.
  • the semi-submersibles present less surface area to waves and so are less susceptible to pitch and roll motions but are still subject to heave motions and are not designed to store large quantities of oil.
  • the TLP is relatively successful at minimizing heave, pitch, and roll.
  • the TLP is a relatively shallow draft structure that is expensive and limited to moderate water depths. Further, it is virtually immobile once it has been installed.
  • the spar type structures (a single column hull such as that described in U.S. Pat. No. 4,702,321) are subject to vortex induced vibrations in high currents. This has been dealt with by including helical strakes along the length of the hull. Due to the large diameter of the hull, these structures must be built at a specially equipped construction facility. Also, as the diameter of these structures becomes larger, fabrication becomes more difficult. Transportation of a large spar type structure to the installation site, whether on a heavy lift vessel or by floating the completed hull, may also present difficulties.
  • the invention addresses the problems present in the larger spar type floating structures. What is provided is a deep draft floating structure that includes the benefits of the single column spar type of floating structures but eliminates some of the disadvantages.
  • the structure of the present invention is formed from a plurality of closely spaced buoyant vertically oriented columns. The columns are held closely together by a plurality of horizontal and vertical plates spaced along the vertical axis of the structure.
  • the vertical plates may include truss connections and are attached between the columns in the vicinity of the keel and near the water line of the structure.
  • the horizontal plates increase the effective mass of the structure by entrapping water vertically.
  • the vertical plates/truss connections serve the structural function of holding the columns in place vertically relative to each other and also serve to reduce surge motion from waves and reduce wave motion within the columns to protect the risers.
  • a deck is supported above the water line on top of the columns. The entire structure may be moored or held in place by the use of dynamic positioning.
  • FIG. 1 is an outboard profile view of the invention.
  • FIG. 2 is a cross section view of the invention.
  • FIG. 3 is a view taken along lines 3 - 3 in FIG. 1.
  • FIG. 4 is a perspective section view of the lower portion of the invention.
  • FIG. 5 is a flow diagram that illustrates water flow around the invention.
  • FIG. 6 is a flow diagram that illustrates water flow around the invention at a different angle from FIG. 5.
  • FIG. 7 illustrates an alternate embodiment of the invention.
  • FIGS. 8-12 are top sectional views of alternate embodiments of the invention.
  • FIGS. 13A-C illustrate a method of assembling the columns of the invention into a single structure.
  • FIG. 14 illustrates the use of a sleeve attached to the structure to protect the riser.
  • FIG. 15 illustrates flow control means provided in conjunction with the sleeve of FIG. 14.
  • FIG. 1 it is seen in FIG. 1 that the invention is generally indicated by the numeral 10 .
  • floating offshore structure 10 is generally comprised of a plurality of vertically oriented buoyant hulls or columns 12 , horizontal plates 14 , and vertical plates 16 .
  • a topside or deck 18 is supported above the water by the upper end of the columns 12 .
  • Horizontal plates 14 and vertical plates 16 each serve two functions. Both serve in a structural function to attach the columns 12 together in a closely spaced parallel arrangement adjacent each other.
  • Horizontal plates 14 also serve as water entrapment plates to entrap water in the vertical direction. This increases the effective mass of the overall structure and therefore increases the natural period of the structure in overall heave (up/down motion) so that it is longer than that of the energy band of the waves.
  • the working principle of the horizontal plates 14 is fully explained in U.S. Pat. No. 5,558,467. As seen in FIG. 3, horizontal plates 14 are provided with slots or bores 28 therethrough to receive risers used in drilling and production operations. Horizontal plates 14 are spaced along the vertical length of columns 12 , preferably start well below the water line where the wave action is low, and extend to the lower end of the columns 12 .
  • the horizontal plates 14 result in the ability of the structure to be built with less draft than a comparable single hull spar structure because the horizontal plates entrap water, thereby increasing the effective mass of the structure in the vertical direction.
  • the natural period of the structure in heave is approximately given by the following equation:
  • M Mass of the structure including the mass of water entrapped between the plates.
  • K The spring constant of the system which is a function of the area of water plane at the water line.
  • the water plane area of the structure 10 is less than the horizontal plane area of the entrapment plates.
  • the longer period will be attained at less draft than that of the spar structure described in U.S. Pat. No. 4,702,321.
  • Vertical plates 16 may either be solid shear plates or a combination of solid shear plates and an open truss.
  • Vertical plates 16 are preferably positioned at the lower end of the columns in the vicinity of the keel and near the upper end of the columns, at the water line. Near the lower end, in the vicinity of the keel, the solid shear plates serve to entrap water horizontally and reduce surge motion. Near the upper end, below the normal water line, the vertical plates 16 reduce wave motion within the envelope defined by the hulls 12 . The reduced wave motion within the columns helps to protect the risers and reduces the changes in water height between the columns during heavy seas.
  • Each column 12 is provided with a similar configuration of hard buoyancy tanks 20 , one or more soft tanks 22 , and fixed ballast 24 .
  • Fairleads 25 are provided at selected positions to receive mooring lines 27 .
  • At least one of the hard buoyancy tanks 20 is capable of taking on variable ballast in the form of sea water, designated by numeral 26 .
  • Soft tanks 22 are equalized with the ambient pressure by flooding with sea water and/or being used to store oil.
  • the multi-column structure of the invention is less susceptible to vortex induced vibration because the adjacent columns are preferably separated by gaps of approximately one tenth to three times their diameter to allow an interstitial flow of water between the columns.
  • the close proximity of adjacent columns suppresses the formation of vortices between columns.
  • a distance of approximately four cylinder diameters is required for formation of vortices in the wake of cylindrical columns in the high Reynolds number current environment.
  • the preferred spacing between columns does not allow for formation of large vortices between columns. The effect of the interstitial flow on decorrelating vortex shedding occurs regardless of the flow direction.
  • the period of vortex shedding from the overall multi-column design is proportional to its overall width D.
  • the vortex induced oscillations occur when the period of vortex shedding coincides with the natural period T of the multi-column design on its moorings. This condition is given by the following formula:
  • the two upstream columns shield the two downstream columns from the incoming flow, greatly reducing or eliminating positive pressure drag on the forward face of the upstream columns.
  • the current flow detaches at point A from the upstream side of the upstream columns and is reattached to the downstream columns at point B. The flow remains attached to the downstream side of the downstream columns until point C. This reattachment of flow greatly reduces the wake, the extent of the low pressure region in the wake and the wake drag.
  • the positioning of the columns allows the external flow to form a virtual streamlined shape of flow about the columns that has lower drag than a single cylinder of equivalent area in the same current.
  • structure 10 Although an initial look at the structure 10 may give the impression that the structure is simply a very deep draft semi-submersible, such as that described in U.S. Pat. No. 4,983,073, this is not the case.
  • the hulls 12 are not connected together by horizontal pontoons, and the spacing between the hulls 12 is much closer.
  • structural integrity of the structure is developed by the horizontal and vertical plates 14 , 16 .
  • the hydrodynamic stability of the structure is developed by the fact that the center of gravity is well below the center of buoyancy. The moment of inertia of the water plane is a minor contribution to the metacentric height.
  • FIG. 7 illustrates an alternate embodiment of the invention where the lower portion of each column has a reduced diameter from the upper portion of the column.
  • the reduced diameter portion is located below the hard tank sections, as illustrated in FIG. 2.
  • the reduced diameter of the lower portion of the columns will provide the advantage of reduced structural weight as well as reduced drag loads from currents.
  • FIG. 8 is a top sectional view of an alternate embodiment of the invention utilizing two columns 12 , and also illustrates current flow around the columns 12 . As seen in the flow diagram, the drag is lower than would be expected due to sheltering of the downstream column by the upstream column and by reattachment of the flow on the downstream cylinder.
  • FIGS. 10-12 illustrate different arrangements of the invention where three, six, or eight columns may be used. Two or three columns may be used for relatively small structures with light deck loads, while six and eight columns may be used for relatively large structures with heavy deck loads.
  • FIG. 9 illustrates an arrangement of two columns where the downstream column has a smaller diameter than the upstream column.
  • FIGS. 13A-C illustrate a means for assembly of the invention.
  • Two of the columns 12 that have been attached together with one section of a horizontal plate 14 are submerged to a suitable depth by ballasting such that the remaining columns to be attached may be floated over the horizontal plate.
  • the lower two columns are deballasted to raise the upper two columns above the water line to allow weld up and attachment of the remainder of the horizontal plate to the upper columns.
  • This method of assembly is useful where the structure 10 must be towed through shallow water and the draft of the completed four column structure would be greater than the depth of the shallowest waters of the tow out.
  • the columns 12 may be formed from any suitable material such as steel or concrete. If formed from concrete, the columns may be slip formed at a suitable deep water site. Slip forming columns with concrete is a construction method well known in the industry.
  • FIG. 14 illustrates a riser sleeve 30 that is provided to protect the riser 32 and buoyancy module 34 from turbulent water.
  • the riser sleeve 30 is attached to the structure 10 and extends downwardly from above the water line to a depth beyond significant wave energy.
  • the riser sleeve 30 is open at both ends and sized to receive the riser 32 and buoyancy can 34 .
  • Guides 36 may be provided on the buoyancy can 34 to prevent hangups and to minimize wear on the sleeve 30 and buoyancy can 34 .
  • FIG. 15 illustrates an optional arrangement for the riser sleeve 30 and buoyancy can
  • a first plate 38 is rigidly attached to the inside of the riser sleeve 30 below the water line and closely received around the portion of the riser 32 above the buoyancy can 34 for sliding movement therearound.
  • a second plate 40 is rigidly attached to the portion of the riser 32 immediately above the buoyancy can 34 and closely received within the sleeve 30 for sliding movement therein.
  • the plates 38 , 40 define a space with a volume that varies in direct proportion to the position of the buoyancy can 34 ; the closer the buoyancy can to the water surface, the less the volume of water between the plates 38 , 40 .
  • the first plate is preferably provided with means 42 for controlling the rate of change in water volume between the plates in response to movement of the buoyancy module, which could be due to riser failure.
  • Control means 42 may be as simple as the orifice illustrated or a valve. Controlling the rate at which the water volume changes limits the velocity of the buoyancy can 34 in the event of a riser failure below the buoyancy can. This serves to eliminate or minimize damage to the structure 10 , buoyancy can 34 , and remaining portions of the riser 32 .
  • Sliding seals 44 may be provided on both plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Revetment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A floating offshore drilling/producing structure. The structure is formed from a plurality of closely spaced vertically oriented buoyant columns on which one or more modules or decks may be placed to support process equipment, a drilling rig, utilities, and accommodations for personnel. The columns are held in the spaced relationship by a plurality of horizontal plates spaced along the length of the columns and vertical plates located near the bottom of the columns and near the top of the columns. Drilling and/or producing is accomplished through risers located approximately in the center of the structure. The structure includes fixed ballast, an oil storage area, and voids and variable ballast for offsetting the lighter weight of the stored oil. The columns have a smaller water plane area than the horizontal plates.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The invention is generally related to drilling and producing oil offshore and more particularly to floating structures used in such operations. [0002]
  • 2. General Background [0003]
  • In the offshore oil industry, floating structures are used in areas where deep water results in the cost of a jacket fixed to the sea floor being too expensive to realize a sufficient economic return, even for large oil reserves. Such floating structures have been semi-submersibles, a column stabilized vessel that is moored in place by the use of multiple anchors, single column spar type structures, that are moored in place by multiple anchors, dynamically positioned vessels that use a number of thrusters to hold the vessel in position at the site, and tension leg platforms (TLP's). [0004]
  • Each structure has advantages and disadvantages. For example, while dynamically positioned vessels eliminate the need for anchors and mooring lines, they present a large surface area to waves and currents, which can result in a substantial amount of power required to hold the vessel in position. The large surface area also results in the vessel being subject to heave, pitch, and roll motions in response to wave action. The semi-submersibles present less surface area to waves and so are less susceptible to pitch and roll motions but are still subject to heave motions and are not designed to store large quantities of oil. [0005]
  • Minimizing environmentally induced motions is desirable not only from a safety and comfort standpoint, but also from an operational standpoint since drilling and producing through risers which are connected from the vessel to the sea floor wellhead must be designed to accommodate the motions of the structure. The cost of designing and building risers is directly related to the amount of heave, pitch, and roll of the structure, as well as the wave, current, and gravity forces acting on the risers themselves. [0006]
  • The TLP is relatively successful at minimizing heave, pitch, and roll. However, the TLP is a relatively shallow draft structure that is expensive and limited to moderate water depths. Further, it is virtually immobile once it has been installed. [0007]
  • The spar type structures (a single column hull such as that described in U.S. Pat. No. 4,702,321) are subject to vortex induced vibrations in high currents. This has been dealt with by including helical strakes along the length of the hull. Due to the large diameter of the hull, these structures must be built at a specially equipped construction facility. Also, as the diameter of these structures becomes larger, fabrication becomes more difficult. Transportation of a large spar type structure to the installation site, whether on a heavy lift vessel or by floating the completed hull, may also present difficulties. [0008]
  • The disadvantages of the strakes required on single column spar structures in high currents are that they increase cost and increase drag, which in turn increases the cost of mooring. [0009]
  • SUMMARY OF THE INVENTION
  • The invention addresses the problems present in the larger spar type floating structures. What is provided is a deep draft floating structure that includes the benefits of the single column spar type of floating structures but eliminates some of the disadvantages. The structure of the present invention is formed from a plurality of closely spaced buoyant vertically oriented columns. The columns are held closely together by a plurality of horizontal and vertical plates spaced along the vertical axis of the structure. The vertical plates may include truss connections and are attached between the columns in the vicinity of the keel and near the water line of the structure. The horizontal plates increase the effective mass of the structure by entrapping water vertically. The vertical plates/truss connections serve the structural function of holding the columns in place vertically relative to each other and also serve to reduce surge motion from waves and reduce wave motion within the columns to protect the risers. A deck is supported above the water line on top of the columns. The entire structure may be moored or held in place by the use of dynamic positioning. [0010]
  • It is an object of the invention to provide a spar type of floating offshore structure that reduces vortex induced vibrations from ocean currents. [0011]
  • It is another object of the invention to provide a spar type floating offshore structure that has reduced drag loads from ocean currents. [0012]
  • It is another object of the invention to provide a spar type of floating offshore structure that reduces draft by increasing effective mass to water plane ratio. [0013]
  • It is another object of the invention to provide a spar type of floating offshore structure that reduces cost by providing the capability of the use of different construction and assembly methods. [0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a further understanding of the nature and objects of the present invention reference should be made to the following description, taken in conjunction with the accompanying drawings in which like parts are given like reference numerals, and wherein: [0015]
  • FIG. 1 is an outboard profile view of the invention. [0016]
  • FIG. 2 is a cross section view of the invention. [0017]
  • FIG. 3 is a view taken along lines [0018] 3-3 in FIG. 1.
  • FIG. 4 is a perspective section view of the lower portion of the invention. [0019]
  • FIG. 5 is a flow diagram that illustrates water flow around the invention. [0020]
  • FIG. 6 is a flow diagram that illustrates water flow around the invention at a different angle from FIG. 5. [0021]
  • FIG. 7 illustrates an alternate embodiment of the invention. [0022]
  • FIGS. 8-12 are top sectional views of alternate embodiments of the invention. [0023]
  • FIGS. 13A-C illustrate a method of assembling the columns of the invention into a single structure. [0024]
  • FIG. 14 illustrates the use of a sleeve attached to the structure to protect the riser. [0025]
  • FIG. 15 illustrates flow control means provided in conjunction with the sleeve of FIG. 14. [0026]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to the drawings, it is seen in FIG. 1 that the invention is generally indicated by the [0027] numeral 10. It can be seen in FIGS. 1-4 that floating offshore structure 10 is generally comprised of a plurality of vertically oriented buoyant hulls or columns 12, horizontal plates 14, and vertical plates 16. A topside or deck 18 is supported above the water by the upper end of the columns 12.
  • [0028] Horizontal plates 14 and vertical plates 16 each serve two functions. Both serve in a structural function to attach the columns 12 together in a closely spaced parallel arrangement adjacent each other.
  • [0029] Horizontal plates 14 also serve as water entrapment plates to entrap water in the vertical direction. This increases the effective mass of the overall structure and therefore increases the natural period of the structure in overall heave (up/down motion) so that it is longer than that of the energy band of the waves. The working principle of the horizontal plates 14 is fully explained in U.S. Pat. No. 5,558,467. As seen in FIG. 3, horizontal plates 14 are provided with slots or bores 28 therethrough to receive risers used in drilling and production operations. Horizontal plates 14 are spaced along the vertical length of columns 12, preferably start well below the water line where the wave action is low, and extend to the lower end of the columns 12.
  • The [0030] horizontal plates 14 result in the ability of the structure to be built with less draft than a comparable single hull spar structure because the horizontal plates entrap water, thereby increasing the effective mass of the structure in the vertical direction. The natural period of the structure in heave is approximately given by the following equation:
  • T=2π{square root}{square root over (M/K)}
  • Where T= Natural Period; [0031]
  • M= Mass of the structure including the mass of water entrapped between the plates; and [0032]
  • K= The spring constant of the system which is a function of the area of water plane at the water line. [0033]
  • In the invention, the water plane area of the [0034] structure 10 is less than the horizontal plane area of the entrapment plates. Thus, the longer period will be attained at less draft than that of the spar structure described in U.S. Pat. No. 4,702,321.
  • [0035] Vertical plates 16 may either be solid shear plates or a combination of solid shear plates and an open truss. Vertical plates 16 are preferably positioned at the lower end of the columns in the vicinity of the keel and near the upper end of the columns, at the water line. Near the lower end, in the vicinity of the keel, the solid shear plates serve to entrap water horizontally and reduce surge motion. Near the upper end, below the normal water line, the vertical plates 16 reduce wave motion within the envelope defined by the hulls 12. The reduced wave motion within the columns helps to protect the risers and reduces the changes in water height between the columns during heavy seas.
  • Each [0036] column 12 is provided with a similar configuration of hard buoyancy tanks 20, one or more soft tanks 22, and fixed ballast 24. Fairleads 25 are provided at selected positions to receive mooring lines 27. At least one of the hard buoyancy tanks 20 is capable of taking on variable ballast in the form of sea water, designated by numeral 26. Soft tanks 22 are equalized with the ambient pressure by flooding with sea water and/or being used to store oil.
  • The multi-column structure of the invention is less susceptible to vortex induced vibration because the adjacent columns are preferably separated by gaps of approximately one tenth to three times their diameter to allow an interstitial flow of water between the columns. The close proximity of adjacent columns suppresses the formation of vortices between columns. A distance of approximately four cylinder diameters is required for formation of vortices in the wake of cylindrical columns in the high Reynolds number current environment. As seen in the flow diagram of FIG. 5, the preferred spacing between columns does not allow for formation of large vortices between columns. The effect of the interstitial flow on decorrelating vortex shedding occurs regardless of the flow direction. [0037]
  • The period of vortex shedding from the overall multi-column design is proportional to its overall width D. The vortex induced oscillations occur when the period of vortex shedding coincides with the natural period T of the multi-column design on its moorings. This condition is given by the following formula: [0038]
  • 5<UT/D<8
  • By increasing the spacing between columns, D is increased and the minimum current velocity U for vortex-induced oscillations can be raised above the current velocity at any particular site. Thus, the spacing and diameter of the columns design can be tailored for a particular site to avoid vortex-induced vibration. As a result, vortex-induced vibration suppression devices are not generally required on the multi-column design, reducing drag. [0039]
  • As seen in FIG. 5, the two upstream columns shield the two downstream columns from the incoming flow, greatly reducing or eliminating positive pressure drag on the forward face of the upstream columns. Second, the current flow detaches at point A from the upstream side of the upstream columns and is reattached to the downstream columns at point B. The flow remains attached to the downstream side of the downstream columns until point C. This reattachment of flow greatly reduces the wake, the extent of the low pressure region in the wake and the wake drag. Thus, the positioning of the columns allows the external flow to form a virtual streamlined shape of flow about the columns that has lower drag than a single cylinder of equivalent area in the same current. [0040]
  • As seen in FIG. 6, where the columns face the current in a diamond formation, the interstitial flow also maintains the boundary layer over the rearward face of the upstream columns, which minimizes drag. Thus, the drag reduction effect of closely spaced columns occurs regardless of the flow direction. [0041]
  • Although an initial look at the [0042] structure 10 may give the impression that the structure is simply a very deep draft semi-submersible, such as that described in U.S. Pat. No. 4,983,073, this is not the case. In structure 10, the hulls 12 are not connected together by horizontal pontoons, and the spacing between the hulls 12 is much closer. Also, the structural integrity of the structure is developed by the horizontal and vertical plates 14, 16. Further, the hydrodynamic stability of the structure is developed by the fact that the center of gravity is well below the center of buoyancy. The moment of inertia of the water plane is a minor contribution to the metacentric height.
  • FIG. 7 illustrates an alternate embodiment of the invention where the lower portion of each column has a reduced diameter from the upper portion of the column. The reduced diameter portion is located below the hard tank sections, as illustrated in FIG. 2. The reduced diameter of the lower portion of the columns will provide the advantage of reduced structural weight as well as reduced drag loads from currents. [0043]
  • FIG. 8 is a top sectional view of an alternate embodiment of the invention utilizing two [0044] columns 12, and also illustrates current flow around the columns 12. As seen in the flow diagram, the drag is lower than would be expected due to sheltering of the downstream column by the upstream column and by reattachment of the flow on the downstream cylinder.
  • Model tests have shown that the drag coefficient of two closely spaced cylinders is less than a single cylinder of equivalent enclosed area. Thus, the structure of the invention has less drag from ocean currents. The reduction in drag of multiple closely spaced columns in high Reynolds number environments is the result of the shielding of downstream columns by upstream columns and by the attachment of the turbulent boundary layer on the downstream side of the columns, thereby minimizing their wake drag. [0045]
  • FIGS. 10-12 illustrate different arrangements of the invention where three, six, or eight columns may be used. Two or three columns may be used for relatively small structures with light deck loads, while six and eight columns may be used for relatively large structures with heavy deck loads. [0046]
  • FIG. 9 illustrates an arrangement of two columns where the downstream column has a smaller diameter than the upstream column. By using a smaller diameter for the downstream column, the oscillating vortex forces on the downstream column are minimized, an inherently hydrodynamically stable configuration is produced, and drag can be further reduced for optimum gap spacing between one tenth and one times the diameter of the upstream column. [0047]
  • Because of the low drag coefficient of the two column structure, it may lend itself to being dynamically positioned. [0048]
  • FIGS. 13A-C illustrate a means for assembly of the invention. Two of the [0049] columns 12 that have been attached together with one section of a horizontal plate 14 are submerged to a suitable depth by ballasting such that the remaining columns to be attached may be floated over the horizontal plate. The lower two columns are deballasted to raise the upper two columns above the water line to allow weld up and attachment of the remainder of the horizontal plate to the upper columns. This method of assembly, as opposed to full assembly in a fabrication yard, is useful where the structure 10 must be towed through shallow water and the draft of the completed four column structure would be greater than the depth of the shallowest waters of the tow out.
  • It should be understood that the [0050] columns 12 may be formed from any suitable material such as steel or concrete. If formed from concrete, the columns may be slip formed at a suitable deep water site. Slip forming columns with concrete is a construction method well known in the industry.
  • FIG. 14 illustrates a [0051] riser sleeve 30 that is provided to protect the riser 32 and buoyancy module 34 from turbulent water. The riser sleeve 30 is attached to the structure 10 and extends downwardly from above the water line to a depth beyond significant wave energy. The riser sleeve 30 is open at both ends and sized to receive the riser 32 and buoyancy can 34. Guides 36 may be provided on the buoyancy can 34 to prevent hangups and to minimize wear on the sleeve 30 and buoyancy can 34.
  • FIG. 15 illustrates an optional arrangement for the [0052] riser sleeve 30 and buoyancy can where a first plate 38 is rigidly attached to the inside of the riser sleeve 30 below the water line and closely received around the portion of the riser 32 above the buoyancy can 34 for sliding movement therearound. A second plate 40 is rigidly attached to the portion of the riser 32 immediately above the buoyancy can 34 and closely received within the sleeve 30 for sliding movement therein. The plates 38, 40 define a space with a volume that varies in direct proportion to the position of the buoyancy can 34; the closer the buoyancy can to the water surface, the less the volume of water between the plates 38, 40. The first plate is preferably provided with means 42 for controlling the rate of change in water volume between the plates in response to movement of the buoyancy module, which could be due to riser failure. Control means 42 may be as simple as the orifice illustrated or a valve. Controlling the rate at which the water volume changes limits the velocity of the buoyancy can 34 in the event of a riser failure below the buoyancy can. This serves to eliminate or minimize damage to the structure 10, buoyancy can 34, and remaining portions of the riser 32. Sliding seals 44 may be provided on both plates.
  • Because many varying and differing embodiments may be made within the scope of the inventive concept herein taught and because many modifications may be made in the embodiment herein detailed in accordance with the descriptive requirement of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense. [0053]

Claims (6)

What is claimed as invention is:
1. A floating offshore drilling/producing structure, comprising:
a. a plurality of vertically oriented buoyant columns in closely spaced arrangement adjacent each other;
b. a plurality of horizontal plates attached to said columns and spaced apart along the length of said columns, said horizontal plates being located below the water level at a distance below significant wave energy; and
c. at least two vertical plates attached between said columns and spaced apart along the length of said columns, with one of said vertical plates positioned adjacent the lower end of said columns and the second vertical plate being positioned adjacent the upper portion of said columns.
2. The structure of
claim 1
, wherein the spacing between said columns is approximately one tenth to three times the diameter of the columns.
3. The structure of
claim 1
, wherein the center of gravity is below the center of buoyancy.
4. The structure of
claim 1
, wherein said columns include variable ballast means.
5. In an offshore structure designed to drill for and produce hydrocarbons and having a riser independently supported by a buoyancy module, the improvement comprising a sleeve rigidly attached to the offshore structure and received around the riser and buoyancy module, said sleeve being open at both ends and extending from above the water line downward to a depth beyond significant wave energy.
6. The sleeve of
claim 5
, further comprising:
a. a first plate rigidly attached to the inside of said sleeve below the water line and closely received around the riser;
b. a second plate rigidly attached to the riser above the buoyancy module and closely received inside said sleeve; and
c. means on said first plate for controlling the rate of change in water volume between said plates in response to movement of the buoyancy module.
US09/735,788 1998-04-27 2000-12-13 Floating offshore drilling/producing structure Abandoned US20010000718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/735,788 US20010000718A1 (en) 1998-04-27 2000-12-13 Floating offshore drilling/producing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/067,060 US6206614B1 (en) 1998-04-27 1998-04-27 Floating offshore drilling/producing structure
US09/735,788 US20010000718A1 (en) 1998-04-27 2000-12-13 Floating offshore drilling/producing structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/067,060 Continuation US6206614B1 (en) 1998-04-27 1998-04-27 Floating offshore drilling/producing structure

Publications (1)

Publication Number Publication Date
US20010000718A1 true US20010000718A1 (en) 2001-05-03

Family

ID=22073465

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/067,060 Expired - Lifetime US6206614B1 (en) 1998-04-27 1998-04-27 Floating offshore drilling/producing structure
US09/735,788 Abandoned US20010000718A1 (en) 1998-04-27 2000-12-13 Floating offshore drilling/producing structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/067,060 Expired - Lifetime US6206614B1 (en) 1998-04-27 1998-04-27 Floating offshore drilling/producing structure

Country Status (5)

Country Link
US (2) US6206614B1 (en)
BR (1) BR9901363A (en)
GB (1) GB2336810B (en)
NO (1) NO330461B1 (en)
OA (1) OA11115A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579040B2 (en) 2001-07-26 2003-06-17 Cso Aker Maritime, Inc. Method and apparatus for air can vent systems
US20040141812A1 (en) * 2003-01-21 2004-07-22 Catherine Busso Minimum floating offshore platform
US6783302B2 (en) 2002-12-02 2004-08-31 Robert W. Copple Buoyant leg structure with added tubular members for supporting a deep water platform
WO2005073471A1 (en) * 2004-01-28 2005-08-11 Max Streicher Gmbh & Co. Kg Aa Foundation construction for a deep-drilling platform
US20060067793A1 (en) * 2004-09-30 2006-03-30 Technip France Extendable draft platform with buoyancy column strakes
US20060204340A1 (en) * 2003-05-01 2006-09-14 Leenaars B.V. Floating construction, a platform construction, a method for placing a floating platform construction at sea, and a method for removing a platform construction at sea
US20070286683A1 (en) * 2006-05-01 2007-12-13 Diana Bull Heave plate with improved characteristics
US20080056829A1 (en) * 2006-09-05 2008-03-06 Horton Edward E Method for making a floating offshore drilling/producing structure
CN101857071A (en) * 2009-04-09 2010-10-13 J.雷.麦克德莫特股份有限公司 Improved the hanging down of floating offshore structure thing swung plate
WO2011031656A1 (en) * 2009-09-10 2011-03-17 Shell Oil Company Riser arrays or groups having vortex-induced vibration (viv) suppression devices connected with spacers
US20130243531A1 (en) * 2010-09-22 2013-09-19 Sea Wind Towers, S.L. Process for installing an offshore tower
US20140166296A1 (en) * 2007-11-19 2014-06-19 Keith K. Millheim Self-Standing Riser System Having Multiple Buoyancy Chambers
WO2017223089A1 (en) * 2016-06-22 2017-12-28 Technip France System and method for conversion of floating drilling platform to floating production platform
WO2018018104A1 (en) * 2016-07-26 2018-02-01 Gaia Importação, Exportação E Serviços Ltda. Offshore deployable floating wind turbine system and method
CN107792306A (en) * 2017-11-24 2018-03-13 惠生(南通)重工有限公司 A kind of buoyant tower platform
CN108045517A (en) * 2017-12-07 2018-05-18 上海外高桥造船有限公司 The oil storage method of SPAR platforms

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021415A1 (en) * 1996-11-12 1998-05-22 H.B. Zachry Company Precast, modular spar system
WO2000001894A1 (en) * 1998-07-06 2000-01-13 Seahorse Equipment Corporation Well riser lateral restraint and installation system for offshore platform
US7017666B1 (en) * 1999-09-16 2006-03-28 Shell Oil Company Smooth sleeves for drag and VIV reduction of cylindrical structures
US6571878B2 (en) * 1999-09-16 2003-06-03 Shell Oil Company Smooth buoyancy system for reducing vortex induced vibration in subsea systems
JP3954280B2 (en) * 2000-05-23 2007-08-08 株式会社東芝 Optical disc, reproducing method and reproducing apparatus
US6702026B2 (en) * 2000-07-26 2004-03-09 Shell Oil Company Methods and systems for reducing drag and vortex-induced vibrations on cylindrical structures
WO2002016727A2 (en) 2000-08-21 2002-02-28 Cso Aker Maritime, Inc. Engineered material buoyancy system, device, and method
AU2002226334A1 (en) * 2000-11-13 2002-05-21 Single Buoy Moorings Inc. Vessel comprising transverse skirts
TW583650B (en) * 2001-06-18 2004-04-11 Samsung Electronics Co Ltd Optical recording medium
US20030140838A1 (en) * 2002-01-29 2003-07-31 Horton Edward E. Cellular SPAR apparatus and method
US6761124B1 (en) * 2002-09-28 2004-07-13 Nagan Srinivasan Column-stabilized floating structures with truss pontoons
WO2004077951A2 (en) * 2003-02-28 2004-09-16 Modec International, L.L.C. Riser pipe support system and method
US6942427B1 (en) 2003-05-03 2005-09-13 Nagan Srinivasan Column-stabilized floating structure with telescopic keel tank for offshore applications and method of installation
US6899492B1 (en) * 2003-05-05 2005-05-31 Nagan Srinivasan Jacket frame floating structures with buoyancy capsules
US20080014024A1 (en) * 2003-06-25 2008-01-17 Lokken Roald T Method for fabricating a reduced-heave floating structure
GB2429992A (en) * 2005-09-09 2007-03-14 2H Offshore Engineering Ltd Production system
US7735290B2 (en) * 2005-10-13 2010-06-15 General Electric Company Wind turbine assembly tower
US7413384B2 (en) * 2006-08-15 2008-08-19 Agr Deepwater Development Systems, Inc. Floating offshore drilling/producing structure
CN101500888B (en) * 2006-08-16 2011-12-14 泰克尼普法国公司 Spar platform having closed centerwell
US7716816B2 (en) * 2006-09-22 2010-05-18 Rockwell Automation Technologies, Inc. Method of manufacturing a switch assembly
US7980190B2 (en) * 2007-12-21 2011-07-19 Technip France Deep draft semi-submersible LNG floating production, storage and offloading vessel
US7958836B2 (en) * 2008-05-02 2011-06-14 Aker Marine Contractors Inc. Stabilizing chamber for use with a mobile offshore unit
US7900572B2 (en) * 2008-07-30 2011-03-08 Seahorse Equipment Corporation Drag-inducing stabilizer plates with damping apertures
US8418640B2 (en) * 2008-07-30 2013-04-16 Seahorse Equipment Corp Semisubmersible offshore platform with drag-inducing stabilizer plates
FR2938290B1 (en) * 2008-11-10 2010-11-12 Technip France FLUID OPERATING INSTALLATION IN WATER EXTENSION, AND ASSOCIATED MOUNTING METHOD
EP2379895B1 (en) * 2009-01-22 2020-04-15 Shell Oil Company Vortex-induced vibration (viv) suppression of riser arrays
WO2012054440A2 (en) * 2010-10-19 2012-04-26 Horton Wison Deepwater, Inc. Offshore tower for drilling and/or production
US9422685B2 (en) * 2012-09-17 2016-08-23 Technip France Truss spar vortex induced vibration damping with vertical plates
US9022693B1 (en) 2013-07-12 2015-05-05 The Williams Companies, Inc. Rapid deployable floating production system
US9038348B1 (en) * 2013-12-18 2015-05-26 General Electric Company Lattice tower assembly for a wind turbine
KR20180027589A (en) * 2015-07-13 2018-03-14 엔스코 인터내셔널 인코포레이티드 Subtype structure
US20180327053A1 (en) * 2015-11-10 2018-11-15 Seacaptaur Ip Ltd Spar

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500783A (en) * 1968-07-16 1970-03-17 Hydronautics Stable ocean platform
US3572041A (en) * 1968-09-18 1971-03-23 Shell Oil Co Spar-type floating production facility
US4185694A (en) * 1977-09-08 1980-01-29 Deep Oil Technology, Inc. Marine riser system
FR2544688B1 (en) * 1983-04-21 1986-01-17 Arles Const Metalliques MODULAR OFF-SIDE HYDROCARBON PRODUCTION, STORAGE AND LOADING SYSTEM
US4740109A (en) * 1985-09-24 1988-04-26 Horton Edward E Multiple tendon compliant tower construction
US4702321A (en) * 1985-09-20 1987-10-27 Horton Edward E Drilling, production and oil storage caisson for deep water
US5118221A (en) * 1991-03-28 1992-06-02 Copple Robert W Deep water platform with buoyant flexible piles
US5558467A (en) * 1994-11-08 1996-09-24 Deep Oil Technology, Inc. Deep water offshore apparatus
US5706897A (en) * 1995-11-29 1998-01-13 Deep Oil Technology, Incorporated Drilling, production, test, and oil storage caisson
US5722797A (en) * 1996-02-21 1998-03-03 Deep Oil Technology, Inc. Floating caisson for offshore production and drilling
US5722492A (en) * 1996-08-22 1998-03-03 Deep Oil Technology, Incorporated Catenary riser support
GB2334005B (en) * 1996-12-31 2001-02-07 Shell Internat Res Maatschhapp Spar platform with vertical slots

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010411A3 (en) * 2001-07-26 2003-12-04 Technip France Method and apparatus for air can vent systems
US6579040B2 (en) 2001-07-26 2003-06-17 Cso Aker Maritime, Inc. Method and apparatus for air can vent systems
US6783302B2 (en) 2002-12-02 2004-08-31 Robert W. Copple Buoyant leg structure with added tubular members for supporting a deep water platform
US7086809B2 (en) * 2003-01-21 2006-08-08 Marine Innovation & Technology Minimum floating offshore platform with water entrapment plate and method of installation
US20040141812A1 (en) * 2003-01-21 2004-07-22 Catherine Busso Minimum floating offshore platform
US20060204340A1 (en) * 2003-05-01 2006-09-14 Leenaars B.V. Floating construction, a platform construction, a method for placing a floating platform construction at sea, and a method for removing a platform construction at sea
WO2005073471A1 (en) * 2004-01-28 2005-08-11 Max Streicher Gmbh & Co. Kg Aa Foundation construction for a deep-drilling platform
US20060067793A1 (en) * 2004-09-30 2006-03-30 Technip France Extendable draft platform with buoyancy column strakes
US7467912B2 (en) * 2004-09-30 2008-12-23 Technip France Extendable draft platform with buoyancy column strakes
US7878734B2 (en) * 2006-05-01 2011-02-01 Ocean Power Technologies, Inc. Heave plate with improved characteristics
US20070286683A1 (en) * 2006-05-01 2007-12-13 Diana Bull Heave plate with improved characteristics
US20080056829A1 (en) * 2006-09-05 2008-03-06 Horton Edward E Method for making a floating offshore drilling/producing structure
US7553106B2 (en) * 2006-09-05 2009-06-30 Horton Technologies, Llc Method for making a floating offshore drilling/producing structure
US20140166296A1 (en) * 2007-11-19 2014-06-19 Keith K. Millheim Self-Standing Riser System Having Multiple Buoyancy Chambers
CN101857071A (en) * 2009-04-09 2010-10-13 J.雷.麦克德莫特股份有限公司 Improved the hanging down of floating offshore structure thing swung plate
US20100260554A1 (en) * 2009-04-09 2010-10-14 Yun Ding Heave plate on floating offshore structure
WO2011031656A1 (en) * 2009-09-10 2011-03-17 Shell Oil Company Riser arrays or groups having vortex-induced vibration (viv) suppression devices connected with spacers
US20130243531A1 (en) * 2010-09-22 2013-09-19 Sea Wind Towers, S.L. Process for installing an offshore tower
US9890510B2 (en) * 2010-09-22 2018-02-13 Esteyco Energia, S.L. Process for installing an offshore tower
WO2017223089A1 (en) * 2016-06-22 2017-12-28 Technip France System and method for conversion of floating drilling platform to floating production platform
US10112687B2 (en) 2016-06-22 2018-10-30 Technip France System and method for conversion of floating drilling platform to floating production platform
WO2018018104A1 (en) * 2016-07-26 2018-02-01 Gaia Importação, Exportação E Serviços Ltda. Offshore deployable floating wind turbine system and method
CN107792306A (en) * 2017-11-24 2018-03-13 惠生(南通)重工有限公司 A kind of buoyant tower platform
CN108045517A (en) * 2017-12-07 2018-05-18 上海外高桥造船有限公司 The oil storage method of SPAR platforms

Also Published As

Publication number Publication date
US6206614B1 (en) 2001-03-27
BR9901363A (en) 2000-03-28
GB2336810B (en) 2002-06-26
GB9906302D0 (en) 1999-05-12
GB2336810A (en) 1999-11-03
NO330461B1 (en) 2011-04-18
NO991900L (en) 1999-10-28
OA11115A (en) 2003-04-04
NO991900D0 (en) 1999-04-21

Similar Documents

Publication Publication Date Title
US6206614B1 (en) Floating offshore drilling/producing structure
EP2726362B1 (en) Offshore platform with outset columns
US5722797A (en) Floating caisson for offshore production and drilling
US5330293A (en) Floating production and storage facility
US4646672A (en) Semi-subersible vessel
US3224401A (en) Stabilized floating drilling platform
US8707882B2 (en) Offshore platform with outset columns
US7854570B2 (en) Pontoonless tension leg platform
CA2642117C (en) Semi-submersible vessel, method for operating a semi-submersible vessel and method for manufacturing a semi-submersible vessel
WO2003013949A1 (en) Platform and method of deployment
RU2203828C2 (en) Hull construction
JP3868902B2 (en) Ship with crossing skirt
AU686061B2 (en) Floating caisson for offshore drilling
EP1292491B1 (en) Floating platform for offshore drilling or production of hydrocarbons
GB2371270A (en) A sleeve in a floating offshore drilling/producing structure
GB2339730A (en) Floating caisson with lower section of reduced cross-sectional diameter
MXPA99003871A (en) Punishing / floating producer structure in sea abieve
MXPA99006313A (en) Hull construction
Macy et al. TOWING, MOTIONS, AND STABILITY CHARACTERISTICS OF OCEAN PLATFORMS
OA16697A (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION