US20010000613A1 - Feed unit for moving parts - Google Patents

Feed unit for moving parts Download PDF

Info

Publication number
US20010000613A1
US20010000613A1 US09/733,890 US73389000A US2001000613A1 US 20010000613 A1 US20010000613 A1 US 20010000613A1 US 73389000 A US73389000 A US 73389000A US 2001000613 A1 US2001000613 A1 US 2001000613A1
Authority
US
United States
Prior art keywords
feed unit
solid
accordance
rigid
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/733,890
Other versions
US6427897B2 (en
Inventor
Jorg Wallaschek
Frank Walther
Hans Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hesse GmbH
Original Assignee
Hesse and Knipps GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hesse and Knipps GmbH filed Critical Hesse and Knipps GmbH
Assigned to HESSE & KNIPPS GMBH reassignment HESSE & KNIPPS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HESSE, HANS JURGEN, WALTHER, FRANK
Publication of US20010000613A1 publication Critical patent/US20010000613A1/en
Application granted granted Critical
Publication of US6427897B2 publication Critical patent/US6427897B2/en
Assigned to HESSE GMBH reassignment HESSE GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HESSE & KNIPPS GMBH
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a feed unit for moving any desired parts over short distances, such as for moving wire clamps or wire grippers on wire bonders and, more particularly, for feeding the bonding wire by means of wire clamps or wire grippers on ultrasonic wire bonders.
  • each contact (bond) on the bond islands (bond pads) of a semiconductor chip or a substrate is produced using a wedge bonding tool (wedge), whose technical construction is generally known.
  • Wedge wedge bonding tool
  • a number of steps are required to implement a complete bonding cycle, e.g., to produce a wire jumper between the bond pads.
  • the wedge is provided with a wire gripper, also known as a filament clamp, by means of which the bonding wire can, depending on the current process step, either be held in place or advanced toward the wedge or moved away from the wedge in order to sever the bonding wire from the second contact.
  • the required tail length itself is a function of the geometric relationships of the wedge and the bond pad. If the tail is too long, the danger of short circuits to neighboring bond pads exists. If, on the other hand, the tail is too short, a faulty bond will be produced under certain circumstances.
  • the wire gripper While the wire jumper is being pulled to the second bond contact, the wire gripper must release the bond wire so that the wire can be drawn from a supply spool. After reaching or slightly overshooting the second bond point, the bonding wire must be held fast again so that the necessary loop can be laid and the bonding wire can be broken off after forming of the second bond. While the length of the break-off stroke after the second bond is not critical for the bond itself, it is a contributing factor in determining the overall cycle time.
  • Prior art drives for wire grippers can be divided into two basic categories, namely, so-called mechanically contacting drives, such as cam-type drives and the like, on the one hand, and on the other hand, non-contacting drives, such as magnetic drives, in which the wire grippers themselves must be supported by suitable guides such as linear guides.
  • Moving-coil drives and voice-coil drives come into consideration as examples of non-contacting drives.
  • these drives cannot be made very mechanically stiff; as a result, they can easily be deflected from their initial position during rapid movements of the bonding head such as those which are encountered in wire bonders with rotatable bonding heads. This deflection can then lead to errors in subsequent movements and also to positioning problems.
  • a further disadvantage of drives of this type is that, when constructed in compact form, they can produce only small actuating forces.
  • rigid stops which are subject to significant wear and also results in the need for the rigid stops to be made adjustable, which in turn significantly increases the adjustment and maintenance cost.
  • Such a magnetic drive is known, for example, from WO 98/24583 A1.
  • the drive and location positioning of the wire gripper here are performed bidirectionally from a zero position against the spring force of leaf springs with the aid of a linear drive that is connected to program control of the wire bonder and takes the form of a moving-coil drive, a linear motor, or a piezo drive that directly couples the moving elements of the straight-line mechanism to one another.
  • a previously known piezoelectrically-actuated drive and adjustment element as described in U.S. Pat. No. 5,900,691, has two piezoelectric stack translators arranged adjacent to one another, the lower end of each being connected to a leg by a solid joint.
  • the upper ends of the stack translators are attached to a rigid traverse bar that is in turn connected to an upper leg by a solid joint.
  • the two legs are connected to one another to form a solid parallelogram.
  • a drive or adjustment element of this type is of very complex construction and hence is expensive to manufacture.
  • An object of the present invention is to provide a feed unit that is economical to manufacture, ensures adequate system stiffness, and facilitates precise and rapid electrically programmable positioning of the component to be moved.
  • a feed unit for moving parts over short distances that has a four-bar chain forming a translating solid parallelogram having two parallel rigid opposite legs, one of which constitutes a base leg, connected to one another by elastic elements.
  • a piezoelectric stack translator extends between and is flexibly connected to the rigid legs for articulation relative to the rigid legs and is oriented at an angle of incidence ( ⁇ ) with respect to a base leg that is greater than 90° and less than 45°.
  • a feed unit according to the invention can be cost-effectively manufactured and has a high system stiffness even at small sizes, which is achieved, in particular, through the use of the piezoelectric stack translator in combination with the solid parallelogram.
  • any desired position within the actuating range can be preset as the zero or starting position through electrical actuating variables. Furthermore, all stops can be eliminated with a drive unit of this type.
  • the stack translator to be connected in the vicinity of its ends to the solid parallelogram by solid joints.
  • the solid joints are joined to the solid parallelogram as a single part and in addition each has one mounting element for the stack translator.
  • the stack translator is frictionally clamped between the mounting elements.
  • a glued connection can additionally be provided.
  • the solid parallelogram is further characterized in that the rigid parallel legs are connected to one another by elastic elements that are designed as solid elastic elements, preferably formed by recesses in the solid parallelogram which form flexible couplings.
  • the solid parallelogram can also be embodied as multiple pieces, where leaf springs or leaf-spring-like elements are arranged between the rigid legs as the elastic elements.
  • a further advantageous refinement of the invention is characterized in that a wire clamp is attached directly to a rigid leg of the translating solid parallelogram and that the other rigid leg is attached to the bonding head.
  • FIG. 1 shows a schematic representation of the embodiment
  • FIG. 2 shows the feed unit from FIG. 1 with a wire gripper attached thereto.
  • the feed unit 1 of the embodiment shown in FIG. 1 consists of a translating solid parallelogram 1 that has two rigid legs 2 , 3 that are parallel to one another and are connected to one another by elastic elements 4 , 5 .
  • the elastic effect is implemented through recesses 11 , 12 , 13 , 14 in the elastic elements 4 , 5 .
  • the recesses 11 , 12 , 13 , 14 are worked directly into the transition to the legs 2 , 3 , and act as solid joints with elastic properties.
  • a piezoelectric stack translator 6 Located within the translating solid parallelogram 1 as a drive element is a piezoelectric stack translator 6 , which extends across the solid parallelogram 1 at a predetermined angle of incidence a with respect to the base leg 3 that is less than 90° and greater than 45°, and is attached to the rigid legs 2 and 3 of the solid parallelogram 1 at solid joints 7 , 8 , which are flexible to permit articulation of the stack translator relative to the rigid legs.
  • the specific angle to be provided in an individual case depends on the relevant application conditions.
  • Mounting elements 9 , 10 are provided at the articulating joints 7 , 8 to mount the stack translator 6 , which is frictionally clamped between said elements.
  • a glued connection can additionally be provided.
  • All components of the solid parallelogram 1 i.e., in other words the rigid legs 2 , 3 , the elastic elements 4 , 5 with the recesses 11 , 12 , 13 , 14 , the solid joints 7 , 8 , and the mounting elements 9 , 10 , are executed as one piece, which facilitates cost-effective manufacture without adjustment work.
  • the high stiffness of the feed unit in combination with the electrically programmable changes in length of the stack translator, facilitates an extremely precise positioning of, for example, a wire clamp 15 (see FIG. 2) that is connected to the feed unit and that has clamp jaws 16 , 17 , where one of the clamp jaws 16 ; 17 is attached directly to the feed unit. Since considerable forces can be generated piezoelectrically, the feed unit in accordance with the invention in combination with the high system stiffness is especially suitable for use in fast rotary-head bonders.

Abstract

A feed unit for moving parts over short distances has a four-bar chain forming a translating solid parallelogram having two parallel rigid opposite legs, one of which constitutes a base leg, connected to one another by elastic elements and a piezoelectric stack translator extending between and flexibly connected to the rigid legs for articulation relative to the rigid legs and oriented at an angle of incidence (α) with respect to a base leg that is greater than 90° and less than 45°.

Description

    REFERENCE TO PRIOR APPLICATION
  • The present application is a continuation of International (PCT) Application No. PCT/DE99/00034, filed Jan. 5, 1999 (Publication No. WO 99/64197, published Dec. 16, 1999), which is incorporated herein for all purposes. [0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a feed unit for moving any desired parts over short distances, such as for moving wire clamps or wire grippers on wire bonders and, more particularly, for feeding the bonding wire by means of wire clamps or wire grippers on ultrasonic wire bonders. [0002]
  • In ultrasonic wire bonding, for which aluminum wire is generally used, each contact (bond) on the bond islands (bond pads) of a semiconductor chip or a substrate is produced using a wedge bonding tool (wedge), whose technical construction is generally known. A number of steps are required to implement a complete bonding cycle, e.g., to produce a wire jumper between the bond pads. To make it possible to perform these steps, the wedge is provided with a wire gripper, also known as a filament clamp, by means of which the bonding wire can, depending on the current process step, either be held in place or advanced toward the wedge or moved away from the wedge in order to sever the bonding wire from the second contact. [0003]
  • During this process, it is necessary prior to forming the first bond of each wire jumper to initially advance the bonding wire under the working surface of the wedge, hence to produce a tail that facilitates execution of the first bond. After forming the bond on the first contact, the wire jumper is pulled to the second contact in the form of a loop, and the free end of the bonding wire is broken off in a defined manner after execution of the second bond. [0004]
  • The required tail length itself is a function of the geometric relationships of the wedge and the bond pad. If the tail is too long, the danger of short circuits to neighboring bond pads exists. If, on the other hand, the tail is too short, a faulty bond will be produced under certain circumstances. [0005]
  • While the wire jumper is being pulled to the second bond contact, the wire gripper must release the bond wire so that the wire can be drawn from a supply spool. After reaching or slightly overshooting the second bond point, the bonding wire must be held fast again so that the necessary loop can be laid and the bonding wire can be broken off after forming of the second bond. While the length of the break-off stroke after the second bond is not critical for the bond itself, it is a contributing factor in determining the overall cycle time. [0006]
  • Prior art drives for wire grippers can be divided into two basic categories, namely, so-called mechanically contacting drives, such as cam-type drives and the like, on the one hand, and on the other hand, non-contacting drives, such as magnetic drives, in which the wire grippers themselves must be supported by suitable guides such as linear guides. [0007]
  • Mechanically contacting drives are characterized by long possible actuating distances at relatively low actuating speeds and high maintenance costs as a consequence of the unavoidable wear. [0008]
  • Moving-coil drives and voice-coil drives come into consideration as examples of non-contacting drives. However, as a result of the limitations on space in the vicinity of the bonding head, it is necessary for such drives to be as compact as possible. This circumstance has the result that these drives cannot be made very mechanically stiff; as a result, they can easily be deflected from their initial position during rapid movements of the bonding head such as those which are encountered in wire bonders with rotatable bonding heads. This deflection can then lead to errors in subsequent movements and also to positioning problems. A further disadvantage of drives of this type is that, when constructed in compact form, they can produce only small actuating forces. Moreover, with such drives it is necessary to work with rigid stops, which are subject to significant wear and also results in the need for the rigid stops to be made adjustable, which in turn significantly increases the adjustment and maintenance cost. [0009]
  • Such a magnetic drive is known, for example, from WO 98/24583 A1. The drive and location positioning of the wire gripper here are performed bidirectionally from a zero position against the spring force of leaf springs with the aid of a linear drive that is connected to program control of the wire bonder and takes the form of a moving-coil drive, a linear motor, or a piezo drive that directly couples the moving elements of the straight-line mechanism to one another. [0010]
  • A previously known piezoelectrically-actuated drive and adjustment element, as described in U.S. Pat. No. 5,900,691, has two piezoelectric stack translators arranged adjacent to one another, the lower end of each being connected to a leg by a solid joint. The upper ends of the stack translators are attached to a rigid traverse bar that is in turn connected to an upper leg by a solid joint. The two legs are connected to one another to form a solid parallelogram. [0011]
  • When the two stack translators are subjected to different electric potentials, a lateral deflection of the solid parallelogram is accomplished. The size of the lateral deflection is determined by the applied electric potential and the potential difference between the two stack translators. [0012]
  • A drive or adjustment element of this type is of very complex construction and hence is expensive to manufacture. [0013]
  • An object of the present invention is to provide a feed unit that is economical to manufacture, ensures adequate system stiffness, and facilitates precise and rapid electrically programmable positioning of the component to be moved. [0014]
  • The foregoing object is attained, in accordance with the present invention, by a feed unit for moving parts over short distances that has a four-bar chain forming a translating solid parallelogram having two parallel rigid opposite legs, one of which constitutes a base leg, connected to one another by elastic elements. A piezoelectric stack translator extends between and is flexibly connected to the rigid legs for articulation relative to the rigid legs and is oriented at an angle of incidence (α) with respect to a base leg that is greater than 90° and less than 45°. [0015]
  • A feed unit according to the invention can be cost-effectively manufactured and has a high system stiffness even at small sizes, which is achieved, in particular, through the use of the piezoelectric stack translator in combination with the solid parallelogram. [0016]
  • With a drive unit of this type, any desired position within the actuating range can be preset as the zero or starting position through electrical actuating variables. Furthermore, all stops can be eliminated with a drive unit of this type. [0017]
  • To avoid parts that move relative to one another and thus cause wear, it is advantageous for the stack translator to be connected in the vicinity of its ends to the solid parallelogram by solid joints. [0018]
  • In order to keep assembly and manufacturing costs to a minimum, the solid joints are joined to the solid parallelogram as a single part and in addition each has one mounting element for the stack translator. [0019]
  • In a refinement of the invention, the stack translator is frictionally clamped between the mounting elements. A glued connection can additionally be provided. [0020]
  • The solid parallelogram is further characterized in that the rigid parallel legs are connected to one another by elastic elements that are designed as solid elastic elements, preferably formed by recesses in the solid parallelogram which form flexible couplings. [0021]
  • The lowest manufacturing and assembly cost is achieved when the solid parallelogram is constructed as a single piece, which can be accomplished by machining the solid parallelogram from a metal plate by milling or erosion. [0022]
  • In one variant, the solid parallelogram can also be embodied as multiple pieces, where leaf springs or leaf-spring-like elements are arranged between the rigid legs as the elastic elements. [0023]
  • A further advantageous refinement of the invention is characterized in that a wire clamp is attached directly to a rigid leg of the translating solid parallelogram and that the other rigid leg is attached to the bonding head. [0024]
  • Rapid and precise positioning of the wire clamp or other components with high actuating force can be implemented with the feed unit in accordance with the invention, where positioning in a simple manner is possible through the provision of electrical actuating variables. In combination with an electrical control loop, position control of the wire clamp can be implemented easily and without the need for troublesome solid stops. [0025]
  • This has the particular advantage that alteration of the tail length and the break-off stroke can now be accomplished exclusively by programmatic means and the time-consuming adjustment steps previously required can be completely eliminated. A significant improvement in the operational properties of the bonder is thus achieved by simple technical means, since working on solid stops is avoided. This means that the time for setting up the system that is otherwise necessary after moving into stops can be saved, which results in further advantages. [0026]
  • This means that all bond parameters that are affected by the wire clamp and its movement can now be predetermined by the feed unit in accordance with the invention by means of program control of the bonder. [0027]
  • DESCRIPTION OF THE DRAWINGS
  • The description below and the accompanying drawings explain and show an embodiment of a feed unit in accordance the invention. [0028]
  • FIG. 1 shows a schematic representation of the embodiment, and [0029]
  • FIG. 2 shows the feed unit from FIG. 1 with a wire gripper attached thereto. [0030]
  • The feed unit [0031] 1 of the embodiment shown in FIG. 1 consists of a translating solid parallelogram 1 that has two rigid legs 2, 3 that are parallel to one another and are connected to one another by elastic elements 4, 5. The elastic effect is implemented through recesses 11, 12, 13, 14 in the elastic elements 4, 5. The recesses 11, 12, 13, 14 are worked directly into the transition to the legs 2, 3, and act as solid joints with elastic properties.
  • Located within the translating solid parallelogram [0032] 1 as a drive element is a piezoelectric stack translator 6, which extends across the solid parallelogram 1 at a predetermined angle of incidence a with respect to the base leg 3 that is less than 90° and greater than 45°, and is attached to the rigid legs 2 and 3 of the solid parallelogram 1 at solid joints 7, 8, which are flexible to permit articulation of the stack translator relative to the rigid legs. The specific angle to be provided in an individual case depends on the relevant application conditions. In principle, it is to be assumed that an angle of incidence of nearly 90°results in the maximum possible deflection, where of course significantly larger forces must be generated by the stack translator 6 than in the case of a flatter arrangement of the stack translator 6, as for example at 45°.
  • [0033] Mounting elements 9, 10 are provided at the articulating joints 7, 8 to mount the stack translator 6, which is frictionally clamped between said elements. A glued connection can additionally be provided.
  • All components of the solid parallelogram [0034] 1—i.e., in other words the rigid legs 2, 3, the elastic elements 4,5 with the recesses 11, 12, 13, 14, the solid joints 7, 8, and the mounting elements 9, 10, are executed as one piece, which facilitates cost-effective manufacture without adjustment work.
  • The high stiffness of the feed unit, in combination with the electrically programmable changes in length of the stack translator, facilitates an extremely precise positioning of, for example, a wire clamp [0035] 15 (see FIG. 2) that is connected to the feed unit and that has clamp jaws 16, 17, where one of the clamp jaws 16; 17 is attached directly to the feed unit. Since considerable forces can be generated piezoelectrically, the feed unit in accordance with the invention in combination with the high system stiffness is especially suitable for use in fast rotary-head bonders.
  • In place of the above-described solid parallelogram [0036] 1, other embodiments of four-bar chains, for example trapezoidal four-bar-chains, can also be used in combination with a stack translator.

Claims (10)

What is claimed is:
1. A feed unit for moving parts over short distances, comprising a four-bar chain forming a translating solid parallelogram having two parallel rigid opposite legs, one of which constitutes a base leg, connected to one another by elastic elements, and a piezoelectric stack translator extending between and flexibly connected to the rigid legs for articulation relative to the rigid legs and oriented at an angle of incidence (α) with respect to a base leg that is greater than 90°and less than 45°.
2. The feed unit in accordance with
claim 1
, wherein the stack translator is flexibly connected in the vicinity of its ends to the rigid legs of the solid parallelogram by solid joints.
3. The feed unit in accordance with
claim 2
, wherein the stack translator is connected to mounting elements supported by the solid joints, and the mounting elements and solid joints are unitary with the solid parallelogram.
4. The feed unit in accordance with
claim 4
, wherein the stack translator is frictionally clamped between the mounting elements.
5. The feed unit in accordance with any one of claims 1 through 4, wherein the rigid legs are connected to one another by solid elastic elements.
6. The feed unit in accordance with
claim 6
, wherein the solid elastic elements are recesses in members of the parallelogram connected between the rigid legs.
7. The feed unit in accordance with
claim 6
, wherein the four-bar chain is single piece.
8. The feed unit in accordance with
claim 8
, wherein the four-bar chain is machined from a metal plate by milling or erosion.
9. The feed unit in accordance with
claim 1
, wherein the four-bar chain has multiple pieces, the elastic elements and the rigid legs being separately formed.
10. The feed unit in accordance with
claim 1
, wherein a wire clamp is attached directly to one of the rigid legs of the translating solid parallelogram and the other rigid leg is attached to a bonding head of an ultrasonic wire bonder.
US09/733,890 1998-06-09 2000-12-08 Feed unit for moving parts Expired - Lifetime US6427897B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE29810313U 1998-06-09
DE29810313U DE29810313U1 (en) 1998-06-09 1998-06-09 Feed unit
DE29810313.3 1998-06-09
PCT/DE1999/000034 WO1999064197A1 (en) 1998-06-09 1999-01-05 Feed unit for moving parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/000034 Continuation WO1999064197A1 (en) 1998-06-09 1999-01-05 Feed unit for moving parts

Publications (2)

Publication Number Publication Date
US20010000613A1 true US20010000613A1 (en) 2001-05-03
US6427897B2 US6427897B2 (en) 2002-08-06

Family

ID=8058296

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/733,890 Expired - Lifetime US6427897B2 (en) 1998-06-09 2000-12-08 Feed unit for moving parts

Country Status (6)

Country Link
US (1) US6427897B2 (en)
JP (1) JP2002517910A (en)
AU (1) AU2609199A (en)
DE (2) DE29810313U1 (en)
GB (1) GB2355221B (en)
WO (1) WO1999064197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108817639A (en) * 2018-07-13 2018-11-16 宁波尚进自动化科技有限公司 A kind of accurate short distance driving device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407079B2 (en) * 2003-10-23 2008-08-05 Orthodyne Electronics Corporation Automated filament attachment system for vacuum fluorescent display
DE102014101512A1 (en) 2014-02-06 2015-08-06 Marco Systemanalyse Und Entwicklung Gmbh Piezoelectric actuator
US20210296563A1 (en) 2018-08-06 2021-09-23 Behr-Hella Thermocontrol Gmbh Piezo drive, in particular as an automatic actuating element for a vehicle component
ES2934617T3 (en) 2018-09-05 2023-02-23 Behr Hella Thermocontrol Gmbh Vehicle control unit with tactile feedback
CN109128441A (en) * 2018-09-07 2019-01-04 德尔玛(珠海)焊接自动化技术有限公司 A kind of flexible welding system and its method of generating set base shell
CN112665385A (en) * 2020-12-29 2021-04-16 湖北新金洋资源股份公司 Reinforced platform convenient to throw material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2853800A1 (en) * 1978-12-13 1980-06-26 Siemens Ag TUNABLE DIRECTIONAL COUPLER FOR LIGHTWAVE GUIDE
US4226507A (en) * 1979-07-09 1980-10-07 The Perkin-Elmer Corporation Three actuator deformable specimen
US4319345A (en) * 1980-05-23 1982-03-09 Halliburton Company Acoustic well-logging transmitting and receiving transducers
US4653681A (en) * 1985-05-16 1987-03-31 Kulicke And Soffa Industries, Inc. Voice coil actuated fine wire clamp
JPH0749914Y2 (en) * 1986-01-29 1995-11-13 株式会社村田製作所 Ultrasonic transducer
US4769569A (en) * 1988-01-19 1988-09-06 Ford Motor Company Piezoelectric stack motor stroke amplifier
JPH0677217B2 (en) * 1988-03-04 1994-09-28 日立建機株式会社 Fine displacement mechanism
JPH01245532A (en) * 1988-03-26 1989-09-29 Toshiba Corp Wire clamp mechanism
US4825894A (en) * 1988-06-08 1989-05-02 Moog, Inc. Piezoelectric torque motor
JPH0466895A (en) * 1990-07-06 1992-03-03 Sumitomo Heavy Ind Ltd Fine adjustment stage with six degrees of freedom
DE4214220A1 (en) * 1992-04-30 1993-11-04 Jenoptik Jena Gmbh Piezoelectrical actuation system for X=Y positioning table - has two orthogonal spring four corner linkages, with fixed part of one coupled to machine and moving part to fixed part of other, and has path sensor on respective fixed and moving parts of two links for output to position control
US5341687A (en) * 1992-11-16 1994-08-30 The Goodyear Tire & Rubber Company 3-dimensional pressure sensor
US5682076A (en) * 1993-08-03 1997-10-28 Nanomotion Ltd. Ceramic disc-drive actuator
DE4445642A1 (en) 1994-12-21 1996-06-27 Marco Systemanalyse Entw Piezo actuator drive or adjustment element
EP0729193A1 (en) * 1995-02-27 1996-08-28 New Focus, Inc. Piezoelectric actuator for optical alignment screws
DE19613158A1 (en) * 1996-04-02 1997-10-09 Daetwyler Ag Highly dynamic piezoelectric drive
DE19713634A1 (en) * 1996-05-18 1997-11-20 Hesse & Knipps Gmbh Bond wire clamping and/or motion unit for semiconductor module
DE19650311A1 (en) * 1996-12-04 1998-06-10 Hesse & Knipps Gmbh Translation drive for a turning tongs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108817639A (en) * 2018-07-13 2018-11-16 宁波尚进自动化科技有限公司 A kind of accurate short distance driving device

Also Published As

Publication number Publication date
AU2609199A (en) 1999-12-30
DE19981030D2 (en) 2001-05-31
DE19981030B4 (en) 2015-04-02
GB0100567D0 (en) 2001-02-21
WO1999064197A1 (en) 1999-12-16
US6427897B2 (en) 2002-08-06
GB2355221A (en) 2001-04-18
JP2002517910A (en) 2002-06-18
DE29810313U1 (en) 1998-08-13
WO1999064197A8 (en) 2000-02-17
GB2355221B (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US4619397A (en) Method of and apparatus for bonding an electrically conductive wire to bonding pads
US6427897B2 (en) Feed unit for moving parts
US20050199677A1 (en) Wire bonding apparatus having actuated flame-off wand
US20110079361A1 (en) Apparatus for semiconductor die bonding
US11504800B2 (en) Ultrasonic welding systems and methods of using the same
US5153981A (en) Universal apparatus for forming lead wires
CN110744574A (en) Clamping mechanism and robot with same
US6182882B1 (en) Angled transducer-dual head bonder for optimum ultrasonic power application and flexibility for tight pitch leadframe
EP0864392B1 (en) Bonding head
US7549569B2 (en) Wire clamp gap control mechanism and method
US20080314964A1 (en) Wire bonding apparatus and process
WO2015125671A1 (en) Method for producing semiconductor device, and wire-bonding device
WO2020218063A1 (en) Semiconductor device, method for manufacturing semiconductor device, and wire bonding device
CN210378982U (en) Wire clamp system of full-automatic lead bonding machine
TW202040709A (en) Capillary guide device and wire bonding device
KR20160115990A (en) Method for producing semiconductor device and wire bonding device
US6861733B2 (en) Lead frame wire bonding clamp member
KR100261495B1 (en) Indexing system of a leadframe
JPH09223711A (en) Wire cut feeder for wire bonder
JP2008300543A (en) Fine wire joint mechanism, and device and method for jointing fine wire using it
EP4307355A1 (en) Wire bonding system including a wire biasing tool
JPH06196521A (en) Wire bonder
KR102360298B1 (en) Multiple actuator wire bonding apparatus
US20050284916A1 (en) Ball bonding method and ball bonding apparatus
CN210060051U (en) Tin soldering mechanism with tin feeding function

Legal Events

Date Code Title Description
AS Assignment

Owner name: HESSE & KNIPPS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALTHER, FRANK;HESSE, HANS JURGEN;REEL/FRAME:011548/0956

Effective date: 20001207

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: HESSE GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:HESSE & KNIPPS GMBH;REEL/FRAME:032287/0262

Effective date: 20130123