US1934174A - Heat insulation for air spaces - Google Patents

Heat insulation for air spaces Download PDF

Info

Publication number
US1934174A
US1934174A US659806A US65980633A US1934174A US 1934174 A US1934174 A US 1934174A US 659806 A US659806 A US 659806A US 65980633 A US65980633 A US 65980633A US 1934174 A US1934174 A US 1934174A
Authority
US
United States
Prior art keywords
sheets
foil
air spaces
crumpled
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US659806A
Inventor
Dyckerhoff Eduard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INT ALFOL MIJ NV
N V Internationale Alfol-Maatschappij
Original Assignee
INT ALFOL MIJ NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INT ALFOL MIJ NV filed Critical INT ALFOL MIJ NV
Application granted granted Critical
Publication of US1934174A publication Critical patent/US1934174A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/12Arrangements for supporting insulation from the wall or body insulated, e.g. by means of spacers between pipe and heat-insulating material; Arrangements specially adapted for supporting insulated bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/904Radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/918Spacing element for separating the walls of a spaced-wall container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/13Insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49879Spaced wall tube or receptacle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Definitions

  • the foil employed for this purpose may be less than .02 mm. and may even be as thin as .005 mm., or thinner ii obtainable, but oil even of this thin, tissue, paper-like nature has sufficient rigidity relative to its weight so that a very small number of points of contact will be sufcient to keep two sheets in properqjp'aced relation provided they are protected against outside pressures.
  • the means for spacing the insulated sheets may be formed of the sheets themselves in any desired manner, such as by stamping and subsequently bending the sheets, and the insulating sheets thus formed may either be applied immediately to the member to be insulated or used to form insulating plates.
  • l' have found however that the most efficient way of forming the necessary projections on the sheets is to give them a crumpling which will make the sheets uneven. This crumpling should be such that when the sheets are/laid together they will have a substantial average spacing which may be, for example, in the order of about l cm., though this may be increased or decreased somewhat as circumstances demand, but ordinarily will be between .5 cm. and 2 om.
  • Foil such as I use is so thin that it has very little elasticity, with the result that it does not tend to spring back out of the position to which it has been formed; ralso there is substantially no tendency toward warping or movement of the parts due to swelling and contraction from the effects of moisture, so that there is no necessity of locking thesheets to each other to maintain the irregular shape necessary to provide thick air spaces.
  • metal in order to keep conduction to a minimum, l prefer to use metal so thin that the insulation filling made of a plurality of sheets can readily be compressedwith the fingers to a thickness not over one hundredth of its original thickness, nevertheless this metal has suicient strength relative to its weight so that there is substantially no tendency for the filling to pack down under the force of gravity.
  • Holding the sheets against relative bodily movement is very simple and can be accomplished in various ways.
  • the rst can be laid on the support and the other sheets laid over the iirst.
  • the sheets are used vertically they can be hung in any desired manner.
  • one of the simplest ways is 'to use a single sheet long enough to form two layers and hang this by its middle portion over some appropriate support positioned adjacent the top of the air space, or separate sheets can be hung on pins spaced to the insulating eiiiciency of the structure, andas desired. If the layers of foil do not entirely :lill the air space, ties or bars of any desired sort may be used to prevent the sheets from separating. In the case of pipe coatings. the fact that the separate sheets surround the pipe will hold the layers against relative bodily movement and this will be true whether the layers are put on separately or in the form of a spiral.
  • the insulation of my invention can be used wherever an air space of substantial size exists, without materially increasing the weight of the article to which it is applied. This is particularly important where large areas are to be covered, for where the sheets are used in at parallel form, spacers or supports must be provided at relatively frequent intervals, increasing the weight and cost of materials and also greatly increasing the cost of application.
  • this form of insulation is particularly adapted to all forms of vehicles both for land, water and air where the reduction in the weight of the insulation permits additional pay load.
  • the crumpled form of insulation may be used as a means for separating flat sheets of foil, and it is not necessary that all of the sheets be crumpled.
  • Fig. 1 illustrates more or less diagrammatically a number of crumpled sheets arranged one above another
  • Fig. 2 is a sectional view of a hollow wooden wall construction with the improved insulation arranged therein
  • Fig. 3 is a section of a longitudinal pipe insulation
  • Fig. 4 is a cross section of the structure shown in Fig. 3
  • Fig. 5 shows the application of my invention to a bowed structure, for example, the roof of a railway carriage.
  • Fig. 1 is intended to convey the idea that the sheets are so crumpled as to have a small number of contacts with relatively large air spaces between the sheets.
  • this type of insulation is shown in a hollow wooden wall or floor construction Where the wooden facings c are carried by beams d; in the intermediate space the thin crumpled foil a is arranged.
  • the individual layers of foil lie loosely one above and adjacent the other and the irregularities in the sheets form the means for keeping the sheets in spaced relation.
  • pipe b is shown insulated by means of sheets of foil arranged between the outer casing f and the outer surface of the pipe.
  • the casing f is here illustrated as supported by means of the pins g which contact with the pipe but other suitable means may be employed for this purpose.
  • the intermediate sheet will remain ilat.
  • Fig. 5 shows the manner in which my invention cszn be readily attached to a surface of irregular ape.
  • a metallic mass adapted to resist the transmission of heat consisting essentially of a plurality of sheets of thin metal foil so distorted from planular form that the sheets contact mutually to support each other but are held .spaced apart for the greater part of their area to form relatively large air spaces between the sheets.
  • a heat insulating structure comprising a substantially rigid casing and a nlling for such casing, consisting essentially of a plurality of layers of very thin crumpled metalfoil loosely supporting each other to hold the maior proportion of the area of'the sheets spaced apart to form cellular air spaces of great average thickness relative to the thickness of the metal employed.
  • anairspace,aninsulatingmassinsuchairspace comprising a plurality of layers of crumpled metal foil of tissue paper-like thickness positioned A loosely adjacent each other so as mutually to sup port each other and to be supported by said structural members whereby a cellular structure is formed within the air space of great thickness relative to the thickness of the foil employed.
  • Structural members comprising frame members and facing members forming an air space and heat insulation for such space essentially of very thin metal foil crumpled to contact with such structural members at spaced points whereby such foil will be supported by such members with relatively large air spaces on both sides of such foil.
  • An insulating structure comprising a filling consisting essentially of a plurality of layers of crumpled foil loosely contacting with and mutually supporting each other at spaced points to form air layers of substantial average thickness char- 150 acterized by the fact that such filling is made of metal so thin that it has substantially no structural strength and such that the lling can readily be compressed with the fingers to a thickness not over one hundredth of its original thickness, whereby transmission of heat by conduction is largely prevented, yet will remain substantially indenitely in its desired form, and a casing for such filling adapted to hold the sheets against relative bodily movement and protect them from outside pressure. 5
  • the method of insulating structures which comprises the steps of loosely applying a plurality of layers of crumpled, very thin metallic foil against a member to be insulated so that the layers mutually support each other to maintain air spaces of great thickness relative to the thickness ofthe foil, and enclosing such layers of foil in a substantially rigid structure adapted to hold such layers of foil against relative bodily movement.
  • the method of heat insulating non-plane members which comprises the step of orumpling a sheet of very thin metal foil, shaping such sheet about the contour of the member to be insulated, loosely applying an additional sheet of said crumpled foil adjacent such flrst -sheet whereby the sheets are mutually supported to form a cellular body, and enclosing such sheets in a substantially rigid structure.
  • Heat insulating means for preventing radiation, as Well as conduction and convection of heat from an object consisting of a plurality of sheets of bright aluminum foil-surrounding the object but spaced therefrom and from each other, and a filling of crumpled foil in said spaces.
  • a structure comprising facing members and frame members forming air spaces, and thin sheet material with heat reflective metallic faces interposed in such spaces,'such material being so distorted from plane form as to contact with the .facing members at spaced points and thereby maintain air spaces of substantial thickness on both sides of such material.
  • facing members and frame members forming air spaces and a filling for sucl'i Aspaces consisting essentially of sheets of thin sheet material having heat reflective metallic faces distorted from plane form and disposed in such spaces so that the shape of the sheets holds .them With substantial air spaces on both sides.

Description

E. DYCKERHOFF LQSLMM HEAT INSULATION FOR AIR SPACES Original Filed April 50, '1926 INVENTOR 4Eduard Dyckerhoff BY PMZI, .22a/N ATTORNEYS Patented Nov. 7, 1933 UNITED STA HEAT INSULATION FOR AIR SPACES Eduard Dyckerhoff,
Schloss Blumenau, Wunstorf, Germany, assignor to N. V. Internationale Mol-Maatschappij, Amsterdam, Netherlands, a corporation of the Netherlands Continuation of application Serial No. 105,753, April 30, 1926, and in Germany November 23, 1925. This application March 6, 1933. Serial 12 Claims.
This application is a continuation of application Ser. No. 105,753, lled on April 30, 1926, by me, together with Ernst Schmidt, and is a continuation in part of my earlier application, Ser. No. 442,219, illed April 7, 1930. l
In Schmidt application, Ser. No. 635,263, illed Sept. 28, 1932, issued as Patent No. 1,890,418, there is described and claimed the invention of using sheets having thin heat reiiective metal surfaces spaced apart to form air layers, as a heat insulation. This application relates to a specic form of that invention, in which the sheets are formed of metal foil and the means for holding the sheets in spaced relation is formed from the sheets themselves. Despite the fact that metal usable for the foil, such as aluminum, has great conductivity for heat, l have discovered that if the foil used is very thin the amount of heat conducted through the points ci contact necessary to keep the sheets spaced will be very small, particularly where there is a substantial average spacing of the sheets. The foil employed for this purpose may be less than .02 mm. and may even be as thin as .005 mm., or thinner ii obtainable, but oil even of this thin, tissue, paper-like nature has sufficient rigidity relative to its weight so that a very small number of points of contact will be sufcient to keep two sheets in properqjp'aced relation provided they are protected against outside pressures.
The means for spacing the insulated sheets may be formed of the sheets themselves in any desired manner, such as by stamping and subsequently bending the sheets, and the insulating sheets thus formed may either be applied immediately to the member to be insulated or used to form insulating plates. l' have found however that the most efficient way of forming the necessary projections on the sheets is to give them a crumpling which will make the sheets uneven. This crumpling should be such that when the sheets are/laid together they will have a substantial average spacing which may be, for example, in the order of about l cm., though this may be increased or decreased somewhat as circumstances demand, but ordinarily will be between .5 cm. and 2 om. From this it can be seen that where I use the expression air spaces of substantial thickness I intend to imply that the air spaces shall be substantially greater than those which have been suggested to be formed between crumpled or embossed asbestos paper which is then assembled with an adhesive or other locking means to form a co- (Cl. 15b-28) herent mass, Where the air spaces are in the form of innumerable tiny cells.
One of the great benefits of my invention is found in the easy method which it supplies of insulating bodies of uneven or irregular shape. l-leretofore such bodies could only be insulated With masses of porous material unless the previously built-up forms were made at great expense.. According to my invention, the foil can be shipped to the spot where it is to be used in the form of rolls which take up very little space, and then crumpled or distorted by hand or machine and applied to the surface of the mem= ber to be insulated.
Foil such as I use is so thin that it has very little elasticity, with the result that it does not tend to spring back out of the position to which it has been formed; ralso there is substantially no tendency toward warping or movement of the parts due to swelling and contraction from the effects of moisture, so that there is no necessity of locking thesheets to each other to maintain the irregular shape necessary to provide thick air spaces. Despite the fact that, in order to keep conduction to a minimum, l prefer to use metal so thin that the insulation filling made of a plurality of sheets can readily be compressedwith the fingers to a thickness not over one hundredth of its original thickness, nevertheless this metal has suicient strength relative to its weight so that there is substantially no tendency for the filling to pack down under the force of gravity. Thus if the sheets are held against relative bodily movement and the filling is protected against outside pressure, it will remain substantially indenitely in the form in which it is applied, even under the influence of heavy vibration and shock.
Holding the sheets against relative bodily movement is very simple and can be accomplished in various ways. Where the sheets are used in horizontal position, the rst can be laid on the support and the other sheets laid over the iirst. Ordinarily in such a case there will either be end members (limiting the ends of the air space) to hold the sheets against shaking sideways, or else the sheets will extend down over the sides of the support to prevent relative movement. En the case where the sheets are used vertically they can be hung in any desired manner. Thus one of the simplest ways is 'to use a single sheet long enough to form two layers and hang this by its middle portion over some appropriate support positioned adjacent the top of the air space, or separate sheets can be hung on pins spaced to the insulating eiiiciency of the structure, andas desired. If the layers of foil do not entirely :lill the air space, ties or bars of any desired sort may be used to prevent the sheets from separating. In the case of pipe coatings. the fact that the separate sheets surround the pipe will hold the layers against relative bodily movement and this will be true whether the layers are put on separately or in the form of a spiral.
Ordinarily it will be advisable t0 Supply aprotective casing to go over the insulation to protect it from outside pressures.` In the case where the insulation is used for iilling air spaces created by the usual structural members, as in walls or ceilings, no special casing will be necessary, but in other instances, as in making pipe coatings, an outside shell is advisable. which may be made of metal heavier than the foil. Such an outside shell is not however essential insulation made according to my invention can be used very eiiciently for temporary repairs as well as for permanent installations.
. By doing away with the spacing means such as asbestos strips or the like, it is possible greatly to reduce the weight of the insulating structure; in fact, the insulation of my invention can be used wherever an air space of substantial size exists, without materially increasing the weight of the article to which it is applied. This is particularly important where large areas are to be covered, for where the sheets are used in at parallel form, spacers or supports must be provided at relatively frequent intervals, increasing the weight and cost of materials and also greatly increasing the cost of application. Thus this form of insulation is particularly adapted to all forms of vehicles both for land, water and air where the reduction in the weight of the insulation permits additional pay load. If desired, the crumpled form of insulation may be used as a means for separating flat sheets of foil, and it is not necessary that all of the sheets be crumpled.
For the purpose of illustration, examples of my invention are shown in various forms in the accompanying drawing, in which Fig. 1 illustrates more or less diagrammatically a number of crumpled sheets arranged one above another; Fig. 2 is a sectional view of a hollow wooden wall construction with the improved insulation arranged therein; Fig. 3 is a section of a longitudinal pipe insulation; Fig. 4 is a cross section of the structure shown in Fig. 3, and Fig. 5 shows the application of my invention to a bowed structure, for example, the roof of a railway carriage.
Fig. 1 is intended to convey the idea that the sheets are so crumpled as to have a small number of contacts with relatively large air spaces between the sheets. In Fig. 2, this type of insulation is shown in a hollow wooden wall or floor construction Where the wooden facings c are carried by beams d; in the intermediate space the thin crumpled foil a is arranged. The individual layers of foil lie loosely one above and adjacent the other and the irregularities in the sheets form the means for keeping the sheets in spaced relation.
In Figs. 3 and 4 pipe b is shown insulated by means of sheets of foil arranged between the outer casing f and the outer surface of the pipe. The casing f is here illustrated as supported by means of the pins g which contact with the pipe but other suitable means may be employed for this purpose. In these iigures it is to be noted case the intermediate sheet will remain ilat.
Fig. 5 shows the manner in which my invention cszn be readily attached to a surface of irregular ape.
`From these illustrative examples it will be seen that my invention is one which can readily be applied to a great variety of uses and can be installed with great ease and simplicity. While my structure is primarily intended for heat insulation it is also true that it has value as a sound insulation.
In the appended claims the word crumpled is used to cover the case where the foil is either distorted irregularly by hand or is given a regular, equivalent form by machine.
What I claim iszf 1. A heat insulating body'con'sisting essentially of a plurality of layers of heat conductive metal formed into crumpled sheets of a tissue paper-like thickness whereby transmission of heat along the sheet is reduced to a very small factor and having surfaces adapted to reflect heat, such layers contacting loosely with each other at spaced points to form a cellular body having air spaces of great average thickness relative to the thickness of the foil employed.
2. A metallic mass adapted to resist the transmission of heat consisting essentially of a plurality of sheets of thin metal foil so distorted from planular form that the sheets contact mutually to support each other but are held .spaced apart for the greater part of their area to form relatively large air spaces between the sheets.
3. A heat insulating structure, comprising a substantially rigid casing and a nlling for such casing, consisting essentially of a plurality of layers of very thin crumpled metalfoil loosely supporting each other to hold the maior proportion of the area of'the sheets spaced apart to form cellular air spaces of great average thickness relative to the thickness of the metal employed.
4. In combination, a member to be insulated,
a casing member spaced therefrom and a filling for the space between such members, consisting essentially oi' sheets of very thin crumpled metal foil lying loosely adjacent each other.
5. In combination, structural members forming anairspace,aninsulatingmassinsuchairspace comprising a plurality of layers of crumpled metal foil of tissue paper-like thickness positioned A loosely adjacent each other so as mutually to sup port each other and to be supported by said structural members whereby a cellular structure is formed within the air space of great thickness relative to the thickness of the foil employed.
6. Structural members comprising frame members and facing members forming an air space and heat insulation for such space essentially of very thin metal foil crumpled to contact with such structural members at spaced points whereby such foil will be supported by such members with relatively large air spaces on both sides of such foil.
7. An insulating structure comprising a filling consisting essentially of a plurality of layers of crumpled foil loosely contacting with and mutually supporting each other at spaced points to form air layers of substantial average thickness char- 150 acterized by the fact that such filling is made of metal so thin that it has substantially no structural strength and such that the lling can readily be compressed with the fingers to a thickness not over one hundredth of its original thickness, whereby transmission of heat by conduction is largely prevented, yet will remain substantially indenitely in its desired form, and a casing for such filling adapted to hold the sheets against relative bodily movement and protect them from outside pressure. 5
8. The method of insulating structures which comprises the steps of loosely applying a plurality of layers of crumpled, very thin metallic foil against a member to be insulated so that the layers mutually support each other to maintain air spaces of great thickness relative to the thickness ofthe foil, and enclosing such layers of foil in a substantially rigid structure adapted to hold such layers of foil against relative bodily movement.
9. The method of heat insulating non-plane members which comprises the step of orumpling a sheet of very thin metal foil, shaping such sheet about the contour of the member to be insulated, loosely applying an additional sheet of said crumpled foil adjacent such flrst -sheet whereby the sheets are mutually supported to form a cellular body, and enclosing such sheets in a substantially rigid structure.
10. Heat insulating means for preventing radiation, as Well as conduction and convection of heat from an object, consisting of a plurality of sheets of bright aluminum foil-surrounding the object but spaced therefrom and from each other, and a filling of crumpled foil in said spaces.
11. A structure comprising facing members and frame members forming air spaces, and thin sheet material with heat reflective metallic faces interposed in such spaces,'such material being so distorted from plane form as to contact with the .facing members at spaced points and thereby maintain air spaces of substantial thickness on both sides of such material.
12. In combination, facing members and frame members forming air spaces and a filling for sucl'i Aspaces consisting essentially of sheets of thin sheet material having heat reflective metallic faces distorted from plane form and disposed in such spaces so that the shape of the sheets holds .them With substantial air spaces on both sides.
EDUARD DYCKERHOFF.
US659806A 1925-11-23 1933-03-06 Heat insulation for air spaces Expired - Lifetime US1934174A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1934174X 1925-11-23

Publications (1)

Publication Number Publication Date
US1934174A true US1934174A (en) 1933-11-07

Family

ID=7750131

Family Applications (1)

Application Number Title Priority Date Filing Date
US659806A Expired - Lifetime US1934174A (en) 1925-11-23 1933-03-06 Heat insulation for air spaces

Country Status (1)

Country Link
US (1) US1934174A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2597309A (en) * 1946-08-30 1952-05-20 Joseph L Finck Insulating lath for building and like structures
US3244224A (en) * 1961-12-18 1966-04-05 Nat Res Corp Space vehicle insulation
US3866786A (en) * 1972-09-22 1975-02-18 Atomic Energy Commission Energy absorbing structure in a steam generator
US4702312A (en) * 1986-06-19 1987-10-27 Aluminum Company Of America Thin rod packing for heat exchangers
US4943454A (en) * 1987-08-28 1990-07-24 Hunter Douglas, Inc. Expandable collapsible product and method and apparatus for its manufacture
US5011743A (en) * 1990-01-22 1991-04-30 Atd Corporation Pad including heat sink and thermal insulation areas
DE4003770A1 (en) * 1990-02-08 1991-08-14 Buderus Heiztechnik Gmbh Thermally insulated cladding for boilers - consists of corrugated aluminium foil mats with air forming insulation
US5405483A (en) * 1987-08-28 1995-04-11 Hunter Douglas, Inc. Apparatus for forming pleated material
US5408071A (en) * 1992-06-11 1995-04-18 Atd Corporation Electric heater with heat distributing means comprising stacked foil layers
US5406930A (en) * 1993-08-10 1995-04-18 Atd Corporation Outdoor cooking device
US5424139A (en) * 1994-01-10 1995-06-13 Lydall, Inc. Metal heat insulator
US5524406A (en) * 1994-03-24 1996-06-11 Atd Corporation Insulating apparatus and method for attaching an insulating pad to a support
US5670264A (en) * 1994-05-10 1997-09-23 Shertech, Inc. Thermal barrier
US5800905A (en) * 1990-01-22 1998-09-01 Atd Corporation Pad including heat sink and thermal insulation area
FR2764235A1 (en) 1997-06-09 1998-12-11 Atd Corp CORRUGATED AND FLEXIBLE SHIELDS WITH MULTI-LAYERED METAL SHEETS AND MANUFACTURING METHOD
FR2764234A1 (en) 1997-06-09 1998-12-11 Atd Corp MULTILAYERED METAL SHEET SCREEN STRUCTURES AND MANUFACTURING METHOD
US5939212A (en) * 1997-06-09 1999-08-17 Atd Corporation Flexible corrugated multilayer metal foil shields and method of making
US5958603A (en) * 1997-06-09 1999-09-28 Atd Corporation Shaped multilayer metal foil shield structures and method of making
US6131646A (en) * 1998-01-19 2000-10-17 Trw Inc. Heat conductive interface material
US6276356B1 (en) 1998-07-09 2001-08-21 Atd Corporation Portable gas grill
US6438936B1 (en) 2000-05-16 2002-08-27 Elliott Energy Systems, Inc. Recuperator for use with turbine/turbo-alternator
US9790836B2 (en) 2012-11-20 2017-10-17 Tenneco Automotive Operating Company, Inc. Loose-fill insulation exhaust gas treatment device and methods of manufacturing
US9915392B2 (en) 2014-03-13 2018-03-13 Transco Products Inc. Internal thermal insulation for metal reflective insulation
US11959272B1 (en) 2020-11-25 2024-04-16 Herbert L. deNourie Building construction

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2597309A (en) * 1946-08-30 1952-05-20 Joseph L Finck Insulating lath for building and like structures
US3244224A (en) * 1961-12-18 1966-04-05 Nat Res Corp Space vehicle insulation
US3866786A (en) * 1972-09-22 1975-02-18 Atomic Energy Commission Energy absorbing structure in a steam generator
US4702312A (en) * 1986-06-19 1987-10-27 Aluminum Company Of America Thin rod packing for heat exchangers
US4943454A (en) * 1987-08-28 1990-07-24 Hunter Douglas, Inc. Expandable collapsible product and method and apparatus for its manufacture
US5405483A (en) * 1987-08-28 1995-04-11 Hunter Douglas, Inc. Apparatus for forming pleated material
US5800905A (en) * 1990-01-22 1998-09-01 Atd Corporation Pad including heat sink and thermal insulation area
US5011743A (en) * 1990-01-22 1991-04-30 Atd Corporation Pad including heat sink and thermal insulation areas
CN1072557C (en) * 1990-01-22 2001-10-10 Atd公司 Pad including heat sink and thermal insulation areas and laminate having shapability
DE4003770A1 (en) * 1990-02-08 1991-08-14 Buderus Heiztechnik Gmbh Thermally insulated cladding for boilers - consists of corrugated aluminium foil mats with air forming insulation
US5408071A (en) * 1992-06-11 1995-04-18 Atd Corporation Electric heater with heat distributing means comprising stacked foil layers
US5406930A (en) * 1993-08-10 1995-04-18 Atd Corporation Outdoor cooking device
US5768781A (en) * 1994-01-10 1998-06-23 Lydall, Inc. Method of making a metal heat insulator
US5424139A (en) * 1994-01-10 1995-06-13 Lydall, Inc. Metal heat insulator
US5524406A (en) * 1994-03-24 1996-06-11 Atd Corporation Insulating apparatus and method for attaching an insulating pad to a support
US5670264A (en) * 1994-05-10 1997-09-23 Shertech, Inc. Thermal barrier
US5901428A (en) * 1994-05-10 1999-05-11 Shertech, Inc. Method for manufacturing a heat shield
FR2764234A1 (en) 1997-06-09 1998-12-11 Atd Corp MULTILAYERED METAL SHEET SCREEN STRUCTURES AND MANUFACTURING METHOD
US6451447B1 (en) 1997-06-09 2002-09-17 Atd Corporation Shaped multilayer metal foil shield structures and method of making
US5958603A (en) * 1997-06-09 1999-09-28 Atd Corporation Shaped multilayer metal foil shield structures and method of making
DE19825813C2 (en) * 1997-06-09 2000-07-20 Atd Corp Flexible, corrugated, multi-layer metal foil shields and process for their manufacture
US6660403B2 (en) 1997-06-09 2003-12-09 Atd Corporation Flexible corrugated multilayer metal foil shields and method of making
US6207293B1 (en) 1997-06-09 2001-03-27 Atd Corporation Flexible corrugated multilayer metal foil shields and method of making
US5939212A (en) * 1997-06-09 1999-08-17 Atd Corporation Flexible corrugated multilayer metal foil shields and method of making
US6276044B1 (en) 1997-06-09 2001-08-21 Atd Corporation Shaped multilayer metal foil shield structures and method of making
FR2764235A1 (en) 1997-06-09 1998-12-11 Atd Corp CORRUGATED AND FLEXIBLE SHIELDS WITH MULTI-LAYERED METAL SHEETS AND MANUFACTURING METHOD
US6131646A (en) * 1998-01-19 2000-10-17 Trw Inc. Heat conductive interface material
US6276356B1 (en) 1998-07-09 2001-08-21 Atd Corporation Portable gas grill
US6438936B1 (en) 2000-05-16 2002-08-27 Elliott Energy Systems, Inc. Recuperator for use with turbine/turbo-alternator
US6837419B2 (en) 2000-05-16 2005-01-04 Elliott Energy Systems, Inc. Recuperator for use with turbine/turbo-alternator
US9790836B2 (en) 2012-11-20 2017-10-17 Tenneco Automotive Operating Company, Inc. Loose-fill insulation exhaust gas treatment device and methods of manufacturing
US9915392B2 (en) 2014-03-13 2018-03-13 Transco Products Inc. Internal thermal insulation for metal reflective insulation
US11959272B1 (en) 2020-11-25 2024-04-16 Herbert L. deNourie Building construction

Similar Documents

Publication Publication Date Title
US1934174A (en) Heat insulation for air spaces
US1987798A (en) Thermal insulating material
US2179057A (en) Heat insulation
US2020639A (en) Thermal insulation unit or board
US2175630A (en) Heat and sound insulation
US2192516A (en) Insulation sheet material
US2746892A (en) Multi-layer heat insulating material
US1956323A (en) Insulating unit
US2091918A (en) Insulating material
US2308869A (en) Acoustic wall panel
US1890418A (en) Heat insulation
US2312987A (en) Heat insulating panel
US3262521A (en) Structural damping
JPH07280170A (en) Packing structure of packing material for vacuum heat insulating body
US2777786A (en) Thermal insulation
US2234517A (en) Laminated building sheet
US2034489A (en) Laminated wall structure
GB482747A (en) Improvements in or relating to heat insulation
US2980573A (en) Ventilated honeycomb
US2047386A (en) Wall panel
US1853374A (en) Cushioning panel
US2029679A (en) Insulation
US2906655A (en) Expansible insulation unit
US2037813A (en) Heat insulation
US2015817A (en) Heat insulation for wall structures