US1914102A - Ferrous alloy - Google Patents

Ferrous alloy Download PDF

Info

Publication number
US1914102A
US1914102A US538875A US53887531A US1914102A US 1914102 A US1914102 A US 1914102A US 538875 A US538875 A US 538875A US 53887531 A US53887531 A US 53887531A US 1914102 A US1914102 A US 1914102A
Authority
US
United States
Prior art keywords
alloy
cast iron
iron
carbon
ferrous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US538875A
Inventor
Ralph L Binney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BINNEY CASTINGS Co
Original Assignee
BINNEY CASTINGS Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BINNEY CASTINGS Co filed Critical BINNEY CASTINGS Co
Priority to US538875A priority Critical patent/US1914102A/en
Application granted granted Critical
Publication of US1914102A publication Critical patent/US1914102A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • This invention relates to a ferrous alloy having great resistance to deterioration when subjected alternately to elevated and low temperatures, and also having a high resistance to scaling, cracking, and warping at high temperatures.
  • the alloy in addition to iron and carbon contains aluminum, silicon, chromium, 'and vanadium.
  • the alloy has a tensile strength of approximately 45000 pounds per square inch, which is about twice that of ordinary cast iron. Its hardness is also about twice that of ordinary cast iron, the alloy having a Brinell hardness of about 325. Although the alloy has a hardness and strength approximately double that of ordinary cast iron, its machinability does not differ greatly from ordinary cast iron, and for this reason it can be used where cast iron has been employed formerly, but where it is desired that the alloy be able to withstand alternateheating and cooling and also withstand high temperatures without substantial deformation. Its expansion upon heating is slightly less than cast iron and it has less permanent growth. a Y t The alloy is exceedingly fine grained and takes a better polish than cast iron, due to its denser nature.
  • Softening does not occur at temperatures above 1300 .F., which temperature is higher than is necessary to produce softening in ordinary cast iron. Even at a temperature of 1500 F., the hardness of the alloy is about 255 Brinell. Due .to the fact that the alloy retains its hardness and strength at temperatures of 1500 F. or above, the alloy is unusually well suited for making glass molds where these properties enable the material to retain edges that do not break off or pean down. The marked ability of the alloy to resist tempering or softenin at elevated temperatures makes it extreme y valuable for use under conditions where strength and hardness are required while an alloy is very hot.
  • the alloy is particularly adapted for molds for forming glass and parts of glass equipment coming in contact with molten lass or urnace equipment, valves for internal combustion 1881. Serial No. 688,875.
  • The-ferrous allo having these properties contains carbon about 2.5% to 3.5%, aluminum about 2.0% to 3.5%, silicon about 00 2.0% to 3.5%, chromium about 2.0% to 3.5%, and about .10% to .50% of-vanadium.
  • the alloy may also contain sulphur, phosphorous and manganese in small amounts as impurities, but for best results neither the sulphur nor the phosphorus should exceed 04%, and the manganese should not exceed 20%.
  • the alloy is well adapted for nitriding, and for certain purposes where a hard wearresisting surface is desired, it is advisable to nitride the alloy. Any of the usual nitriding processes may be employed for this purpose.
  • the alloy by melting It is in a crucible. It may, however, be made by any of the common methods of making cast iron, but an inferior product results.
  • a pure IIOII containing carbon, but containing only small amounts of impurities such as sulphur, phosphorous and manganese is melted in the crucible.
  • the metal known commercially as washed metal since this washed metal is substantially free from impurities and contains practically only iron and carbon. Less satisfactory results mav be obtained, however, by using other types of iron as the base metal.
  • the ferrous base for example washed metal, contain not over 04% of phosphorus or sulphur, anu not over 20% of manganese.
  • a ferrous alloy resistant to scalinganfi. warping at high temperatures and contain ing about 2.5% to 3.5% carbon, about 2.0% to 3.5% aluminum, 2.0% to 3.5% silicon, about 2.0% to 3.5% chrominum, anol'about .l0% to 25% vanadiium, the balance being substantially iron.
  • a ferrous alloy resistant to scaling ancl warping at high temperatures and; containing about 3.0% carbon, about 3.0% aluminum, about 3.0% slicon, about 3.0% chromium, andl about .10% to .50% vanadium;, the balance being substantially iron.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Patented June 13, 1933 UNITED STATES PATENT orFics RALPH L. BINNEY, OF TOLEDO, OHIO, ASBIGNOB TO THE BINNEY CASTINGS COMPANY,
OF TOLEDO, OHIO, A CORPORATION OF OHIO FERROUS ALLOY 1T0 Drawing. Application filled Kay 20,
This invention relates to a ferrous alloy having great resistance to deterioration when subjected alternately to elevated and low temperatures, and also having a high resistance to scaling, cracking, and warping at high temperatures. 1
The alloy, in addition to iron and carbon contains aluminum, silicon, chromium, 'and vanadium. a
The alloy has a tensile strength of approximately 45000 pounds per square inch, which is about twice that of ordinary cast iron. Its hardness is also about twice that of ordinary cast iron, the alloy having a Brinell hardness of about 325. Although the alloy has a hardness and strength approximately double that of ordinary cast iron, its machinability does not differ greatly from ordinary cast iron, and for this reason it can be used where cast iron has been employed formerly, but where it is desired that the alloy be able to withstand alternateheating and cooling and also withstand high temperatures without substantial deformation. Its expansion upon heating is slightly less than cast iron and it has less permanent growth. a Y t The alloy is exceedingly fine grained and takes a better polish than cast iron, due to its denser nature. Softening does not occur at temperatures above 1300 .F., which temperature is higher than is necessary to produce softening in ordinary cast iron. Even at a temperature of 1500 F., the hardness of the alloy is about 255 Brinell. Due .to the fact that the alloy retains its hardness and strength at temperatures of 1500 F. or above, the alloy is unusually well suited for making glass molds where these properties enable the material to retain edges that do not break off or pean down. The marked ability of the alloy to resist tempering or softenin at elevated temperatures makes it extreme y valuable for use under conditions where strength and hardness are required while an alloy is very hot.
The alloy is particularly adapted for molds for forming glass and parts of glass equipment coming in contact with molten lass or urnace equipment, valves for internal combustion 1881. Serial No. 688,875.
engines, molds for die-casting machines, and for any uses requiring a metal having greater strength or hardness than cast iron, or where the article must withstand high temperatures or alternate heating and cooling with- 56 out substantial scaling, cracking, warping or deformation.
The-ferrous allo having these properties contains carbon about 2.5% to 3.5%, aluminum about 2.0% to 3.5%, silicon about 00 2.0% to 3.5%, chromium about 2.0% to 3.5%, and about .10% to .50% of-vanadium. The alloy may also contain sulphur, phosphorous and manganese in small amounts as impurities, but for best results neither the sulphur nor the phosphorus should exceed 04%, and the manganese should not exceed 20%.
I also havefound that when the aluminium, silicon, and chromium contents of the alloy are each about 3%, the desirable physical properties and resistance to scalin and crackmg appear to be at a maximum. preferred analysis of the alloy is about 2.80% carbon, about 3% aluminum, about 3% silicon, about 3% chromium, and about .17% vanadium.
The alloy is well adapted for nitriding, and for certain purposes where a hard wearresisting surface is desired, it is advisable to nitride the alloy. Any of the usual nitriding processes may be employed for this purpose.
preferred to form the alloy by melting It is in a crucible. It may, however, be made by any of the common methods of making cast iron, but an inferior product results. In carrying out the preferred crucible melting method, a pure IIOII containing carbon, but containing only small amounts of impurities such as sulphur, phosphorous and manganese, is melted in the crucible. It is preferred to use as the iron forming the base of the alloy, the metal known commercially as washed metal, since this washed metal is substantially free from impurities and contains practically only iron and carbon. Less satisfactory results mav be obtained, however, by using other types of iron as the base metal. The necessary amounts of aluminum, silicon, chromium and'vanadium to produce an alloy. having the analyses above stated is added to 1 the washed metal, anu the meltin is controlled so as to given rlting car on content of 2.5 to 3.5%. lit is preferrefi that the ferrous base, for example washed metal, contain not over 04% of phosphorus or sulphur, anu not over 20% of manganese.
- I have flescribecl indetail one method of reducing my alloy. lit is to be unuerstoodl, however, that the alloy may be produced by Ether methods and that the alloy 18 not limiteol the following claimis.
I claim:
warping at high temperatures, and contaming about 2.5% to 3.5% carbon, about 2.0% to aluminum, about 2.0% con, about 2.0% to 3.5% chromium, 10% substantially iron.
2. A ferrous alloy resistant to scalinganfi. warping at high temperatures, and contain ing about 2.5% to 3.5% carbon, about 2.0% to 3.5% aluminum, 2.0% to 3.5% silicon, about 2.0% to 3.5% chrominum, anol'about .l0% to 25% vanadiium, the balance being substantially iron.
3. A ferrous alloy resistant to scaling ancl warping at high temperatures, and; containing about 3.0% carbon, about 3.0% aluminum, about 3.0% slicon, about 3.0% chromium, andl about .10% to .50% vanadium;, the balance being substantially iron.
and about In testimony whereof I have hereunto set my hanu. RALPH L. BINNEY.
antenna the analysis givenin the specific embodiment, but may be varied within the scope of l. A ferrous alloy resistant to scaling a d Q to 3.5% silito Vanadium, the balance being
US538875A 1931-05-20 1931-05-20 Ferrous alloy Expired - Lifetime US1914102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US538875A US1914102A (en) 1931-05-20 1931-05-20 Ferrous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US538875A US1914102A (en) 1931-05-20 1931-05-20 Ferrous alloy

Publications (1)

Publication Number Publication Date
US1914102A true US1914102A (en) 1933-06-13

Family

ID=24148792

Family Applications (1)

Application Number Title Priority Date Filing Date
US538875A Expired - Lifetime US1914102A (en) 1931-05-20 1931-05-20 Ferrous alloy

Country Status (1)

Country Link
US (1) US1914102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2580171A (en) * 1945-03-10 1951-12-25 Kanthal Ab Heat-resistant ferritic alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2580171A (en) * 1945-03-10 1951-12-25 Kanthal Ab Heat-resistant ferritic alloy

Similar Documents

Publication Publication Date Title
US2485761A (en) Gray cast iron having improved properties
WO2019080458A1 (en) Micro-alloyed spring steel and preparation method thereof
US1928747A (en) Nonferrous alloy
JP3045995B2 (en) Tool for forming glass and method of manufacturing the same
US3128175A (en) Low alloy, high hardness, temper resistant steel
US2370225A (en) Malleable iron
US1914102A (en) Ferrous alloy
US3392015A (en) Aluminum-base alloy for use at elevated temperatures
US2146330A (en) Aluminum-zinc alloys
US2189198A (en) Copper-titanium alloy
US2578794A (en) Magnesium-treated malleable iron
US1538337A (en) Alloy
US2809888A (en) Cast iron with high creep resistance and method for making same
US1643304A (en) Silver-silicon alloy and process of making the same
US4732602A (en) Bronze alloy for glass container molds
US2069205A (en) Method of producing iron chromium alloys of appreciable nitrogen content
US1389133A (en) Heat-resisting alloy
US1680301A (en) Steel alloy
US2096318A (en) Method of making chromium steel from chromium steel scrap
US2105220A (en) Ferrous metal
US2646375A (en) Process for hardening alloy gray cast iron
US1538360A (en) Malleable noncorrodible alloy
US2167301A (en) Alloy cast iron
US2169190A (en) Copper base alloy
US1860852A (en) Ferrous alloys